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Abstract

We study compact manifolds of special holonomy G, C SO(7) and Spin(7) C SO(8)
and their calibrated submanifolds, the coassociative and Cayley submanifolds. These are
minimal submanifolds arising from the holonomy restriction. Calabi—Yau fourfolds appear
as special examples of Spin(7)-manifolds.

Physicists expect that a Calabi-Yau threefold X admits a mirror X (where the complex
geometry of X is equivalent to the symplectic geometry of X and vice-versa). A proposed
geometric explanation, the SYZ conjecture [43], stipulates that both fiber over the same
base B* with (possibly singular) calibrated torus fibres that are dual to one another.

We study the analogous existence problem of calibrated fibrations in the Spin(7) case
and prove that Cayley fibrations of compact Spin(7)-manifolds, where fibres may admit
certain types of conical singularities, are stable under small deformations of the Spin(7)-
structure. More precisely, we require all the fibres to be unobstructed in their respective
moduli spaces and the cones to have well-behaved critical rates. Furthermore, the singular
locus should be of codimension at least 2 in the base and the asymptotically conical
Cayleys required for the desingularisation of singular fibres should have deformations
of a unique asymptotic rate. Complex fibrations of Calabi—Yau fourfolds with at worst
Morse-type singularities satisfy all of these conditions.

As an application, we prove the existence of coassociative Kovalev-Lefschetz fibrations
of Gy-manifolds arising as twisted connected sums. We present an explicit example of
a coassociative fibration on the twisted connected sum Gs-manifold obtained from two
quartic building blocks. This completes the program initiated by Kovalev to find examples
of coassociative fibrations using gluing methods [24].

Along the way we revisit the deformation theory of compact Cayley submanifolds
(McLean [34], Clancy |7], Moore [36]) and conically singular Cayley submanifolds (Moore
[38]) and describe the deformation theory of asymptotically conical Cayley submanifolds
of R®. We do this in the unifying framework of families of almost Cayley submanifolds
(whose tangent bundles are close to a bundle of Cayley planes) in not necessarily torsion-
free Spin(7)-manifolds, and define a canonical deformation operator even for submanifolds
that are not Cayley. This generalises a number of results in the existing literature.

Furthermore, we study the desingularisation theory of conically singular Cayley sub-
manifolds by attaching asymptotically conical submanifolds at the singularities and prove
a general gluing theorem. As an application, we determine when immersed points of Cay-

ley submanifolds may be smoothed by gluing in a Lawlor neck.
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Introduction

The holonomy group Hol(g) of a Riemannian manifold (M™, g) captures the possible par-
allel transport transformations of closed loops for the Levi-Civita connection V,. Gener-
ically it will be isomorphic to O(n) (or SO(n) if M is oriented) in which case M only
admits parallel tensors constructed from the metric. No further geometric structure com-
patible with the metric g can exist, as any V g-parallel tensor needs to be invariant under
the action of Hol(g) on the tangent space at every point, i.e. under the standard action
of SO(n) ~ R".

If the holonomy group Hol(g) is strictly smaller than in the generic case, further
parallel tensors and thus additional geometric structures appear. Take for instance Kahler
manifolds, which have holonomy U(n) C SO(2n) and automatically admit a parallel
integrable complex structure J : T'"M — T'M. More generally such Riemannian manifolds
are known as manifolds of special holonomy.

Surprisingly, the list of possible holonomy groups is rather short if we restrict to
simply connected, irreducible (i.e. not locally of product form) and non-symmetric metrics.
Berger [3] proved that for these elementary building blocks of Riemannian manifolds
Hol(g) must be one of the following groups:

e SO(n), the generic case,

e U(n) and SU(n) C SO(2n), from complex geometry,

e Sp(n) and Sp(n)Sp(1) € SO(4n), from quaternionic geometry,
e Gy C SO(7) and Spin(7) C SO(8), from octonionic geometry.

The exceptional holonomy groups G and Spin(7) stand out among the entries of
Berger’s list as they are purely 7 and 8-dimensional phenomena. This already makes them
mathematically interesting. However, it was unclear at first whether interesting examples
of manifolds with exceptional holonomy did in fact exist. As an example, Berger’s list
originally included another group Spin(9) C SO(16), but it was later shown that there
were no non-symmetric examples. The existence question for G and Spin(7) was resolved
in 1987 by Bryant [5], who provided examples of such metrics on open balls in Euclidean
space. Later in 1989 Bryant and Salamon gave complete examples in [6]. The last major
contribution was made by Joyce, who in 1995-1996 constructed compact manifolds of
exceptional holonomy in [11}13].

Often in mathematics one can study objects by looking at their subobjects. For ex-
ample, one can study symplectic manifolds by considering the moduli spaces of pseudo-
holomorphic curves. The correct subobjects to investigate in manifolds of special holonomy
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are the calibrated submanifolds. These are special examples of minimal submanifolds
that solve a first-order p.d.e. which implies the second-order minimal surface p.d.e. While
being easier to approach than the usual minimal surface equation, the first-order p.d.e.
presupposes the existence of a particular tensor, the calibration form, which in our case
comes from the holonomy reduction.

As a subject, calibrated geometry was first conceived by Harvey and Lawson in their
foundational paper [10] as a generalisation of the geometry of complex submanifolds in
Kahler manifolds. The calibrated submanifolds in the G4 setting are the three and four-
dimensional associative and coassociative submanifolds respectively. For Spin(7) the rele-
vant submanifolds are the four-dimensional Cayley submanifolds. All of these can be seen
as geometric consequences of the algebraic properties of the normed division algebra of
octonions.

Both the study of manifolds with special holonomy and of calibrated submanifolds
are worthwhile endeavours in differential geometry, but they are more than that. Be-
cause of their geometric structures, manifolds with special holonomy and their calibrated
submanifolds have become central objects of study for theoretical physicists, especially
in the context of String theory and M-theory. Here one studies the evolution of strings
(embeddings of either S', a closed string, or [0, 1], an open string) on a high-dimensional
Lorentzian manifold R*! x X° where X6 is a Calabi-Yau manifold, i.e. a Riemannian
manifold with holonomy SU(3), or R*' x M7 with M7 a manifold with holonomy Gb.
In this way, one can associate a quantum theory to a Riemannian manifold. Manifolds
of special holonomy in particular appear as inputs to these quantum theories because
they admit parallel spinors, which ensure that the quantum theory is supersymmetric, a
sought-after quality. Calibrated submanifolds provide boundary data for open strings to
propagate along and further influence the resulting physics.

This interplay with physics becomes interesting for mathematicians once we start in-
terpreting the physical properties of String and M-theory (which are not related to special
holonomy or calibrated geometry a priori) in a mathematical light. The main impetus for
this thesis is T-duality and the study of its mathematical formalisation, mirror symmetry.
It states that the string theory associated with the Calabi—Yau threefold X is physically
equivalent to another string theory for the Calabi—Yau threefold X. One proposed way
to explain mirror symmetry is the SYZ conjecture, put forward by Strominger, Yau and
Zaslow in [43]. The idea is that both X and X admit fibrations by special Lagrangians
(the calibrated submanifolds of interest in Calabi—Yau geometry) over the same base space
and that the fibres, which are generically tori, should be dual in an appropriate sense.

In this thesis, we investigate the adjacent problem of calibrated fibrations of compact
manifolds with holonomy Spin(7) and, as a result, can deduce statements about coassocia-
tive fibrations of manifolds with holonomy G2 as well. Cayley and coassociative fibrations
have been constructed before in highly symmetric situations such as the noncompact
Bryant-Salamon manifolds (see the work by Karigiannis-Lotay [20] and Trinca [44]), but
never before on a compact manifold without symmetry assumptions.

Kovalev [24] has outlined a construction of coassociative fibrations of Ga-manifolds
obtained from Calabi-Yau ingredients, the twisted connected sum Go-manifolds, a gluing
construction also due to Kovalev [23] and later extended by Corti, Haskins, Nordstrom and
Pacini [9]. As an application of our work on Cayley fibrations, we complete the program



by Kovalev by providing the first example of a coassociative fibration on a compact Go-
manifold of full holonomy.

Main results and chapter overview

Chapter (1| reviews aspects of differential geometry and functional analysis which will be
needed for the rest of the thesis. In particular, we will introduce calibrated geometry with
a focus on Calabi—Yau, G5 and Spin(7)-manifolds and their calibrated submanifolds. We
note that for us Gy and Spin(7)-manifolds do not need to be torsion free in general.

Chapter [2 focuses on moduli spaces of Cayley submanifolds in an ambient Spin(7)-
manifolds, both for compact and noncompact Cayleys. The moduli space of compact
Cayley submanifolds has been previously studied by McLean [34], who investigated the
linearised deformation operator and the local structure of the moduli space, by Clancy [7],
who investigated its global properties and proved a useful index formula, and by Moore
[37], who focused on the case when the Cayley is a complex surface in a Calabi-Yau
fourfold.

We reprove many of the existing results for the slightly more general setting of the
family moduli space M(N,S) (where S is a smooth family of Spin(7)-structures, and
N any smooth submanifold) of all Cayley submanifolds in (M, ®) isotopic to N, where
® € S, and investigate the non-linear deformation operator also for non-Cayley sub-
manifolds whose tangent planes are close to being Cayley planes, the almost Cayley
submanifolds.

Theorem 1 (Moduli space of compact Cayley submanifolds). Suppose p >4 and k > 1.
Let N be an immersed compact Cayley submanifold of a not necessarily torsion-free
Spin(7)-manifold (M, @), where {Ps}ses is a smooth family of Spin(7)-structures parametrised
by the smooth manifold S, and sy € S. Then there is a non-linear deformation operator
F which for e > 0 sufficiently small and sy € U C S an open neighbourhood is a C'* map:

F:Le=A{ve Ly, (ve(N)), [vlley,, < e} xU — LY(E).

Here v.(N) is an e-neighbourhood around the zero-section of the normal bundle v(N) of
N C M, and E C A*T*N s a certain rank four subbundle. A neighbourhood of (N, ®.,)
in the family moduli space of Cayley submanifolds M(N,S) is homeomorphic to the zero
locus of F' near (0, ®y,). We say that N is unobstructed if Coker DF'(0,®,,) = {0}. In
that case, near (N, ®g,), M(N,S) is a smooth manifold of dimension

dim Ker DF(0, d,,) = %(U(N) + (V) = [N] - [N] + dim S.

We note that the conditions p > 4 and £ > 1 are there to ensure the Sobolev embedding
LY — C°.

The main goal of Chapter [2]is to prove the corresponding results for Cayley subman-
ifolds which are asymptotically conical (AC) or conically singular (CS). The proof
of Theorem [I] introduces all the elements required for the proof of Theorems [2] and [3], but
in an analytically simpler setting. We then introduce the analytic machinery necessary



to study the moduli spaces of AC and CS Cayley submanifolds, namely Lockhart and
McOwen’s theory [29] of weighted Sobolev spaces.

First, we prove the analogue of Theorem [I| for AC Cayleys in R®, which are non-
compact Cayleys that have an end that is asymptotic to a cone at infinity. The moduli
space M’\AC(A, S) of AC Cayleys which are isotopic to A and approach the cone at infinity
at least in O(r*~1) has the following structure:

Theorem 2 (Moduli space of AC Cayley submanifolds). Suppose p > 4 and k > 1. Let
A be an ACy Cayley submanifold of (R®, &), where ®q is the standard Spin(7)-structure
on R®, and let S be a smooth family of AC,, deformations of g with n < XA < 1 (i.e.
the Cayley may not have a stronger rate than the background manifold). Then there is a
non-linear deformation operator Fac which for e > 0 sufficiently small and0 e Y C S an
open neighbourhood is a C'*° map:

Fac: Le={v e L \(we(A), lvlley,, , <ep xU — L\, (E).

A neighbourhood of (A, ®y) in Mug(A,S) is homeomorphic to the zero locus of Fac near
(0, ®g). If the rate A is not in a discrete critical set P C R, then Fac is a Fredholm oper-
ator. In particular, if the obstruction space Coker DFac(0, ®g) vanishes, then Myq(A,S)
is a smooth manifold near (A, ®g), the dimension of which depends on the rate A < 1.

Next, we prove the analogue of Theorem [l for conically singular Cayley submanifolds,
which are compact Cayley submanifolds that admit a finite number of singular points,
around which they are modelled on cones. Each singular point can be assigned a rate
1 < p < 2, which is a measure of how fast the manifold approaches the cone near its
vertex. When there are multiple singular points, we regroup the rates into a vector f.

Moore [38] studied CS Cayleys on a fixed torsion-free Spin(7)-manifold. Our contribu-
tion is the extension of the result for CS Cayleys to the family moduli space M‘éS(N ,S)
for varying Spin(7)-structure which may admit torsion.

Theorem 3 (Moduli space of CS Cayley submanifolds). Suppose p > 4 and k > 1.
Let N be a CS; Cayley submanifold of the not necessarily torsion-free Spin(7)-manifold
(M, ®y,), and suppose {Ps}ses is a smooth family of deformations of ®y,. Let F be the
configuration space of possible singular points and deformations of the asymptotic cones
of N, where the asymptotic data of N itself is given by fo € F. This is a smooth manifold.
Then there is a non-linear deformation operator Fes which for € > 0 sufficiently small
and (so, fo) €U C S X F a open neighbourhood is a C* map:

Fos: Le={v € L, ,(V(N)), H’UHLZ+1,[L <epxU— Ly, (E).

A neighbourhood of (N, ®,,) in MEg(N,S) is homeomorphic to the zero locus of Fcs
near (0, so, fo). If the rates i are not in a discrete critical set 9 C R, then Fgs is a
Fredholm operator. In particular, if the obstruction space Coker DFcg(0,®,,) vanishes,
then MPg(N,S) is a smooth manifold near (N, ®,), the dimension of which depends on
the rates 1 < i < 2.

Chapter |3| focuses on the desingularisation of conically singular Cayley submanifolds,
by gluing in matching asymptotically conical Cayleys. Here ./Wj\c(A) for A C R® an AC
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Cayley denotes the completed moduli space, which is defined to be the usual moduli space
with an additional point corresponding to the asymptotic cone. We present a simplified
version of the general gluing theorem [3.15] which allows for the simultaneous desingular-
isation of multiple singular points, as well as partial desingularisation.

Before we state the theorem, recall that when C is a Cayley cone in R®, with link
L =CnNS7, there is a discrete subset of critical rates 2;, C R® for which the deformation
operators Fac and Frg, defined on weighted spaces, are not Fredholm. We also recall the
nearly parallel Gy-structure on the round seven-sphere. Let 0, be the outward radial unit
vector field on S7 C R® and r the distance to the origin in R®. Then we have at p € S7
that ®, = dr A (), + (xs7),. Here (S7, ) is a Gy-structure for which the link L of the
Cayley cone is associative.

Theorem 4 (Desingularisation of CS Cayleys). Let (M, ®) be a Spin(7)-manifold and
N a CS,-Cayley in (M, ®) with unique singular point z of rate 1 < p < 2, modelled
on the cone C = R, x L C R®. Assume that N is unobstructed in M¥tg(N,®), that L
is an unobstructed associative in ST, and that 21, N (0,u] = {1}. Suppose that A is an
unobstructed ACy-Cayley with A < 0, such that 2, N[\, 0) = 0. Let {® }ses be a smooth
family Spin(7)-structure, deforming ® = ®,. Then there is an open neighbourhood Uac

of C € ./WXC(A), an open neighbourhood sy € U C S and a continuous map:
I':U x MEG(N, @) x Upye — M(NELA,S) UM(N,S).

This map is a local diffeomorphism of stratified manifolds. Thus away from the cone

mn MXC(A) it is a local diffeomorphism onto the nonsingular Cayley submanifolds in
M(NHLA,S). It maps the points (s, N,C) to N € M{q(N, ®y).

The gluing theorem is proven by first constructing an approximate glued Cayley and
then following an iteration scheme which converges to an exact Cayley under suitable
conditions. Our proof follows the outline of the analogous results for special Lagrangians
by Joyce [18] and coassociative submanifolds by Lotay [30]. However, it differs in how
the necessary estimates on the inverse of the linearised operator are obtained. We glue
together the estimates for the pieces which, since it is adapted to the geometry, allows us in
the general case of Theorem [3.15]to work with CS Cayleys that have multiple singularities
of different rates and do partial desingularisation.

In particular, we can resolve negative self-intersections, as these are geometrically
equivalent to a pair of special Lagrangians intersecting at a point, admitting a Lawlor
neck desingularisation.

Corollary 5 (Desingularisation of immersions). Let N be an unobstructed immersed com-
pact Cayley submanifold which admits a negative self-intersection at p € N. Then there
is a family of Cayley submanifolds with one fewer immersed point {Nyi}ic(o,e) such that

Ny — N in the sense of currents and also in Cpx. away from the self-intersection ast — 0.

It is not possible to remove positive intersections, as there is no corresponding Lawlor
neck in this case. In fact, in the torsion-free case, there is no non-singular Cayley homol-
ogous to an immersed Cayley with one positive self-intersection.



In Chapter 4| we prove, using our results from the two previous chapters, that Cayley
fibrations of compact Spin(7)-manifolds satisfying certain conditions are stable under
small perturbations of the ambient Spin(7)-structure. We proceed in two steps. First, we
show stability for what we call weak fibrations. For N C (M, ®) a compact, nonsingular
Cayley submanifold we introduce the completed moduli space M (N, ®) which adjoins to
the usual moduli space the CS degenerations that can occur in M(N, ®). This is usually
a partial compactification, which we assume in the following is a full compactification.
Under this hypothesis we then say that M(N, ®) weakly fibers (M, ®) if every point is
covered by exactly one Cayley, where we count Cayleys algebraically, i.e. with signs. Hence
this is a homological notion. We introduce a regularity property of cones, semistability
(cf. Definition , which just means that translations and deformations of the link as
associatives in S” account for all the deformations of a Cayley cone with rate in the range
[0, 1]. We then show the following result, which has minimal assumptions on the geometry.

Theorem 6 (Stability of weak Cayley fibrations). Let (M, ®) be a Spin(7)-manifold that
is weakly fibred by M(N,®), and suppose that {®,}.cs is a smooth family of Spin(7)-
structures with ® = ®,,. Assume that all the Cayleys in M(N,®) are unobstructed and
that the cones in the conically singular degenerations of N are semistable and unobstructed.
Then there is an open set so € U C S such that M is weakly fibred by M(N,®,) for any
selU.

Next, we build on the weak stability result to show that strong fibrations, i.e. fi-
brations in the usual sense with restrictions on the possible singularities, are also stable
under certain conditions. In particular, we require the fibration to be nondegenerate
(see Definition [4.14), which means that the initial fibres should be quantitatively sep-
arated even as one approaches the singularities. Furthermore, the fibres should all be
unobstructed in their respective moduli spaces and the conically singular fibres should be
simple (see Definition [4.13)). This means that their deformation problem should have the
correct index 4 just below a critical rate ( < 0 and that the linearised Cayley equation
should admit solutions of at most two different rates at that rate (. These conditions are
in particular satisfied for Cayley fibrations coming from complex fibrations of Calabi-Yau
fourfolds with Morse type singularities.

Theorem 7 (Stability of strong Cayley fibrations). Let (M, ®s,) be a (not necessarily
torsion-free) Spin(7)-manifold that is strongly fibred by conically singular Cayleys which
are simple, and suppose that {®s}ses is a smooth family of deformations as Spin(7)-
structures of ®s,. Assume that all the Cayleys in the fibration are unobstructed and that
the fibration is nondegenerate. Then there is an open set so € U C S such that M can be
strongly fibred for any s € U.

The result is shown by proving a gluing theorem for the infinitesimal Cayley deforma-
tions, which are the variational vector fields associated to a family of Cayley submanifolds
obtained by varying the basepoint in a Cayley fibration. This gluing result allows us to
understand how the fibres of a fibration perturb near the singular points under the change
of Spin(7)-structure.

Finally in Chapter |5 we construct examples of calibrated fibrations using the strong
stability Theorem [7] Generally, constructing calibrated fibrations using gluing methods
splits into two separate problems.



First is the issue of finding suitable fibrations on the pieces which are compatible
with the gluing and fit together to give a calibrated fibration f : M — B on a small
torsion manifold (M, ®). This is already a hard problem by itself because of the difficulty
of constructing calibrated submanifolds. For now, the most effective way to construct
calibrated fibrations is to start with a complex fibration on a Calabi—Yau manifold, as
these are abundant. Now this already excludes special Lagrangian fibrations, as they
do not arise in a natural way from complex fibrations. But even though we have tools to
construct Cayley and coassociative fibrations it remains challenging to construct examples
which are neither trivial nor admit analytically intractable singularities.

One such singularity, which is not conical and keeps appearing in practice is:

fcubic : C4 — (C27 (xaya Z,QU) — (12 + y2 + Zgaw)' (*)

This singularity is expected to be of codimension 4 in the Cayley moduli space, and
thus cannot simply be perturbed away if it appears in a fibration. There is currently no
Fredholm deformation theory for Cayleys with this kind of singular behaviour, which is
why fibrations on pre-glued manifolds may not currently include such fibres.

Next, in a gluing construction of torsion-free Spin(7)-manifolds the Cayley form @ is
deformed to a nearby torsion-free form ® and the fibres of f deform accordingly to a new
collection of Cayleys. Our strong stability Theorem [7] guarantees that in certain situations
these new Cayleys remain fibering. At the same time, it answers the analogous question
for coassociative fibrations and complex fibrations of Calabi-Yau fourfolds by surfaces.

The example we construct comes from the twisted connected sum construction of Gs-
manifolds and was first proposed by Kovalev [24] with an incomplete proof of the stability
theorem. It also provides an example of a fibred Spin(7)-manifold albeit with holonomy
necessarily contained in Gq. In the Spin(7) case, there is a natural Cayley fibration on
the pre-glued manifold (with torsion), whose local singularity model we can write down
explicitly. It is the following conical Morse-type complex singularity:

fO:(C4—>CQv (x,y,z,w)'—>(x2—|—y2+z2,w).

We then show that the fibrations persist when we perturb to the torsion-free Spin(7)-
structure, which gives us the following result.

Theorem 8 (Existence of strong Kovalev-Lefschetz fibrations on compact Spin(7)-manifolds).
There are compact, torsion-free Spin(7)-manifolds of holonomy Gy which admit strong fi-
brations by Cayley manifolds.

Finally, as our example is of product type, the fibration can be shown to split and we
obtain the following corollary for the G5 case.

Corollary 9 (Existence of coassociative fibrations on compact Gy-manifolds). There are
compact, torsion-free Go-manifolds of full holonomy which admit strong fibrations by coas-
sociative submanifolds.

This gives the first example of a coassociative fibration of a holonomy G3-manifold as
described by the programme of Kovalev [24].



Outlook

As explained above, even though we work in the more general framework of Spin(7)
and Cayley geometry, and also prove the strong stability of fibrations in more generality
than just complex fibrations, we are unable to provide example fibrations of Spin(7)-
manifolds of full holonomy as of now, due to the lack of known suitable fibrations on
pre-glued manifolds. Attempts to produce such holomorphic fibrations on Calabi—Yau
fourfold pieces tend to include bad singularities such as (ED

The twisted connected sum of Go-manifolds presents itself as an ideal candidate in this
regard, as the gluing pieces naturally admit coassociative fibrations coming from complex
geometry. In this thesis we give the explicit example of a calibrated fibration on the twisted
connected sum of two quartic building blocks, however, the same method should work in
far greater generality, as long as one can verify the prerequisites of Theorem [7]

Finally, with the stability theorem at hand, one should keep searching for examples
with full holonomy Spin(7). It seems natural to focus on the second construction of
Spin(7)-manifolds |14] which starts from Calabi-Yau orbifolds. We thus may use complex
geometry to help us construct candidate fibrations, so that hopefully one day Theorem
may unfold its true potential.



Chapter 1

Background material

1.1 Notation

In the following, we denote by C an unspecified constant, which may refer to different
constants within the same derivation. To indicate the dependence of this constant on
quantities z,y, ..., we will write C'(z,y,...). Similarly, if an inequality holds up to an
unspecified constant, we will write A < B instead of A < C'B. The application of a linear
operator D : X — Y to a vector v € X is written D[v] with square brackets.

1.2 Calibrated Geometry

The study of calibrated geometry starts from the following observation, already made by
Harvey and Lawson in their foundational paper [10]. Let (M, ¢g) be a Riemannian manifold
and suppose that ¢ € QF(M) is a closed form, such that at each point p € M and for
each oriented k-plane II € Gr(T,M, k) the calibration inequality:

¢ln < dvoly

is satisfied. By this, we mean that g = advoly with o < 1, as both forms are top
dimensional when restricted to II. We then call ¢ a calibration. We say that an oriented
k-dimensional submanifold N C M is ¢-calibrated if the calibration inequality becomes
an equality, i.e.:

|y = dvoly .

Now the key observation is that any compact calibrated N is volume minimizing in its
homology class, which can be seen by an application of Stokes’ theorem. Indeed, for N
homologous to N we see:

VOI(N):/dvolN:/ @z/gpé/dvolNgvol(N).
N N N N

Thus in particular calibrated submanifolds are minimal submanifolds and the study
of calibrated submanifolds provides a different approach to constructing minimal sub-



manifolds, other than the more direct study of the minimal submanifold equation and
variational methods.

The first known example of a calibrated geometry was Kéhler geometry. If (M, J, w, g)
is a Kahler manifold of complex dimension n, with complex structure J, Kahler form w
and Riemannian metric g, then the form 79—]: is a calibration form whenever 1 < k < n. This
is also called the Wirtinger inequality. The calibrated submanifolds are the complex
submanifolds, which are indeed minimal submanifolds of Kahler manifolds.

Kahler manifolds are moreover examples of special holonomy manifolds, i.e. Rie-
mannian manifolds whose holonomy group Hol(M, g) is a strict subgroup of SO(n) (in
this case U(n) C SO(2n))). This is not a coincidence, as many interesting examples of
calibrations exist on special holonomy manifolds. Forms ¢ with dp = 0 can arise from
the strictly stronger condition of being parallel, i.e. Vi = 0, where V is the Levi-Civita
connection induced by g. At any point p € M, the holonomy group acts on A*T,M and
must preserve ¢,. Then if h € Hol(M, g) is any element of the holonomy group and
IT € Gr(T,M, k) is a calibrated plane, the plane h - II is calibrated as well. This is the
reason why calibrations coming from special holonomy manifolds tend to come with a
large class of calibrated planes and hence also more calibrated submanifolds.

In the following, we will review the fundamentals of three calibrated geometries,
namely the Calabi-Yau, Gy and Spin(7) geometries, which all arise this way, and study
their calibrated submanifolds.

1.3 Complex Geometry

Calabi—Yau Geometry

We briefly review some aspects of Calabi-Yau and Fano manifolds which will be relevant to
our discussion of Cayley fibrations of Spin(7)-manifolds. For a more in-depth introduction,
we refer to |15, Ch. 6].

Definition 1.1 (Calabi-Yau manifold). Let (M?", J,w, g) be a Kéhler manifold of com-
plex dimension n which admits a nowhere vanishing holomorphic (n,0)-form €. The line
bundle of (n,0)-forms is called the canonical bundle, so equivalently we may require
(M, J) to have a holomorphically trivial canonical bundle. If we furthermore have the

following normalisation condition which links the complex and symplectic geometry of
M:

% = (—1)"=D2(3 /2" A Q, (1.1)

then we call (M?", J,w, g,Q) a Calabi—Yau manifold. The form (2 is called the holo-
morphic volume form.

The holonomy of any Calabi—Yau manifold is contained in SU(n) and the metric g
is necessarily Ricci-flat. At any point an SU(n)-structure is isomorphic to the following
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standard model on C" with complex coordinates z; = x1 + iy, ..., 2, = Tp + 1Yp:

CL)(]:d.CCl/\dyl‘i‘dxn/\dynu
go = da? +dy? + - +da? + di2,
ngdzl/\/\dzn

We have the following theorem due to Yau [47] (proving a conjecture due to Calabi) which
reduces the existence of a Calabi-Yau structure to a question of complex geometry on
(M, J).

Theorem 1.2 (Theorem 1 in [47]). Let (M, J,w,g) be a compact Kihler manifold with
trivial canonical bundle. Then there is a unique Kdhler form & in the de Rham cohomology

class of w (with corresponding metric g) and a holomorphic volume form Q such that
(M, J,@,q,9) is a Calabi—Yau manifold.

On Calabi—Yau manifolds there are two calibrations of interest. First we have the real
part of the holomorphic volume form Re{2 € Q™ (M), whose calibrated submanifolds are
the so-called special Lagrangians. These are difficult to construct, and we will not go
further into discussing them here. Secondly, we have the complex submanifolds in any
dimension 1 < k < n, which are calibrated by the form “’k—lf, as we already pointed out
above.

In two complex dimensions, Calabi—Yau manifolds are particularly well understood.
Their underlying complex surfaces must either be tori T* or so-called K3 surfaces, which
are the only two deformation types of complex surfaces with trivial canonical bundles.
We discuss K3 surfaces in more detail now, see |15, Section 7.3.3] for a more in-depth
discussion. By a result of Kodaira all complex analytic K3 surfaces S belong to a single
diffecomorphism type, namely that of a quartic {z§ + =] + 23 + 3 = 0} C CP3. In
particular, they are simply connected and all have isomorphic cohomology groups, the
only non-trivial one being H?(S,Z). Since S is a compact closed four-manifold its second
cohomology admits a nondegenerate intersection pairing, and this lattice we denote by A.
Next, we recall that analytic K3 surfaces form a 20-dimensional moduli space. To see this
explicitly we define a marked K3 surface to be a K3 surface S together with a choice
of lattice isomorphism h : H?(S,Z) — A. The complex structure of the K3 surface is then
determined locally by its Hodge structure (i.e. how H?(S,C) = H%?(S,C)® H"'(S,C) ®
H?0(S,C) splits with respect to the marking h). More precisely we define the so-called
period domain:

Dizs={u€ PIA®C):u*=0, u-u >0} (1.2)
~{IICA®R: (-, )|n>0} C Gri(2,A®R).

This is the space of all possible complex lines h(H?°(S,C)) in A ® C. The map sending
(S,h) to [W(H?*°(S,C))] € Dgs is called the period map. It is a local but not a global
diffeomorphism, in particular, because the moduli space of marked K3 surfaces is not
Hausdorff (while D3 is). The isomorphism to Gry(2,A ® R) follows from identifying
H*° ¢ H*? =TI ® C for a real two-plane II.

Next, for our discussion, we need K3 surfaces with additional structure, so-called
lattice polarised K3 surfaces [2|. For this, we look at the Picard group Pic(S, J),
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which is the abelian group of holomorphic line bundles under the tensor product. As K3
surfaces are simply connected, we can think of the Picard group as being embedded in
H?(S,Z) via the first Chern class ¢; : Pic(S, J) — H"!(S,Z). Thus, while the intersection
form on H?(S,Z) is a topological invariant, we can restrict it to the Picard group to get
an invariant of the complex structure, the Picard lattice. This is a lattice of signature
(1,p — 1) where 0 < p < 20 is the rank of the Picard lattice.

Assume now that we are given a sublattice N C A of signature (1,7 — 1) and an
element A € N with A- A =29 —2 > 0. We say that a marked K3 surface (S, J, h)
is (N, A)-polarised if h='(N) C Pic(S,J), this embedding is primitive, meaning that
Pic(S, J)/h~(N) is torsion-free, and h~'(A) € Pic(S, J) is ample. The number g is then
called the genus of the polarised K3 surface S. Similar to the period domain of marked K3
surfaces one can describe a similar period domain for marked polarised K3 surfaces.
For this note that as h='(N) C Pic(S,J) € H(S) the complex line H*°(S) must be
orthogonal to ~~1(IN). This motivates the definition of the following domain:

Dy={ue PIN*®C):u?=0, u-u>0} (1.3)
~{IIC N*@R: (-,-)|u> 0} C Gry(2, N" @ R).

The corresponding Torelli theorem states that the period map from above maps the moduli
space of marked (N, A)-polarised K3 surfaces K% “ to Dy by a local diffeomorphism.
Hence this moduli space has dimension 20 — r.

The Kéhler geometry of K3 surfaces is also rather explicit. Suppose that the (non-
polarised) marked K3 surface (S, J,w, g, h) has period point II € Dg3. We then define the
root system corresponding to II as:

Ap={AeA:XA-A==-2 \-p=0 Vpell}.
Then the set of Kahler chambers of the K3 surface is given by:
{weAdR:w-w>0, w-p=0forpell, w-A#0 VA€ Ap}. (1.4)

Now the Kahler cone is always a connected component of the set of Kahler chambers, and
thus in particular an open subset of H'!(S).

After we discussed the complex and Kéhler geometry of a K3 surface, consider now
a K3 surface (S,wy, I,g,Q;) with a chosen Calabi—Yau structure. By Yau’s Theorem
we see that wy, g and €); are determined by the complex structure I and the cohomology
class [w] € H?(S). We can then write Qf = w; + iwg. As suggested by the notation S is
also Kéhler with respect to the forms w; and wg for new complex structures J and K
(meaning that g(-,-) = wy(+, J-) = wk(-, K-)). The three complex structures satisfy the
quaternionic relations I? = J?> = K? = [JK = —1. In fact, for (a,b,c) € S*> C R?® any
linear combination al + b.J + cK determines a further complex structure for which (5, g)
is Kahler for a suitably chosen Kéahler form. Riemannian manifolds that are Kahler in
three compatible ways like above are called hyperkahler manifolds. In the K3 case, we
can describe the K3 moduli space explicitly:

Proposition 1.3. The moduli space M™ of hyperkdihler K3 surfaces admits a period
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map, which is a global diffeomorphism:

Phk . mPk 5 phk (1.5)
Here DY is defined as:
Dty ={(o1,a0,03) 1 a; € AQR, ;- aj = ady; with a > 0, (1.6)

for each A € A with \- A\ = =2 there is i = 1,2 or 3 such that a; - A # 0}.

Hyperkahler manifolds admit isometries of a special kind which interchange the com-
plex structures, called hyperkahler rotations. More formally, for us a hyperkahler ro-
tation is an isometry ¢ : S — S5 between K3 surfaces S; and S, with complex structures
I, J1, Ky and I, J5, K5 respectively, so that

'ly=J1, ¢ Jy=1, and 'Ky = —K;. (1.7)

Alternatively, we can define hyperkahler rotations by their actions on the Kahler forms.
Indeed the hyperkahler rotation ¢ from above induces the following action on the Kéhler
forms (wy,w_,wp) corresponding to the distinguished complex structures (7, J, K) of a
K3 surface S:

(Wi, w—,wp) — (W_, W, —wp). (1.8)

These special isometries will be important in Section when we discuss the construc-
tion of Go-manifolds from Calabi—Yau pieces. We will glue asymptotically cylindrical
Glo-manifolds which have ends modelled on R x S! x S! x S, where S is a K3 surface.
For topological reasons explained after Equation , we need to identify the two K3
surfaces on either end by a hyperkahler rotation.

Fano Geometry

We now review some aspects of the geometry of Fano threefolds. More details can be
found in the book by Kollar [22] and the survey paper by Beauville [2].

Definition 1.4. A Fano manifold is a compact, complex manifold M with ample anti-
canonical bundle, meaning that a basis of H°(M, (—Kj;)®*) gives a well-defined embed-
ding into CP¥ for some k > 1.

Being Fano is quite a restrictive condition. In each dimension n > 1 there are only
finitely many deformation types of Fano n-folds. We are mostly concerned with Fano
threefolds, of which there are 105 deformation types. In fact, our entire discussion can
be adapted to what Corti, Haskins, Nordstrém and Pacini [§] call semi-Fano manifolds,
however, their definition is somewhat involved and we do not present it here. Morally
speaking, semi-Fanos are desingularisations of mildly singular Fanos.

We now recall some properties of (semi)-Fano manifolds that are relevant to our dis-
cussion of the twisted connected sum construction of Ge-manifolds, mainly following [§].
To begin, assume that M is a Fano three-fold. We can then define the following pairing
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on H*(M,Z):

(Y HA(M,Z) x HX(M,Z) — HY(M,Z) ~ Z,
(a,b) — a-b-cr(—Kp).

This endows H?(M,Z) with a nondegenerate lattice structure. We can write

where ¢ is the degree of the Fano three-fold. Next, let S C M be an anticanonical divisor.
It is known that generically this is a smooth K3 surface [42]. From now on assume that it
is. The restriction map H?(M,Z) — H?(S,Z) is a primitive embedding of lattices (see the
proof of [8, Prop. 5.7]), where we consider H?(S,Z) with the usual intersection pairing.
Thus S is a (H*(M,Z), — Kj)-polarised K3 surface. From this it is natural to discuss the
moduli space of pairs (M, S) where M is a (semi)-Fano threefold and S C M is a smooth,
anticanonical K3 divisor, together with an isomorphism h : N ~ H?(M,Z) , where N is a
fixed lattice and A € N satisfies h(A)? = —K3,. Write this moduli space as F¥**. This is
again a (potentially singular) complex manifold. Of course, we have a forgetful morphism:

sVA L FNA N4 (ML S) — S.

It has the following important property.

Proposition 1.5 (Thm. 6.8 in [8]). The image of each connected component of FN4 is
an open dense subset of KN, and for smooth points (M,S) € FNA S e KN we have
that s™4 is locally a submersion.

1.4 (G5 and coassociative Geometry

Consider C* with the standard Calabi-Yau structure (C*, Jy, wo, go, Qo). We can define the
following three-form, called the associative form on R” = R x C*:

wo = dt A wg + Re ().

Here ¢ denotes the coordinate on R. The stabiliser of this form in GL(7) is the 14-
dimensional simple Lie group Gy C SO(7). A 7-manifold M together with a three-form
¢ € Q3(M) such that at each point (7}, M, ,) is isomorphic to the standard model (R”, )
is called a G>-manifold. The associative form ¢ induces a metric g, on M via the pull-
back of the standard metric on R”. If now ¢ is both closed and co-closed, i.e. dp = 0
and djp = 0 (the torsion-free case), then both ¢ and x,p are calibrations. Their cal-
ibrated submanifolds are called associatives and coassociatives respectively. We then
also have that the holonomy of (M, g,,) is contained in G,. Note that we take the unusual
approach of not requiring the Gs-structure to be torsion-free. In our setting manifolds
with holonomy G5 are particular (torsion-free) examples of G5-manifolds.

Example 1.6. Let (X%, J,w,g,Q) be a Calabi-Yau threefold. Consider M7 = X x S!
with the coassociative form ¢ = Re{) + ds A w, where s is the coordinate on S'. This
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Go-structure is torsion-free, and a special Lagrangian L C X gives rise to an associative
manifold L x {p} for any p € S!, whereas a complex surfaces S* C X gives rise to a
coassociative submanifold S x {p}.

1.5 Spin(7) and Cayley Geometry

The group Spin(7) is the double cover of SO(7), and thus a 21-dimensional connected,
simply-connected and compact Lie group. Its real spinor representation d; : Spin(7) —
GL(8,R) gives an embedding into SO(8), after choosing an invariant metric. Alternatively,
this subgroup of SO(8) can be seen as the stabiliser of the standard Cayley form in
R®. If R® has coordinates (x1,...,2g) then this form is given by:

Dy = dwy934 — dw1256 — dx1278 — dT1357 + dT1368 — AT 1458 — AT 1467

—dwagss — dweser + dwossy — dwosss — dxsase — dxrsars + dxsers, (1-9)

where dz;j = dx; Adxj Adxyg A da.

More generally, we say that a 4-form ® on an 8-dimensional vector space V' is a Cayley
form if V admits an isomorphism with R® taking ® to ®,. We call the pair (V,®) a
Spin(7)-vector space. Any such form then determines a Spin(7)-subgroup Sping(7) C
GL(V). Let (V, ®) be a Spin(7)-vector space. Then ® induces a Riemannian metric g on
V obtained as the pullback of the standard metric gy = 3., dz? via the isomorphism
V ~ R®. Note that the isomorphism is not unique, but since Spin(7) € SO(8) the pullback
metric is independent of the choice of identification with R®. Pulling back the standard
orientation on R® induces a well-defined orientation on V in the same manner. Thus a
Cayley form induces a metric and an orientation. In fact, the unoriented vector space V'
admits two classes of Cayley forms, determined by the orientation they induce. This is
reflected in the fact that SO(8) admits exactly two conjugacy classes of Spin(7)-subgroups,
which are conjugated inside O(8) [45, Thm. 1.3]. Consequently, when we consider a vector
space which already admits an orientation, we only consider Cayley forms which induce the
given orientation. If V' does not have an orientation, we allow the Cayley form to induce
the orientation. In particular the Cayley form & then induces a Hodge star operator
*x : AFV* — A3 *V* and musical isomorphisms b : V' — V* and § : V* — V. The Cayley
form is self-dual with respect to the Hodge star it induces. Next, the action of Sping(7)
on V induces representations on the tensor and exterior bundles, which decompose into
irreducible representations of Sping (7). We are mostly interested in the action on 2-forms,
which decomposes as follows as explained in [5, p. 546]:

Proposition 1.7. There is an orthogonal splitting:

APV* = A2V @ A V™, (1.10)
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where A? is an i-dimensional irreducible representation. Explicitly they are given by:

AZV* = {n € N’V : x(® An) = 3n}
= {’ AV — o(u)e(v)® w0 € VY, (1.11)
ALV ={n € NV :x(® An) = —n}. (1.12)

Using the Cayley form we now define various product structures on a Spin(7)-vector
space (V, ®). First we define the cross product as the bilinear map V x V — A2V*:

uxv=m(u AV = i (ub AV — v(w)i(v)®) . (1.13)

Here m7(n) = 1(n — *(n A ®)) for n € A*V* is the orthogonal projection onto the
A2-summand. The triple product is a trilinear map V x V x V — V defined by:

uxvxw=((u)uv)(w)d), (1.14)
Finally, the quadruple product is a A2V *-valued four-form:

T(u,v,w, ) =u x (VX w X ) = gy(u,v)(w X x)
—go(u, w)(v X ) + guo(u, ) (v X w). (1.15)

On (R®, &), this form has the following coordinate expression:

T=2 3 (A (e)D) = € A (ey)®) @ (¢ x &)

1<i<j<8

= (dz13s8 + d21367 — d21457 + AT 1468
— dxa3s7 + dwases — drosss — dTaser) @ (€1 X €2)
+ (—dx1958 — dw1967 + d1456 + AT 1478
+ dxa3s6 + dwasrs — dwsuss — dasser) @ (€1 X e3)
+ (dr1257 — AT 1268 — d1356 — dT1378
+ dwaass + dragzs + drsssy — dTzaes) @ (€1 X eq)
+ (dz1238 — d21247 + A2 1346 — AT 1678
— dwa3s + dwoszs — dasses + daaser) @ (1 X es)
+ (dz1237 + d21248 — dT1345 + dT1578
— dxg346 + daers — drsses — dTuses) @ (€1 X €g)
+ (—dz1236 + dw1245 + d21348 — AT 1568
— dwgsar + dwaser + dasers — drises) ® (€1 X exr)
+ (—dz1235 — dr1946 — AT 1347 + dT1568
— dw348 + dwases + drssrs + drgers) @ (e1 X eg). (1.16)

We now introduce Spin(7)-manifolds by applying these linear algebraic constructions
to the tangent bundle of smooth 8-manifolds. To be precise, we take a Spin(7)-manifold
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to be a smooth 8-dimensional manifold M together with a choice of Spin(7)-structure, i.e.
a choice of Spin(7)-subbundle Frgpiy(7) of the frame bundle Fr(M). This data is equivalent
to the choice of a smooth differential 4-form ® on M which is a Cayley form at every
point. In other words, ® is a smooth section of a bundle A(M) whose fibre over the point
p is the set of all Cayley forms of T,M. With a choice of Spin(7)-structure 7T,M is a
Spin(7)-vector space at every point p € M, which gives M the structure of an oriented
Riemannian manifold. Note that this is a non-standard definition as one usually makes the
additional assumption that ® be torsion-free (so that the metric has holonomy contained
in Spin(7)), which we do not assume here. Next, if we are given an orientation of M,
we require the Spin(7)-structure to be compatible pointwise. The form ¢ will also be
called a Spin(7)-structure. A Spin(7)-manifold M is a torsion-free if its intrinsic torsion
vanishes, meaning that Fr admits a torsion-free connection compatible with the reduction
to Frgpin(r). In this case, the holonomy of (M, gg) is a subgroup of Spin(7), as we will see
later.

The question of when an 8-manifold is Spin(7) is topological, and can be answered via
obstruction theory. Concretely we have Theorem 10.7 from [27] which states:

Proposition 1.8. A connected oriented 8-manifold M admits a Spin(7)-structure induc-
ing its orientation if and only if it is spin and its positive real spinor bundle has trivial
Euler class. This last condition is satisfied exactly when:

p1(M)* — dpy (M) + 8x (M) = 0. (1.17)
A Spin(7)-structure induces a unique spin structure.

Notice that Spin(7)g, C SO(8) can be uniquely factored as
Spin(7)e, — Spin(8) — SO(8),

as Spin(7)e, is simply connected. The last arrow is the double cover. With regards to
this embedding, Spin(7) C Spin(8) is the stabiliser of a non-zero positive spinor [27,
Prop. 10.4]. This can be used to prove that Spin(7)-structures compatible with a fixed
Riemannian metric, orientation and spin structure are equivalent to non-vanishing sections
of the positive spinor bundle. Such a non-vanishing section in turn exists exactly when the
Euler class vanishes. The spin structure on a manifold with Spin(7)-structure is obtained
by lifting the transition maps for the Spin(7)-frame bundle via the embedding into Spin(8).

The question of when a given Spin(7)-structure admits a torsion-free compatible con-
nection can also be answered fully. The intrinsic torsion of the structure vanishes exactly
when V,,® = 0, which is equivalent to d® = 0 by [5, Thm. 3]. This is entirely anal-
ogous to how the integrability of an almost complex structure can be determined from
the vanishing of the Nijenhuis tensor. Note that, if d® = 0, then since ® is self-dual,
® will be harmonic. However, determining whether or not a Spin(7)-manifold admits a
torsion-free Spin(7)-structure is highly non-trivial. Indeed it is comparable in difficulty to
determining if an manifold that admits almost complex structure admits a holomorphic
atlas. If a torsion-free Spin(7)-structure exists on a closed manifold M, then the moduli
space of all torsion-free Spin(7)-structures is a non-empty smooth manifold of dimension
A(M) 4+ b (M) +b* (M) [19, Thm. 11.5.9]. This dimension is determined by the topology
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of M. If M admits a torsion-free Spin(7)-structure, then the metric induced from this
Spin(7)-structure has holonomy contained in Spin(7). Topological conditions on M can

then determine when the holonomy is exactly Spin(7) and when it is a proper subgroup
(see [5, Thm. 11.5.1]).

Example 1.9. There are examples of Spin(7)-manifolds which come from dimensional
reductions.

e (3, geometry: We can write the Cayley form in as ®g = dxy A @g + %7 for
an associative form ¢g € ASR” as in Section , and where x; is the Hodge star
on {0} x R”. More generally, if we are given a Gy-manifold, then we can define a
Spin(7)-structure on R x M with Cayley form ® = dt A ¢ + xpr¢0.

e Calabi—Yau geometry: Let (M", g,w, J,Q2) be a complex four-dimensional Calabi-
Yau manifold. Such a manifold is modelled at each point on (C", go, wo, Jo, 20), where
go and Jy are the standard Riemannian metric and complex structure respectively
and:

i n
wo—§;dzl/\dil,
Qozdzl/\/\dzn

In the complex four-dimensional case, i.e. on C*, we have that the Cayley form can
be written as &5 = Re )y + %wo A wg. Thus in particular any almost Calabi-Yau
fourfold is also a Spin(7)-manifold.

Let (M, ®) be a Spin(7)-manifold with Spin(7)-bundle Frgpiy7y. Then the tensor and
exterior bundles of M are associated to Frgui,z) via representations induced from the
embedding Spin(7) C SO(8). Thus the fibres of these bundles can be seen as representa-
tions of Spin(7), and as such decompose into bundles of irreducible representations. For
two-forms, Proposition implies that there is an orthogonal splitting:

A*T*M = A3, @ A2, (1.18)

where the fibres of A3; and A2 are given by (1.12)) and (1.11)) respectively. On a Spin(7)-
manifold (M, ®) we can define the cross, triple and quadruple product of tangent vectors
using the differential form ®, and these extend to bundle homomorphisms.

Cayley submanifolds
Let (V, ®) be a Spin(7)-vector space. A fundamental property of the Cayley form ® is that

when restricted to any four-plane & = span{ey, e9, e3,e4} with {ey, e, €3, €4} a positively
oriented, ge-orthonormal basis, the Cayley inequality holds |10, Th. 1.24, Ch. IV]:
D(eq,e9,e3,e4) < 1. (1.19)

The oriented four-planes which satisfy ®(eq, e, e3,e4) = 1 are called Cayley planes and
are said to be calibrated by ®. Note that if £ is Cayley, its orthogonal complement will be
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Cayley as well. If u, v, w € V are three independent vectors, then there is a unique Cayley
plane which contains them, namely £ = span{u, v, w,u X v X w}. Moreover, a four-plane
is Cayley for one of its orientations exactly when the quadruple product 7 vanishes on it.

Given a Cayley plane £ in a Spin(7)-vector space (V,®), the cross product on V
decomposes with regards to the splitting V = £ @ ¢+ (where we assumes that § =
span{d, ..., 04}, & = span{ds,...,0s}, and 9; has dual one-form dz;), which we will
now explain. Define:

Ee = {w € A2V* : w|e = 0}, (1.20)

which is a rank four subspace of A2V* (with an orthonormal basis given by 77(dx; A dz;)
for i € {5,6,7,8}). Also note that any w € A% ¢ can be extended by 0 on £+ to a two-form
on V, and their projections under 77 form a rank three subspace of A2V* that we will
also denote by A2&. It has an orthonormal basis given by m;(dz; A dx;) for i € {2,3,4}.
Denote the orthogonal projection map to E¢ by mp : A7 — E¢. From the above we see
that there is an orthogonal splitting: A2V* = E¢ @ A%2£. The cross-product then restricts
as follows:

Ex&— NE,
et x et — A%g, (1.21)
£ x &8 — Eg.

Let now (M, ®) be a Spin(7)-manifold. We call a four-dimensional submanifold N C M
all of whose tangent planes are Cayley planes a Cayley submanifold. In this situation,
the cross-product splits into:

TN xTN — A*TN,
v(N) x v(N) — A*TN, (1.22)
TN x v(N) — E.

Here £ is the globalisation of E from Equation , where for p € M we define
E, = Er,n C A%T ; M. Note that we can carry out the same construction whenever we are
given a rank 4 subbundle of TM |y whose fibres are Cayley planes, irrespective of whether
N is Cayley.

Example 1.10. The Spin(7)-manifolds coming from reductions of the structure group
to Go and SU(4) (see Example admit their own classes of calibrated submanifolds,
which give examples of Cayley submanifolds.

e (G5, geometry: The three-form ¢y and the four-form x7p satisfy a calibration in-
equality which is analogous to the Cayley inequality . The calibrated hyper-
planes are called associative 3-planes and coassociative 4-planes respectively. If
we have an associative submanifold A% in (M7, ¢), then R x A is a Cayley in the
Spin(7)-manifold R x M with the Cayley form ® = dt A ¢ + %7¢. Similarly, if C* is
coassociative in (M7, ), then {t} x C is a Cayley in R x M for any ¢ € R.

e Calabi-Yau geometry: An almost Calabi-Yau fourfold (M*, J,w, g, ) admits two
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kinds of calibrated four-dimensional submanifolds. First, we have the complex sur-
faces, which are calibrated by %w A w. Second, we have the special Lagrangian
manifolds, calibrated by Re 2. As the Cayley form on M is & = %w A w + Re(2,
which is the sum of both the previous calibrations, both complex surfaces and special
Lagrangian submanifolds are Cayley in the induced Spin(7)-manifold.

The Dirac bundle associated to a Cayley

We will see later that the linearised deformation operator associated to the deformation
problem of a spin Cayley is a twisted Dirac operator. On a non-spin Cayley, the situation
is more complicated, as neither the spinor bundles nor the bundle by which they are
twisted is well-defined on their own, however, one can still make sense of their product,
in the form of a Dirac bundle (as defined in |27, Ch. II.5]). The Cayley deformation
operator will then linearise to the Dirac operator associated to this Dirac bundle, which
we will define for any Cayley submanifold N (be it spin or not) in a Spin(7)-manifold
(M, ®). We have previously introduced the Spin(7)-frame bundle associated to ®, which
can be described as:

(Frspin(n)z = {€: TueM = R : e*(®g) = @, }. (1.23)

Using the splitting TM |y = TN @ v(N), where in the Cayley case both summands are
bundles of Cayley planes, we can define the adapted Spin(7)-frame bundle Frgyi,7).n C

Frspin(r) |V as:
(Frspin(n.v)e = {€: TuM = R®: *(®g) = &,,e(T,N) =R* x 0,
e(v(N)) =0 x R*}. (1.24)

The structure group of this bundle is isomorphic to the stabiliser of a given Cayley
plane (since it automatically preserves the orthogonal complement). It is given by

H = (Sp(1) x Sp(1) x Sp(1))/(£(1, 1, 1)),

as shown in [10, Thm. IV.1.8]. Here H C Spin(7) C SO(8) via the following action on
R® ~ H @ H. For [p,q,7] € H and (u,v) € H® H we have:

[p1, P2, q] - (u,v) = (p1ug, p2vq). (1.25)

Using the embedding H C SO(8), a number of bundles over N can be represented as
associated bundles to Frgin(r),n. Here u,v € H and w € im H.

e TN is associated via pry([p1,p2,¢q]) - © = (p1uq), since the projection [p1, pa, q] —
[p1, ] maps H surjectively onto SO(R* x 0).

e v(N) is associated via p, () ([p1, P2, ¢])-u = (p2uq), as H also surjects onto SO(0xR*)
e If N is spin, then the adapted Spin(7)-frame bundle admits a double cover by a

G =Sp (1)3—bundle, which we will denote by Frgyin(r),n. This can be seen as follows:
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as N is spin, we can lift a co-cycle for the tangent bundle to Spin(4) ~ Sp(1).
Similarly, since M admits a spin structure induced by the Spin(7)-structure (as
Spin(7) is a simply connected subgroup of SO(8)), the normal bundle v(N) will
also be canonically spin |27, Prop. I1.1.15], thus a describing co-cycle can be lifted
to Spin(4) as well. Using these two lifts one can then write down a lift to G for
a co-cycle of Frgpiney),n. The tangent and normal bundle will then be associated
to this double cover via the lift of the representations pry and p,(n) respectively.
Furthermore, the spinor bundles of N are associated bundles to this double cover
as follows: N
$j: = Frspin(r),n X5 H,

where d; @ d_ acts on H @ H via (p1,p2, q)(u,v) = (up1,vq). Similarly the spinor
bundles of v(N) are associated via the representation (pi, p2, ¢)(u,v) = (upz, vq).

e The irreducible representation A2 of Spin(7) restricted to H can be described as
follows. Let R” = R* x R* ~ im H @ H. Then we have the following (see [34]):

p?([pl?p27 q])(w7 u) = (q_wq7P2Up_1)
It turns out that in this splitting, the bundle associated via

[p1, P2, qlw = qugq

is exactly the bundle A2 N of anti-self-dual two-forms, and the bundle associated
via [p1, p2, gJw = poupy is E.

From this discussion, we see that the suggestively named bundle
$=Eaov(N)
arises from the representation:
P [p1,p2, 4] - (u,v) = (paupi, p20q). (1.26)

If N is spin, then consider the quaternionic line bundle L associated to ﬁ"spin(ﬂ,N via
the representation py : (p1,p2,¢)u = pou. We then see from the representations, that as
quaternionic bundles, F ~ $, ®y L and similarly v(N) ~ $_ ®y L, which allows to
represent the bundle F @ v(N) as a twisted spinor bundle, if N is spin.

To complete the construction of the Dirac bundle, we need to define a Clifford module
structure of CI(R*) ~ CI(H) acting on TM, and a compatible metric and connection.
This is done in the following proposition:

Proposition 1.11 (Dirac bundle). There is a Clifford multiplication map ¢ : TN x.$ — 8,
a metric h and a connection ¥V on $ such that ($,¢, h, V) is a Dirac bundle. In an adapted
Spin(7)-frame {e;};—1. s the negative Dirac operator acts on v € C*®(v(N)) as:

.....

4

Do = Zei x Vov € C*(E), (1.27)

i=1
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where V* is induced from the Levi-Civita connection on M.

Proof. Consider the Clifford algebra CI(H) ~ M?(H) (here H is equipped with the stan-
dard metric, and M?(H) is the algebra of 2 x 2 matrices over H). A CI(H)-module struc-
ture on H& H ~ T,M is determined by the action of vectors satisfying h - (h - (vy,v2)) =
—|h|?(v1,v2), for h,vi, v € H. One natural action is given by:

ccHx (HeoH) — HoeH (1.28)
(h, (v1,v2)) — (vah, —v1h).

We use here that hh = hh = |h|?. This action commutes with the representation deter-
mining §, and TN, in the sense that:

co (prn, pe ® puvy) = (PE ® pun)) © C.

Thus we can extend ¢ to a map ¢ : TN x § — § as required. For an adapted Spin(7)-frame
{€a}iza,..s, we identify (1,0), (¢,0), (4,0) and (k,0) with the basis elements e; x e, for
(5 < a < 8) of E and we identify (0, 1), (0,4), (0,4) and (0, k) with the basis elements
eqo (b < a < 8) of v(IN). Using this identification we see that the Clifford multiplication
c¢: TN x v(N) — E is exactly given by the cross-product. Since the e, are orthonormal
with respect to the metric gg, as are e; X e, for (5 < a < 8) with respect to the metric gg
induced from gg on the bundle of forms, we see that c(v) is an isometry of ($, h = go Dgr),
whenever v is a unit vector. Finally, we choose as our connection V on v(NV) the connection
V+. On E we choose the unique connection such that c¢(e;)v is a parallel section (along a
curve), whenever v is a parallel section along a curve in v(N). From these definitions, it
follows readily that (£, c, h, V) is a Dirac bundle. The Dirac operator restricted to v(N)
is then of the required form. O

Example 1.12. When C is a Cayley cone in R®, with link L = C' N S”, the Dirac
operator I) can be rewritten as an evolution equation of vector fields u € vg7(L). For
this, we introduce the nearly parallel Go-structures on round seven-spheres. Let 0, be the
outward radial unit vector field on R®\ 0. Then at the point (r,p) € R, x S7 ~ R®\ 0 we
have:

Q,, =dr A (¢"), + (*rs79")p-

Here ¢" is the associative form (as in Section corresponding to the nearly parallel G-
structure on the round sphere of radius r. A submanifold L? C (S7,¢") is an associative
submanifold exactly when the associated cone C' C (R®, ®) is Cayley.

Let {ey, ez, e3} be an orthonormal frame around a point p € L with dual coframe
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{e',e? e3}. Then we can rewrite the Dirac operator (1.27) as follows for v € C*(v(C)):

3
Dv =9, x Vgrv + Zei X Vjiv]TL

i=1

3
= dr A (Vo) = t(Va0)e" + Y e AVEv]) = e VEv) Hpsm ¢
i=1
= AP(V$‘TU) + B (vlr1)-
Here A, : v,,(C) — E,, is a linear map that is independent of the radius, and

B, : C®(v,g7(rL)) — C*(E],z) (1.29)

are a family of first-order partial differential operators on the links r .. We can furthermore
identify E|,; ~ v,¢7(rL) via the map w + (¢(9,)w)*, and identify sections C*(vg7(L)) ~
C*®(v,s7(rL)) via rescaling, at which point the operator has the following shape:

D C=(Ry, C%(vs7(L))) — CF(Ry, C%(vs7(L)))

vi— %v + Dyo(r). (1.30)
Here:
Dy, : C*(vgr(L)) — C=(vsr(L))
u+— Bi(u ie x Vou, (1.31)

where X is the vector product associated with the associative manifold L C (S7,¢'). Tt
is determined by the identity g(u x v,w) = ¢! (u, v, w).

Example 1.13. We noted in Example that complex surfaces N in an (almost)
CY4 manifold M are examples of Cayley submanifolds. In this case, the linearised Cayley
deformation operator is a twisted Dirac operator on a Kahler surface, and thus necessarily
of the form 0 + 0* with twisted coefficients [39]. It has been computed in [36] and can be
identified with:

O+ 0 : C¥(W"O(N) D AN @ v 0(N)) — C*(A”'N @ v (N)). (1.32)

For any complex surface, the kernel and cokernel of this operator are the complexifications
of the kernel and cokernel respectively of I). Thus the real expected dimension of the
Cayley moduli space is equal to the complex index of 9 + 0*. This can be compared to
the linearised deformation operator of a complex surface deforming as a complex surface,
which is just O @ 0* (notice @ instead of +). Hence being Cayley is a weaker condition
than being complex.

We also noted in Example that special Lagrangians in CY4 manifolds are examples
of Cayley submanifolds. McLean [34] showed that the infinitesimal deformations of a
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special Lagrangian N C M are given by the kernel of the operator
—dx@d: QY(N) — Q*(N) @ Q*(N), (1.33)

which are the closed and co-closed one-forms. The Cayley deformation operator of a special
Lagrangian is formed by a subset of these equations, reflecting the fact that the Cayley
condition is a priori less restrictive than the special Lagrangian condition.

Proposition 1.14. Let N be a special Lagrangian submanifold in a Calabi- Yau manifold
(M, J,w, g,). Then the infinitesimal Cayley deformation operator can be identified with:

—dx@d™ : QY(N) — QYN) @ Q> (N). (1.34)

Here Q*~(N) is the bundle of self-dual two forms on (M,g), and d~ = 7~ o d, where
7 (n) = 3(n — xn7) is the projection onto the anti-self-dual forms.

Proof. First, we show that there are canonical isomorphisms m : T*N ~ v(N) and n :
E ~ A*@ A%. We can take m(o) = Jo* to be the composition of the musical isomorphism
f:T*N — TN and J. Note that J maps the tangent bundle of any Lagrangian to its
normal bundle as g(v, Jw) = w(v,w) = 0 for any pair of vectors v,w € T,N by the
Lagrangian condition. As for the morphism n, we can pull back forms on T),M via the
map id®J : TN — T'N @ v(N), which when restricted to E gives a surjection onto the
anti-self-dual forms on T'N. The kernel of this map is spanned by v” A (Jv)’, and the
projection onto these forms gives the A* summand. More concretely, recall that E, is
spanned by e; x Je;, where {e;}1<;<4 is an orthonormal basis of 7, N. The morphism n
then sends e; x Je; to the A* summand, and identifies e; x e; for i # j with the anti-
self-dual form «;; = dx;; — dzy, where the dz; are dual to e; and (4, j, k,[) is a positive
permutation of (1,2,3,4). Let now f; = Je; € v(N) complete the e; to a frame of T,M,
and suppose that dy; are the corresponding dual 1-forms. A computation shows that the
vector product of v = Z?zl ae; € T,N and w = Zle b;fi € v(N) is given by:

4
v X W= Zaibidxi A dy;
=1

2

o(3,4,k,l)=

A dy; —dzj A dy; — dog A dy; + dag A dyy)
:87,]

Here o(i,j,k,l) = 1 means that (i,7, k,[) is a positive permutation of (1,2,3,4). Note
that k, [ are uniquely determined by i and j. We now look at n o I) o m, where I is the
Dirac operator from equation (1.27). For a one form n = Y., a;e; € Q'(N), where we
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extended the basis {ey, ea, 3, €4, f1, f2, f3, f4} to a local parallel frame, we have:

4
=Y e x Vilaf)
ij=1
4
- Zez aa]fz
i,7=1
_Za da; Ady; + 1 Za

i#j

As n maps dz; A dy; to —dvol € A*, and B;; to a;;, we see that

Jda; Oa;
no Plm Z@xl dvol + Z(a% —a;i)au

=—dxn+ 5Z(d77 0 = —dxn 47 dn.

1<j

1.6 Analysis on manifolds with ends

In this section, we lay the groundwork for the analysis on Riemannian manifolds with
cylindrical and conical ends. The Fredholm properties of elliptic operators on compact
manifolds can be extended to these special classes of noncompact manifolds by using the
theory developed by Lockhart and McOwen in [29].

Manifolds with ends

Definition 1.15. We say that a Riemannian n-manifold (M, g) is asymptotically cylin-
drical with rates Aj,...,\; < 0 (ACyl;, where A = (\y,...,\)) if the following holds.
There is a compact set K C M such that M = KU |_|jf:1 U; with U; connected and open.
Furthermore, there are compact connected (n — 1)-dimensional Riemannian manifolds
(Lj, h;) and diffeomorphisms W; : (0,00) x L; — U, for 1 < j <[, such that for i € N:

[VI(T5(9) = gjey)| = O(eV') as t — oo, (1.35)

where g = dt? + h; is the cylindrical metric on (0,00) X L;, and V, | - | are taken with
respect to these metrics.

The asymptotic convergence rates e are chosen so that elliptic operators will be

Fredholm on ACyl; manifolds when considered between appropriately weighted spaces.
Note that the condition A; < 0 ensures that the asymptotically cylindrical metric con-
verges to the cylindrical metric at infinity. For the next class of noncompact manifolds,
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the asymptotically conical manifolds, it will be useful to have both an intrinsic as well as
an extrinsic definition.

Definition 1.16. A Riemannian n-manifold (M, g) is asymptotically conical with rate
n < 1 (AC,) if there is a compact set K C M, a compact (n—1)-dimensional Riemannian
manifold (L, h) and a diffeomorphism W : (rg,00) x L — M \ K (for some ry > 0), such
that for ¢ € N:

V(T (g) — geon)| = O(r"17") as r — o0, (1.36)

where geon = dr? + r?h is the conical metric on (ry,00) x L, and V, | - | are taken with
respect to the conical metric.

Definition 1.17. Suppose that (R®, ®) is an AC, manifold for some 1 < 1 with asymp-
totic cone R®. Let A™ C R® be a smooth submanifold. Then A is an AC, submanifold
of R® (n < A < 1), asymptotic to the cone C = Ry x L if there is a compact subset
K C A and a diffeomorphism © : (rg,00) x L — A\ K such that if «(r,p) = r - p is the
embedding of the cone C' < R®, then for every i € N:

1(r,p) — Uy} 0O(r,p) € Vi) (C) (1.37)
ViU, 0 O(r,p) — u(r,p))| € O™, as r — oo. (1.38)

Here the norm is computed with respect to the conical metric on (ry, 00) X L coming from
the embedding ¢, and the V* are the higher covariant derivatives coming from the conical

metric on C coupled to the flat connection on C' x R® given by the Levi-Civita connection
on R®. We say that L is the link of the AC, manifold A.

Remark 1.18. An AC, submanifold is in particular also an AC, manifold.

As we will not work with conically singular ambient manifolds, we will just give the
extrinsic definition of the final class of noncompact manifolds that we consider.

Definition 1.19. Let (M, ®) be a Spin(7)-manifold and consider a point p € M. We say
that a parametrisation x : B,(0) — U of an open neighbourhood U of p is a Spin(7)-
parametrisation around p if x(0) = p and Dx|;®, = @y, where @ is the standard
Cayley form on R®. We say that two Spin(7)-parametrisations around p are equivalent
if their derivatives agree at p.

Definition 1.20. Let N C (M,g) be a closed subset, and suppose that there are
21,...,2 € N such that N = S \ {z1,...,2} is a smooth, embedded submanifold of
M. For any 1 < j < I let x; be a Spin(7)-coordinate system around z; and let L; C S”
be a connected (n — 1)-dimensional Riemannian submanifold of the round sphere in R,
Then N is an CS; submanifold of (M, g) (i = (p,...,m), 1 < p; < 2), asymptotic to
the cones C; = Ry x L; C R® (1 < j < [) if the following holds. There is a compact
subset K C N such that N = K U |_|j.:1 U; with z; € U; open, and diffeomorphisms
U, =x;00;:(0,Ry) x L; = U; \ {2} for 1 < j <[ such that if ¢;(p,r) = r - p is the
embedding of the cone Cj, then we have for every 7 € N:

Lj(r,p) — ©;(r,p) € Vi p) (C))
|Vi(@j(r,p) —1i(r,p))| € O(r*="), as r — 0. (1.39)
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Here the norm is computed with respect to the conical metric on (0, Ry) x L; coming from
the embedding ¢;, and the V* are the higher covariant derivatives coming from the conical
metric on C; together with the flat connection on C; x R® given by the usual derivative
on R¥.

Remark 1.21. If we require that an embedded CS; submanifold is CS; with regards to
any choice of Spin(7)-parametrisations in the equivalence classes of x;, we must restrict
to p; < 2. This is because the equivalence class of x; only determines it up to first order
at the origin. The condition p; > 1 ensures that the asymptotic cone is unique.

As before, the conditions on A and p; ensure that the metrics tend towards a conical
metric in the limit. For any of these three classes of manifolds, we call the connected
components of M \ K the ends of M, and the cross-sections the link of this end. In the
case of ACyl and CS metrics, we write ACyl, and CS,, for A, ;1 real numbers when all the
ends have the same decay rate. These metrics are examples of admissible metrics in the
sense of [29]. Indeed this is clear for the cylindrical case. For the conical cases, note that if
gey1 1s an ACyl, metric on L x R, which is asymptotic to a product metric go, = dt* + h,
then e?g., is AC, and is asymptotic to the metric geon = dr? +r2h, where we introduced
the new coordinate r = e’ on L X [rg, 00). In fact, the decay rates for the AC, metrics were
chosen so that this correspondence holds. Similarly e % gy (with A € (=2, —1)) is CS_,
with radial coordinate r = e~*. Turning the correspondence around, if geo, is either CS_,
or ACy, then r=2g., is ACyl,. The admissibility allows us to use the Fredholm results
of [29] in appropriate Sobolev spaces as we will see shortly. To end this section we define
a generalisation of the radial coordinate on cones.

Definition 1.22. Let (M, ®) be Spin(7)-manifold, and consider an embedded CSj sub-
manifold N C M. A smooth function p : M — [0, Ro] (with Ry > 0) is a radius function
for N if near a singular point z € N it is given by the distance to z. Similarly, if A C R®
is an asymptotically conical submanifold, we say that the radial coordinate r on R® is a
radius function for A. This may not be smooth on all of A if 0 € A, but we will only
consider AC radius functions at sufficiently large radii anyway:.

Tubular neighbourhoods

We introduce tubular neighbourhoods of the noncompact CS; and AC, manifolds, which

shrink or grow like the asymptotic cones. This is a straightforward extension of [38, Prop.
3.4].

Proposition 1.23. Let C be either an ACy submanifold of (R®, ®), where ® is AC,
to @g with A < n < 1, or a CS; (1 < p < 2) submanifold of (M,®), where M is
compact. Suppose that p : C'— R is a radius function. Let € > 0. Define the open subset
v (C) Cv(C) as:

ve(C) ={(p,v) € v(C) : Jv| < ep(p)}- (1.40)

Then for sufficiently small € > 0 there is an open neighbourhood N C U such that:
exp : v (C) — U

is a diffeomorphism.
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We note that in both cases the tubular neighbourhood scales like the radius function
p as one approaches the singular points in a CS manifold, or infinity in the AC case.

Banach spaces

We now introduce the weighted Banach spaces that appear in the deformation theory of
manifolds with ends.

Sobolev spaces

Let (M, gey1) be an asymptotically cylindrical manifold with radius function p : M —
[19,00), and let (K, h) be a metric real vector bundle over M with a metric connection
VE. Let s € C*°(E) be a compactly supported section. We then define the (cylindrical)
L}, 5.1 weighted Sobolev norm as

1
k P
181lp. .6yt = (Z/M!(VE)Zseé”ﬁducm) : (1.41)
1=0

and the weighted Sobolev space Lz,a,cﬂ(E) is defined to be the completion of the
compactly supported sections with respect to this norm.

Now let (M, g) be an asymptotically conical or conically singular n-manifold with
radius function p, with (E, h) a metric real vector bundle over M, together with a metric
connection V¥, Then the (conical) L ; weighted Sobolev norm of a section s € C*(E)
is defined to be:

1

k P
[sllp6 = (Z/ (VF)isp=0* flp_ndM) : (1.42)

i=0 /M
and the weighted Sobolev space LZ&(E) is, like in the cylindrical case, defined to be the
completion of the compactly supported sections with respect to this norm. The sections
in these spaces should be thought of as Li,loc sections that have decay in o(r°). Naturally
one can extend this definition to include different weights at multiple singularities. For a
vector of weights § € R’ the weighted Sobolev spaces will be denoted by LZ,S(E)' In the
above definition, § must be replaced by a smooth function w : M — R which interpolates
between the different weights. If we assume that near a singularity w is constantly equal
to the corresponding weight, then different choices of w will give rise to equivalent norms,
as the norms only differ on a compact subset of M.
If E is a bundle of tensors, these spaces correspond to the spaces W} ; . (AC case)
>

and W/, . (CS case) of [28, Ch.4], so we can translate their results into our setting.
op

For instance, we have a Sobolev embedding theorem for the weighted spaces, which is an
adaptation of Theorem 4.8 in [28].

Theorem 1.24. Let (M, g) be an CS/AC manifold. Denote by Ly, ;(E) the corresponding
weighted Sobolev space. Suppose that the following hold:

i) k—k>n (l — %) and either:
p p
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i) l<p<p<ooandd >0 (AC) ord < (CS)
i) 1<p<p<ooandd > (AC) oré <6 (CS)

Then there is a continuous embedding:

L} 5(B) — LE 5(E). (1.43)

Holder spaces

Let (M, g) be a Riemannian manifold, and consider the induced geodesic distance function
d: M xM—Ron M.

Definition 1.25 (Spaces of differentiable sections). Let E be a metric vector bundle with
a metric connection VZ. For a section s € C*(E) we define the C*-norm as:

Isllex = sup [(VF)'s| (p). (1.44)

i=0 PEM

If (M, g) is either an AC or CS manifold (a conical manifold) with a given radius function
p, we also consider the C*-norm with weight ¢ € R instead:

Islles =Y sup [p*(VF)'s|(p). (1.45)

i—o PSM

Denote the set of C*

loc

-sections with finite C¥-norm by C¥(E) and set:
C(E) = Ci(E). (1.46)
i=0

Then C¥(E) are Banach spaces and C¢°(E) is a Fréchet space. If multiple conical ends
are present, the spaces C¥(E) and C¢°(E) are defined analogously.

For any point p € M there is an open neighbourhood p € U, C M such that for any
q € Uy, there is a unique shortest geodesic of length d(p, ¢) joining p and ¢. In particular,
there is an open neighbourhood V' C M x M of the diagonal such that for (p,q) € V' we
have ¢ € U,. Let now I be a metric vector bundle together with a metric connection.
For (p,q) € V we identify the fibres E, and E, via parallel transport along the unique
shortest geodesic connecting p and gq.

Definition 1.26 (Hélder spaces). For a section s € C*(FE) and a constant 0 < a < 1 we
define the C%“-semi-norm as:

L @) = s)
e = S g (47

The C?’Q-Hiilder norm is then defined as:
Isllgre = llsllr + [pF70F % (VP) sl (1.48)
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The Holder space Cy*(E) is the subset of C¥(E) with finite C}**~-Holder norm. In the
case of multiple weights, we denote by C(]Sf ** the corresponding Holder space.

We also have a Sobolev embedding theorem into weighted Holder spaces.

Theorem 1.27 (cf. 16, Thm. 2.9]). Let (M, g) be an CS/AC manifold. Letp > 1, k,1 > 0,
O<a<landdeR. Ifk— % > | 4 « then there is a continuous embedding:

L} s(E) — C5*(E). (1.49)

Elliptic operators and Fredholm results

Every elliptic operator on a compact manifold is Fredholm. However, this useful fact does
not generally hold in the noncompact setting. Consider the noncompact manifold R with
the elliptic operator . acting on functions.

Proposition 1.28. The elliptic operator & : L?(R) — L*(R) is not Fredholm.

Proof. We show that the image of & is not closed in L*(R). Consider the functions

fn € L3(R) which are defined as follows:

%, t< —n
-1, —n<t< -1
fult) = t, -1<t«<1
1, 1<t<n
%, n<t

Then clearly f, € L(R), since both [|f,|lzz = O(n) and || & f,|lz;2 = O(1) are finite.
As a consequence, this family does not admit a limit in L?(R). However, the family of
derivatives does converge in L? to the characteristic function X[-1,1 € L?, which is not
in the image of &. Any preimage f € L}, would have lim; o f(t) — f(—t) = 2, and can
hence not be square integrable. Thus the image of 4 3 18 not closed, which precludes it
from being Fredholm. O]

More generally the same non-Fredholmness appears for operators on R x N which are
of the form & + A(t), where A(t) is a self-adjoint elliptic operator on the compact cross-
section N which converges in a suitable sense as t — 400 to limiting operators A, with
non-trivial kernel. In the example on R, we had A(t) = AL = 0 over the point. The proof
above can be applied to the general case, if we consider f,1 instead, where 1) is a non-zero
element of the kernel of one of A.. In fact, if Ay have trivial kernel, the operator % + A
will be Fredholm. A proof of this fact can be found in Robbin and Salamon’s paper on
the spectral flow [41]. Thus to ensure Fredholmness we need to shift the zero eigenvalues
of A1 to a non-zero value. This can be achieved by perturbing A(t) to A(t) — didy. It
turns out that this is equivalent to varying the Banach spaces by introducing the weight

% into the norms, as we did in the previous section with the cylindrical Sobolev spaces.
Indeed note that the norm ||s|| = = [|se™%| L is equivalent to the previously introduced

weighted norm || - || 17, The advantage of this definition is that there is an isometry
,0,cyl
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ks — Ly given by sending s — se®”. Thus an operator §+ A(t) : L} 5 . = Li_y 5 0y Will
be Fredholm exactly when e’ (< + A(t))e™": L} — L¥_| is. However:

d d
5t 5t _ Y
e (dt + A(t)) e T + A(t) —did.

In other words, perturbing the operator can be achieved by varying the weight in the
definition of the Sobolev norm. This will recover the Fredholm results from the compact
case. Note however that the index of an operator might depend on the weight chosen as
seen in Theorem [L.32

Let now (M, g) be a cylindrical manifold, i.e. it admits ends which are isometric to
Riemannian cylinders. Let E and F be two metric vector bundles over M. A linear r-th
order partial differential operator:

Do : CEF(E) — CE(F)

loc

is then cylindrical if for every section f € CFI"(E) which is supported in an end N =
(0,00) x L we have (Dws)(t + ) = Dx[s(t + -)]. Here s(t + -) denotes the translation
action of R, on the end. Now suppose that D : CF"(E) — CF_(F) is another operator

and write these operators as:

r

D[s] =) D'V's, (1.50)
Dy[s] = iDioVis, (1.51)

for bounded coefficients DZOO) € C°(TM® ® F ® E*). Then D is asymptotically cylin-
drical if for any j € N: o '
V(D — D")] — 0 as t — oc. (1.52)

Note that by translation invariance, the coefficients of D, are independent of t. Using
this one can prove the following.

Proposition 1.29. If D is an asymptotically cylindrical operator, then for any 6 € R, it
extends to a well-defined map:

D L§+d,6,cy1(E) — Li,&cyl(F)' (1.53)

Conical operators

Suppose now that (M, g) is AC, or CS;, and assume that we have a radius function p
and a conical metric g. that g is asymptotic to as p — oo and p — 0 respectively. We can
now define conical operators between bundles of exterior forms:

Definition 1.30. A linear r-th order partial differential operator between forms
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D : CE(A™) — CF _(A™) is conical with rate v € R if

loc loc
o/
DY = p ™Dy

is an asymptotically cylindrical operator and v is maximal in this regard. Here the cylin-
drical metric is p~2g,. This definition can be extended to bundle of forms of mixed degree
as well as more general tensor bundles

We now present the fundamental result concerning these operators, which is that
they are Fredholm for almost all choices of weight § € R. More concretely, we have the
following;:

Theorem 1.31. Let D : CFT7(E) — CE (F) be a conical operator on an (M, g) with rate

loc loc

v. Then for any § € R, P extends to a well-defined map:

D Ly, (B, g) — L5, (F). (1.54)
Furthermore if D 1is elliptic, then this map is Fredholm for § in the complement of a dis-
crete subset ¥ C R. This subset is determined by an eigenvalue problem on the asymptotic
link.

Proof. The operator D is bounded whenever D" is. Now D" is bounded by Proposition
.29 It is also Fredholm whenever D" is. This in turn is the case for all but a countable
set of weights, which are determined by the cylindrical operator D asymptotes to, as
in [29, Thm. 6.1]. O

Let D be a conical operator of rate v, and let D, be the cylindrical operator that D"
asymptotes to, as in ({1.52]). Then the set of exceptional weights & can be determined as
follows. With respect to the parametrisation by (¢, p) € (0,00) x L of the cylindrical end,
D, takes the following form:

D= Y allfolVh. (1.55)

Jt+k<r

At the start of this section, we have seen that the Fredholm property fails for the first order
operator 0, + A(t) if the limit A, = lim; ,, A(t) has a zero eigenvalue. This was because
the kernel gained a solution whose growth was of order O(1), and thus not integrable, but
could nonetheless be approximated within L}. More generally the operator 0; + A(t) —did
will not be Fredholm if A, — §id admits a kernel, i.e. A, admits a J-eigenvector. Thus
Oy + A(t) will not be Fredholm as a map LZ 5 Lﬁ_l’ s for those values d where a solution
to the eigenvalue problem A, v = v exists. The generalisation of this to a higher-order
operator in the form is to consider the eigenvalue problem for the operator

Doox = Y alf(i\) V5. (1.56)

JHk<r

Denote by C C C the set of all the complex values for A for which ([1.56)) admits a non-zero
eigenvector. As Lockhart and McOwen describe in more detail in their paper [29], this is
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a discrete subset of C. The subset ¥ C R of exceptional weights, which again is discrete,
is then given by:

2 ={im\: X eC}.

In this way, the exceptional weights can be related to an eigenvalue problem on the link.
Similar to the model case % + A(t), the existence of solutions to the eigenvalue problem
implies that solutions of a certain exponential decay rate ¢ exist. These then get added to
the kernel once the rate ¢ is passed, which makes the index jump discontinuously. Thus
the Fredholm property cannot hold at these weights. Note that the dependence on the link
means that operators on different CS or AC manifolds will have the same set of exceptional
weights if their links agree as Riemannian manifolds, and the two operators approach the
same limiting operator over that link, in the sense that the associated cylindrical operators
limit to the same operator. Consider now for 6 € 2 the dimension d(§) < oo of the set
of solutions to Doou = 0, which have the form e~%p, where p is a polynomial in ¢t whose
coefficients are sections of E|; and do not depend on ¢. This is exactly the jump in index
as a weight is passed. To be more precise, let §; < d5 be given such that §;,d, & 2. Then
we define:

N(y o) = > d(o).

0€(01,02)NZ

The relation between the indices of differential operators on differently weighted Sobolev
spaces is then given as follows:

Theorem 1.32 (cf. [29, Thm. 1.2]). Let D be an elliptic conical operator of order r > 0
and rate v € R. Let 1 < p < oo and k > 0. Denote by is(P) for 6 € R\ & not a critical
rate the index of the following operator:

D:I?

k+r,6(E) — L?&—V(E)

We then have that: is,(P) — is,(P) = N(d1,92).

Proposition 1.33 (cf. |16, Lem. 2.8]). Assume that 1 < p,q < oo are such that %—i—é =1.

Then if n € N is the dimension of the underlying manifold and § € R’ is a vector of
weights, there is a perfect pairing LE x L* < — R, and thus (LY)* = L? .
Example 1.34. The simplest example of a Cayley cone is a Cayley plane IT = R* x 0 C
(R®, ®y) with a round S* as its link. The limiting operator as r — oo of its associated
Dirac operator ) from Equation is Dy, from Equation ([1.30). Even more than
that, we can think of a Cayley plane as being induced by a special Lagrangian plane for a
CY4 structure on R® which induces the standard Spin(7)-structure. By Proposition m
we can write:

d
D=—-d«ad = e r 1 Dgs. (1.57)

Combining the work done in [31], where coassociative cones were analysed, and slightly
extending the work done in [21], where the non-coassociative Cayley deformations of cones
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where studied (but not other critical rates), we can give all the critical rates & in the
range (—4,2). They are —3,—1,0, 1, and the eigenspaces have dimensions:

d(=3)=1+0, d(-1)=1+0, d(0)=3+1, d(1)=8+4. (1.58)

Here the first summand corresponds to the coassociative contribution, and the second is
the truly Cayley contribution.

Example 1.35. Consider the complex cone C, = {2? +y?> + 22 = 0,w = 0} C C* which
has link L ~ SU(2)/Zs. In particular, this is also a Cayley cone. The critical rates in
(—2,2) are —1,0,1,—1 + V5, and the eigenspaces have dimensions:

d(—1) =240, d0)=7+1, d(1)=16+6, d(—1++V5)=3+3. (1.59)

Here the first summand corresponds to the coassociative contribution, and the second is
the truly Cayley contribution. Note that d(0) corresponds to the 8-dimensional space of
translations of the cone, whereas d(1) = (21 — 1) + 2 splits as the Spin(7)-rotations of the
cone (up to a one-dimensional stabiliser) together with a two-dimensional contribution
coming from a variation of the link as an associative in S (which are not coming from

the action of Spin(7)). We discuss this aspect more in detail in Remark [2.32]

We close out the section by discussing a regularity property of cones which simplifies
our discussion of fibrations in Chapter [4

Definition 1.36. Let C C R® be a Cayley cone with associative link L C S7 as in
Example [1.12] If C' has no homogeneous deformation with rate in [0, 1] other than the
translations (of weight 0), rotations of the cone and associative deformations of the link
(both of weight 1) and that every such infinitesimal deformation can be integrated, we
say that the cone is semistable.

Formulated differently, a cone C' is semistable when its singular rates satisfy Z¢o N
[—1,0] = {—1,0} with d(—1) = 8, d(0) = dim Spin(7) — dim Stab(C') + dim M%?(L), and
the cone C' is unobstructed. Here M%2(L) is the moduli space of associatives in S7. It is
unobstructed exactly when the corresponding moduli space of Cayley cones is.

We chose the term semistable since a semistable cone is stable |17, Def. 3.6] if its link
is rigid as an associative and thus semistability is a weaker version of stability.
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Chapter 2

Deformation theory of Cayley
submanifolds

In this chapter, we study the deformation theory of Cayley submanifolds in Spin(7)-
manifolds, and the local structure of their moduli spaces. We will in particular revisit
the deformation theory of nonsingular compact Cayleys which was first considered in the
foundational paper by McLean [34], who derived a formula for the linearised deformation
operator and in particular realised it as a twisted Dirac operator in the case of a Spin
Cayley. Later Clancy [7] provided a formula for the expected dimension of the moduli
space in terms of topological invariants of the embedding of the Cayley and studied its
global properties. Finally, Moore [37] focused on the case of a compact complex surface in
a Calabi-Yau fourfold. We slightly generalise the known results by considering the family
moduli space, i.e. the moduli space of Cayleys for varying choices of ambient Spin(7)-
structure.

To this end, we introduce almost Cayley submanifolds in Section [2.1} These are mani-
folds whose tangent bundle is close to being a bundle of Cayley planes, or in other words,
almost Cayley manifolds are C'-close to being Cayley. We then discuss the non-linear
Cayley deformation operator in Section which can be defined for any almost Cayley
sufficiently close to being Cayley.

Then, in the three remaining sections we study compact, asymptotically conical and
conically singular Cayleys respectively. We reprove the main structural result on the
moduli space of compact Cayleys, Theorem[2.16], to lay the groundwork for the analytically
more complicated variants that follow. We then prove the analogous result for AC Cayleys
in R® with a Spin(7)-structure that is AC to @, Theorem . As far as the author is
aware, this has not been done previously.

To conclude, we consider the case of conically singular Cayleys. Their deformation
theory has been studied before by Moore [3§] in the case of a unique singular point and for
a fixed torsion-free Spin(7)-structure. We generalise these results slightly by considering
multiple singular points as well as families of (potentially torsion) Spin(7)-structures.
We will require these generalisations as well as the result for AC Cayleys to perform
the desingularisation of CS Cayleys in Chapter [3] We conclude our discussion of the
deformation theory by giving formulae for the dimension of the moduli spaces of AC and
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CS Cayleys.

2.1 Almost Cayley submanifolds

Denote the Grassmannian of oriented 4-planes in an 8-dimensional vector space V' by
Gry(4,V). If (V, ®) is a Spin(7)-vector space we can additionally consider the Grassman-
nian of Cayley planes in (V,®), which we denote by Cay(V,®). The group Spin(7)e
acts on Gry (4,V), and acts transitively on Cay(V, ®). As the stabiliser group of any Cay-
ley is isomorphic to H = (SU(2)%)/Zs, we have dim Cay(V,®) = dim Spin(7) — dim H =
21 — 9 =12. As dim Gr, (4, V) = 16, we see that Cay(V, ®) is a codimension 4 subman-
ifold of the Grassmannian of oriented four-planes. In other words, the Cayley condition
can be given in terms of four independent equations. This is the reason why the bundle
E, which will appear later as the co-domain of the deformation operator of a Cayley, is
a rank 4 bundle. We can think of a fibre of E as corresponding to the normal space at
a given Cayley plane of the submanifold Cay(V,®) C Gry(4,V). Since Spin(7)¢ is com-
pact and the action is smooth, there is a metric gspin(ry on Gry (4, V), such that Spin(7)
acts by isometries. Such a metric can be realised by embedding Gr,(4,V) — A%V via
span{ey, es, e3, €4} — €1 Aea Aeg Aey. The Spin(7)-invariant metric is then the restriction
of the Euclidean metric on A*V. The resulting distance map is uniformly equivalent to the
following Spin(7)-invariant distance defined in terms of the orthogonal projections onto
planes:

dex(E, E') = |15 — 75l op-

Here g, mp are the orthogonal projections onto F and E’ respectively. Let us take a
closer look at a tubular neighbourhood of the Cayley planes inside Gr (4, V).

Proposition 2.1. Let ¢; € [0,1),e3 € [0,2), €3 € [0,00) be given and consider the sets:

Ey={£eGri(4,V): @l > (1 — €) dvole},
Ey ={¢ € Gri(4, V) [7(f1, fo, f5, f)llaz < €2,

{fi}iz=1...4 is an orthonormal basis of £},

V1+a

es =€ X ey X ez, e; €V orthonormal ,
vile,lv] =1, 0<a<es}. (2.1)

and B3 ={¢ € Gr, (4,V) : £ = span {61,62,63, M} ,

Note that ||[T(f1, fa, f3, f1) || a2 is independent of the choice of basis of §. Then for a choice
of one of the €; we can determine the other two such that the three sets agree.

Proof. These three families of sets are Spin(7)-invariant. The sets F; and Es are invariant
by the definition of ® and 7 respectively. The invariance of Fj3 follows from the fact that
there are elements of H C Spin(7) which keep ¢ fixed while acting transitively on the unit
sphere in &+
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Now note that the orbit of a single £ € Fj3 is a sphere of a given radius in the open
ball E5. Thus choosing elements for every radius, we can exhaust all of E3. Furthermore
spheres in E; and Es (i.e. replacing the inequality with equality in the definition) must
be unions of this set for different values of a. What is left to show is that the value of «
determines the radii of the spheres in E; (i = 1,2) uniquely. For £} for instance it can be

computed using the definition 1) of &g that 1 —r; = ﬁ For ry we see that ro = j%
, using the coordinate representation ((1.16)) of 7. H

For a € (0, 1), consider consider the set of almost Cayley planes:
Cay, (V,®) ={£ € Gr (4,V) : ¢ > advol}. (2.2)

As this set of planes is Spin(7)-invariant, it admits a canonical action of Spin(7). In fact,
Cay, (V, ®) is a tubular neighbourhood of Cay(V, ®) under geodesic normal coordinates
for gspin(r) and « sufficiently close to 1. Let 0 < ap < 1 be such that for all o > « the
set Cay,, (V, ®) has this tubular neighbourhood property. This is a universal constant. Let
now (M, ®) be a Spin(7)-manifold. We can then consider the associated fibre bundles:

i GI‘+ (47 TM) - PSpin(7) XSpin(7) GI'+ (47 RS)
o Cay(M) = Psyin(r) Xspin(r) Cay(R®, @)
hd CaYa(M) = PSpin(?) X Spin(7) Caya(]RS, CIDO)

We see that a submanifold N* € M is Cayley exactly when T'N, seen as a section of
Gry(4,TM) over N, takes values in Cay(M). Analogously we say that a submanifold of
M is a-Cayley if the section T'N takes values in Cay,(M)|y. Now for every p € M, we
have (T,M, ®,) ~ (R® ®;) as Spin(7)-vector spaces, thus Cay,, (7, M, ®,) will be a tubular
neighbourhood of Cay(7,M, ®,) whenever o > «. In particular, for an a-Cayley N with
a > ag we get a canonical section cay of Cay(M )|y defined as the closest Cayley plane
cay y(p) to the given almost Cayley 7, N, as measured by the metric dgpin(7). This Cayley
plane is unique because of the tubular neighbourhood property.

Proposition 2.2 (Adapted frame for a-Cayley). There is a universal constant 1 > oy >
ag such that the following holds. Let N be an o’ -Cayley submanifold of M, where o > ay,
and let cayy be the canonical Cayley section associated to N. Let p € N. Write ®|y =
advoly, for a smooth function a : N — (ay,1]. Then we can then find a Spin(7)-frame
{ei}iz1,..s adapted to cayy around p such that:

T,N = span{Bie; + vi};_; 4,
vp(N) = span {Bie; + vi};s ¢, (2.3)

where the basis vector fields (;e; + v; are orthonormal. Here v; fori=1,...,8 are vector
fields such that:

v1, Vg, V3, Vg L cayy,
Us, Vg, U7, Ug S Cayn,
[vill < Co,y (1 = @),
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and B; are functions such that 1 — f; > C,, (1 — «).

Proof. For every p € N, the planes cayy(p) and T,N are sufficiently close so that
| Teay @) — TN llop S 1 — @, where my is the orthogonal projection onto V' C T,M.

Thus, if we take a Spin(7)-frame {e;};—1__s which is adapted to cay,, then the tangent
vectors f; = mr,n(e;) fori=1,--- 4 will be such that lle;— fil] < 1—a. After applying the
Gram-Schmidt orthogonalisation procedure to f; to obtain orthogonal vectors f;, we still
have that v; = B;e; — f; € cayy and ||vs]] < 1 — «, for some functions 3; coming from the
Gram-Schmidt algorithm. Note that the hidden constant in our <-notation only depends
on «y. Similarly the coefficients 3; tend to 1 as a tends to 1. An analogous argument applies

to the normal vectors, using the fact that we also have ||yt ) — T, llop S1—a. O

2.2 Deformation operator

Consider a Spin(7)-manifold M. Let ay € (0,1) be sufficiently close to 1 such that
Cay,, (T,M,®,) is a tubular neighbourhood of Cay(T,M,®,) for every p € M. Let N
be an «a;-Cayley (where a; > ag) with a tubular neighbourhood N C U C M. In other
words, we require that the exponential map exp : V- C v(IN) — U defines a diffeomorphism
onto its image, where V' is some open subset of the normal bundle of N. For v € C*(N, V),
i.e. v is a normal vector field to N with values in V| we define exp, : N — M to be the
embedding given by exp, (p) = exp(v(p)). This is a small perturbation of N inside U, and
in fact, any C*-small perturbation of N (where k > 0) can be obtained as the image of
exp, of a unique C*-small normal vector field v. We denote this image by N,.

Our goal is to construct a Cayley submanifold of the form N,, whenever N is close
to being Cayley. As we have seen, N admits a canonical section cayy : N — Cay(M)|y.
This section can also be seen as a four-dimensional subbundle of T'M|y, with each fibre
a Cayley plane. This allows us to globalise the definition of the subspace Ef C AZV* of
Equation , generalising the definition of the bundle E associated to a Cayley from
Equation , and define the four-dimensional vector bundle for any a-Cayley with
a < 1 sufficiently close to 1:

Eeay = {w € A2 : W|cay, = 0}. (2.4)

Clearly, when N is Cayley, then E.,, = E.

Let now n € Q¥(N,, Fly,) be a differential form with values in a bundle of tensors
F — M over the submanifold N,. The form 7 from Equation provides such an
example. Ordinarily the pull-back of exp? 1 is a form in QF(N, exp? F|y,). However, when
we write Exp}7 in the following, we mean a form in QF(N, F|y) (i.e. we also pull back the
value bundle of the form), which we define as follows. Extend the normal vector field v on
N to a vector field on U, where v(exp,(p)) is defined to be the parallel transport of v(p)
along the geodesic which starts at p and has initial velocity u(p), u being another normal
vector field on N. As U is a tubular neighbourhood for geodesic normal coordinates, this
gives rise to a smooth extension of v to all of U. In turn, this induces a flow ¢, : U — M
with the property that ¢;(p) = exp,(p). We now define the pullback of a decomposable
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form n =w® s, w € C®°(A*T x M), s € C®(F), by:
Exp;n = ¢iw @ Deis = exp, w ® Dyis. (2.5)

Here o] and expj, are the usual pullback of differential forms, and D] @ Fexp () — F) is
the pullback induced from the linear isomorphism Dy : F, — Fip (p) coming from ¢y,
on any tensor bundle. To summarise, we extended the vector field v to have a pullback
operation that also pulls back the bundle in which the differential form is valued.

We now define the deformation operator associated to N as follows:

F:C®(N,V) — C®(Eeay)

v — (v Expt(7]x). (2.6)

Here Exp; 7 is the non-standard definition of a pullback introduced above. This addition
is necessary, otherwise the resulting sections would be valued in different bundles for
varying v. Moreover 75 denotes the orthogonal projection A%|y — Eeay, which depends
on the Cayley section cay, over N. We project onto Eg,, to ensure that F' is a map
between bundles of the same rank, for otherwise, F' cannot be elliptic. However one might
ask whether such a projection loses information. Heuristically, the condition F(v) = 0 is
given by ignoring 3 of the 7 equations obtained from the condition *yExp; (7|y,) = 0, one
for each of the basis vectors of A2|y,. The fact that this still gives enough equations to
determine the Cayleyness of a plane can be expected for a generic choice of a projection
to a four-dimensional subbundle of A2|y, since the Grassmannian of Cayley planes is
of codimension 4 in the Grassmannian of oriented four-planes, i.e. the Cayley condition
on a four-plane can be described with four independent equations. Notice however that
the projection is onto a fibre of F.,, over p € N, whereas the equations we chose are
situated at exp,(p) € N,, so this is only approximately true, as we will see in the next
proposition. We will crucially rely on the fact that we choose v to be small in the C'*-norm
to overcome this discrepancy and prove that we can ignore 3 equations while still retain
the Cayley-detecting property of 7.

Proposition 2.3 (Detects Cayleys). Let (M, ®) be a Spin(7)-manifold with uniformly
bounded Riemann curvature tensor |R| < C. Let 0 < ag < 1 such that Cay, (T,M,®,) is
a tubular neighbourhood of Cay(T,M,®,). Then there is ay < ag < 1 depending on ¢ and
a constant C; = C1(P, o, ag) < 1 such that the following holds for any as-Cayley N. If
v € C®°(N,V) is such that for allp € N:

min{|R(q)| : ¢ € B(p, [v(p))}v(p)] < C1,  [V7u(p)| < Oy,

then N, is Cayley exactly when F(v) = 0. Note that if M is flat, then v is only constrained
by the requirement that it lie in the tubular neighbourhood V- of N.

Proof. The submanifold N, is Cayley exactly when 7|y, = 0, which is equivalent to
*vExp)(7|n,) = 0. Thus we need to prove that xyExp;(7|y,) vanishes identically if and
only if 7 (xnvExp;,(7|n,)) = 0. Let p € N be given. For any ay < & < as we have that the
set of a-Cayley planes in a given Spin(7)-vector space is an open e-neighbourhood of the
set of ap-Cayley planes, for some € > 0 dependent on &. The same holds true globally in
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Gr,(4,TM), since everything is pointwise isometric to the standard model (R®, ®g). In
particular, since Toxp, )Ny is determined from 7, N by knowing only v(p) and Vu(p), this
implies that if |v(p)| is small compared to the curvature at any point within a distance
lu(p)| and |Vu(p)| is sufficiently small at every point p € N, say smaller than some Ci,
then N, is still a-Cayley. Thus we still have a canonical Cayley section cayy, over N,. We
then apply Proposition to choose a Spin(7)-frame {e;},—i,. s adapted to cayy, such
that an orthonormal basis of Tiy, )N, is given by f; = Bie; + v;, where 3; : U — 0, 1]
are smooth functions. Under (Dexp,(p))~! these in turn get mapped to a local frame
{f/}iz1,...a of TN, which is not necessarily orthogonal. We now have that:

det(f;) *n Expy(7|n,)(p) = Expy(7|n, )p(f1, f2: f35 f1)
= DI Texp, ) (1 f2, f3, f4),

where det(f/) is the volume of the 4-parallelepiped spanned by the f/. We similarly get:

det(f{)WE *n Expy(7|n,)(p) = WEDQOTTepr(p)(fla fa, f3, fa)
= D@T”ETexpv(p)(fla fa, f3, f4)-

Here 7 is the orthogonal projection onto (Eey), and 75 = (Dg})'mpDe} is a not nec-

essarily orthogonal projection onto a subspace £ C A%|expv (»)- As Dy is an isomorphism,
it suffices to show that:

7T-ETexpv(p)(fla f27f37 f4) =0= Texpv(p)(fla f27f37 f4) = 0.

Let ¢ = exp,(p) for simplicity. Consider 7, : Gr(4,T,M) — (A2),M as a smooth map. As
7, vanishes on a 12-dimensional submanifold in the 16-dimensional manifold Gr™ (4, T, M),
its derivative at a Cayley can have rank at most 4, in other words im D7, C (A2),M is
four-dimensional at most. Now we use the coordinate expression for 7, in (1.16)) with
regards to the frame {e;};—1, s, as well as the special form f; = fie; + v; with v; L
cayy, to see that im D7, = E. In fact im D7, is spanned by all the vector of the form
Oyt (e1+tvy, ..., eq+1tvy). Remembering that Ecty is spanned by the vectors e; X e5, €1 X e3
and e; X ey, we see that these components are at least quadratic in the normal contributions
{vi}1<i<a (which are simply linear combinations of {e;}5<i<s), and thus 0,(7|g1) = 0. This
implies that if f1, f2, f3 and f4 span a sufficiently small perturbation of cayy (), as is the
case in our setting by the a-Cayleyness of N, then w7 (f1, f2, f3, f4) = 0 can only occur
if 7(f1, fo, f3, f1) = 0, as E.,y and ECLay are transversal subspaces. In fact, if £’ is any
four-dimensional subspace and 7 is any projection onto E’, not necessarily orthogonal,
such that kerp NEc,y = {0}, then the implication:

WE’Texpv(p)(flv f?a f37 f4) =0= Texpv(p)(fla f27 f37 f4) =0 (27)

holds, given that the f; span a sufficiently small perturbation of cay; . In other words for a
given F', if & is sufficiently close to 1, the implication above will be true. Moreover, having
fixed a neighbourhood of cayy, for the f; to vary in, satisfying the above implication is
an open condition on 7.

Let now an a-Cayley plane £, C T,,M be given, with associated canonical Cayley plane
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cay,. If we restrict the f; to vary so that the planes they span are in a sufficiently small
neighbourhood of cay, € Gr,(4,7,M), then the implication holds for an open subset
of maps mp which contains 7. Note that this open subset of maps 7g depends on the
neighbourhood of cay, that we fixed. Moreover, this is true at every point p € M. Denote
this open subset of projections which contains wg by II, and let the fibre over the point
p be II,. It thus remains to show that mz € II,. For this notice that from a fixed v(p)
and Vu(p), we can determine Dy, : T,M — T, M. This is because first-order deviations
of geodesics at a later time depend solely on the first-order deviation of geodesics at an
earlier time. Thus we get a family of maps 7rtE, which act on the fibre of AZ over the point
@1(p). We have 7. = 7, thus 7. € IL,. Next, by what we have said above it is clear that
7 being contained in Il.y,, () is an open condition in ¢. Thus for a fixed v(p) and Vo(p)
there is a ty = to(v(p), Vu(p)) such that for all 0 <t < t, we have 7% € Iley,,, (). Now
note that for A > 0:

to(Av(p), \WVo(p)) = Ao (v(p), Vo(p)).

This implies that for |v(p)|+ |Vv(p)| sufficiently small we have 75 € I1,. Now we can find
a constant Cy < C such that whenever |v(p)| + |Vv(p)| < Cy, then the implication (2.7)
holds at q. ]

Next, we are interested in studying the linearisation of the nonlinear operator F' and
showing that it is elliptic at the zero section.

Proposition 2.4 (Linearisation). Let N be an a-Cayley with & > oy with deformation
operator F, such that ®|y = advoly. Let p € N and suppose that near p we have
a Spin(7)-frame {e;}i=1..s and a frame {f;};=1.. s which respects the splitting TM =
TN & v(N) as in Proposition . The linearisation of F' at 0 is then given by:

D:C®WN)) —> C%(Fuy)
v —mp(f Z?Zl fi X Vﬁ_v
+ 3 Y Bilfi X Vi
+Vor(f1s f2, f3, f4)),

(2.8)

where V* is the Levi-Civita connection on the normal bundle v(N), and V;iv is the
projection of Vv to TN. Here 3, 3;; are smooth functions such that 1 — 3 > C,, (1 — )
and |Bi;] € Coy (1 — ). The constant C,, only depends on the choice of a;. When N is a
Cayley, then the second line is the Dirac operator associated to a Cayley from Proposition
[1.11] Furthermore, the third line vanishes in this case. Finally, the fourth line vanishes if
(M, ®) is torsion-free.

Proof. We have for v € C*(v(N)):
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Note that ¢, = exp,, is the flow of a vector field on a neighbourhood of N which extends v,
as we discussed before the definition of the deformation operator in equation . Thus
we get from the definition of the Lie derivative, the expression for our non-standard
definition of pull-back, and the definition of the Levi-Civita covariant derivative on forms:

DFv] = g xy L, = 1Ly (T(f1, f2, f3, f1)) (2.9)
=TE (T(vflv7 f27 f37 f4) + T(fh vf2v7 f37 f4)
+T(f17 f27 stva f4) + T(fh f27 f37 Vf4v) + V’v7-<f17 f27 f37 f4)) .

Here the last line uses the fact that V is torsion-free. Now consider the torsion term
T(V 1,0, f2, f3, f1). Since we have the orthogonal splitting M|y = TN @ v(N), the con-
nection V on T'M |y splits into V' +VE where VI = mpny oV and VE = Tynvy©o V. Thus
in particular:

T(V v, fo, f3, 1) = T(Viv, fo, f3, 1) + 7(V v, fa, f3, f1)
= Vﬁv X (fa X f3 % f4) +T(V£v,f2,f3,f4)
= Vv x (fo % f3 x fi)
= Vﬁv X (P26 X Peg X (Bsey + v4))

8
= V]%lv X (B23Pae1 + ZBljfj)

j=1

fIU x (Bfi +Zﬁlgfg

7j=1

For the third line we used the fact that V,v(p) L T,N, since v € C*°(v(N)). For the rest,
we use the definition of 7 as well as the coordinate representation of ®y. Here 8 = (51 5230;.
The computations for the remaining three terms are similar and lead to the claimed
formula.

If N is Cayley, then the second line corresponds exactly to the Dirac operator associ-
ated to a Cayley from Propositions since in this case a = 1, which implies 5 = 1,
and the cross product of f; and Vv already lies in Eg,, = F, so no further projection is
required. In the same situation, we see that the third line vanishes, as all the 3;; vanish.
Finally, 7 is covariantly constant if ® is torsion-free, and the last line vanishes in this
case. To see this note we can choose a local Spin(7)-frame which is covariantly constant,
from which it is clear that the cross and triple product send parallel sections to parallel
sections. Since 7 is defined in terms of these two products, the same must hold for 7. From
this, it is immediate that 7 is covariantly constant. O

The coefficients of /) depend on the data M, N and ® in a very precise way.

Proposition 2.5. Let (M, ®) be a Spin(7)-manifold. Then there is an open subset U C
A(M) with & € C®(U) such that for a sufficiently close to 1 there are smooth bundle
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maps as follows:

c1: M x Cay, (TM) x U —s Hom(T*M @ TM, N> M),
co: M x Cay (TM) x (T*M @U) — Hom(TM,\*M),

for which to following holds. For any immersed a-Cayley N C (M, ®) (where ® € C>(U))
the associated linearised deformation operator lﬂNé satisfies:

Dy 30(p) = c1(p, T,N, @(p)) - Vo(p) + co(p, T,N, V& (p)) - v(p).
Here V refers to the Levi-Civita connection for the fized Spin(7)-structure ®.

Proof. This is a consequence of ([2.8)), which gives a coordinate expression for ) = Ip N
in a carefully chosen frame {f;}i<j<s from Proposition [2.2) as:

D] = 7B Z?:l fi % Vﬁﬂ + Z?:l Z§=1 Bijfi % Vﬁv + Vot (f1, f2, f3, f4))-

Here f3, B;; depend algebraically on the choice of frame (which depends on T'N) and d(p),
and V= is the connection on the normal bundle induced by ®. The product x that appears
also depends pointwise on @, and the derivative of the form 7 depends pointwise on V&
and TN. We remark that the Christoffel symbols of V+ also depend on V® and that this
is included in cg. O

In particular, if two almost Cayley submanifolds are sufficiently close to one another,
their deformation operators will differ in a controlled manner.

Corollary 2.6. Let N C (M, ®) be a compact almost Cayley with linearised deformation
operator IDy. Let v € C®(v(N)) be a sufficiently small normal vector field in a tubular
netghbourhood of N so that N, again admits a deformation operator. Identify the normal
bundles of N and N, via parallel transport and orthogonal projection. We can then write:

ﬁNv = le + 5EU7
where §ID,[w] = a1 (v, N) - Vw + ap(v, N) - w, and:
|Vk(lz| 5 |Vk+1v|.

Proof. This follows from the previous Proposition by realising that the variation in
T,N is governed by the first derivative of v, and similarly for higher derivatives. Finally,
we note that the ¢; from the previous proposition only depend on the ambient Spin(7)-
structure and not on the submanifold. O]

Proposition 2.7 (Ellipticity). There is a universal constant oy > «aq, where oy is as in
Proposition such that if N is an aep-Cayley submanifold, then its associated linearised
deformation operator ID is elliptic.

Proof. From the previous proposition we see that the symbol at p € N is given in an
adapted frame as follows, where { € T)N and §; = {(f;):
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4 4 8
() = s (52& et S B g)
=1

i=1 j=1

— 1 ((ﬁgﬁ +Y O Biifi % g) X v) . (2.10)

i=1 j=1

Now if the f; span a Cayley plane, then this is exactly the symbol of the Dirac operator
associated with a Cayley from Proposition [I.28, and thus invertible. As we perturb the
plane continuously, we see that both the product 7z(O x ) and the expression inside
the bracket vary continuously. Thus invertibility of the composed expression is an open
condition on the set of four-planes, which holds at Cayley planes. Since a-Cayley planes
for a € [y, 1) form a neighbourhood basis of the Cayley planes in Gr, (4, R®) we see that
there is a universal a; > a7 such that whenever the f; span an ag-Cayley, the symbol
is invertible, and thus ) is elliptic. O]

2.3 Compact case

We now study the deformation theory of a compact Cayley submanifold in a Spin(7)-
manifold (M, ®,), where we also allow the Spin(7)-structure to vary in a finite-dimensional
smooth family {®;}scs, with sp € S. As we are only interested in the local deformation
theory, we can and will assume that M is compact by restricting to a closed tubular
neighbourhood of N. The analysis will be done for almost Cayleys, which will be useful
later when we desingularise Cayleys with conical singularities.

Let N C (M, ®,,) be a-Cayley with « strictly bigger than ey from Proposition [2.7]
so that the linearised deformation operator )y is well-defined and elliptic. It will then
also remain elliptic for small C''-perturbations of N and smooth perturbations of ®. For
¢ > 0 denote by v.(N) the e-neighbourhood of the zero section in the normal bundle
v(N) = TM|n/TN, as measured by ge, . If € > 0 is sufficiently small then its image
under the exponential map corresponding to ¢, will be a tubular neighbourhood of N,
for any s € S, after potentially restricting S to a neighbourhood of sg.

Let C*®(v(N)) C C*(v(N)) denote the subset of sections which take value in v (N).
Consider now the perturbation N, = exp,(N) of this compact almost Cayley. Its failure
to be Cayley is measured by the deformation operator , and is a section of F,,. We
now mildly extend the results from the previous section for the compact case:

Proposition 2.8. Let N be a compact a-Cayley submanifold of (M, ®q) with a < 1
sufficiently close to 1. Let {®s}ses be a smooth finite dimensional family of Spin(7)-
structures such that s € S. Consider the map:

F:C®W(N)) xS — C®(Ecay)
(v,5) = mE(xNExp,(TN,))-

Here Exp,* and mg are induced from ®,. After shrinking S, there is a constant C' > 0
which depends on M, ®,, and on the injectivity radius of N, such that if furthermore
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|vllcr < C, then N, is Cayley for ® exactly when F(v,s) = 0. Moreover, F(-,s) is
elliptic at the zero section for every s € S.

Proof. The only non-trivial issue is that for s # s, we used the exponential map, Hodge
star and 7p associated to @, not ®,. However by shrinking & we can ensure that both
ellipticity and the Cayley detecting property are preserved, by the compactness of N, and
the openness of these conditions in the space of all smooth Spin(7)-structures. O]

This is a generalisation of previous work by Kim Moore [38, Prop. 2.3], where a more
direct proof can be found for the case where N is Cayley and the Spin(7)-structure is
fixed. This in turn is based on earlier work by McLean in his foundational paper [34]
on the deformation theory of calibrated submanifolds. We will now consider F and I as
maps between Banach manifolds. For this, we need some auxiliary results.

Lemma 2.9. Let N, M, ,{®}ses, F be as in Proposition [2.8 The map F has the
following form, for v € C*°(v(N)) andp € N:

F(v,s)(p) = F(p,v(p), Vu(p), TN, s)
= F(O7 S)(p) + (msv)(p) + Q(p7 U(p), vv<p)7 TpNv S)'

Here 1D, is the linearisation of F(-,s) at 0 and F, Q are smooth fibre-preserving maps:
F,Q:TM: xn(T"M ®TM). x Cay, (M) x S — Ecay,

where B,y = {(p,m,€) : (p,m) € Cay,(M),e € E;} and « is sufficiently large. Here we see
both sides as fibre bundles over Cay,(M) x S. We define the map Q : C®°(v.(N)) x S —
C(Eeny) 15 Q(o,8) = F(v,5) — Do,

Note that @) is a map between function spaces, while Q is a smooth map between
manifolds of finite dimension, and the same naming convention applies to ' and F. We
also write F(-) = F(+, s) to emphasise that Fj is a differential operator depending on the
parameter s € S, and similar for () and the smooth functions F and Q.

Proof. The value of exp,(p) is determined by p € N and v(p) € v,(IV) as a geodesic is
uniquely determined by its starting point and initial velocity vector. Similarly, D exp, (p)
is a smooth function of p, v(p) and Vu(p) € TN ®1,(IV) since the first order deviation of
two geodesics is determined by the first order deviation at a previous time. Finally, Exp (p)
can be entirely determined from p, v(p), Vo(p) and the tangent space T, N. Thus F itself
is of the form F(v,s)(p) = F(p,v(p), Vv(p),T,N,s), as it is the pullback of a differential
form (which depends on s) by exp,. Here F is a smooth map which is independent of N.
The smoothness of F follows from the smoothness of exp, in v. In particular, the same
argument applies to the map Q(v,s) = F(v,s) — ID,v, since (ID,v)(p) is a smooth map in
p,v(p), Vu(p) and T,N only, as it is a first-order operator. ]

The name Q is meant to suggest that the term Q, (p, 7, y) contains all the quadratic
and higher terms in the variables x and y. Indeed, we clearly have Q. (p,0,0) = 0, so
no constant term. Let us denote by 0, and 0, respectively the partial derivatives with
respect to x and y. Note that this does not require choosing a connection, as Q is a
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fibre-preserving map between subsets of metric vector bundles, and x and y are exactly
the fibre coordinates. Let v € C*(v(N)) be such that v(p) = zy and Vu(p) = 0. Then:

d
a’EQs,w(pa 07 0)[.1'0] = & QS,TPNQ)) tan O)
t=0

d
- <& t:OFS(w) — F,(0) — tlev> (p)
= (Do —Dw)(p) = 0.

An analogous derivation for the variable y shows that Q, satisfies the following for
p € M:

Q,..(p,0,0) =0, 9,Q, (p,0,0) =0 and 9,Q, (p,0,0) = 0. (2.11)

From this, we will now obtain bounds on Q(v) — Qs(w) which are formally similar
to the bounds obtained for homogeneous quadratic polynomials on R". If ¢ is such a
polynomial, one can show that for a constant C' > 0 there is an inequality of the form:

l9(z) = q(y)| < Clo = yl([z] + [y))-

In the following, we use the notation |v|cx = Z?:o |Viv| for a pointwise norm of the
derivative, and we also think of TN as a section of A*T*M|y — N, so that |T'N|cx is
well-defined. The analogous result for (), is then the following;:

Lemma 2.10. There is an € > 0 which only depends on ®4 for s € S such that for k > 0
and v,w € C*(v(N)) with ||Jv]|c1, |Jw|cr < € we have the following inequality:

Qs(v) = Qs(w)|ernr C Y [V (v =w)|(IV0] + [V w]) VTN, (2.12)

i |+ r<k+2
og<r<k

where the summation is over a multi-index I, and VI = V' @ ... ®@ VI, If we assume
that |v|cr+1, |w|crr are sufficiently small, then this can be simplified to yield:

1Qu) = Quw)|owrs <C(1+ TN o) (|v — wlor ([olor + lwle)
+lv — w|er(Jv]or+r + |w|Ck+1)). (2.13)

Proof. Let x € T,M and y € T;M ® T,M be of sufficiently small norm. Then Taylor’s
theorem gives us uniformly in s € S and 7 € Cay,(M),:

Q.(p;7,y) = Qux(p,0,0) + 9.Q, . (p,0,0)x + 3,Q, . (p,0,0)y
+Ris-(p,7,y)r @2+ Rosx(p,z,y)z @Y (2.14)
+ R3,s,7r(p7 x, ?/)y ® Y,

where the R, 5 » are smooth, non-linear remainder terms which describe the higher order
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behaviour of Q. If we now consider small z1, 22 € T,M and y;,y, € TyM @ T, M and
use the properties (2.11)) of Q, we see that:

Q(p, 72, 92) — Q(p, 71, 91) = Ruza ® 72 + Rozz @ y2 + Raye @ 42
—Riz1 ® 21 — Row1 @ y1 — Ry @, (2.15)

Consider for the moment only the difference
R1<p7 x2,Y2, 8)33'2 & XTo — R1<p7 Z1,Y1, 8)33'1 ® €.
We can rearrange as follows:

R1(p, 22,2, 5)T2 @ 22 — Ri(p, 21,41, 5)11 ® 13

= Ri(p, 22,2, 5) (2 @ 22 — 21 @ 1) + (R1(p, 22, Y2, 5) — Ri(p, 21,41, 8)) 11 @ 21

= Ri(p, 22,42, 5) (22 @ (22 — x1) + (22 — 21) ® 21) + (R1(p, 22, ¥2,5) — Ri(p, 21,42, 9)
+Ri(p, 71,12, 5) — Ri(p, 21,91, 5)) 11 @ 21

Using the mean value inequality we can find & = t 1 + (1 — t,)22, 7 = t,y1 + (1 — t,)y2
with ¢,,t, € [0, 1] such that:

|R1<p7 33273/273) - R’l(p7 1’173/275)| g ’axR’l(paj?y%S)Hxl - .’172‘.
|R1(p7 $1a9275) - Rl(pa x17y17$)| < |ale(p7 xlagv S)Hyl - y2|

Now since M is compact, after shrinking S, the subset V. of (p, z,y,7s) € TM x (T*M ®
TM) x Cay, (M) x S such that |z|, |y|,|7(7)| < ¢ for a fixed constant ¢ € R is also
compact. As Q and the R; are smooth, we can thus bound the norm of any derivative of a
fixed degree over such a subset. This gives us the following point-wise estimate, provided
that xq, x9,y1 and ys all have sufficiently small norms.

IR1(p, 22, Y2, $)xa @ 9 — Ry(p, 1,11, $)T1 @ 21|
< C|za] + |w2])|w2 — 21| + (Jo2 — 21| + |y2 — w1 ) |21 [?
< O(|lwg — 21| + [y2 — v |) (|21] + 22| + [y2] + [32])-

Here the constant C' is independent of p € M and w € Cay_(M). We can bound the
rest of Equation (2.15) by the same expression, using similar arguments, i.e. there is a
pointwise estimate:

Q. (P, 72, ¥2) — Qq (0 21, y1)| < CO|za — m1| + [y2 — y1|) (|21 | + |z2] + Y1 | + |12]). (2.16)

We will now adapt the above reasoning to obtain bounds on the covariant derivatives
|VF(Qs(v)—Qs(w))|. For this consider v € C*°(v.(N)) and note that for a curve y : R — M
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with v(0) = p € N and v/ (0) =& € T,N:

d

Ve(@s(0)(p) = re—p 3 _OQS(V(t), v(7(1)), Vo(y (1)), Ty V)

= Q,[w] + 0:Q,[Veu(p)] + 9,Q,[VeVo(p)] + 0:Q,[VTN]. (2.17)

Here Il7g_, g is the connection map, which maps T{, 7py,s)E — E(, 7py,s) as induced from
the Levi-Civita connection on N, which only depends on 7, N and not on the curvature
of N. The derivative 0, is given as:

8,Qlw] = DQ(p, v, Vv, T,N, s)[w, w T whT METY )hTM o]
Here w"¥ means the horizontal lift of the vector w to the corresponding bundle E. Finally,
we consider T'N as a section of A*T*M, so that VI'N is well-defined. The conclusion is
that the dependence of V(Q,(v))(p) on V?v(p) and VTN (p) is affine, and the coefficients
can be bounded on subsets of the form V.. The same argument also applies to the R;,
and using Equation [2.15| we can show that:

VEQ4(v) = Z R (p,v, Vv, TN, s)Vv® VITN, (2.18)
|T|+j<k+2
0<ji<k
where the R’ are smooth maps on V., for sufficiently small ¢, and for I = (iy,...,4,)

a multi-index we set Vv = Vv ® ... ® V¥%v. Notice that there are no products of the
form V¥Tv ® V**1y appearing. From this, we can deduce the claimed bounds, since the
R’ are defined on compact sets. n

Corollary 2.11. The map Qs : C®°(ve(N)) = C®(Eeay) is a continuous map of Fréchet
manifolds. Similarly, the maps Qs : C* (v (N)) = C*¥(Eeay) and Qs : C* 12 (v (N)) —

C**(Eeay) are continuous maps of Banach manifolds in the same way.

Proof. If v — w € C*1(y(N)), then by Lemma and by compactness of N:
1Q,(v) = Qs(w)llr < Cllv = wllors (ol gk + wllgrer) — 0. (2.19)

The proof for the Holder case is identical, and the statement about C'™ is obtained by
combining the statements for C* for all finite k. [

Lemma 2.12. Let p > 4 and k > 1. Then there is an € > 0 and C' > 0 which depend on
®, for s € S and N such that for v,w € Lj,(ve(N)) with ||U||Lz+1, lwllzp,, <€ we have
the following inequality:

1Qs(v) = Qs(w)lzy < Cllv = wlizg, (lvllzg,, +llwlze, ) (2.20)
Proof. As k41 > 2 and p > 4, we have that L] , — C* continuously by the Sobolev

embedding theorem. Thus by making € > 0 small, we can make sure that the C* norms
of v and w are arbitrarily small, say less than 6. We then prove the L} estimate on Q
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using the pointwise estimate (2.13)) from Proposition as follows:

/ IVEQ,(v) — VFQ4(w)]P dvol

N

< C/ v —w|Z s (J]or + [0]er)™ + [0 — wPy ([v]or + [w]|or) F P (Ju] e + [w]ore )P dvol
N

< Cé(kil)pqv‘c”c + ’w|0’“)p/ |U - w‘gkﬂ dvol +C§(k71)p|v - w‘gk / (‘U’gkﬂ + ’w’gkﬂ) dvol
N N

< — wll? p P .

<Clo—wlty (i, + i, )

Here, we used Minkowski’s inequality in the second inequality and the Sobolev embedding
of Lj,, — C* in the third. This is also where the dependence of the constant C' on N
appears. Note that the key fact used in deducing this L} bound was that there were
no terms of the form Vv ® V¥*1v in our expression for V*Q,. In fact, the mapping
v — VF1y @ VAo is not bounded from LY, to LP, thus the presence of such a term

would make it impossible to deduce a bound of the above form on Sobolev norms. O
One can capture the dependence on the parameter s € S similarly.

Lemma 2.13. For any so € S and sufficiently small e > 0, there is an open neighbourhood
U C S of s and a constant C(S) > 0, such that for all s € U and v € C*°(v.(N)) with
|v|ler < € we have:

|Fs(v) — Fiy(v)| v < Cd(s, s0). (2.21)

Proof. Using Taylor’s theorem we get that:

|Fs(v) — Fy, (v)|(p) < 2|0:F(p,v(p), Vu(p), T,N, s0)]d(s, 50).

Thus the case & = 0 follows from the same argument as we had before for the v-
dependence. Higher derivatives follow analogously to what we had before as well. O]

Proposition 2.14. Let p > 4 and k > 1. For sufficiently small €, and after potentially
shrinking S the map F from Proposition[2.§ extends to a C*° map between Banach man-
ifolds:

F:Le={veLi,(v(N)), ||U||L£+1 < et x & — Ly (Fay)

Its linearisation at (0, @) is Fredholm.

Proof. Notice that F is a continuous or C*¥ map between Banach spaces exactly when Q
is. This is because the constant term F,(0) is smooth in s, as is the linear term Ip,. Both
those terms are smooth in v, as they are constant and linear respectively. Continuity of
() between Sobolev spaces follows from Proposition and in the same way that
continuity between C*-spaces was proven in Corollary .

It remains to show differentiability. We see from an application of Taylor’s theorem
that for v,w € C*(v(N)), s : R — S a smooth curve and ¢ € R sufficiently small:

Qv+ tw, s(t)) — Q(v, s(0)) = 9, Q[tw] + 9,Q[tVw] + 9,Q[t5(0)] + O(?). (2.22)
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Let now v € L. and s € S. Thus by the Sobolev embedding theorem we have that
v € C*(v(N)) has bounded C*-norm. Define the operator:

Lys(w, &) = 0,Qw] + 0,Q[Vw] + 9,Ql¢].

The operator L, is first order with continuous coefficients, and as such is a bounded
operator L} g X TS — LY. From it is clear that L, s is the Fréchet derivative of ()
at the point (v, s). It remains to show that varying (v, s) continuously in Lj; x S entails
a continuous variation of L, in the space of bounded operators B(L}., x T,S,L}). By
computations analogous to the ones from Proposition [2.10| on may obtain a bound of the
form:

||(Lv,s - L’U-&-tu,s(t))[wag]HLi < Ct(HUHLP

k+1

lwllzg + 5(0)[[€]),

were ¢ is assumed sufficiently small, v € L., s a smooth curve in C, u,w € L, and
§ € Tyo)S (we identify the tangent spaces TS via a fixed trivialisation). Here we
crucially use the fact that v € £, have uniformly bounded C*-norm. From this we see
that:

[(Lo.s = Lottusy)llop < Ct([lullzy,  +[5(0)]), (2.23)

which shows that the derivative L, ¢ varies continuously as (v,s) varies continuously.
Higher differentiability follows analogously. Finally Ly, = 0@ T by , where T :
TS — LY (Eeay) so the derivative of F at (0,s0) is the sum of the elliptic operator ),
on a compact manifold and a bounded linear map, and as such Fredholm. O

Solutions to the equation Fy(v) = 0 which are in L} will be automatically smooth by
elliptic regularity.

Proposition 2.15. Any v € L, such that Fs(v) =0 for some s € S is smooth.

Proof. The operator ID, is an elliptic operator with smooth coefficients. It thus admits
a formal adjoint 0,. Since Fy(v) = 0, we of course also have that IP.F(v) = 0. From
the Taylor expansion F,(v) = F,(0) + v + Q4(v) and our expansion of VQ,(v) from
equation ([2.18)) we obtain that:

DiF(w) = DD+ S(v, Vo) + Ry(v, Vo)V
= Ry(v, Vu)V?0 + Sy(v, Vo).

Here S, S, Ry, R, are smooth in their arguments. For fixed v € L. define the linear
differential operator K, ; as follows:

Kos: L (V(N)) — Ly (Eeay)
w — Ry(v, Vo) Vw.

Asve L}, (v(N)) C C**(v(N)) and R, is smooth in its arguments, this linear differen-
tial operator has coefficients in C*~12. It is elliptic, as lﬂ:F is elliptic at 0. Thus v is a
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solution to the following equation:
K, s(v) = Ss(v),

which is a second order elliptic equation with C*~1¢ coefficients. However S, (v, Vv) is
actually in C%. Thus we can apply Schauder regularity results such as Theorem 1.4.2 in
[19], which allows us to improve the regularity of v to C**%2. Consequently, the coefficients
of K, will have regularity C**1 as will the section Sy(v). It follows by bootstrapping
that v € C*(v(N)). O

We can now specialise to Cayley submanifolds, and describe their family moduli spaces
locally. To be precise, we consider the following moduli space for N C (M, ®,,) an im-
mersed submanifold and {®;}scs a smooth family of Spin(7)-structures.

M(N,S) = {(N,®,) : N is an immersed Cayley submanifold of (M, ®,)
with NN isotopic to N}. (2.24)

We endow M(N,S) with the C* topology. Note that if N is Cayley, then the bundles
Ee.y and E agree, as TN = cay,. Now we can apply the theory of Kuranishi models to
the Fredholm map F' to arrive at the following structure theorem for its zero set.

Theorem 2.16 (Structure). Suppose p > 4 and k > 1. Let N be an immersed compact
Cayley submanifold of a Spin(7)-manifold (M, ®y,), where {®s}ses is a smooth family of
not necessarily torsion-free Spin(7)-structures parametrised by the smooth manifold S, and
so € §. Then there is an open neighbourhood s € U C S and a non-linear deformation
operator F' which for e > 0 sufficiently small is a C* map:

F:L.={vel] (v(N))), HQ)HLZ+1 <e} xU — LYE).

A neighbourhood of (N, ®s,) in M(N,S) is homeomorphic to the zero locus of F near
(0, @g,). Furthermore we can define the deformation space Z(N,S) C C*°(v(N))®Ts,S
to be the kernel of Ds = DF(0, sq), and the obstruction space O(N,S) C C*(E.,y) to
be the cokernel of IDg. Then a neighbourhood of (N, sq) in M(N,S) is also homeomorphic
to the zero locus of a Kuranishi map:

k:IZ(N,S)— O(N,S).

In particular if O(N,8S) = {0} is trivial, M(N,S) admits the structure of a C*-manifold
near (N, sg). We say that N is unobstructed in this case.

We remark that Dg = P ® T, where Dy is the deformation operator for N in the
fixed Spin(7)-structure &4, and T : T,S§ — LY (E) is linear map.

To conclude, we refer to the DPhil thesis of Robert Clancy [7, Theorem 6.3.1] for a
proof of the following formula for the index of ID5. We add dim S since our deformation
problem also allows for deformations of the Spin(7)-structure.
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Theorem 2.17 (Index). Suppose we are in the situation of Theorem . The index of
Ds =DF(0,s0) for the family S is given by:

ind g — %@;(N) + (M) = [N] - [N] + dim S. (2.25)

Here o(N) denotes the signature of N as a compact oriented four-manifold, x(N) the
Euler characteristic, and [N]-[N] the self-intersection number in M. This is the expected

dimension of the moduli space M(N,S). In particular, if N is unobstructed M(N,S) will
be a smooth manifold of this dimension.

Example 2.18. Suppose that N C M is a complex submanifold in a CY4 manifold
(M,w,g,J,Q). Then N will also be Cayley in the Spin(7)-manifold (M,ReQ + jw A w).
If N is compact, then Hodge theory on the Kahler manifold N allows us to conclude that
ker 04+0* = ker 000*, and so according to Example infinitesimal Cayley deformations
and infinitesimal complex deformations agree. Thus, if we furthermore assume that every
infinitesimal complex deformation N integrates, then any Cayley deformation integrates
as well (as complex surfaces are examples of Cayley submanifolds).

Example 2.19. If L C M is a compact special Lagrangian submanifold in a CY4 manifold
(M, w, g, J, ) then it is Cayley in the Spin(7)-manifold (M, Re Q+jwAw). For Lagrangian
submanifolds, the normal bundle is intrinsic, as v(IN) ~ T'N. Thus the formula for the
index ([2.25]) yields:

ind Py = L(o(N) + x(V)) = [N] - [N] = 2(o(N) — x(V))
= by(N) — by (N) — 1.

Compare this to the special Lagrangian deformation theory as described in [34], where it
is shown that the moduli space of special Lagrangians isotopic to N has dimension b; (V).
Thus the obstruction space for compact Cayleys coming from special Lagrangians never
vanishes, as the obstruction space necessarily has dimension:

dim O(N) > by, (N) + 1. (2.26)
Looking at the explicit form for the Cayley operator in Proposition [1.14] we see that:

Kerl)y ~ H?,
Coker)y ~ H° @ H>~.

Here H* is the space of harmonic k-forms on N, and H?~ is the space of harmonic
anti-self-dual forms. On a compact manifold, if d"o = 0, then:

0:/ 0/\d0:/ da/\daz/ dfendo
ON N N
= / dfo AxdTo = ||dT o2
N
Now we obtain the first isomorphism by Hodge theory on N. As for the second isomor-
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phism, note that the adjoint of —d x ®©d~ is exactly —d x +d* : Q" & Q%= — Q. Hodge
theory again leads to the desired result.

2.4 Asymptotically conical case

The deformation theory of noncompact Cayleys with conical ends is analogous to the com-
pact case, however, to stay in the Fredholm setting we need to consider the deformation
map acting between weighted function spaces, as exemplified in Proposition [I.28]

Let (R% ®,,) be an AC, Spin(7)-manifold asymptotic to (R® @), and suppose that
A C R® is a an a-Cayley submanifold that is AC) for some n < X < 1. This is the level of
generality we require for the desingularisation results in the next chapter. Working with
Spin(7)-structures that are AC,, to the flat ®, instead of just working with @, while not
strictly necessary, simplifies the proof of the gluing theorem [3.15]

If {®s}ses is a smooth family of AC, perturbations of @, then we would like to
examine the moduli space:

MAG(A,S) = {(A,®,) : Ais an AC, Cayley submanifold of (R%, ®,)
isotopic to A and asymptotic to the same cone}. (2.27)
For « sufficiently close to 1, A admits a canonical deformation map, just as in the compact

setting. However, we need to modify the definition from Section to account for the
AC, condition and to ensure Fredholmness of the linearised problem. Thus we define:

Fac: C2(1e(A)) x S — C2(Euny), (2.28)

loc

for € > 0 sufficiently small, and after potentially shrinking S. Recall that v(A) is a tubular
neighbourhood that grows linearly in the distance from the origin, so any sufficiently small
AC, deformation will be contained in this neighbourhood. We would like to show the
following result:

Proposition 2.20. Let p > 4 and k > 1. For sufficiently small € > 0 and n < 0, after
potentially shrinking S, the map Fac extends to a C* map of Sobolev spaces:

Fac:Lo={ve Ly ) : ollg,,, <} xS — L,y (Euy).

Furthermore, anyv € Lj,  ,(Ve(A)) such that Fac(v) = 0 is smooth and lies in C{3, (ve(A)).
The linearisation at O is the bounded linear map:

ZpAC,S : Li—l—l,)\(V(A)) X TSOS — Li)\_l(Ecay)-

Finally, IDAc,S is Fredholm for X\ in the complement of a discrete set 1, C R, which is
determined by the asymptotic link L C ST as an associative submanifold.

The proof of this result follows the same outline as in the compact case. The crucial
step is to obtain estimates on the weighted C} and L% s norms of the various terms involved
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in the Taylor expansion:

Fac(v,5) = Fac(0,s) + IDAC,S[U] + Qac(v, 8),

where ) acs = DF(-,s) for a fixed s. After that, we need to investigate the dependence
on the parameter s € S. Let us first examine the constant term.

Proposition 2.21. Let k € N. Suppose that A is ACy to a Cayley cone, a-Cayley for o
sufficiently close to 1. Then, after shrinking S there is a constant C' > 0, independent of
s € 8 such that [|Fac(0,s)|cx < C. Thus Fac(0,s) € C32(Eeay)-

Proof. We can think of 7 at any given point p € R® as a smooth map:
Tp A'R® — AZRS.

As @, is AC,, this linear map approaches 7, (corresponding to the standard Spin(7)-
structure) uniformly in O(r"7!) and for all s € S. Moreover, all derivatives up to a finite
order can be bounded by a constant independent of s. We now think of the tangent
bundles of A and C' as maps C — A*R®, ignoring the compact region of A. The AC,
condition on A now gives us that for p € C' there are constants K; > 0,7 € N:

VAT, A—T,0)| < Kg*™ '™, as r — <.

Here V is with respect to the cone metric on C' and the flat metric on R®. However
the same is true for the metric induced from the embedding of A in (R® ®,) and the
connection associated to ®,. This is because changing the metric to an asymptotically
conical one only introduces errors which are asymptotically smaller than the right-hand
side. Thus an application of Taylor’s theorem leads to:

IV (T,A)| < [VER(T,0)| + [VH(r(T,A) — 7(T,0))]

Cr* 4 D' || VI(T,A - T,0)| < Cr* ' F

it+j=k

<
<

Here we used that if @, is AC,, to @ then |V*7(T,C)| < Cr1=17% as C'is a ®o-Cayley cone.
The projection mg worsens this bound by a constant factor by an analogous argument. [

Next, let us look at the quadratic term.

Proposition 2.22. Fix k € N. Then there is a constant Cy < 0 such that if n < C}, the
following holds. Suppose A is ACy to a Cayley cone with n < X\ < 1 and a-Cayley for
a sufficiently close to 1, and € > 0 sufficiently small. Let furthermore u,v € C¥(v.(A))
satisfy |ulcs, [v[es < €. Then there is a constant C > 0 such that:

Qac(u, ) — Qac(v,8)|cx | < C(Ju— V] g (lulex + [vlex) + |u— U‘C’;(’“‘C’;“ + ‘U|c’;+1))-

Proof. We first consider the flat, translation-invariant Spin(7)-structure ®,. For this struc-
ture Q. (p, v, w) is independent of the point p. Furthermore, Q is translation invariant in
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the following sense:
Q,(v-v,w) = Q,(v,w), forall v > 0. (2.29)

This is a reformulation of the fact that Qac(7 - v) = Qac(v) after identifying R® ~ T, R®
for each p € R®. Recall the Taylor expansion (2.14]) for small v, w:
Q,(v,u)=R1,00v+Rov@w+ Rz w®w. (2.30)

For v outside the initial domain of definition, we can define:

Ri-(v:v,w) =7 Ry (v,w),
RoA(v-v,w) = ’7_1R277|—('U, w),
R (v -v,w) =Rs.(v,w).

The extended R, then also satisfy Equation (2.30). Near infinity, the derivatives have
the following scaling behaviour:

BORi (v - v,w) =7 R (v, w). (2.31)

In particular for v € v (A) and |w| < e with e sufficiently small, there are bounds
|050L R (v, w)| < Crylv[ 7%, From this we deduce for u,v € C5°(vc(A)):

|Qac(w) = Qac(v)p Y < |p*Ru(u)||u — vlp™(Jul + [v])p™
+ 1" 20 R ()] [u — vlp™ ([v]p™)?
+1p" 0, Ra (0)[|[Vu — Vulp A ([vlp™) + ()
<O+ )u = vl (luleg + [vlog) + ()
< Clu = wley(Juleg + [vleg) + ().
Here we used the fact that p*~1 — 0 as p — +o00. The terms containing R, and R3 have

been omitted as they admit analogous scaling behaviour. We ultimately obtain |Qac(u) —

Qac(v) ’Cgu—l) < Clu—v|e1(lulos +|v[ey ). For higher derivatives, note that the translation

invariance of Q gives us the following analogue of Equation (2.17)):
Ve(Ri(v)) = 0,Q[Vev] + 0,Q[Ve V] + 0,Q[V T Al
Now again from the Taylor expansion ([2.14]) we see that:
0.Q(v,Vv) = 0, Riv @ v+ (R1 + 0R2)v ® Vv + (Re + 0R3) Vv ® V.

All the terms have the same scaling behaviour so that 9,Q(v - v, Vo) = v719,Q(v, Vv).
The terms 0,Q and 0,Q can be treated similarly. The upshot is that one can express
VFQac(u) — VFQac(v) as a sum of terms which are products of 950,97 R;, Viu — V'v,
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Viu + Vv and V'TA. Then manipulations as above allow us to conclude that:
V¥ Qac(u) = VFQac(v)[p" 22 < Clu — v| g (Mcf; + ch;) +

= vleg (uleger + olege ),

from which the claim of the proposition follows, in the flat case.
Now, if ® is an AC, perturbation of ®, one has for k,1 > 0 and |v| < er, |w| < e

1050, (Fa(p, v,w) — Fa, (p, v, w))] = O(|® — Bol| g [p ™). (2.32)

This can be seen by first observing that [V*(expg — expg, )| = O(r"%). This, in turn, can
be obtained by analysing the geodesic equation for the curve z(t):

F STiTj, (2.33)

where I’ f“'] are the Christoffel symbols for the usual coordinates on R®. The AC,, condition
implies that ]Ff}\ < 1772, Now, as & is a vector uniformly bounded with respect to both
go and the flat metric, we can deduce that

| expy0(v) — expy g (0)] = a(t) — 2(0) — £ (0) / / T |dsds
= O(t[|® — @llcar”?) = O(€*]|® — Dollcr 7).

One can write down similar ODEs for the variation of exp with regards to the initial
condition and perform an analogous analysis to bound the quantities |V*(expg — expg, )|
for k > 1. As 7, is obtained from ®, by a smooth mapping, it too is in C;° with the same
norm, up to a universal multiplicative constant. Thus we see that:

[Fo(p, v, w) = Fo,(p, v,w))| S | expg — expg, | + [V(expg — expg, )| + [T — 70
= O([[® = Dollcy p|")-

The proof for higher derivatives works in a similar way. We can now use this to get decay
estimates similar to Equation (2.31]). For any AC, Spin(7)-structure ® we can define

Ra(p.v.w) = [ (1= DR (p (0, w))at,
Rg(p,v,w):/o (1= )02 F(p,t(v,w))dt,

R;(p,v,w) = /0 (1— t)@;F(p,t(v,w))dt.
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From the bounds (12.32)) we see that for v > 1 and 7 < 0:

< [Raay(p, 7 - v, w)| + (v]p])"

<7 R, (ps v, w)| + (v]p])"

<Y 2 (|Rue(p, v, w)| + (| — Dol ez p772) + [|[@ — Dol|(v]p])"

< 2131 o (p, v, w)| + || — Po|cey2[p|" (1 +77)
(Roa(p,v,w)] + | @ — Dolleee).-

|R1,<I>(p7 v, w)|

Thus formally similar estimates to the flat case hold if we replace the equality by an
inequality and introduce an error term which depends on the size of the perturbation.
Note also that the constant introduced in the last step only depends on ||® — (DOHCs;Oa thus
can be bounded uniformly in S. In fact the estimates on R ¢, R3 ¢ and all the derivatives
follow in a similar way, given that n is sufficiently negative. We can now conclude the proof
like in the flat case. []

Proof of Theorem[2.20} To prove that Fac(-,s) : Ly, — Ly, is C% for a fixed
Spin(7)-structure (IDS, we can repeat the proof for the compact case, using our estimates
from Propositions and [2.22] as well as the fact that ) AC,s 18 an asymptotically con-
ical operator, and therefore bounded between the Sobolev spaces in question. Indeed, it
can be seen from the presentation of Ip Ac,s that its coefficients and all derivatives
approach the values for the conical operator on C. It now also follows from the Lockhart
and McOwen theory that there is a discrete set 2, C R such that I) Ac,s is Fredholm for
A in the complement of ¥,

For v € Lg , such that Fyc(v) = 0, elliptic bootstrapping applies locally like in Propo-
sition [2.15] so that such v are immediately in C};.. Now we can invoke the Sobolev em-
bedding theorem to get that v € C5°.

What remains to show is that Fac is also smooth with respect to the parameter
s € 8. Certainly, the derivatives 8% Fac(v, s) exist as smooth functions. The key issue
is that they might not be in L{ | a priori. Note however that the perturbations in the
Spin(7)-structure induced by a change in s lie in Cp° C Ly, for any k, as n < A by
assumption. From this, it can easily seen that dsFac(v,s) will be in L,’;/\_l as well, and
the argument applies equally to higher derivatives. O

We can now prove the analogue of Theorem for the asymptotically conical case.

Theorem 2.23 (Structure for AC Cayleys). Suppose p >4 and k > 1. Let A be an AC,
Cayley submanifold of (R®, ®y), where ®¢ is the standard Spin(7)-structure on R®, and let
S be a smooth family of AC,, deformations of ®y with n < X < 1. Then there is an open
neighbourhood 0 € U C S and a non-linear deformation operator Fac which for € > 0
sufficiently small is a C* map:

Frc: £ = {0 € Ly @l A)), ollig,, < €} xU —> Tfy 1 (B).

A neighbourhood of (A, ®g) in Myc(A,S) is homeomorphic to the zero locus of Fac near
(0, D). Assuming that X & D1, we define the deformation space Tho(A) C C(v(A)) x
ToS to be the the kernel of D pc,s = DFac(0, @), and the obstruction space Ox(A) C
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C%_\(E) to be the cokernel of Dyc.s. Then a neighbourhood of A in Miq(A,S) is also
homeomorphic to the zero locus of a Kuranishi map:

ch :I/\AC(A) — O?\C(A)-

In particular if O\c(A) = {0} is trivial, Mio(A,S) admits the structure of a smooth
manifold near A. We say that A is unobstructed as an AC, Cayley in this case.

The expected dimension of this moduli space can be expressed like in the compact
case in Theorem , but it requires the more general Atiyah-Patodi-Singer theorem [1],
which computes the index not only in terms of topological data but also from analytical
data that depends on the cone.

First, a few definitions are in order. For N a possibly noncompact 2n-manifold, we
define its signature o(N) to be the signature of the nondegenerate pairing H"(N) X
H"(N) — R, where H(N) denotes cohomology with compact support. This of course
agrees with the usual definition of the signature for compact manifolds. For A € R® an AC
manifold asymptotic to the cone C' = R, x L, we will consider the following version of the
intersection number. Pick a section v € C*°(L, Sv(A)|L) in the sphere bundle of normal
vector fields (to A) on L. For any normal vector field v € C*(A,v(A)) that converges to
u at infinity, the algebraic count of its zeros will only depend on the homotopy class of u
in the sphere bundle. We denote this number by [A] -1, [A].

Proposition 2.24 (Index). Let A C R® be AC, with A < 1, asymptotic to a Cayley
cone C = Ry x L, and a-Cayley for a sufficiently close to 1. Assume moreover that
(A1) N2, = 0. Pick a homotopy class [u] € [L,Sv(A)|L] (where Sv(A) is the sphere
bundle of v(A)) of a section u: L — Sv(A)|p. Then the following holds:

. 1 .

ind Dac.s = 5(0(A) + x(4)) = [A] - [A] +n(L) + T([u]) + dim 8. (2.34)
Here n(L) is a real number that depends on L C ST as an associative submanifold, and
T([u]) € R is a topological term depending on the homotopy class of u.

Here M“2(L) is the moduli space of associative submanifolds of S” isotopic to L.
It can be defined similarly to the Cayley moduli space as the zero locus of a non-linear
deformation operator. However, as we noted in Example L c S7is associative exactly
when the cone C' = L x R, is a Cayley cone. Thus we simply define dim M%2(L) to be the
dimension of the Cayley cone deformations of C, and say that L is unobstructed exactly
when all the infinitesimal deformations of C' integrate to full deformations.

Proof. This is a consequence of the Atiyah-Singer theorem and additivity of the index of
the Cayley operator under gluing. We have yet to formally introduce how to glue an AC
Cayley onto a singularity in a CS Cayley N with a matching cone. This will be the subject
of the next chapter. We will in particular see (during the proof of Proposition that
the index is additive in the following sense, where we assume & = {®} is a fixed Spin(7)
structure:

ind IDAC + ind ‘ZDCS =ind lDNﬁLA'
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Here A is our AC Cayley, and N is a CS Cayley with one singular point modelled
on the cone C. The ind [)og is considered at rate A < 1, which is different from the
standard CS Cayley operator and the reason why the formula has an additional
term compared to formula (2.46)). The compact, nonsingular Cayley N = N i A has the
topological type of a connected sum along the link L of C. Now by the Atiyah-Singer
index theorem as used in |7, Theorem 6.3.1] we have

ind leﬂLA = / td

NirA

for a certain characteristic class td computed from the curvatures of the bundles v and
E. By the AC and CS conditions it is well-defined to write:

ind P50 = /A td + nac(B),  ind Pes = /N td + s (D).

Here nac/cs is a term that a priori depends on the entire Cayley operator on the subman-
ifold. However we can perturb both operators to exactly conical operators (with cone C')
without affecting the index. Thus we can write:

[ td—indlDNﬁLA—indIDAc+indlDCS—/td+/td+nAc(lD)+ncs(lD)
NirA N A

NiLA

:/ td + nac(D) + nes(D).

From this we see that nac(I)) = —ncs(Ip) does in fact not depend on the whole
operator ) on either submanifold, but the information that they share, i.e. the asymptotic
conical operator restricted to the link L. Thus we can write:

indlDAC—/Atd—i-T](L), indlDCS—/Ntd—n(L).

Here 7 is not necessarily equal to the n-invariant of a partial differential operator, but
simply a term depending analytically on the link as an associative in S7. I

Next, we remark that on A we have td = 3(ap1(T'A) + ¢(T'A)) — e(v(A)), where p,
and e are the Chern-Weil representatives of the first Pontryagin class of a bundle and the
Euler class respectively. Now we can apply the Atiyah-Patodi-Singer index theorem to
conclude that the integral of p;(T'A) is exactly given by the signature o(A) (up to a term
depending on the boundary, which may be absorbed into 7).

The integral of the Euler class of bundles on A can be computed in terms of zeros
of a generic section, as is the case for bundles on compact manifolds. However in the
noncompact case the number of zeros of a section may not be constant, and we require
the Mathai-Quillen current defined in |32, Section 7]. For a metric bundle 7 : (F*, gr) — A
with compatible connection V¥ it is given as a form ¢(F, VE) € Q3(F). If now 04 is the
Dirac-0 current on F' representing the zero section A C F. By [4, Thm. 3.7] we have the
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following identity as currents:
dy(F, V) = n*e(F, V) — d4.

Thus in particular if s : A — F' is a transversal section with z(s) zeros we have:
/e(F, v = /sw(F, VEY + 5504 = 2(s) +/s*¢(F, vh.
A

Thus we can express [, e(T'A) and [, e(v) as counts of zeros if we fix a homotopy class
[u]. Here w is the limiting section of s restricted to the link at large radii. For the tangent
bundle, we can canonically fix a section that is everywhere outward pointing, but for v
there is no canonical choice, hence the dependence of T'([u]) = [ s*i(v, V¥). We redefine
n(L) so as to absorb the [ s*i(F, V¥) terms. Finally, if ® varies in a family S, the index
will increase by dim §S. O

Remark 2.25. Consider the complex fibration:
fO . C4 — (C2
(2,9, 2,u) = (2% + ¥ + 2, ).

Its singular fibres are cones of the form C, = f;(0,0) = {2? + y*+ 2% = 0,u = 0} C C*.
For each € € C\ {0} we get a complex surface A, = fo(e,0). We can write a compact
subset of A, as the image of a normal section as follows:

Cy — A
(p,u) — (p+i u)

2|p|*’

Here p = (x,y,2) and v(0)(Ac) = spanc{p}. From this we see that A. is AC_; to the
cone C,. It can be shown that for 6 > 0 small:

MG (A ~ C\ {0}
[A] — €,

and that all A € M 5™ (A,) are unobstructed as we will see in Proposition (5.2l In
particular:

ind Pac = dim M P (A) = 2.

The critical rates 2, N [—1,1] for this cone were determined in Example to be
{=1,0,1}. As d(—1) = 2, this means that there are no deformations for rates below —2.
The next critical rate above —1 is 0, which corresponds to translations. Thus:

dim M (A) =2 +8.

Finally, the remaining critical rate is 1, which corresponds to rotations and deformations
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of the link as an associative, but which our theory does not take into account so far, as it
would correspond to A = 1.

Corollary 2.26. Suppose that A C C* is a special Lagrangian ACy submanifold for A < 1.

With the notation from Proposition |2.24), we have that the Cayley deformation operator
of A has index:

ind Dac,s = L(o(A) = X(A)) + (L) — dim ME(L). (2.35)
Heren(L) is a canonically defined invariant of any special Lagrangian cone, not necessarily
equal to n(L) from Proposition [2.24)
Proof. There is a distinguished section of the normal bundle of a special Lagrangian cone
in (C* w,Q,J), owing to the isomorphism
f:TA— v(A)
v— J(v).
The outward pointing radial vector field 0, is tangent to the cone, and so J(0,) is normal.

The Poincaré-Hopf theorem then allows us to equate [A] -5a,),] [A] = x(4), from which
the formula follows by setting 77(L) = n(L) + T([J(0,)]). O

Example 2.27 (Cayley plane). Consider the case of a Cayley plane IT C R® as an AC,
manifold of rate A < 1. It can also be seen as a special Lagrangian plane, by choosing an
appropriate Calabi-Yau structure on R®. Up to translations, a Cayley plane is rigid and
unobstructed. This can be seen by solving the infinitesimal deformation equation from
Proposition [1.14] explicitly. It is given by:

Dac=—dx@d Q) — O, 007,
If 0 € Ker D¢, we get that do € Q7T and so we can deduce:
d*do = xd x do = xddo = 0.

Together with d x o = 0, we get do = 0. As we are in flat R*, we see that o = Zle fidx;
with f; harmonic functions that decay like r*. Thus each of the f; must be a constant
and dim Ker D, = 4. Now for the obstruction space (920, we can equivalently look at
the kernel of the adjoint map:

(—dx@d ) = —dx+d*: Q", Q" , — Q' . (2.36)

If feQr, yandne QE’Z_)\ satisfy d*n = d x f, then d*d x f = 0, i.e. xf is a harmonic
function on II. Similarly, using the anti-self-duality of 7, we see that

dd*n=dd* f =0,
d*dn = —xdd*n = 0.

Thus 7 is an anti-self-dual harmonic two form. Now for A > 0, we have that both f
and 7 are in L2 Thus by [28, Example 0.15] we see that both must vanish, as HZ(IT) =
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HZ(IT) = 0. Hence for a round sphere S® C ST we find from Corollary that:
4= dim MAo(IT) = 2o(I1) — y(ID) + 7(S%) — dim MO (57).

This implies that 7(S%) — dim M“(S3) = 41. Thus, as dim M*(S®) = d(1) = 12 by
Example [1.34] we see that 7(S%) = 163.

Example 2.28 (Lawlor neck). Consider two distinct Lagrangian subspaces II; and Il in
C* that intersect transversely. They are given as:
i1 i i3

IT; = span{vy, ve, v3,v4} and Il = span{e vy, e vy, " vs, 62041}4},

with characteristic angles 61 +60>+603+60, = kw, 0 < 0; < mand k = 1,2, 3. Lawlor showed
in [26] that if £ = 1, 3, then there is a one parameter family of AC_3 manifolds asymptotic
to the cone II; UIl,, the Lawlor necks L,. They are all diffeomorphic to S® x R.

We can now apply Corollary again to determine the expected dimension of their
Cayley moduli space:

(0(Lt) = x(Lt)) + 277(S°) — 2 dim M“2(5?)
(0—0)+2-(43) =9 (2.37)

D= D=

This corresponds to the translations in R® and the rescaling action. Thus there are no
additional infinitesimal strictly Cayley deformations of the Lawlor necks. Note that if
k = 2, then there are no minimal desingularisations of II; U Ily [26], so, in particular,
no Cayley desingularisations. Next, notice that the same argument that allowed us to
show unobstructedness of the Cayley plane in the previous Example also gives us
unobstructedness for the Lawlor necks for small A < 1, since H,(L;) = H%(L;) = 0.

Note that the Lawlor necks can a priori only desingularise the union of two special
Lagrangian planes. It turns out however that any pair of transversely intersecting Cayley
planes can be realised as a pair of special Lagrangian planes for a suitably chosen Calabi—
Yau structure.

Proposition 2.29. Let II;,II, € Cay(R® &) be two transversely intersecting Cayley
subspaces. Then there is an SU(4)-structure (J,g,w, Q) on R®, such that both the I1; are
special Lagrangian with respect to it.

Proof. Recall from [10, Thm. IV.1.8] that Spin(7) acts transitively on Cayley planes with
stabilizer H ~ (Sp(1) x Sp(1) x Sp(1))/ = id. We now show that generically the action
of Spin(7) on a pair of Cayley planes is free. First note that SO(8) acts transitively on
pairs of four-planes with fixed characterizing angles 0 < 8; < > < 83 < 4 < 3, as
explained in [26] Section 4]. Now dimSO(8) = 2dim Gr(4,8) — 4, and so this action
can at most admit discrete stabilisers for generic choices of the ;. More precisely, this
is the case when the f3; are pairwise different and not equal to 7, in which case the
stabilisers are trivial. In these cases, the action on Cayley plane pairs is free as well.
Now note that for Cayley planes, the angle 84 can be derived from the other three, by

using the triple product. Thus generically a family of Cayley plane pairs with fixed angles
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is 2dim Cay —3 = 21 = dim Spin(7) dimensional. In particular, since both Spin(7) and
Cayley plane pairs of given angles are connected the action of Spin(7) is transitive when
restricted to pairs with fixed angles. Now for a fixed SU(4)-structure, the set of special
Lagrangian plane pairs contains examples for all possible characteristic angles that can
appear for Cayleys. Thus we can always Spin(7) rotate a pair of generic Cayley planes to
a pair of special Lagrangian two planes. To conclude, notice that the continuous action
of Spin(7) on transversely intersecting special Lagrangian plane pairs sweeps out a closed
and dense subset of the transversely intersecting Cayley plane pairs. Hence it must reach
them all, and this proves the proposition. O

Lemma 2.30. Suppose that 11}, 11, € Cay(R®) are two Cayley planes that intersect nega-
tively in a single point. Then there is a one-dimensional family of unobstructed AC_3 Cay-
ley submanifolds, the Cayley-Lawlor necks which are asymptotic to the cone 11; U Il,.

Proof. Two transversely intersecting special Lagrangian planes II;,II, ¢ C*, where C*
has coordinates z; = x1 + iy, . .., 24 = T4 + iy, can be SU(4)-rotated to be of the form

I, = span{0y,,, Oy, Ops, Ox, } and Iy = span{e 0, , e'20,,, % 0,,, e%10,,}

respectively, where 0; € (0,7) .01 + 63 + 05 + 04 = km and k = 1,2 or 3. Now by the
previous proposition, the same is true for Cayley planes. Recall that the Cayley form can
be written as follows on C* by example [1.10}

P = JwAw+ReQ.

Now, since both II; and II, are Lagrangian, w|g,= 0 and they are Cayley exactly when
Re Q= dvoly,. The holomorphic volume Re(? form is given by the expression Re{) =
dz; Adzy A dzg A dzy, so 11; is clearly Cayley with the orientation coming from the given
basis. However for II, we see that:

4
ReQ[e0,,,€20,,,¢%0,,,¢%0,,] = H dz;[e 0, = i O1F0240s+0a) — (_ 1)k,
=1

Thus II, with the given orientation is Cayley for k = 2, and otherwise —II; is Cayley. In
particular II; and Il intersect negatively exactly when & = 1,3, which are exactly the
cases where Lawlor showed the existence of Lawlor necks. O]

Suppose that 0 < A < 1 is such that (\,1) N 2, = (). For any A < A < 1 we will then

have an isomorphism Mﬁc ~ M{,“C, as no additional deformations appear for these rates.
At X\ = 1, which our theory does not cover at the moment, the deformations of the Cayley
cone as a cone with a fixed vertex appear. As in Example these can be understood
as associative deformations of the link in a moduli space M%2(L). We assume that the
family of deformations of the cone is smooth, and that the cone is unobstructed.

There then exists a smooth family {A;}; ., of $a-Cayley AC,-manifolds, such that
Aj; has link Leld c M* (L). Such a family can be obtained by finding ambient isotopies
that perturb the cones in the desired fashion (which we do in more detail in Proposition
. We obtain a smooth family of maps exp;, : v.(A) — R® which form tubular
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neighbourhoods of the family A;, all parametrised by the normal bundle of our initial A.
We would like to study the moduli space:

Mic(A,8) = || Mic(4ALS).

LeMS2(L)

This is independent of our choice of X as long as (A, 1) N Z; = @ for L € M%(L). We
define the following deformation operator:

Faca: O (W(N)) x 8 x MP2(L) — O (Eeay), (2.38)

(v, s, f}) — Tp x4 Exp} (T,

expL’U(N))-

We can now give this operator the same treatment as Fc, with some mild modifications
to make sure that we get a smooth map of Banach manifolds which is also smooth in the
parameter L € MS2(L). This is identical to the conically singular case, which we will
treat in great detail in the next section. The upshot is the following theorem:

Theorem 2.31 (Structure). Suppose p > 4 and k > 1. Let A be an AC, Cayley sub-
manifold of (R®, ®q) with unobstructed link L, where ®q is the standard Spin(7)-structure
on R®, and let S be a smooth family of AC,, deformations of ®y with n < A\ < 1. Then
there is an open neighbourhood (0,L) € U C S x M®*(L) and a non-linear deformation
operator Fac1 which for € > 0 sufficiently small is a C* map:

Faca:Le={ve L§+17/\(VE(A)), ||UHL£+LA <eéepxU— Lz,/\_l(E).

A neighbourhood of A in Mi(A,S) is homeomorphic to the zero locus of Facy near
(0, ®g, L). Assuming that X € 21, we define the deformation space I.(A) C C¥(v(A))®
ToS ® T M (L) to be the the kernel of Pacy = DFac1(0,®o, L), and the obstruction
space O)o(A) C C%_,(E) to be the cokernel of ac1. Then a neighbourhood of A in
Mo(A,S) is also homeomorphic to the zero locus of a Kuranishi map:

Hf\xc,l : IXC(A) — OXC(A)-

In particular if Oxa(A) = {0} is trivial, MAo(A) admits the structure of a smooth man-
ifold near A. We say that A is unobstructed as an AC; Cayley in this case. The index

of ]DAQl s given as:
ind Ppcy = ind D¢ + dim M (L).

Finally, the map Mio(A) — M2(L) sending a manifold to its asymptotic link is a
smooth fibre bundle.

Remark 2.32. Looking again at the fibration from Remark [2.25 we note that the cone
C, = Ly xR, is in fact part of a two-dimensional family of Cayley cones, up to the action
of Spin(7):

C={Cy:{a1x* + ayy® +azz* =0,w =0} ay +ag+as =1,a; € R, }.
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A generic cone in this family has stabiliser {(e’, e’ e e7%) t € R} C Spin(7), and so
we have:
dim M2(L,) =21 +2 — 1 = 22. (2.39)

This corresponds exactly to the expected dimension d(1), and so the link L, is unob-
structed. Thus M (4,) is a smooth manifold of dimension 32 near A..

There is a natural completion of the moduli space M3(A) by adjoining the cone.

Definition 2.33. The completed moduli space MQC(A) is the topological space
Miro(A) U {C} such that the rescaling map A — t- A, where 0- A = C, is continu-

ous, and M} (A) embeds homeomorphically into /Wic (A).

We have for example that /WXC(AE) from Remark is homeomorphic to C. Note
that the scaling action A — t- A acts as € — t%¢ in this picture. There is a notion of scale
implicit in this description of the moduli space, which we now make precise.

Suppose for this that every A € MI’\%C(A) is unobstructed and that we have chosen a
smooth cross-section S C MAq(A) of the scaling action.

Definition 2.34. The scale of A € /WAAC(A) with respect to the cross-section S is
t(A,S), such that t(A,S)- A € S. Note that the scale functions corresponding to different
cross-sections are all uniformly equivalent.

Later we will need a bound on the inverse of ), on the complement of its kernel
when A is an a-Cayley.

Proposition 2.35. Suppose that A C (R®, ®y) is AC) to a Cayley cone C = L x R with
A < 1 and a-Cayley for a sufficiently close to 1. Let § € R with § € P, and suppose
p>4, k>=1,e>0 small. Then there is a subspace kac C CX(v(A)) such that for any
v € ker Ppc C LY, 5_(Ve(A)) we have that if v is L3 -orthogonal to kac, then v must
vanish. This subspace called a pseudo-kernel, can be chosen of the same dimension
as ker D¢ If we identify the normal bundles of A for small AC, perturbations of the
Spin(7)-structure via orthogonal projection, then kac is also a pseudo-kernel for small
perturbations.

Proof. As the operator ID ¢ is Fredholm by assumption, we know that ker [P ¢ is finite-
dimensional. Now by [28, Cor. 4.5] we can approximate a given basis {a;}!_, of ker )5
arbitrarily well in L}, 5 by C2° sections. By the Sobolev embedding L}, 5 < L§s_.
the same is true for L2 _. These approximations give us the desired subspace kac. For
nearby Spin(7)-structures this result remains true, as the kernel is perturbed continuously
in Ly, 5. by AC, perturbations of the ambient Spin(7)-structure. O

Proposition 2.36. In the situation of Proposition[2.35 there is a constant Cac such that
the following holds. If v € Ly, 5(v(A)) is L§_.-orthogonal to riac then:

< Cacl|Dacv|l e

k,o—1"

lollre, (2.40)

The same inequality holds for small AC, perturbations of the Spin(7)-structure.
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Proof. The map D¢ : LY 15 Lz, s_1 1s continuous by Proposition and has finite-
dimensional co-kernel by the assumption on the weight 5. We claim that = I AC|n/§C is
an isomorphism onto its image, where the orthogonal complement is taken with respect
to the L} _ inner product. Indeed it is injective by the construction of rac. Moreover

if w € im ), then we can find a pre-image v € Ly, 5(v(A)) of w as follows. Since
Ly 1 5(W(A)) = kxo @ ker P ac, we can consider the Kxc-component v’ of v, and note that

D acv’ = w, thus proving surjectivity. Since I) is bijective and continuous, it admits a
bounded inverse by the open mapping theorem for Banach spaces. O

We know how ) varies if an almost Cayley is perturbed by a vector field (see Corollary
, hence we can determine precisely what the convergence rate of ) to the conical model
is depending on the rate of the AC manifold.

Lemma 2.37. Let A C (R® &) be an almost Cayley submanifold which can be seen as
a perturbation of a Cayley cone C C R® by a normal vector field v € C®(v(C)) with
||v||05+1 =1 for v € R. We identify the tensor bundles on A and C so that the Cayley

operator IP of A and the Cayley operator of the cone D, are both defined on C. For any
rate ( € R we then have the pointwise estimate:

|(]D - ]'DCOH>S|C§71 SJ r771|5’05+1'

2.5 Conically singular case

Let N C (M, ®,,) be a CS; Cayley submanifold with conical singularities at {z1,..., 2}

and rates i = ({1, . .., tu), where the p; € (1,2) for 1 <4 < I. Fix a Spin(7)-parametrisation
x; around the singular point z;. With respect to the parametrisation y;, let N be asymp-

totic to the cone C; C R®. Thus N decays to the cone C; in O(r*) as the distance r to the

singular point goes to 0. We denote the link of the cone C; by L; C S”. In the deformations

of N that we will consider, we will allow the singular points and the asymptotic cones to

move via translations, rotations and associative deformations of the link. Furthermore we

will allow the Spin(7)-structure to vary in a family {®;}scs where so € S. Thus we will

study the following moduli space:

LGN, S) = {(N,®,): N C (M, ®,) is a CS;-Cayley with
singularities zi,..., 2; and cones C’l, cee C‘l,. Here N is
isotopic to N, where the isotopy takes z; to z;, and

C; is a deformation of C;}.

Locally around the fixed Cayley N this moduli space will be given as a zero set of
a nonlinear operator between suitable Banach manifolds. This is an extension of the
work done in [36], where the deformations are required to fix the cones. To define the
nonlinear operator, we first define the configuration space of small deformations of the
tuple (C1,...,C}). Let U; be an open neighbourhood of z; € M and let G; C Spin(7) be
the stabiliser of the cone C;, which we also assume is the stabiliser of any deformation of

66



C;. The configuration space is then given by:

I
F = H{(f)i,ei,s) | e; : R® — T5 M : e; Spin(7)-frame for ®,, % € U;, L; € M®*(L;)}/G;.

i=1

It is a H = []._, Spin(7)/G-bundle over the spaces V of possible vertex locations
and cones for every member of {®,}.cs, ie. V =8 x [, (U; x M(C;)). Each element
(z,L,e,s) € F corresponds bijectively to a unique configuration of cones, since we took
quotients by the stabilisers G;. The asymptotic data for N is given by:

fO = (Z17 <y Rl L17 R Ll7 DX1(0)7 B 7DXZ<0)7 SO)‘
We now fix such a reference CSz-fourfold for each point in a small neighbourhood of f.

Proposition 2.38. There is a smooth family Ny of CSp-manifolds which is parametrised
by f €U C F, where U is an open neighbourhood of fo, such that Ny has asymptotic data
f. We can choose Ny, = N.

Proof. Without loss of generality, we can restrict to the case of a single vertex, while only
perturbing N in an arbitrarily small neighbourhood of the vertex to obtain the desired
family. Let zg € N be singular with cone C' = Ry x L with regards to the Spin(7)-
parametrisation yo. Consider diffeomorphisms of the unit ball in R® by the action of
(A,v) € GL(8) x R®, denoted by ¢a,. They are isotopic to the identity and in fact
can be extended to a smooth family (also denoted by ¢a,) of self-diffeomorphisms of
R® which leave everything outside of the ball with radius 2 unchanged (see for instance
the Homogeneity Lemma in Chapter 4 of [35]). This family, scaled down sufficiently, can
be applied in the chart given by xo to apply any desired small translation and rotation
to the asymptotic cone, while only perturbing an arbitrarily small neighbourhood of the
vertex. Finally, since any L € MGQ(L) is smoothly isotopic to L, we can perturb any CS,,
manifold asymptotic to C' to be asymptotic to R, x L instead, with the same rate. [

If we restrict the previous family to a sufficiently small neighbourhood U of fy, its
members will be a-Cayley for any desired o < 1. Let now p be a radius function for N. By
Proposition we know that v.(N) maps onto a tubular neighbourhood Uy, of N inside
M, for e > 0 sufficiently small. Composing this open embedding with the ambient isotopy
from taking Ny, to Ny gives a tubular neighbourhood Uy of Ny, for f sufficiently
close to fy. We denote these maps by:

exp; : Ve(N) — Uy.

Furthermore, given a normal vector field v € C*°(v.(NV)) we define the embedding expy, :
N — M as the composition exp;, = exp; ov. Thus varying f will perturb the asymptotic
cones while changing v alters the shape of the CSz-manifold, keeping the cones fixed.
The moduli space M{g(N) is given as the zero set of the following non-linear differential
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operator:

F CS - (V
(v, f = (7,
We will now address the necessary modifications to the proofs for compact Cayleys so

that they extend to the conically singular setting. First, let us define the correct Banach
manifolds. Let, for e > 0:

Le=A{ve Ly zwe(N)), ol . <e} (2.42)

(N )) XU — Co(Eeay)

L,e,s)) — mg x4 Exp}(

s expf7U(N))~ (241)

In fact Fcg is mapping £ xU — LF, e 1 (Ecay) for sufficiently small e. We will again prove
boundedness separately for the constant, linear and quadratic and higher terms in the
expansion:

Fes(v, f) = Fes(0, f) + Des pv + Qes (v, f). (2.43)

First, note that the closeness of Ny to a Cayley cone gives a bound on Fcg(0, f), which
measures the failure of Ny to be Cayley.

Proposition 2.39. There is a constant Cy, > 0 such that for any f € U in an open
neighbourhood fy € Uy, we have || Fcs(0, )] o S G
ko

Proof. Let Cy C R® be the asymptotic cone of N ¢ near a fixed singular point z € M,
where N; has decay rate ;, and consider everything in a small ball B,(0) C R® via the
parametrisation . Let ¢y be the embedding of the abstract cone C' as C; and let O be
a parametrisation of the end of Ny by C. For both of these, we implicitly choose some
identification of the potentially different links for varying f. Note that in this formulation
the Spin(7)-structure on B, (0) only needs to agree with @ at the origin. The assignment
(r,p, f) = ©y(r,p) is smooth, and thus we have from the CS,-condition:

V(O (r,p) = ts(r,p))| < Kigr" ™, (2.44)

where the constant K; ¢ is continuous in f. In particular, after shrinking O, we can replace
K; ; by a single constant K;. Consider 7 now as a vector bundle morphism:

7: A*B,(0) — Eeay.
The (higher) covariant derivatives of 7 can then be considered as maps:
Vir : A'B,(0) @ (TM)®" — Eeay.

By the compactness of the base, any finite number of derivatives can be bounded by a
constant. We can also consider TNy and T'C'y as maps C' — A*R®, by the embedding
Gr(4, M) — A*M. The CS,, condition (2.44)) then translates to:

|VY(T,N; — T,Cy)| < Kyrt 1
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By Taylor’s theorem, 7 has the following decay behaviour near z € Ny:
V' 70 (TrpCp)l = [V (70 (TrpCp) = o(TrpCp))| < 20V | S

Now we see that:

ViTp(TrpNO| S 7+ V(T (TrpNy) = 72p(TpC)|
St > Vel V(TN - T0f>| Sk
a+b=1

Thus the result holds for a single singular point. The generalisation to multiple singular
points is straightforward. O]

Next, we turn our attention to the quadratic estimates:

Proposition 2.40. Suppose that N is CS; and a-Cayley for o sufficiently close to 1. Fix
k€N and let u,v € Ck(ve(N)) with € > 0 sufficiently small and |u|ca, [v|cr < €. Then

there is an open neighbourhood f € U C U such that:
Qest, )~ Qes(v: Py , 5 o= vlego Iy + oy )+

|u — U|CZ§ <|u!o§+1 + ’U|CE+1) .

Here the constant hidden in < is independent of f.

Proof. Without loss of generality, consider the case where N has just one singular point
z with rate . We then define the smooth function Q(p,v, Vv, T,N, s) as we did for the
compact case in Lemma [2.9) Now, even though N is not compact, there are still bounds
on all derivatives of Q as in the compact case. From our assumptions on u and v, we can
ensure that (u, Vu) vary in a compact set for all the sections in question and any point in
N x 8. Thus we can prove the bound for a constant independent of (p,s) € N xS
or the section in question. Thus we obtain:

|vk(QCS(u> — ch(v>)|p (k4+2)(u—1)+k
SO V=)V ul + V)l R TN e

i+ |J|+r<k+2
o<r<k

S D> lu—vles,, (ulog + [vle)|TN|e;

p—1
it|J|+r<k+2
o<r<k

Here #.J denotes the number of entries in the multi-index J and C is the product of the
norms Hizl |v]cis. We used the fact that p"™27# is bounded on N to remove extraneous
factors of p. For this, it was crucial to assume p < 2. Now simply note that [|[TNl[cr_ < oo

by the CS,, condition. The result now follows, since C{}, 4, 1) = Cj_; is a continuous
embedding. O
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The deformation map Frg then extends to a map between Sobolev spaces as follows:

Proposition 2.41. Let p > 4 and k > 1. For sufficiently small € > 0 the map Fcg extends
to a C'™° map of Sobolev spaces:
Fos: £o={v € Ly ,(vdN)) : o)l < e} xU — L0, (Ey).

Furthermore, any v € Ly, s(Ve(N)) such that Fos(v) = 0 is smooth and lies in C°. The
linearisation at 0 is the bounded linear map:

Des - L£+1,Q(V(N)) ®TiU — Lz,ﬁ—l(Ecay>'

Finally, Dcs is Fredholm if all the rates in [i are in the complement of a discrete set
2 C R, which is determined by asymptotic cones C; C R®, seen as a Cayley.

Proof. The proof is identical to the one for the AC case [2.20] except that one needs to
check that the dependence in f € F respects the weighted space, i.e. that the derivatives
8’}?}"(@, f), which are a priori maps C5° x (T F)* — C52, can be extended to maps Lﬁﬂﬁ X
(TyF)* — L ;. For this, consider a smooth deformation f(t) € F of a manifold N with
a unique singular point at the origin of R® and rate p. Up to first-order this is equivalent
to deforming the Spin(7)-structure in C7° (which also takes care of the translations, since
we always compare to the model CS manifold Ny), and perturbing the manifold near the
cone by a vector field u € Ct°(v(N)), while keeping the singular point fixed, as well as
the Spin(7)-structure at the origin. Let ¢; be the flow associated to u. We then have for
v € CP(W(N))and p € N:

0¢F, 1) [£(0)](p) = %It—oF(%(p), (©0)«v(P), (¢1)« VU(p), ()TN, ®(t))

= DF |u, —Lov, —L,Vv, —L, TN, d(0)]| .

Now we see that all the arguments in square brackets are in O(r#~!), either by definition
(like u an ®(0)), or as a consequence thereof. The norm of the term £,V for instance
can be bounded by |u||V?v| + |Vu||Vv|, which is in O(r#~1) by assumption. As DF can
be bounded by a constant independent of the chosen CS manifold, we find that:

0rFu p0)] S vlez + [TN|gp + 1.

The argument we presented also applies to higher derivatives and so we see that 0;F

maps Ly ; X (TyF)* — L} ;_, as required. O

Using this we can now prove the following result about the local structure of the family
moduli space M¢{g(N,S), where we now also include the deformation of the Spin(7)-
structure, just as in the AC case.

Theorem 2.42 (Structure). Suppose p >4 and k > 1. Let N be an CS; Cayley submani-
fold of (M, @), and suppose {Ps}ses is a smooth family of deformations of ®y,. Let F be
the configuration space of possible singularities and deformations of the asymptotic cones
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of N, where the asymptotic data of N itself is given by fo € F. Then there is an open
neighbourhood (so, fo) € U C S X F and a non-linear deformation operator Fcs which for
e > 0 sufficiently small is a C* map:

Fes: Lo=A{v € L}, ,(v(N)), ||v||L£+17ﬁ <epxU— L}, (E).

A neighbourhood of (N, ®,,) in MPg(N,S) is homeomorphic to the zero locus of Fcs near
(0, ®,,, fo). Furthermore we can define the deformation space Ts(N) C Ce(v(N)) @
Ts,S @ Ty, F to be the the kernel of wcs,s = DFcs(0, Dy, fo), and the obstruction
space OLg(N) C C>_a(E) to be the cokernel of Dcss. Then a neighbourhood of N

m M‘és(N, 8S) is also homeomorphic to the zero locus of a Kuranishi map:
Kes - Log(N) — Ogg(N).

In particular if OLg(N) = {0} is trivial, MPg(N,S) admits the structure of a smooth
manifold near N. We say that N is unobstructed in this case.

We can now define a notion of pseudo-kernel as in [2.35] This is entirely analogous,
except that the Sobolev embedding L}, — Lj 11,5 Tequires us to slightly increase the rate
of the L? sections.

Proposition 2.43. Suppose that N is CS; to Cayley cones and a-Cayley for o sufficiently
close to 1. Let § € R with § € P, not critical for any of the links of N and suppose
p>4, k=1 and e > 0 small. Then there is a subspace kcs C CX°(v(N)) such that for
any v € ker Do C Ly, 5(v(N)) we have that if v is L}, .-orthogonal to kcs, then v must
vanish. This subspace, called a pseudo-kernel can be chosen of dimension dimker D¢g.

Proposition 2.44. In the situation of Proposition[2.43 there is a constant Ccs such that
the following holds. If v € L} | s(v(N)) is L% -orthogonal to ks then:

||U||LZ+1,(i

< Ces|| Pesvller ;- (2.45)

1

The same inequality is true for perturbations of N with fi > 6.

Remark 2.45. The operator Fg allows for the points of the singular cones to move. We
could also fix the points while still allowing the links of the cones to deform, giving us
an operator Feg cones- We can give this operator the same treatment and reprove all the
theorems in this section. Similarly one can consider an operator Fs sy, where neither the
points nor the cones are allowed to deform and again all the same statements are true
for this operator. We denote the associated families of points and cones by U ones and
Uy respectively. These will be submanifolds of ¢, where all movements of the points and
cones are allowed.

We again have a formula for the index, where we define o(NN) and [N] [u,],... [ [IV] in
the same way as for the AC case.

Proposition 2.46 (Index). Let N be an CS; Cayley submanifold of (M, ®) with cones
C; =R; x Li(1 <i <), and suppose {P}ses is a smooth family of small perturbations
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of ®. Assume that (1, ;] N 21, = 0. Pick homotopy classes [u;] € [L;, Sv(N)|1,] (where
Sv is the sphere bundle). Then the following holds:

ind Pes s = %(U(N) +X(V)) = [IN] ]t [N] = Y (L) + T([w])) + dim F. (2.46)

i=1
Here (L) and T([u;]) are the quantities from Proposition [2.2]]

Remark 2.47. We used the additivity of the index for I) in the proof of the index formulae
for both the AC and the CS case, hence it will not be surprising that the formulae also
satisfy the same additivity. Let us look at a concrete example in more detail. Suppose
hence that N is a CS z Cayley in (M, @) with a unique singular point, with an unobstructed
cone C' = R, x L. We consider the deformations of N for a fixed Spin(7)-structure and
point, but moving cone. Let furthermore A C R® be an asymptotically conical Cayley of
rate A < 1, with the same cone.

We now look at an almost Cayley manifold N = N#,A, obtained as a connected
sum of N with A over their common end R, x L. The nonsingular manifold N admits a
deformation operator ). Pick an arbitrary class [u] € [L, Sv(N)|;] ~ [L, Sv(A)|z], and
assume that [\, 1)N 2, = (1, u]N 21 = 0. Then we have the following, where we consider
the deformation problem with fixed points and cones on the conically singular side:

ind, Pac + ind D o = 5(o(4) + x(4)) — [4] 1y [4]
+ (o) + () = [§] oy (]
(L) +T((u]) — (L) = T([u]
= 3(0(A) + o (N) + X(4) +x(V))
— ([A] g [A] + [NV] - [NV])
= S(o(N) + X(N)) = [N] [
= ind Dy. (2.47)

Note that we only proved our AC index formula for rates < 1. However, using the un-
obstructedness of the cone (meaning d(1) = dim M®2(L)) and Theorem we see that
ind, P oc = indy [P ¢ + dim MS2(L). We note that by construction:

ind Deg — ind Deg g = dim F — dim S = dim F,

as dimS = 0 by assumption. For the third inequality, notice that the link L is a compact
three-manifold, and thus has Euler characteristic y(L) = 0. Thus x(A) + x(N) = x(N).
Similarly, the signature is also additive [1, Theorem 4.14]. Finally, the intersection numbers
with fixed boundary behaviour are also additive, as they can be obtained by simply
counting self-intersection points. Thus the indices of the conical operators add up to the
index of the glued manifold, which is to be expected, as perturbations of the glued manifold

should correspond bijectively to perturbations in either piece. Note that we equally well
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have:

ind lDN = ind)\mAC + ind,umCS,coneS' (248>

Whereas before all perturbations of rates < 1 were considered part of the asymptotically
conical piece, now the perturbations of rate exactly 1 are considered perturbations of the
conically singular piece. If the cone satisfies has no critical rates between 0 and 1, we can
even go one step further and pick some N < 0 with [\,0) N 2, = (). We then have:

ind [y = indy D¢ + ind, Des. (2.49)
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Chapter 3

Desingularisation of conically
singular Cayley submanifolds

In this chapter, we discuss the desingularisation of conically singular Cayley submanifolds.
We first describe a gluing construction which, in its simplest form, takes a CS Cayley
N and an AC Cayley A with identical asymptotic cones and produces an approximate
Cayley desingularisation by gluing a rescaled version of A onto the singularity of N. Next,
we describe an iteration scheme that allows us to perturb the approximate Cayley to a
nearby exact Cayley. We modify the construction from Lotay’s work [30] on coassociative
submanifolds (which in turn builds on previous work by Joyce [18] for special Lagrangians)
to work in families and rework some analytic aspects to remove the requirements on the
rate A of the asymptotically conical piece. This leads us to the main theorem of this
section, Theorem It includes the desingularisation of multiple singular points at
different rates as well as partial desingularisation.

We then conclude the chapter by considering in more detail the desingularisation of
a particular kind of conical singularity, namely the transverse intersections of immersed
Cayleys. We will see that negative intersections may be resolved by gluing in a Lawlor
neck, while positive intersections cannot be resolved while at the same time preserving
the Cayley condition.

3.1 Approximate Cayley submanifolds

Let (M, ®) be a Spin(7)-manifold and let {®;}scs be a smooth family of deformations
of ® = ®,. Suppose N is an unobstructed CSz-Cayley in (M, ®) with singular points
{#i}iz1....- We now consider the family moduli space M’éS(N ,S) of deformations of N.
Note that if the locus of singular points for a fixed Spin(7)-structure (which is the image
of the smooth map sending a Cayley to one of its singular points, by unobstructedness)
were to move by an ambient isotopy I, we can choose a new family {I®,}cs that leaves
the singular locus invariant. Furthermore, we can also assume that ®4(z;) = D, (2;).

For B, (0) the ball of radius > 0 in R®, let x; : B,(0) — M be a Spin(7)-coordinate
system centred around z;. Recall that this means that y; is a parametrisation of a neigh-
bourhood of z;, such that x;(0) = z; and Dy;|;®P., = o. After identifying 7,, M with RS
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via the Spin(7)-isomorphism Dy;lo, we let (L;, h;) C (S7, grouna) be the link on which the
conical singularity is modelled. Assume it comes in a smooth, finite-dimensional moduli
space M©2(L;), and that i be such that (1, ;] N 2, = 0.

Fix now 1 < k <land A < 1. Foreach 1 < i < k let A; be an AC, Cayley in R® for the
standard Spin(7)-structure, with 2, N (A, 1) = (. Let the link of A; be (L;, h;) (the same
as the link of the i-th singularity of N), and choose a scale function t; : Miq(4;) — R.

We will now describe a procedure which allows us to glue elements of sufficiently small
scale in M/A_\C(Ai) onto the first k singular points of N € Mfg(No, @), to produce Cayleys
n (M, ®,) that are close to being singular. Here we need to make sure to glue compatible
cones, as both moduli spaces allow for deformations of the cone.

In the gluing construction, the scale t; determines both the scaling of the AC piece A; as
well as the inner radius of the annuli joining A; to N, which is comparable to L; x (¢;1¢, Ro),
where rg, Ry > 0 are constants. In particular, when ¢; = 0 (which corresponds to the cone
in /WXC(A,-)) we do not glue anything into the singularity at z;.

Recall from the definition of a conically singular submanifold that there is a compact
set Ky C N and decomposition N = Ky |_|§:1 U; such that we have diffeomorphisms
Uhg @ L; X (0,Rg) — U;. Choose n and Ry in such a way that the image of Wiy is
contained in x;(B,(0)). We can then factor Wiy = x; o Okg, where Ok is a smooth
map OLg : L; x (0,Ry) — B,(0). For 1 < i < k there is a similar diffeomorphism

ot Li x (rg,00) = A\ Ka, C R® where K, is a compact subset of A;, which can
be chosen such that ||©%4.(p) — ti(p)|lgs = O(|p|}) as p — oco. After reducing the scale of
the A;, we can assume that ro < Ry and A; \ ©4(L; x (R, 00)) is contained in B,(0).
In particular we can then also consider the map W] ;x(Ro,00) = Xi © O Now fix a
smooth cut-off function @., : R — [0, 1] with the property that:

rout|(_ooé] =0, @cut|[g,+oo) =1 (3-1)

Let a constant 0 < v < 1 be given and suppose ¢ > 0 is sufficiently small so that we
have the inequalities 0 < rot < %t” < t¥ < Ry < 1. Suppose that A = (Ay,..., A;) is
a collection of AC, manifolds (or cones) as above such that ¢; = ¢;(A;) < t. If ¢t > 0 is
minimal with this property we call it the global scale of A. We then define the subsets
N4 of M as follows:

(N\|_|\11 (0,27)) ) u|i|\11f4(Li x (roti, 7))

|_||_|XZ \ O (rot;, 00)) L |_| Uho(L; x (0,17)). (3.2)

i=k+1
Here @’g is defined as the following interpolation between the A; and U; pieces:

C"‘)f@ : Lz X (Toti,R(]) — R8
2s 2s

09— () (22 1) Ol o) + oo (3 - 1) Btsle). 33

i
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Figure 3.1: Glued manifold

If we reduce the scale of a subset of the asymptotically conical pieces, the resulting family
are desingularisations of N where some tips collapse back to conically singular points.
In particular, if ¢, = 0, we should interpret the above definition as ©% = ©Ofg, thus
the corresponding singularity is left as is, without gluing. As before, we also have maps
\If% =X o@"g, so we can work in local coordinates around a singularity. Notice that as ¢ is
locally constant in neighbourhoods of 0 and 1, V 4 is a smooth submanifold. For analytic
purposes we usually consider N4 as a union of four parts:

© N = (N LI, Wes (2 x (0.8))).

@ Nib = LI, Wy (L x (ot 1)) = LJE, N

i=1""m *

® N = |_|f=1 Xi (4 \ ©)¢ (roti, 00)) = |—|le N/

@ Nf = Ui:kﬂ |_|§:1 ts(Li x (0,7)).

Notice that since we chose our family S in such a way as to leave the singular locus
as well as the Spin(7)-structure at the singular points unchanged, we can use the same
Spin(7)-parametrisations y; for all deformations of the Spin(7)-structure, and all nearby
gluing data with matching cones.

The reason for making the lower part shrink sub-linearly while the tip shrinks linearly,
is that N/ will stretch out and approximate any compact subset of the A; arbitrarily well
as the scale is reduced.

We now show that indeed this construction results in an approximation that is C''-close
to a Cayley in the following sense:

Proposition 3.1. Let o € (—1,1) be given. Then if the global scale t is sufficiently small,
N4 is a-Cayley.
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Proof. 1t is clear that N;f‘ and Nl’f are always a-Cayley, since they are subsets of N and

thus Cayley for the Spin(7)-structure ®,. Now for N2 and NlA7 we note that for x € R®
near 0 we have (Dx;):(®y,(2)) = ®o + O(]|z]|). Thus for ¢ sufficiently small, we have for
any p € NAU N/ that (Dxi);fl(p)(fbp) = Oy + O(t"). As A, is already Cayley for @, it
will also be a-Cayley for (DXz‘)I;—l (p)(

It remains to show that Né is a-Cayley for t sufficiently small. Now by assumption
on N and the A;, ©Lg(p, s) and ;0% (p, s) approach the same Cayley cone as long as
5 € (%t", t”) and t; — 0, and thus the respective tangent planes become arbitrarily close
to the same Cayley plane, in particular they will be o/-Cayley for ¢ small enough and any
o/ > «a. Now for every a there is an o > « such that if &, & are o/-Cayley graphs over
a Cayley &, any linear interpolation of the between the maps having image & and & will
have image an a-Cayley. Thus N;ﬁ; will also be a-Cayley for ¢ small enough. O]

®,,) for sufficiently small values of t.

Our goal is to construct Cayley submanifolds close to the almost Cayley submanifolds
NA. To simplify the analytic details, we will introduce Banach spaces tailored to this
particular desingularisation, which were first defined by Lotay in [30]. Before that, we
extend our notion of a radius function to the N4, combining the definitions of radius
functions on CS- and AC-manifolds.

Definition 3.2. A collection of radius functions on N A for all A with global scale
bounded by ¢ > 0 is a smooth function p : N4 — [0, 1] such that:

G(RO)a T € KN
(.Z') o @(T[)ti), 1 < 7 < k’,QT - XZ(A, \ Lz X (Tgti, OO)) (3 4>
PE) = O(s), 1<i<k,x=Ui(s,p)forpe L; and s € (rot;, Ry) '

O(s), k<i<l,x=Uig(s,p)forpe L; and s € (0, Ry)

Here we mean by ©(f) a quantity that is bounded on both sides by f, up to constants
that are independent of the choice of A. Furthermore over W% ((rot;, Ro) X L;) we require
p to be an increasing function of the radial component s € (rot;, Ry).

Choose p to be the distance in M to the closest singular point of N and modified away
from the singular points such that the functions are bounded by 1. This will be an example
of a family of radius functions. From this, we also see that we can choose the family to be
smooth and have uniformly bounded derivative. We can now define alternative Sobolev-
norms on L}-spaces on N 4 that take into account the scale of the glued pieces. Suppose
F is a metric vector bundle over N4 with a connection V. Let § € R! be a vector of
arbitrary weights. We then define the LZ& s-norm of a section s € C*(E) as:

1
P

k
Isllzz , , = (Z /NA |pwtivigPp dv01> . (3.5)
=0

Here w : N4 — R is a smooth weight function that interpolates between the chosen
weights near each singularity. If all singularities are removed, so that N4 is nonsingular
and compact, these norms are all uniformly equivalent for different values of ¢, but they
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are not uniformly equivalent in A, in the sense that the comparison constant will be
unbounded. As we reduce the global scale, these norms reduce over the glued pieces to
the norms for conical manifolds we introduced above. This will allow us to transplant
results for the conical parts 4; and N onto the glued N4. Near the singularities that we
did not remove, this norm is exactly the weighted Sobolev norm for conically singular
manifolds. We can define Holder spaces that vary with A, the C;g—spaces, in a similar

manner. We note that the Sobolev constants for different values of A will all be uniformly
comparable.

3.2 Estimates

Consider the approximate Cayleys N4 that we have defined above, together with a family
of radius functions p. For sufficiently small global scale ¢ we have by Proposition
that N4 are a-Cayley for any fixed o < 1. Thus in particular N4 admits a canonical
deformation operator as in ([2.6). Similar to it can be augmented to include CS
deformations of the unglued conical singularities as well as deformations of the Spin(7)-
structure:

Fi: CPW(NY) XU — CZ (Beay)- (3.6)

Here Y C & x F is an open neighbourhood of the point which corresponds to the
initial Spin(7)-structure and the initial vertices and cones of N“. Moreover we define
ve(NY) = {(v,p) € v(N?), ||v]| < ep(p)}, similar to the CS and AC cases. The weights
6 € R' are chosen such that for 1 < i < k (corresponding to the singular points that are
desingularised) we have A\ < ¢; < p; and for k + 1 < i < [ (i.e. the singular points that
are kept) we set §; = p;. We will see later that this condition arises naturally.

In the following we will write g = min;(x;) and 6 = min;(d;). This may seem like a
restriction, however thanks to the assumption (1, ;] N 21, = 0, we do not lose anything
by doing this. Any CS, manifold can be improved to be CS,, by |16, Thm. 5.5] as long
as no critical weights are present in the range (1, i;). We will also write § = min;(d;).

We denote the linearisation of Fji at 0 by ) 5. We can now establish bounds on the
glued deformations operators, using our results for the CS and AC cases. In particular,
we will take into account the dependence of various constants on the parameter A. This
will be important later when we deform all the N4 simultaneously to become Cayleys.

In this regard, the most important property of the deformation operator is its depen-
dence on N, v and ®. In particular, we have pointwise dependence only on p, v(p), Vu(p)
and T, N as in the following proposition, adapted from Proposition [2.9]

Proposition 3.3. The deformation operator on N? for the varying Spin(7)-structures

and cone configuration can be written as follows, for v € C(v(N4)), s €U and p € N4:

Fx(0.5)(p) = F(p, v(p). Vo(p). TN, 5) _
= Fi(0,5)(p) + Pa.0(p) + Qp, v(p), Vo(p), T,N", 5). (3.7)
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Here lDA,S is the linearisation of Fi(-,s) at 0 and F,Q are smooth fibre-preserving maps:
F,Q:TM: xn(T"M ®@TM). x Cay,(M) x U — Ecyy,

where Ecay = {(p,m,€) : (p,m) € Cay,(M),e € Er} and a is sufficiently large. Here we see
both sides as fibre bundles over Cay,,(M)xU. We define the map Q5 : C*®(v(N4)) xU —

Coo(Ecay) as QA(va 8) = FA(U, S) - lbﬁ,sv'

We stress that the smooth maps F and Q only depend on the family of Spin(7)-
structures @, and not on the Cayley submanifold. The term () 5 contains the contributions
of v and Vv which are quadratic and higher. Since N is both conically singular and has
nonsingular regions of high curvature as the global scale decreases, we need to apply both
the compact and the conically singular theory to prove the following:

Proposition 3.4. Let p > 4, k> 1 and A < 0 < pu. Then the deformation map Fj is
well-defined, Fredholm, and C* as a map between Banach manifolds:

Fi:Mz={vell . (vNY): o]

k+1,8,4 g XU — Ly (Eeay), (3.8)

k,0—1,A
whenever € > 0 is sufficiently small and can be chosen the same for all A. Any v €

Ly 5A(I/€(NA)) such that Fz(v) =0 is smooth.

The proof of the smoothness of Fz is essentially the same as for Theorem [2.42] with
all the norms replaced by their appropriate counterparts. As in the usual deformation
theory, it relies on separate estimates of the first few terms of the Taylor expansion of Fj,
where we will now need to take into account the dependence on A. Next, as the Holder
space C’(’;’g for a fixed A can be seen as C’?’a for a conically singular manifold, usual elliptic
regularity arguments apply and show smoothness, such as in the proof of Theorem [2.42]
Let us now in turn take a look at the constant, linear and quadratic estimates of F'; and
pay close attention to the constants involved.

Estimates for 7

We first investigate how well N4 approximates a Cayley as a function of the global scale
t. Our main result will be that a priori N* should converge to an ideal Cayley in Oy for

A\ < < p, uniformly in A.

Proposition 3.5 (Pointwise estimates). Denote by g? the Riemannian metric on N4
coming from the embedding into M. For t sufficiently small and for s € S sufficiently
close to our initial Spin(7)-structure, we have the following estimates on the derivative
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VT ya for k > 0:

IXiTInal(@) S [a], (3.9)

VAT val (@) St k=1 (3.10)
| 1

[VET |yl S0+ 70 pe (rots, 7t (3.11)

VET| gas] S 70 (DO gt ey, (3.12)

VA7 nal S ds, o). (3.13)

Here V and |- | are computed with respect to X g2 in the first line, and g in the last two
lines. Furthermore, the constants hidden in the <-notation are independent of A.

Proof. We adapt the method of proof from Proposition 8.1 in [30]. Note first that Nf
are Cayley by construction for our initial Spin(7)-structure, and therefore 7,, and all its
derivatives vanish on them. As N-'is compact, we can easily get the bound . .

Consider next N/*. In what follows we can think of the conically singular points of N
as being obtained by gluing in a Cayley cone, and thus they can be treated no differently
from the desingularised regions. We have by Taylor’s theorem that:

XiTl(x) = Ixi7](0) + O(|z])-

We have chosen x; to be a Spin(7)-coordinate system, so that xf®(0) = @y, where @,
is the standard Cayley form on R®. We therefore also have x;7(0) = 79, where 79 is the
standard quadruple product on R®. Now since X; 1(NZA) is Cayley with respect to ®q, we
get that:

IXiTlwal(x) = |70l xal(0) + O(Jz]) = O(z).

Thus we get (3.9). Now for k > 1, we have |V'“70\ng] =0, as the A; are Cayley for ®4. So
we would like to bound:

|vk(X;ﬁT - 7'0>|le‘|~
For t > 0, think of tA; as a map f, : A; — R® x A* which maps p € A4; — (tp, T,A;),
and of ! — 7y as a map 7 : R® x A* —» AZ with the property that 7(0,w) = 0. We
therefore have a Taylor expansion for small v € R®:

T(v,w) = Ly [v] + Ry v @ v].

Here L, is a linear map depending smoothly on w and R,, , is a bilinear maps that depends
smoothly on w and v which encodes second and higher order behaviour in v. Thus, we see
that:

7o filp) = tLr,alp] + t*Re,a,[p ® ),

80



From this we can deduce that:

Ve(To fi)(p) = t(Lg,alé] + DLg,alp, VT, Al)
+ 2 (2R, 45§ ® p| + DRy, a,[p @ p, VT, A, €]).

The linear maps and their derivatives can be bound uniformly, as both p € B,(0) and
T,A vary in compact sets. Thus we see that:

V(7o fi)p)l < C(A,7)(E+E(Ipl + PP VT,A]) < C(A, )t.

Here we used the fact that [VT,A| € O(|p|™!) and |p| € O(1). Thus going back to our
original situation, after rescaling by ¢; to account for the fact that the metric on tA; scales
as well, we obtain:

IVXiTlyal = IVOGT = 70)lyal S 1.

The higher derivatives can be deduced the same. The key point is that naively rescaling
will lead to a factor ¢; ¥, but since the A; are Cayley, we can improve it by one factor of
t; via the above Taylor expansion argument.

Finally, we consider N where the interpolation happens and where we also expect the
biggest error to appear. We will consider (\I/fg)*7'| NA> which is a form on the cone portion
C = (rot;, t7) x L, and we will prove the analogue of and with respect to the
cone metric. Now as t — 0, the pullback metric (\I/fa)*gA will converge uniformly in ¢ to
the conical metric. In particular, the conical metric and the pullback metrics for small ¢
are all uniformly equivalent with proportionality factors independent of the global scale.
Thus all quantities of the form |V*s|, computed with regards to any of these metrics, will
be in the same asymptotic class. Denote by ¢ : C — R® the embedding of the cone. We
then have that:

k i\ * i\ k. %
VAR TInal = VH(O5) X Tl wal
< |VEO% — x| + [VFe x|
Upper bounds for the second term can be given in an analogous way to what we have
done for N/, as the cone is Cayley and scaling invariant. We are interested in the region
with radius in (rgt;, t7), thus we can run the above argument again while only rescaling
by t/, and thus only get an error ¢;*”. This is always the asymptotically better term. For

the remaining term, notice that x;7 is a fixed quantity, and the only dependence on A is
within ©’ — ¢. So let us more generally bound:

VEful,

for f: C — R® a smooth function, and w € QF a smooth form. From the definition of
pullback we see that there are smooth maps E}, independent of f such that:

Ve w(p) = Ex(f(p),Vf(p),..., V" f(p)). (3.14)
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These maps have the additional property that they are affine in V¥ f(p) where k > 1
Consider the scaling behaviour of both sides when the cone is rescaled by v > 0. In other
words, we replace f by f,, such that f,(p) = f(v-p). Equation (3.14)) still holds for f.,
and we can relate the norms of both sides to the corresponding terms for f as follows:
v VEFOCT) (- p) = VEF (v X ()

= VLT ()

= Ei(f,(p), VI (p), . VI £ (p))

= Ei(v- f(p),y-VIP)-. v V(D)

As the maps Fj are affine in the (higher) covariant derivatives of f, we see that:
FIVEFOCT S @)+ AV D)+ MV (). (3.15)
Let us now estimate the norms of f and its derivatives. We have:
f(p.s) = (©% = )(p,s) = (1 = peu) (27" = 1)(Olsc(p, 5) — e(p, 9))
+ ©eut (2t — 1)(Ocs(p, s) — t(p, s)). (3.16)

Our bounds on f should be unchanged when varying A. Changes with fixed scales can be
dealt with by increasing the constant, as such variations form a compact space. Thus we
are only concerned with rescalings.

To begin, we apply the AC-condition to the ¢; 1 4;, and rescale to obtain:

[V (Oac(p, s) = tp, 5)] = Ot 127, (3.17)

where the constant is independent of the scale. Analogously, we get from the CS condition
that:

[VH(©cs(p, s) — u(p, s)] = O(s"7F). (3.18)
Taken together we obtain the bound:
(O = 1)(p, )] S M1 + 52,

One can obtain bounds for the derivative of ©; — ¢ in a similar manner. To be more
explicit, the covariant derivatives applied k times to will hit both @eu (2t — 1)
and O ¢ cs — ¢. If it hits @y a total of [ times in a term, we obtain a bound of the form
Ot 0 0| VF 1 (O ac/cs — ¢)]). An explicit calculation leads us to the general formula:

IV¥(©1—1)(p,s)| =0 ( > (M s“‘j)t;l”é‘lsocut> .

j+Hl=k
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Thus we can plug this into our estimate (3.15)) to obtain the bound:

IVE(©4—0)'x'7| =0 < DA p“‘j‘l)t?l”@lsocut) -

jH=k

From this, we obtain the claimed bounds by noting that either rot; < p < it;’ , where

Opeus = 0, or p > 3%, so that p = O(t/). O

Proposition 3.6 (Initial Error estimate). For a sufficiently small global scale t > 0 and
for s € S sufficiently close to our initial Spin(7)-structure, p >4, 6 € R, v = /’\\_;;, ke N,
we have:

1F4(0,8) 12 < Cr(t™ (" + ¥ 4 d(s, 50)) (3.19)
< Cp(t""=9) 4 d(s, 59)).

Here Cp > 0 is a constant that only depends on the geometry of N C (M, ®) and S, but
not on A.

Proof. Let 0 < j < k. Subdivide NAi = N,ﬁfl U N, AfQ, where N;?Lfl is the region where

m
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p < 1t” and N7 m2 the rest. We then have that:
/ |p TIN5 P p~* dvol :/ |p T HINI 7| ya Pt dvol
NA NA
!
< (P G T e
% '
l
—6-+1+5 |\ 7k
* Z/Ai (p ‘v T‘N;?J'
!
=D / (o7 dvol

=

)P p~* dvol

)Pp~* dvol + vol (NP (s, s0)

+ Z/ 754’14’] ,u j—1 + t;)x+1p)\fjfl))ppf4 dvol

+Z / (8 2Pt (Y VAT dyol +-dP (s, o)
m2

=9 / 4dvol+z / (4 pU MNP 4 dyol
N ’L

l

l
<yt
2.

l
+) 0t

Py [ vl s,)

=0

l
Z tp2 ) —|—t pué(tuu+t(u 1))\+1)p>
1=0

+;/NAZ- PP =9 p=4 dvol +dP (s, s0)
1= m,1

l
S DT T ) P (s, s0)
=0
l
S I (s, ).
=0

Here we used all the various bounds from Proposition as well as the fact that p can
be uniformly bound from above by 2tY on both NZA" and N4 Furthermore we can also
bound p from below by 1t” on N2, and by rot; on N;gfl and NlAi. The integral:

m,2)

ro
/A’ p~*dvol < / sT4s3ds < C

l
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is bounded independently of t;, as is:

I8

Finally, we compute that

2tv
¢ 1
p~*dvol < / s 'ds = log(2t) — log (th”) <C.
1

7 v
,2 ati

1
) P9 =4 dyol < /4 sP=9)-1qg < tfy(“_é) — tf(“_é) < tfy(“_a).
N, i1 T

oti

The bound now follows as the exponent of the t; is positive, and thus the biggest one
dominates, which is the global scale t. For the second line in (3.19) we use our choice of
A1

v = 5=, which is chosen exactly so that vy = (v — 1)A + 1. O

Estimates for )4

Recall that in our construction of N4, we have assumed identical cones (as subsets of
R®) for the pieces A; and N, given the choice of a Spin(7)-coordinate system. Here the
interpolation happened between the radii %t” and t¥, where 0 < v < 1 is a constant. To
derive estimates similar to the bounds in Propositions [2.44| and [2.36| for 1) 5, we use a
partition of unity to combine the results for the parts. For this we need further constants
0<v’" <V <v <1 Let eyt : R — [0, 1] be a smooth cut-off function, such that:

Qpcut’(foo,u”} =0, Qpcut|[u’,+oo) =1L

Using @y we define a partition of unity on N A as follows. Let ¢ > 0 be the global scale
of N4 and suppose that ¢; is the local scale of A;. We then define:

e (SELB) it p € WLy x (roti, Ro))
a(p) = 0, if p e N, (3.20)

1, if p e N,

Then a(p) = 0 on WA(L; x (rot;, Ro)) if p(p) = " and a(p) = 1 if p(p) < /. Thus
o is supported in Nig = Wi (L; % (rot;, #7")) U N/ and 1 — « is supported in Ngy =
WAL x (1, Ry))UNZ. We also define Ni, = L ik Ni&. In particular the gluing region
N2 is entirely contained in Ni.. We would now like to relate the operator D 4| N to D
on a perturbation of A; and the operator ]DA|N§S to IDog on N. To do this we define a

pseudo-kernel k3 C C* (v (N4)) for the glued operator, the analogue of kcg and kac from
Propositions and respectively. We will be working with a rate A < 6 < p,d # 1
which automatically means that 0 ¢ &, for all the links of N. The space xz will be
defined as a direct sum of contributions from both pieces. First, the treatment of the
conically singular piece is immediate. The elements of kcg all have support in a compact
subset of . Thus for ¢ sufficiently small, we can consider them as section of N¢ directly,
since the N&g exhaust N as the global scale decreases to 0. In particular, we can then
also consider them as sections over N4 after extending by 0 over N4\ N&. Even more,
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Figure 3.2: Decomposition of the glued cone

for small enough ¢, the elements of kcg, seen as sections on N4, vanish on N ]{‘C. Similarly
the operators [Dog and D 4] NA, can be identified and the bounds for [Dog carry over.

Next, the interpretation of ka¢ is more delicate, as the gluing region for a given conical
singularity is a perturbation of A; and not exactly Cayley. We first find an identification
between Ni¢ and an open subset of A; as follows. For technical purposes, we fix a further
rate 0 < v < v”. Then there is a diffeomorphism between an open subset Al C A; and
X(K4,) UO45(L; x (rot;, 7)), given by sending:

p € Ka, — x(p),
ZC (p,S) L @i—l(pv 8)'

Let us call this map V3 : AL — N &, which as usual factors as Ul = x 0 O%. As the

operator lDZC not only takes into account the metric structure of A;, but also the ambient
Spin(7)-structure we now thicken the map ©%. Let U} be a tubular neighbourhood of

Al in R®, so that every ¢ € U}gi can be written uniquely as ¢ = p + v, where p € Al and
v € (Veay(AL)),. We then define:

o' : Ul — R®

(p,v) —> @fi(p) +o

Then clearly C:)fﬂ i = @ig. We now transport the Cayley form in a vicinity of N j:‘é over
to A;. Consider first x*®, which is a four-form on B,,(0) C R®. Via pullback, we obtain
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a form, which we define pointwise as:
(DY), = ;'O P(tip) € Q1 (UL).

We introduced the factor ¢;° % to counteract the rescaling by ¢;,. With this normalisation we
have Cfﬂ'g — @ uniformly on U} ast — 0. This follows from Taylor’s theorem and the fact
that U}y, C By,w-1(0), since it gives x*®(t;p) — o = O(t;|p|) as we have x*®(0) = ®,. We
now extend 5@% to a form ®% defined on all of R®. For this recall the smooth cut-off function
¢ : R — [0,1] which we used in the construction of N4. It vanishes for negative values
and is equal to 1 for values > 1, as in . The space of Cayley forms on R® is a smooth
submanifold C C A'R® of dimension 43. Choose local coordinates ¢ : B;(0) ¢ R* — C
such that ¢(0) = ®(. As we have uniform convergence Q:)f;l — @ on U}y, we will eventually
have &Dfi(p) € im ¢ for t sufficiently small and all p € R®. The uniform convergence forces
the linear Cayley forms at each point in R® to be simultaneously close to the standard
form ®(, thus in the image of the parametrisation c. We then interpolate between ®, and
®y between the radii %tﬂ ~1and t*7! as follows:

%4 (Orc 14, (1 0) +0) = (¢ (4(Ohc(r,p) + v)p(2rt; 7 — 1)) (3.21)

We now have a family of forms (I)ii on Uyu. If we choose the global scale sufficiently
small, we can extend these forms to all of R®. For sufficiently small ¢ > 0, we have
that A; is almost Cayley. These forms @i—l form a continuous family with respect to the
parameter A, and as t — 0, we get uniform convergence ®’; — ®,. In fact, we even have
C,°-convergence.

Lemma 3.7. The family (R®, CIDiA) for varying A is a continuous family of C,° pertur-
bations of the standard Spin(7) form ®q. The rate n < 1 only depends on the constant
0 < 7 <1 chosen for the gluing, and n — —o0 as v — 1. Forn < XA and 1 <1 < k, we
have that A; is an ACy-submanifold for the Spin(7)-structure ;.

Proof. Note that the family (I)ii is flat at large radii, but the cutoff radius Ct;~! depends
on A. Thus the deformations at non-zero global scale are compactly supported near a
fixed Ay, and in particular also in Cp° for any n < 1. In particular, for any n < A the

submanifold A; ¢ R® will be AC, for @% because it already is for ®43. From Equation
(3.21)) and |®, — @,,| = O(p) on M we see that:

(@l = @o)r = S O = ORI

Thus we have Cg convergence as t — 0 when n > 2;__11

derivatives shows that:

. Similar reasoning for higher

|Vk(bigr_n+k+l| < Ct(_n+1)(lj_1)+k_
Thus C7° convergence follows immediately whenever we have C’S convergence. O

 Let us return to the question of defining the analogue of kac for N /fé. After composing
O’ with x we have an identification ¥ of open neighbourhoods of A; and N . We
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can hence pull back the elements of kac for A;, or kac 4,, to sections of T'M| VA, for ¢
sufficiently small. Note that we cannot in general require that they be normal sections.
To remedy this we will first project xac 4, onto Vi, (A;), i.e. the normal bundle of A;

with respect to the Cayley form @’;. Note that Vi, (A;) is identified with v(N4¢) under
ﬁ/iA. Thus we define the space of sections k¢ 4; as kac,4, projected onto V@%(AZ‘) and

then transported to v(N fé). For ¢ > 0 sufficiently small the elements of k¢ 1, can be
extended to sections on all of N4, and after further reducing t the sections in kcg and
RKACA = @Kigk kac,a; Will have disjoint support. In this case, we define:

Ki= Kcs D Kac A (3.22)

Assuming unobstructedness, this is a family of pseudo-kernels for the family of operators
I 1, as we will see in Proposition . Note that kcg contains all the contributions which
have rate > §, where A < § < p was the rate of the operator F; in Proposition [3.4] and
kac,a all the ones which have rate < d. As ¢ is by assumption not critical, this accounts for
every possible deformation exactly once. Note also that while the non-linear deformation
operator of an AC Cayley does not have geometrical meaning when the rate A > 1, the
linearised operator can be defined for any rate.

We now show the analogue of Propositions and for the glued manifold N4,
using both results as ingredients. We first introduce an inner product that interpolates
between L3__ on the AC region and L3 on the CS region, where e > 0 is a small parameter
(necessary in Propositions and to apply the Sobolev embedding theorem .
So we define for u,v € C®(v(N4)):

(U, )5y, = / (u,v) p*dvol (3.23)

NA

Here w(p) = §—e whenever p(p) < 3t¥ and w(p) = d-+¢ whenever p(p) > t/. By combining
the Propositions and we conclude:

Proposition 3.8. Fort sufficiently small there is a constant Cac, independent of A such
Zhat forv e Lzﬂ)é’A(V(NA)) with supp(v) C Niq which is L%, -orthogonal to k¢ ; we
ave:

< Cacll D av|| 1

k6—1,A

[0l (3.24)

k+1,5,A4

We now turn back to our task of combining the bounds on )4 and Dy to get bounds
on the inverse of I) ; modulo the pseudo-kernel. Recall the cut off function o : N4 — [0, 1]
we defined in (3.20)). It has the following decay properties:

Lemma 3.9. Let [ > 1 be given. Then:
IVial|co € O (p~'log(t;) ") . (3.25)

Proof. As the cutoff function ¢y is smooth and only varies on a compact set of fixed
uniform size, all of its derivatives up to a given order [ remain bounded on all of R.
Similarly, all derivatives up to order [ of p are bounded on N, independent of the scale,
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since p agrees with a radius function on the conically singular N on this part. Finally,
through an argument similar to the one in Proposition the same holds on NV fé, except
close to the radius ryt;, where the smoothing happens. We will see however that this is not
an issue. In geodesic normal coordinates {xi}izl,.._A around p € N4 we have forv € T, »N A,

(£,0)(P) = Lospon (log p(p))

log t;
_d log p(exp, (sv))
ds Szo%ut logt;
1 /
_ . (L, ,
TTogt, e (Lop)(p)

From this we see that £, is bounded by ﬁ, where C' is independent of p and ¢;. This
is because whenever the derivative of p might become unbounded, the derivative of @,
vanishes. Similarly we obtain for v,w € T,N:

. 1
Via =V <dx@ ® Lo, Peut <ﬂ))
logt;

. . 1
= (dz' @ da?) Ly, (plogt- Pt (£8¢P)>

gpgutp log(tl) - gpéut'caj log t; d?
(plogt;)? dsdr”

O(Solc/ut’ Soi:u‘m aiajpa azp)

= (do' ® da?)

(exp,,(s0; +10;))

— (Ao’ ® dad)
(" ® do )P210g(ti)

This proves the statement for [ = 2. The general statement follows in a similar way. [J

To combine the bounds on ), and Py using a partition of unity argument we need
two further technical lemmas about the norms of au and Va ¢ u, where ¢ is a bilinear
map.

Lemma 3.10. Let B be a bundle of tensors over NA. Then there is a constant Cy which is
independent of A, such that for sufficiently small global scale t and a section u € Lz,a,A(B)
the following holds:

< Colluflzr

HO‘“HLi,a,A k6,4

(3.26)
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Proof. We have:

k
27]6 4 — 2*]6 i*(svi p, —4 dvol
Joully, =23 [ 0=V @ avo

< Z /NA PPV P |V ulP p~* dvol

0<j<i<k

— oﬂ?||u||12ZM + Z /A pPUHI=8) |75+ |P| 7P =4 ol
5 N

0<j<i<k—1

<lull, + > | 1PVl OV ulPp dvol
k,8,A NA

0<j<i<k—1

k-1 k—1
<lulf, +¢C (Z / 1Vl dv01> (Z IV WHZO)
"~ i=0 7N =0
c k—1
< P i—6vi P —4d 1

C
< (1 L
( * |logt|P> HUHL?&,A

Here we used the asymptotic behaviour of V!a from Proposition (3.9) in the second
to last line. O]

Lemma 3.11. Let B be a bundle of tensors over N4, Let o : T*NA® B — B be a
family of bilinear pairings which have bounded norms as A wvaries, seen as sections of
T*NA ® B ® B*. Then there is a constant C, > 0, independent of A, such that for small

enough global scale t and for any section u € Li 5A(B) we have:

C
|Vaou|pr < —

ko-1,A |10g t| “uHLi,a,A' (3'27>

Proof. Using Proposition [3.9 the statement reduces to proving the following:

k6,4

k—1 1/p
[Vaouly, . <C (Z HV”lap’“H%o> el
=0
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This in turn is proven similarly to the previous proposition.

k,64+1,A

k
IVaoult, =Y /N |V (Vacow) [Pp dvol
=0

<C Z OV ufP | p IV I P pt dvol
NA

0 <i<k
k-1
<C (Z HV“rlaszrlﬂlé,o) Hu||iiM
i=0 "

In the second line, we used the bound on the norm of the o-product. O

Next, we show that the operator I) ; can be inverted modulo the pseudo-kernel & j,
with uniformly bounded norm independent of A. This is the key fact that will allow us
to perform the desingularisation via an iteration argument in the next section.

Proposition 3.12. There is a constant Cp, independent of A, such that for any u €

Ly 5A(I/(NA)) which is L2, -orthogonal to kjz we have:
”U“LZH,J,A < CDHﬂAUHLi,giLA (3.28)

Proof. Write u € L§+1757A(1/(NA)), using the cut off function a from ([3.20)) as:

u=oau+ (1 —ao)u.

Then clearly HuHLi-H,é,A < laullzy + [|(1 — a)uHL£+l,5,A. Let us consider the term

+1,8,4 /
||ozu||L£+1 i first. Note that au is supported in Niq, and that on the support of KAC. A
the cut off function « is in fact equal to 1. Thus au is orthogonal to x ;1 by our orthogonality
assumption on u. Using Proposition (3.8 we see that:

ol

< CalPataw)lzr, |
Now as )4 is a first-order operator whose coefficients depend pointwise on the Spin(7)-
structure as in Proposition [2.5] we see that I z(cu) = o) su + (Va) o u, where ¢ is a
family of bilinear products ¢ : T*N4 ® E — E which is uniformly bounded in ¢. Thus we
may apply Lemma to see that in fact:

- C1C4
HlDA(aU)HLg,J_LA < CAHOJZ)AU”LZ(;_M + @HUHLZ_H’&A-
In other words, we have, if we also apply Lemma [3.10}
C1C4a -
(1 N log(t)) HO‘“HLZH’M S CAHO‘IZ)A“”LZ,g_l,A
< CaCollPaulley -
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In particular, for ¢ sufficiently small, setting Cp = 2(02—009), we get that:
1YA
" Tog(t)

C
< 2P ullsy (329)

locu]] e P

k+1,6,A
We now note that the auxiliary Lemmas |3.10] and [3.11] can_equally well be proven for
1 — a. Furthermore, the analogue for N¢ of Proposition is true. To see this note

that the Lf , 4 horms on N A agree with the L? ~norm for sections supported in Néis.

Furthermore, since N¢ is already Cayley, I 4] NA, = Dl N and so the result follows

from Proposition noting that the L3, norm is identical to the L3, norm on N A
We can therefore prove:

Cp
I —ayully,,,, < LIBauly, (3:30)
Equations (3.29)) and (3.30) taken together now give us:
lullz, ., <oy, + 10— aulzy
<CpllPaulley, | -

Quadratic estimates

We conclude this section on estimates by proving the quadratic estimates, which are
consequences of the estimates in the compact and conically singular setting.

Proposition 3.13. Let § > 0, p > 4 and k > 1. There are constants Eg > 0 and
Co > 0, independent of A and the Spin(7)-structure, and an open neighbourhood of sy €
U C S, such that for sufficiently small global scale t > 0, s € U and v,w € L§+1 s.A with
ollze, oo llwllee

1Qav.8) — Qalw.5)lluy, < Callo—wlyy,, (ol . +llwllzy

1,A k+1,5,A k+1,5,A k+1,5,A

< Eg we have:

). (3.31)

Proof. Let u,v € L£+L6,A(VE(N)) be given. By the Sobolev embedding Theorem for
weighted spaces we see that there are embeddings Lg isA C§ ;- Here the Sobolev
constants are bounded independent from A as it is invariant under rescaling of the AC
pieces. Thus we have that v and v are C! and that their C; 4-norms are bounded by

C - Eg. In particular we thus have that |v], Vo] < C - Eg independently of A. Hence we
can invoke Lemma to obtain a pointwise bound of the form:

Qi(v,s) — Qa(w,s)|cr <C(1+ ]TNA]Ck+1) <\v — w|er1 (|v|or + |w|cor)

‘HU — w|ck(|1)’ck+1 + ’w’ck+1>>. (332)
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In a similar fashion to how we prove the initial error estimates on Fz, we can also show
that we have:

TN gy <27

where Cry > 0 is a positive constant, independent of A (but dependent on §). Thus the
same reasoning as in the conically singular case in Proposition [2.40| gives us the desired
weighted bound, with the constant independent of A. O

We now show that if all the pieces involved in the gluing are unobstructed at their
respective rates, then the same is true for the glued manifolds. This relies on the fact that
increasing the rate of J) on an AC manifold and decreasing the rate on a CS manifold
respectively preserve unobstructedness of the operator. Since A < § < u, both operators
will hence still be unobstructed at rate 9.

Proposition 3.14. Let 4 < p < oo and k > 1. Assume that both the A; and N are
unobstructed as Cayley manifolds at rate A < 1 and 1 < < 2 respectively. Assume that
AND)ND; =0, (1, 1;]N2; = 0 and that all the cones which are glued in are unobstructed.
Let 1 < 6 < p; be fivred. We then have that for sufficiently small t > 0 the linearised
deformation operator I 5 is surjective. In particular, for any w € Li,a—l,A<Ecay) there is
a unique v € /ij such that ID v = w.

Proof. We have that the operators )¢ and Pg are surjective as maps from L? s
Li, s_1, as increasing/decreasing the rate in the AC/CS case cannot introduce a cokernel
by Theorem [1.32] In particular they admit bounded right-inverses Pyc and Pgs respec-
tively, which map Lj ; , into L}, 5. We would first like to show that I 7 is surjective for
sufficiently small values of .
Claim: If there is a bounded linear map Pj : LZ s_1— L 1,6 such that the operator norm
of id —ID 5 Py satisfies || id —I 1 P4|| < 1, then D ; is surjective.
Proof: By the continuous functional calculus in Banach spaces, the operator I) ;P; =
id —(id — ) 1 P5) has the bounded inverse >_>°,(id — ) 1 P5)’, as this sum converges by the
assumption on the operator norm of id —Ip s P5. Thus in particular ) 5 is surjective. W
~We now construct such a Pz by joining together Pac and FPcgs, seen as operators on
Nilo and N{g respectively. Note that Pcg takes sections on N to sections on N. Thus in

particular, if s € L} ;| :(Eeay) is a section on all of N4 then (1 —a)Pes((1—a)s) defines

a well-defined section which is supported on Néis. Similarly, we have an identification
of sections on Ni with sections on A; via the map U’ This allows us to define the

operator aPy¢ 5 on N A which takes section supported in N jfé to sections on A;, applies

P,,, and transports them back to section on N jfc. It has the noticeable property that
lDAPAc,A = id. We thus define:

Pi(s) = (1 — a)FPes((1 — a)s) + aPac a(as). (3.33)
When precomposed with ) 5, we obtain:

DiPi(s) —s = (2a(l —a))s+ V(1 — a) o1 Pos((1 — a)s) + Va oy Pyg 4(as), (3.34)

93



where ¢1, 09 are two bilinear products. Notice that 2a(1 — «) <
to prove the proposition we need to find 0 < K < % such that:

K
IV = a)or Pos((1 = )9)lsz, < olsllyy, . and
K
[Va o PAC,A(QS)||L;6_LA < §||3||L§,5_17A-

Let us consider the second inequality for concreteness. Proposition and the uni-
form boundedness of Py¢ 4 allow us to write:

C
IVa oy Pycalas)ler, | < m”PAc,A(%)HLQHM
C
< mHPAc,A(@S)HLLmA
CCy
< log(t) ||a$||L£,571,A
C1Ca
<—=lsller,
log(t) k,6—1,4

In the last line, we applied Proposition [3.10f Now note that for ¢ sufficiently small we can
% < }L. The same reasoning applies to Pcg, hence we have shown that

)
D 5 surjects onto Ly ;| +(Feay). Using Proposition [3.12| we see that in fact D : k5 —

p . . .
Ly 51 4(Ecay) is an isomorphism. O

arrange that

As a consequence of the previous proposition, we can conclude that x5 ~ ker I 4.

3.3 Finding a nearby Cayley

Theorem 3.15 (Gluing Theorem). Let (M,®) be a Spin(7)-manifold and N a CSj-
Cayley in (M, ®) with singular points {z;}i—o..1 and rates 1 < p; < 2, modelled on the
cones C; = R, x L; C R®. Assume that N is unobstructed in Més,cones(N7 {®}), i.e. in the
moduli space with fixed points but allowing the cone to deform. For a fized k < I, assume
for each i < k that the L; are unobstructed as associatives (i.e. that the C; are unobstructed
cones), and that 21, N (1, ;] = 0. For 1 < i < k, suppose that A; is an unobstructed
AC,-Cayley with A < 1, such that 21, N[\, 1) = 0. Let {®s}ses be a smooth family of
deformations of ® = @y, as Spin(7) structures. Then there are open neighbourhoods U; of

C; € Mic(Ai), an open neighbourhood sy € U C S and a continuous map:

k
U x Més,cones(N7 {(I)}) X H UZ — U MéIS(Nb S) (335)

i=1 Ic{1,...k}

Here we denote by ji; the subsequence, where we removed the i-th element for 1 € I from
it. Moreover, Ny denotes the isotopy class of the manifold obtained after desingularising
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the points z; for i € I by a connected sum with A;.

This map is a local diffeomorphism of stratified manifolds. Thus in particular, simul-
taneously away from all cones in Mzc(Ai) it is a local diffeomorphism onto the nonsin-
gular Cayley submanifolds in M(Nq,..xy,S). It maps the point (s, N, A, ... Ak) into
MEG(NT, S), where I is the collection of indices for which A; = C;. This corresponds to
partml desingularisation.

Remark 3.16. In the above Theorem, we consider all the deformations of rates 0, the
translations, to be part of the moduli space of AC Cayleys. When gluing, we do not
however simply glue translated versions of our AC Cayleys onto a static CS Cayley. This
would result in too large an error coming from the partition of unity to apply the iteration
scheme. Hence we always implicitly consider the CS Cayley in M{,q(N) which underwent
the same translation as the AC Cayley when gluing. This gives us an approximation up

to order O(r) included, which allows us to work in L7 L4 With y > 1,

Proof. Let k > 1 and p > 4 be fixed. We first find a solution to the equation Fz(v) =0
for a ﬁxed Spin(7)-structure via an iteration scheme. For this, fix an ¢ > 0 such that

o < 2. We will construct sections v e Li V1A with ¢ € N which satisfy:

DA'UEH = —F4(0) - Qa(vy),
v 1B iz and |jot|| <o. (3.36)

k+1,8,A

For this, define first Uo = 0 for any A with sufﬁmently small ¢t and § > 1. Then Proposition
allows us to find a unique pre-image v* of —F5(0) — Q1(v{') = —Fx(0). From our
estimate on the inverse of I) ; on sections which are orthogonal to the approximate kernel
k5 from Proposition [3.12 we see that:

Il < Coll Pl
< CDHFA( )HLi(s 1,A
< CDCFtV(H 6).

Here we used the bound (3.19) on our initial error estimate in the last line. We see that
for sufficiently small 1 < § < p the initial error will become arbitrarily small. Thus for
to > 0 sufficiently small we have:

o

v(p—9
lvf! e ., . < CpCrt =0 < 1

for all t € (0,to]. Suppose now that we have constructed A for some i € N, such that

vt ||L£+1 < 0. We then find the pre-image v ; of —F5(0 ) A(v) and use our estimate
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on )z from Proposition to show the following:

Hvz{‘H ||L£+1,5,A < CDHIDAUZAHLZ,&LA
<Cp(IFxO) ez, +1QalvMle, )
v(p—9) A2
< CpCt + Callv; ||L£+1’6+1’A
< % + C’Qa2 <o0.

We can now iterate this procedure to obtain a sequence {vf}ieN for every t € (0, to] which
satisfies our requirements (3.36]). Note that we are free to choose 0 < o < CQ—Q. This family
of sequences converges uniformly in A, as we have the bounds:

< CpllQa(v) = Qa(wilur
CpCo(l[vi ||

k+1,6,A

<
< 2CHCool|v — vt | 1o

k41,64

lods — oz

ot = oyl

ol )l

k+1,5,A

If we choose o small enough, we can ensure that:

< %H%A - UZ':“L”

ek = vl

k+1,5,A

p —
A k+1,6,A

thus find limits v € Li+1757A(V(NA)). Since both [Pz and @ are continuous maps of

Banach manifolds, we have:

Thus {v}sen is a Cauchy sequence in L (v(N4)) for each A simultaneously. We can

Davd = lim Dol
1— 00
= lim —F4(0) — Q4(v]")
1—00
= —F3(0) — Qa(v2).

Thus F3(v2) = 0. We then immediately get smoothness for v2 by Proposition m By
Theorem [2.16{ we can conclude that N4 = exp, i (N4) is a family of smooth Cayley sub-

manifolds, as the family clearly only varies in a compact subset of M. The manifold N4 has
the same topological type as N4 and together the N4 form the desired desingularisation.
Thus we can define a map T' as above on the slice {®} x MFEg(N,{®}) x [I-, U
We would now like to extend this map when the ambient Spin(7)-structure is allowed
to vary. For this, we first choose a trivialisation T : U x MFPg(N,{®}) =~ MEG(N,U),
where s € U C § is an open neighbourhood, which can be done by unobstructedness
of N, using Theorem [2.42] Now we can repeat the above iteration scheme for & € U,
where we now glue A onto N’ = T(®', N). From this, we see that smoothly varying the
Spin(7)-structure leads to a smooth change in the resulting submanifold.
Note that: )
< 2\|vdt || e < Ot (3.37)

A
||voo”Lp k41,641,A4

k4+1,5,A
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and thus as the scale t tends to 0, the resulting Cayley will converge in Li L6 (thus

in Cl ) to N A which in turn converges in the sense of currents to the conically singular
N. As we also have CF_ convergence for any k > 1, we get C° convergence as well.
Moreover, there is nothing special about reducing the global scale as opposed to reducing
only a subset of the scales to 0. In this case, the same argument localised to the singular
points in question gives the C}X. convergence to the partially desingularised V.

Finally, this construction is smooth in the gluing pieces away from cones. Indeed,
varying the pieces gives rise to a smooth change of the p.d.e. Fj(v) = 0, and all the
constants involved in the iteration scheme remain valid. Thus the result will also vary
smoothly:. O

Remark 3.17. We would like to point out that Theorem [3.15] is not the only possible
gluing result in this setting. What is needed in the construction are the following three
ingredients. Whenever these are true, we can prove a corresponding gluing result.

e The initial error ”FA<O)HL£+1 , ; eeds to go to zero as the global neck size ¢ — 0.

e The quadratic estimate (3.31)) needs to hold for some constant Cg.

e The linearised operator needs to be invertible orthogonal to its kernel, and has to
have uniformly bounded norm.

The first two items above are true as long as our initial approximation gets better in
a C! sense as t — 0, and we know how to handle the local model of the noncompact piece
(in this case a cone). In particular, we do not need the unobstructedness of the AC and
CS pieces for these two items. We do however need it for the last item, where it is crucial
that the glued operator is surjective and has a well-understood behaviour in the Lg 54
norms as t — 0. In Theorem |3.15( we chose the rates of both pieces to be near 1 and then
included the slightly tricky rate 1 into the moduli space of CS Cayleys. However, provided
that A4; € M & and MG are unobstructed (where we now allow the points to move in
the CS moduli space), we can define a gluing map:

k
D:Ux MEg(N o) x [Joi— U LL(Ny, S). (3.38)
i=1 Ic{1,...k}

Here U; C M;é are now excluding the translations. They are included in the CS moduli
space. Essentially we can define a gluing map whenever we have rates A\ < 1 < p for which
the pieces are unobstructed, and we can include the translations and rotations manually
on the conically singular side.

Note however that if we are missing some critical rates, in the sense that there is a
critical rate § € &, which is not accounted for on either the AC or the CS piece, then the
gluing map will not be surjective. So for instance, if we are given a cone with no critical
rates in the range (0, 1), we still have surjectivity of the map T.
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3.4 Desingularising immersed Cayley submanifolds

Two positively intersecting Cayley planes cannot be desingularised by a minimal surface,
as they are already area-minimizing by the sufficiency part of the angle criterion, proven
by Nance in [40]. More concretely, two complex planes I1y, I, intersecting transversally are
an example of positively intersecting Cayley planes. Now it is a consequence of Hartog’s
phenomenon that no nonsingular complex surface S can exist that is AC to two such
planes. Indeed, over II; \ {0}, such a surface can be seen as the graph of a holomorphic
function f : II; \ {0} — Il,. According to Hartog’s phenomenon such a function must
extend holomorphically to all of II;, which is in contradiction to the fact that f must
diverge to infinity as one approaches 0 € II;.

As an immediate consequence of Lemma[2.29|and Theorem [3.15]we obtain the following
desingularisation result, which is optimal by this discussion. We note that if a Cayley N
is unobstructed as an immersed Cayley, then it is also unobstructed as a CS Cayley with
moving points and cones. This can be seen by comparing the two deformation operators:

F:C(v(N)) = C®(E), F:C*w(N))eF - C*(E).

Here F contains the zeroth and first order deformations, which is the only difference
between Cg° and C7° (for the cone given by two transversal planes) with 1 < p < 2.

Theorem 3.18 (Desingularisation of immersions). Let N be an unobstructed immersed
Cayley submanifold which admits a negative self-intersection at p € N. Then there is a
family of Cayley submanifolds with one fewer singular point {N;}ie.¢) such that Ny — N
in the sense of currents and also in Cy. away from the singularity as t — 0.

Example 3.19. Consider the Spin(7)-manifold (T, ®), which is obtained as a quotient of
(R®, @) by the lattice of integer points. Consider any affine plane in R® which descends to
a closed manifold in the quotient. Take for instance the special Lagrangian plane R* ¢ C*.
It admits a 16-dimensional space of Cayley deformations, however, a 12-dimensional subset
of these is generated by rotations and thus not preserved in the quotient (as the image
will be of a different topological type). What remains are the 4-dimensional family of
translation, which descend to the obvious translations of a T* x {0} C T%. Its Cayley
moduli space however has expected dimension (o(T*) — x(T*)) = 0 by Example 2.19
Thus this four-torus is obstructed as a Cayley in the moduli space M(T®, ®). We can
modify the Spin(7)-structure near 7% so that the submanifold becomes unobstructed in
the new moduli space M (T, 51:9). In particular, if we take the union of a finite number of
such tori that each intersect each other negatively, we can construct a Spin(7)-structure
in which we can desingularise the union of tori using our gluing theorem to obtain
a connected sum of tori in a (7%, ®), where ® is a small perturbation of the usual flat
structure Py.

Example 3.20. Consider the CY fourfold M = {z§ + 28+ 2§ + 28+ 28 + 20 = 0} C CP®.
In this manifold, we can construct special Lagrangian and complex submanifolds which
intersect at a point. For the complex surface we take N = {z; = izp, 23 = i24}. For
the special Lagrangian, we choose the fixed-point locus of the following anti-holomorphic
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involution:
U([ZO7 R1, %2, 23, %4, 25]) = [207 217 227 Z37 eing)]'

We have that L = Fix(o) is a special Lagrangian submanifold by [19, Prop. 12.5.2].
They intersect negatively, however it turns out that the special Lagrangian is obstructed.
Thus as in the previous example, we can only say that there is a Cayley in a nearby
Spin(7)-structure. More generally, special Lagrangians tend to be obstructed, as we see
from Example 2.19] There we show that the obstruction space of a special Lagrangian L
in a CY fourfold M is given by:

O(L) ~ H°(L) ® H> (L).

In particular, if L is connected we then have dim O(L) = 1 + b*»~. We remark that these
obstructions seem to stem from freedom in the choice of parameters in the Cayley form,
at least in the torsion-free setting where calibrated submanifolds are minimal. Recall the
formula for the Cayley form:

D, = Re(e¥Q) + 1w A w.

Here any choice of ¢ € R and any choice of w in the Ké&hler cone K of (M, J w,g)
gives rise to a valid Cayley form. However note that if L is special Lagrangian in M, i.e.
Re(Q)|, = dvoly, then the moduli space M(L, ®,,) with ¢ # 27k is necessarily empty,
for by Stokes’ theorem whenever L is homologous to L:

/i e / T = /LRG@“"Q) < / Re(£2) = vol(L),

And thus no calibrated submanifolds in the homology class of L can exist for ®,, in the
torsion-free setting. We can remove the obstructions associated to ¢ manually by quoti-
enting M by an antiholomorphic involution. The only Spin(7)-structures that descend to
the quotient must satisfy ¢ = 27k. One could feasibly remove the obstructions coming
from w by working in the family of Spin(7) structures {®, s }oex, which may be enough
to ensure surjectivity of the family operator )g. While the gluing Theorem was only
be proved for Cayleys that are unobstructed for a fixed Spin(7)-structure, an analogous
iteration scheme involving ® is conceivable. This would lead to a true Cayley in one of
the structures @, .
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Chapter 4

Cayley fibrations

In this chapter, we focus our attention on the question of stability for Cayley fibrations of
compact Spin(7)-manifolds. That is, if (M, ®) is a Spin(7)-manifold fibred by a collection
of Cayleys M(N,®) (which will contain both singular and nonsingular Cayleys), under
which conditions does the Spin(7)-manifold (M, ®) for ® a small perturbation of ® also
admit a fibration by Cayley submanifolds, now for the Spin(7)-structure P?

Our answer will be twofold. First, we discuss the notion of weak fibration, which is ho-
mological in nature, and prove that weak Cayley fibrations are stable if their singularities
are at worst conical and the locus of singular fibres in the base is of codimension at least
2. This is a direct extension of the work in Chapters [2] and [3] When the Spin(7)-structure
is perturbed smoothly, unobstructed Cayleys (both nonsingular and conically singular)
deform smoothly because of the structure results for their family moduli spaces [2.16] and
2.42] We will work under the assumption that the fibres have at worst conical degenera-
tions. In other words, adjoining the conically singular Cayleys provides a compactification
of the moduli space of nonsingular compact Cayleys. We then use the gluing theorem [3.15]
to show that the fibration remains continuous even at the interface between compact and
CS Cayleys.

Then, building on top of the weak stability result, we prove that a strong fibration
(satisfying some reasonable assumptions) remains C'! with a uniform bound on the deriva-
tive of the fibration in the base direction, even when approaching the singular fibres. This
prevents the fibres from starting to intersect as the Spin(7)-structure is deformed. The
proof relies on a gluing argument, where we glue solutions to the linearised Cayley equation
(these give exactly the deformations to nearby fibres in the fibration) on the desingularised
manifolds from Chapter [3]

4.1 Strong and weak fibrations

Let (M, ®) be a fixed Spin(7)-manifold, and assume that N is a compact, unobstructed
Cayley submanifold such that every element of the moduli space M (N, ®) is unobstructed.
Then M(N, ®) is a smooth manifold, which in general will be noncompact. Various kinds
of behaviours could in principle arise, but one can find examples where at worst conically
singular degenerations occur. Under these assumptions and using the gluing map I" from
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Section we expect M(N, ®) to decompose as:

M(N, ®) = KuUFA1]W®{AeMm()O<ﬂ)<Q®)

=1

Here K is a compact set of nonsingular Cayley submanifolds, and the rest is given as
desingularisations of a collection of conically singular Cayleys N; (1 < i < n) with rates
1 < [; < 2 by appropriate AC, Cayleys (A < 1). The constant ¢ > 0 is chosen suf-
ficiently small, and we write M3(A) (where A = (A;,..., A})) for the product space
Mig(Ar, @g) x -+ x Miag(A;, ®g). We expect that for generic Spin(7)-structures both
the conically singular and the asymptotically conical manifolds are unobstructed and we
may thus apply our gluing theorem [3.15] We can include the conically singular Cayleys
to form the completed moduli space:

Mw@zMN¢uUM (N;, ®).

The topology is induced from the completed moduli space of asymptotically conical man-
ifolds. In other words if N}, = I'(Ag, Nk) is a sequence with Ay limiting to a cone C as
k — oo and Nj, — N then also Ny — N in the completed moduli space. This gives
M(N, ®) a well-defined topology by the continuity of the gluing map I

In fact, this space is a stratified manifold where the full-dimensional open stratum is
exactly M(N, ®). The lower-dimensional strata are the MU (N;, ®) which by unobstruct-
edness are of codimension dim M (A4;). From this discussion, it is natural to define the
following concept of a Cayley fibration.

Definition 4.1. A strong Cayley fibration or simply Cayley fibration of a compact
Spin(7)-manifold (M, ®) is a homeomorphism ev : Univ(M(N, ®)) ~ M, for some smooth
Cayley submanifold N. Here Univ(M) is the universal family of a moduli space of
submanifolds M. As a topological space, it is the union of all N € M with the topology
induced from the embeddings of the N into the ambient manifold. Furthermore, ev is the
evaluation map that sends a point in a Cayley to itself, seen as a point of M.

Ideally, we would like Cayley fibrations to not contain any singular fibres at all. How-
ever, this assumption seems to be unrealistic in practice, as Cayley fibrations coming from
complex fibrations of Calabi—Yau fourfolds need to admit a topologically determined num-
ber of singular fibres when counted with multiplicity. In Remark for example, where
we investigate a particular example of a fibration, the number of singular fibres equals
the number of solutions to a system of polynomial equations on complex projective space,
which by Bézout’s theorem is just the product of the degrees of the polynomials.

Fibres with singularities complicate proving the stability of Cayley fibrations under
small smooth perturbations of the ambient Spin(7)-structure, essentially because it is
harder to compare nearby Cayleys with different singularities than it is to compare Cay-
leys of the same topological type. For strong stability one needs to make sure that no
two nearby fibres deform too rapidly relative to one another as the Spin(7)-structure
varies, which requires a C*' estimate on the fibration. This is explained in more detail in

Section [4.3]
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To remedy this we introduce a weakened version of the fibration property. Here, stabil-
ity under change of the Spin(7)-structure relies only on showing continuity of the fibration
under perturbation, which is a direct extension of the desingularisation theory we devel-
oped in the previous chapter.

We use the notion of pseudo-cycles from [33 Section 7.1]. They allow us to define
the degree of the evaluation map ev : Univ(M (N, ®)) — M, even when the domain is
not a compact manifold. To work with pseudo-cycles, we need the singular stratum of

M(N,®) to be of codimension at least 2 so that the push-forward of the fundamental
class can still be defined.

More precisely, a pseudo-cycle from a smooth (possibly noncompact) manifold X of
dimension n to a compact smooth manifold M is a smooth map f : X — M such that
the boundary of f(X) is of dimension at most n — 2. Here we define the boundary as the
set of all limit points (in M) of sequences f(zy), such that x; does not have a convergent
subsequence in X. In our situation, we will take X = Univ(M(N,®)) and f = ev, so
that the boundary of f(X) consists of all the points in M which lie in a conically singular
Cayley. We say that two pseudo-cycles f : X — M and g : Y — M of dimension n
are bordant if there is a further pseudo-cycle with boundary h : W — M of dimension
n + 1 such that the boundary of W is exactly X UY, and h restricts to f and g on X
and Y respectively. Pseudo-cycles of a given dimension n, taken up to bordism, form a
group, which we denote B™(M). It is related to the homology of M by a group morphism
[-] : B*(M) — H"(M). In other words, each pseudo-cycle defines a homology class. More
specifically when n = dim M, we can define the degree of a pseudo-cycle f : X — M as
deg f = k where [f] = k- [M], [M] being the fundamental class of the compact smooth
manifold M. This corresponds to the usual definition of the degree when X is a smooth
compact manifold. We are now able to define weak Cayley fibrations.

Definition 4.2. A weak Cayley fibration of a compact Spin(7)-manifold (M, ®) is a
well defined pseudo-cycle ev : Univ(M(N, ®)) — M, for some smooth Cayley submanifold
N, where ev is required to have degree 1. Here ev is the evaluation map that sends a
point in a Cayley submanifold to the corresponding point in the ambient manifold M
and M(N, ®) is the moduli space of compact Cayleys together with conically singular

degenerations.

Note that requiring the evaluation map ev to be a pseudo-cycle puts some restrictions
on the possible local models near the singular fibres. Indeed, the singular Cayleys need to
be of codimension at least 2 in M(N, ®). Thus for the unobstructed case, this means that
dim M (A, ®9) > 2. This is for instance satisfied for the asymptotically conical model
Ac={2® + 4>+ 2> = ,w = 0} in C* from Remark [2.25] which has M}q(A,) =~ C \ {0}.

4.2 Stability of weak fibrations

In order to discuss the stability of Cayley fibrations, we need to revisit the iteration
scheme for almost Cayley submanifolds from Section [3.3] In Equation the scheme
is described for weighted Sobolev spaces, but it is easiest to understand in the unweighted
setting. Assume that N C (M, ®) be a compact almost Cayley with a well-defined elliptic
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deformation operator F'(v) = F(0) + v + Q(v) and a pseudo-kernel x C C®(v(N)),
further assuming that IP|,. is an isomorphism (we call such N unobstructed). Now
consider a sequence of normal vector fields v; € C*°(v(N)) such that vy = 0 and for all
1> 0:

m’l)lqu = —F(O) — Q(Ui), V; J_LQ K. (41)

By going through the proof of the gluing theorem [3.15| as well as the preliminary lemmas
we see that also, in this case, there are constants C'p, Cy > 1 such that the following holds
for normal vector fields u,v € C*(v(N)):

||u||Lg+1 < CDH]DuHLﬁ whenever u 1% k,

1Q(u) = Q)lly < Collu—vlizy, (ullzp,, +1lvlly,,),
whenever |Jul|, ||v]| are sufficiently small. (4.2)
The iteration scheme then converges if:
CoCollF(0) 1 < e (4.3)

for a fixed € > 0. This will still be true for an L?-neighbourhood of submanifolds around N,
where the pseudo-kernel is x parallelly transported and suitably projected. In particular,
given sufficiently small initial data, we will have a bound for the norm of the limiting
vector field v, = lim;_, o v;:

ol

< il F(0)[Ize, (4.4)

where C7 is a fixed constant for nearby almost Cayleys.

Consider now a smooth family of nearby almost Cayleys {V; };e7 with pseudo-kernels
that satisfy the convergence conditions. We would like to investigate the dependence of
the resulting Cayleys on the initial almost Cayley. For this, note that we can recast the
deformation problem on the nearby submanifold NV; as a deformation problem on N,
but where the smooth differential operator F'is perturbed smoothly to F;. Similarly, we
have that perturbing a Spin(7)-structure ® in a family {®,}cs gives rise to a further

perturbation of the differential operator to Fj;, where we set ' = Fy 4.

Lemma 4.3. Assume thatp > 4 and k > 1. Let N be a compact, unobstructed, nonsingu-

lar almost Cayley submanifold of (M, ®), with deformation operator F : U C Ly, (v(N)) —
Ly (Ecay), where U is an open neighbourhood of 0 € Lj . (v(N)). Assume that r is a

pseudo-kernel such that (N, k) satisfies the convergence criteria for the iteration scheme

(@1). Let Fip : U — LY(Ecay) be a family of smooth perturbations for s € S,t € T as

described above. Then there is an open neighbourhood V- C S X T of (so,to) such that for

any (s,t) € U there is a unique element vsy € U such that vsy L ksy and Fyi(vsy) = 0,

which depends smoothly on s,t.

Proof. First of all, note that Fy; : U — L}(E.y) is a smooth family of Banach maps.
Hence the convergence criteria will also be satisfied for (Fy¢, xs:) with slightly larger
constants Cp, Cg, provided that (s,t) vary in a sufficiently small neighbourhood V' of
(S0, to). Thus the iteration converges to a unique solution vs; € r3, N U to Fyy(vss) = 0.
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As the constants are only slightly increased in this neighbourhood, we also see by the
bound that ||vs,t]|L£+1 < 2C1[|F(0)]| e, independent of s, .

We now use an implicit function argument to show that v, varies smoothly in s and
t when it exists. We first note that we can assume k5, = ~ are all equal, by precomposing
F,, with a suitably chosen automorphism of L} ,(v(NNV)) that varies smoothly in s,t. We
still call the resulting maps F;, and the constants Cp and Cp remain unchanged. We
then look at the smooth map:

A:(kFNU)xSXT — kT NU
(U, S,t) — (ms,t‘mL)il(_Fs,t(O) - Qs,t(v)) — .

We clearly have A(w, s,t) = 0 exactly when w = v,,. To prove the smoothness of vy, it
is thus sufficient to show that 9,A(vsy, s,t) : kK — k* is an isomorphism. One can show
explicitly that:

avA(Us,t7 S, t) - (lps,t‘f-ﬂ-)_la’UQS,t(U&t) —id.

From the quadratic bound on @), we see that
100Qs.(vst)llop < 2Cql|vsellrr,, < 4CQ|IF(0)]|p-
From the bound on I, we see that

(P tlir) ™ 0uQs(v(3))lop < ACHCqlIF(0)]l1p-

In particular, if we further reduce V' so that 4CpCq||F'(0)|» < € (recall that Fy,(0) =0
for s = sp), we can assure that 0,A(v(s), s) is an isomorphism. O

The previous result shows that a collection of compact and nonsingular unobstructed
Cayley submanifolds varies smoothly under change of the ambient Spin(7)-structure, even
in a quantitative way. We now need to analyse how nearly singular Cayleys are perturbed.
For this, consider an unobstructed CS,, (1 < u < 2) Cayley N C (M, ®) with one singular
point. Assume that we have a matching AC, (A < 1) Cayley in R® of sufficiently small
scale so that we may glue as in Theorem [3.15] Then nonsingular Cayleys in M(N$A) near
N C M are given as T(N, A, ®) for N € MEg(N, ®) and A € MAo(A, By). If {®,}ocsis a
small perturbation of the Spin(7)-structure, we may also consider I'(N,, A, ), where Ny
is the family of deformations of N. We consider this to be the deformation of I'(V, A, @)
in the new Spin(7)-structure .

Let vy € C*°(v(I'(N, A, ®))) be the normal vector field that describes the perturbation
of (N, A, ®) to I'(Ng, A, ®,). We claim that it can be decomposed into two contributions
as follows:

Vs = VS, s + 178. (45)

Here vcg s is the deformation between the two pre-glued manifolds N s0.4 and N*4. It
can be thought of as a gluing of the perturbation vector field that takes N to N, with the
perturbation vector field that takes A to translated and rotated A, which is determined
by how the conical point of N deforms as we pass to Nj.
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The remaining error term ¥, is the sum of the perturbations from I'(N, A, ®) to N4
and from N*4 to T'(N, A, ®,). Now by our gluing theorem|[3.15 we know that 10slze,,
Ct for some constants 1 < d < p,a > 0,C > 0. In particular, since t* — 0 as t — ’O’, we
know that the dominant term must be vcs s, which is of order O(1). We are now ready to

prove the stability result for weak Cayley fibrations.

Theorem 4.4 (Stability of weak fibrations). Let (M, ®) be a Spin(7)-manifold that is
weakly fibred by Univ(M(N, ®)), and suppose that {®,}scs is a smooth family of Spin(7)-
structures with ® = ®,,. Assume that all the Cayleys in M(N,®) are unobstructed
and that the cones in the conically singular degenerations of N are semi-stable and un-
obstructed. Then there is an open set so € U C S such that M is weakly fibred by

Univ(M(N, ®y)) for any s € U.

Proof. Note first that all the Cayleys in M (N, ®) persist under a sufficiently small pertur-
bation of the Spin(7)-structure. To see this, we apply the iteration scheme from the proof of
Theorem simultaneously to all the Cayleys in M (N, ®) in the following way. First, we
fix pseudo-kernels rcg(N) for all the conically singular Cayleys N € M(N, ®)\ M(N, ®).
As we assumed all the CS manifolds to be unobstructed, their moduli spaces are of strictly
lower dimension than M(N,®) (as dim M*“(A) > 1 since rescaling is always a possible
deformation). These moduli spaces can be noncompact as well, but only in that further
conical singularities can appear. Thus only finitely many conical singularities can appear,
and both M(N, ®) and M(N, ®)\ M(N, ®) must be compact. In particular, we can bound
the values of the constants Cp, Cy uniformly for all conically singular Cayleys that ap-
pear. The same is true for the nonsingular Cayleys that are a fixed distance away from
the singular points, as they form a compact set as well. Finally by the estimates
and we see that the remaining nonsingular Cayleys, which are desingularisations
of the conically singular ones have bounded Cp and Cg as well.

This is exactly because we adapt our Banach spaces Li} 5.4 to the scale of the glued
manifold. In conclusion, the values of the constants Cp and Cg are uniformly bounded
for all Cayleys in the weak fibration. In particular, for sufficiently small perturbations of
the Spin(7)-structure that fix the singular points, we can ensure that 2Cp and 2Cq are
still valid constants and that the initial error || F'(0)]] 12, , , 18 arbitrarily small as well.

Hence for small perturbations of the ambient manifold, all Cayleys persist simulta-
neously, and we get a family of vector fields v, € Map(Univ(M(N, ®)), TM) for s € S.
These vector fields need not be continuous a priori, as they are defined separately on each
Cayley as the limit vector field v, obtained in the iteration scheme. However by Lemma
above we immediately see that they fit together to form a smooth vector field on the

open subset of Univ(M (N, ®)) given by the union of all nonsingular Cayleys. Similarly,
we see that on a singular stratum of Univ(M (N, ®)) with fixed kinds of conical singu-
larities the vector fields also fit together to form a single smooth vector field along that
stratum.

What is not a priori known is the regularity of the global vector field along the normal
direction of a singular stratum, i.e. what happens as a Cayley degenerates towards a more
singular Cayley. We can now use the bounds on the desingularisations in Equation (3.37))

to show the continuity of the deformation vector fields.
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Consider for this a conically singular Cayley N C M together with its family of de-
formations N; for small deformations s € S of sq. The Cayleys close to Ny C (M, ®y) in
the moduli spaces M(N,S) are given by its desingularisations. We now choose an identi-
fication I : Univ(M(N, ®)) ~ Univ(M(N, ®,)) as topological spaces so that T'(N, A, ®) is
sent to ['(N,, A, ®,). Next, we analyse the behaviour of the vector fields v, € Map(Univ(M(N, ®)), T M
near the singular fibres. As we have seen from Equation ([4.5), the vector field Ur(N,A,0)
that describes the perturbation of I'(N, A, ®) decomposes as follows:

Ur(N,Ae) = VcS,s T Us- (4.6)

Here vcg 5 is a glued vector field, obtained by combining the vector fields vy s that take N
to N, and A to a rotated and translated A. In particular, this component approaches vy g
as t — 0. The other component, ¥, satisfies ||v;]| o< Ct* from our gluing theory,

and hence also |,|co < t*p°. Thus eve, is a continuous map, even as one approaches
the singular Cayleys, and the vector fields v, € Map(Univ(M(N, ®)), TM) are in fact
continuous, and vary continuously with s.

We showed that I is a smooth map on the nonsingular stratum, and maps the singular
strata homeomorphically to singular strata with the same singularities. Since we also
showed that evg, are continuous maps and the boundaries of evg, remain of codimension
at least 2, we see that eve, |univ(m(v,e,)) Temain pseudo-cycles.

Fix now a smooth path v : [0,1] — S joining ¥(0) = sp and y(1) = s. Define the
manifold W = Univ(M (N, {® ) }icp,1)) and consider the evaluation map evy : W — M.
We see that evy forms a bordism pseudo-cycle between evg and evg,. So in particular, if
the degree of evg was 1, it is also 1 for eve,. O

4.3 Stability of strong fibrations

We showed in the previous section that weak fibrations are stable under perturbation of
the Spin(7)-structure. This relied on the fact that the perturbation vector fields (which
describe how a given Cayley perturbs under change of the Spin(7)-structure to a nearby
Cayley for the new structure) remain continuous under the collapse of nearly singular
Cayleys to their conically singular limits. In other words, the nearly singular Cayleys de-
form with the singular Cayleys. This means that by perturbing the Spin(7)-structure, the
entire completed moduli space (including the conically singular Cayleys) varies continu-
ously, even at the singular fibre. Proving the stability of strong fibrations means improving
this result by showing that these vector fields, which are continuously differentiable, have
bounded C* norm as the neck size shrinks to zero and one approaches a singular limit
(as we will see later, the region away from the singularities, as well as the conically sin-
gular Cayleys themselves, are easy to handle, essentially because their moduli space are
compact). As a toy example, we consider a fibration of R? by lines, which we see as the
projection map:

f: R —R
(r,t) — t.
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Figure 4.1: Folding over for arbitrarily small time. The fold has width O(s"/(1=%)).

Here we think of ¢ as the distance from the ”singular fibre” f~1(0), and of 7 as the radial
distance from the ”singular point” (0,0) € R?. The corresponding weak fibration would
be the evaluation map:

ev: Univ(£) — R?
(L, (r,t)) — (r,t).

Here L = {(s,t),s € R} = f~!(t) is a straight line in R* and (r,t) € L is a point on
this line. We denote by £ the "moduli space of lines” in this example. In analogy to the
weak stability result, Theorem , we consider a perturbation of this fibration (as a weak
fibration) given by a homotopy h : (—¢, ¢) x R* — R. Note that here the new fibres in the
weak fibration are not the pre-images h;'(¢) for t € R, but the images h(s,t,-) for some
fixed s,t € R. Let’s say that the singular fibre and point remain fixed so that h(s,r,0) = 0
for all s € (—¢,€). In our analogy, we proved above that for ¢ € R sufficiently close to
0, the value of h(s,r,t) remains close to h(0,r,t) in that |h(s,r,t) — h(0,7,t)| < s|t|*|r]"
(0 < a <1 < 7). We realise quickly then that this does not imply that h(s,-,-) is C* on
all of R? for s # 0, even if we assume that it is smooth at time s = 0 and smooth away
from the singular fibre for all time. Indeed, we consider:

h(s,r t) =t — s|t|*|r]".

Then clearly |0;h| — oo as t — 0 for some fixed r # 0. Thus the fibres in this
fibration start to move very quickly relative to one another, even though they do not
perturb very much after any finite time. Indeed the fibration property is not preserved,
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as for s # 0 the weak fibration h, admits fibres that intersect. Just consider the initial
fibres t = n and t = € for 0 < € < n < s¥/=%_ One can see that there is 7, . such that
hs(n,mne) = hs(€, 7).

Thus we need to investigate the equivalent of 0;h for the Cayley fibration problem,
which are the infinitesimal deformation vector fields. For a given Cayley fibration
f: M® — B*, they are the normal vector fields to a Cayley N = f~1(b) which are lifts of
tangent vector v € T, B in the base. Seen differently, they are the first-order variation of a
family of Cayleys parametrised by curves in B. Finally, they can also be seen as solutions
to the linearised Cayley problem Pw = 0 for w € C*(v(N)), and this is the perspective
we will use. To show the boundedness of the infinitesimal deformation vector fields, we
solve the linearised Cayley equation Pw = 0 on the desingularisations T'(N, A, ®) via
another gluing argument. In the following, we assume:

e N C (M,®) is an unobstructed CS, Cayley (1 < p < 2) with a unique singular
point, with semistable (as in Definition [1.36)) cone C' C R®.

e A C R®is an unobstructed ACy Cayley (A < 0) with asymptotic cone C.

e There is a critical rate ( = max{%¢ N (—00,0)} such that ), is an isomorphism
at rates just below (.

Under these assumptions, the deformation vector fields of I'( N, A, ®) split into two classes:

e The deformations of rate ¢, which come from varying A, i.e. wac = 9;T'(N, Ay, @) for
a family {A;}ie(—ce)- These correspond to moving orthogonal to the singular locus
in B.

e The deformations of rate 0, which come from varying N, i.e. wes = 9,['(Ny, A, @)
for a family {NV;}ic(—e). These correspond to moving parallel to the singular locus
in B.

We will now show in turn that these infinitesimal deformation fields remain bounded
in suitable weighted Sobolev spaces.

Deformations in the normal directions

First, we look at the deformations of nearly singular Cayley submanifolds that are coming
from variations in A, i.e. deformations of rate r¢ with ¢ < 0. Note that as the neck size
t — 0, we can find vector fields wac, as above with min |wac:| — 1 but max [wac,| =
O(t°). In this sense, they are fundamentally different from vector fields describing parallel
movement, which are of constant magnitude as we approach the singular limit.

Suppose that {®,}scs is a smooth family of Spin(7)-structure on R® which are all AC,
(n < 1) to the flat ®y. For a fixed 5o € S, let A C (R® ®,,) be an unobstructed AC)
a-Cayley submanifold (n < A < 1) asymptotic to the cone C' = R" x L. Suppose that
a is sufficiently close to 1 so that A admits a linearised deformation operator I . For
a given weight ¢ € R, denote by Z5(A) the solutions w € C(v(A)) to Pacw =0, ie.
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which have decay rate at most 7¢. More precisely, fix an identification of the end of A
with (Rg,00) x L. We can then define for w € Cg°(v(A)):

— 1; —C+1 4 r*

Oew = Tli)rgor S (W] <L) (4.7)
Here M, denotes the map from the unit sphere in R® to the sphere of radius r, also in R®.
This rescales the normal vector field by a factor of r and explains the shift by 1 above.
Hence d;w € C*(v(L C S7)) is extracting the component r¢c of exactly rate 7. The
vector field w is called (-non-zero if 0;w # 0. Similarly, we call it (-nowhere-vanishing
if 9w is nowhere vanishing. Note that on the end we can write [) ¢ = % —r~1B(r), with
B(r) = B, the limiting operator on the link. If w € Z5,(A), then dcw is well-defined
and an eigensection of the limiting operator B,, with eigenvalue (. By Proposition [2.37],
the asymptotic behaviour of B(r) is precisely:

IB(r) = Bcllop = O(r*71). (4.8)

Here the operator norm is taken with regard to an arbitrary Sobolev norm on the cross

section. From this, we deduce the asymptotic expansion of infinitesimal deformation vector
fields.

Proposition 4.5. Let w € ngc(A) with IDsc unobstructed at sufficiently large rates
(—e<( fore>0. Then there is €, R > 0 such that for r > R and p € L we have:

w(r,p) = (Oqw)(p)réa(r) + dw,

where dow € C (V(A)) and a : Rso — [0,1] is a cut-off function such that o = 1 for
large radii and o = 0 for small radia.

Proof. Recall that the AC, condition gives us an identification of the end A\ K with
L x (rg,00), where K C A is compact. Then define dw = w — a(r)or¢ for ¢ = ;w and a
cut-off function  : A — [0, 1] such that o = 1 for large radii and o = 0 for small radii. We
then compute, using the fact that Pac = & =71 (B +0B(r)) with [|6B(r)||op, = O(r*71)
by Equation (4.8)):

0= Dacw = Dac(a(r)ort + dw)
=" (r0,a0 — 0B(r)[ac]) + Pacow.

In particular, this implies that for r large we have:
Dacow = 6B(r)ort ™ € CE 1t (r-1)s

so that from unobstructedness at the rate ( + A — 1 < 5 < ¢ we see that there is w €
L C~(V(A>) with D sct = P acdw (not necessarily unique). In particular this means that

W = 6w + u, where IDcu = 0. However, there are no non-zero infinitesimal deformation
vector fields with rate in (5 ,¢] which satisfy d;u = 0, hence dw itself must have decay in
O(r¢=¢) for sufficiently small € > 0. From elliptic regularity for the operator ID,¢ at rate
¢ — € we can now deduce that dw € C&_(v(A)). O
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We can now prove that both the existence and (-nowhere-vanishing of infinitesimal
deformation vector fields are stable under AC, perturbations with A < 0.

Proposition 4.6. Let { A }ie7 be a smooth family of AC)y perturbations of A = A, where
to € T. Assume that all the elements ofIiC(A, ®) are (-nowhere-vanishing and that the
operator ID ¢ is an isomorphism at rate ( — € for some small € > 0. Then there is an
open neighbourhood U C 8 X T of (so,to) such that all the elements of IiC(At, o) are
still (-nowhere-vanishing for (s,t) € U.

Proof. Take a solution w € IiC(A, ®), which we can write as follows, using Proposition

(4.5t
w = (Qew)ra + dw,

for some dw € Ly . (v(A)) for some small € > 0 and a cut-off function @ : A — R that is
zero for r < Ry and one for r > Ry. We make the ansatz w,; = ((Ocw)+0)r¢a+ 6w+ dws
where o € L, (v(L)) and 0w € Ly . (v(A)). The linearised Cayley equations for (A;, @)
then becomes:

0= Dacswss = (Pac+ 1 "0Bsu(r)[w+ orfa + dws,]
= Dac [arca + dws | + r_léstt(r)[ws,t]. (4.9)

Here §B;; is the error term introduced by (A;, ®5) compared to (A, ®). In particular
0By, 1, = 0. From Proposition we see that ||0Bs(r)|lop € O(r*1), where A < 1
is the asymptotic rate of A. Thus from Equation we see that solving the Cayley
equation on (A, ®5) amounts to solving the Cayley equation on A with the error term
—1r B4 (r)|ws,] € Li,g—1+(,\—1)(V(A))~ In particular, this implies ¢ = 0 because any
solution needs to have decay at least ¢ + (A — 1) < (. Hence any solution will be (-
nowhere-vanishing, since d.w is nowhere vanishing by assumption. Finally, the existence
of solutions follows the same argument as the proof of the previous Proposition [4.5] [

Let N C (M, ®) be an unobstructed CS, Cayley (1 < p < 2) and A C (R®, ®p) an
unobstructed AC, Cayley (A < 0) which satisfy the assumptions of the gluing theorem
in the form of Remark [3.17] Hence we include all the positive rates in the CS moduli
space and all the strictly negative rates in the AC moduli space.

In particular both Cayleys admit the same asymptotic cone C' C R® and the same
critical rates Z¢ C R. We thus get a family N*4 of compact almost Cayley submanifolds
of M for t > 0 small, obtained by gluing a copy of A rescaled by a factor ¢ onto the conical
singularity on N.

By Proposition this approximate Cayley satisfies ||7|xeal| 7 < "7 where
0 < v < 1 is an additional gluing parameter and 1 < v < pu is a chosen weight. Further-
more, there are perturbations I'(V,tA, ®) of N*4 which are truly Cayley and that satisfy
['(N,tA, ®) = exp(v;) for normal vector fields v; € C*®(v(N*4)) with [[vel v oon S 2tV (1=),
Since we know that N*4 is Li’%t 4-close to the cone in the intermediate region, we can
deduce from Proposition that the linearised deformation operator satisfies:

D % — ' (Ba + 5B,(r)). (4.10)
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Here ||6B(r)||op = O(r**=)) by the a priori gluing estimates (3.19).

We will now perform an additional gluing construction for the infinitesimal deforma-
tion vector fields defined on the glued manifolds T'(N,tA, ®). Let wes € Zeg(N) be an
infinitesimal deformation of N of rate ( € Z¢, where ¢ = max{(—oo,\) N Z}. This is
a solution to Peg[wes] = 0 so that d;wes = o is non-zero, except if weg = 0. Similarly
let wac € IiC(A) be an infinitesimal deformation of A of rate ¢ that shares the same
limiting eigensection o. We then claim that a suitably glued vector field w, on N*4 is a
good approximation of a true solution to the equation ) yeaw = 0. For brevity, we denote
the operator )y also by I) when the neck size is evident. For this, we recall that N4
can be divided into three pieces as follows:

tA tA tA tA
N = N N N,

Here N!4, the upper region, is just {p € N : p(p) > try}, a truncated version of N. Then
we have the lower region, N4, which is {p € tA : |p| < tRy} embedded into M via a
Spin(7)-parametrisation  : R® — M. Finally the middle region N4 is interpolating the
two pieces between the radii tro and Ry. The gluing parameter 0 < v < 1 determines
where the interpolation happens, namely in between the radii %t” and t”. We can however
also think about this decomposition in a different way, namely:

N = NESU N,

Here N4 = {p € N : p(p) > t"} extends the upper region from before down to radius
and still agrees with N, but N{& now includes everything up until radius " where 0 <
V' <V < v <1 are two further parameters. The gluing of the infinitesimal deformation
vector fields will be performed between # and #". If we now consider t~'x~}(N%) C
(R®, @), we see that it is a noncompact almost Cayley, that agrees with A for radii below
%t”_l, but extends to radius t*'~!. In fact, the CS,, condition implies that this noncompact
Cayley can be extended to an AC, Cayley extending all the way to infinity, such that
the resulting family A, C R® converges to A in C5°. We can do the same for the family
of Spin(7)-structures ¢~ - x~*(®|5,(y)), and they will form an AC, family for n < \. We
refer to Lemma |3.7] and its proof for a more precise description of how this is achieved.

First, since A is unobstructed, the Proposition [4.6| shows that we can find a smooth
family of perturbations wac; € Cgo(y(At)) of wac with cwacy = Jcwac, so that wac, —
wac in Cf as t — 0. Hence we also get infinitesimal deformation vector fields over N4
which we will also denote by wac . Now choose a smooth cut-off function @y : R — [0, 1],
such that:

Qpcut|(—oo,u”} =0, (;Dcut|[1/’,+oo) =L

Using @ey; we define a partition of unity on N*4 as follows:

o (SEAB) i € WAL X (it o)

e(p) = 0, if pe N4 (4.11)

u )

1, if pe N,
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Here W' is a parametrisation that identifies L x (rot, Ry) with the gluing region of N*A.
We can now define w; as the interpolation:

wy = pwes + (1 — @)t wacy.

This normal vector field is a good approximation to an infinitesimal deformation on N4
in that it is almost a solution to the linearised Cayley equation:

Proposition 4.7. We have for A, N, w; and ¢ as above that there is some €, > 0 such
that:

[Pwel g St lwell g

k,Cte—1,tA " k+1,¢,tA°

Here we note that L% 41,44 15 the highest weight space such that the family w; has
sub-polynomial volume growth. Indeed, we have:

0(1), (<,
lwrlly,, ., =4 ©ogt). (=,
Lo, ¢

To see this, we note that the intermediate conical regional, which has mass proportional
to logt, is the dominant term. Proposition shows that the decay of Dw; is faster than
the expected O(r°~1) decay. In fact, it shows that the decay rate is ¢ — 1 + ¢, for some
small € > 0. For the proof, we use the following auxiliary result comparing the Cayley
operator on N*4 to the conical operator on the gluing region of w,. We denote this region
by Gy = (tV',t"") x L C N*A,

Lemma 4.8. We have for A, N, w; and {,~y as above that there is some €,a > 0 such
that if s € O (v(N*)) is a normal vector field then:

|<lp - wcon)S|Gt |Céf+€

C1ta < t%sla|orrigea

Proof. We note that for (r,p) € (t"',#") x L we have that the perturbation vector field v
taking the cone to N*4 satisfies:

|Vkv| L rhnk,

for any n > 0. Since we have p > 1 we see from Corollary [2.37| that for € = %(,u —1) and

o= 3(u—1)v" we get:

1

T’_C_E+1|(lD - lDCOH)S|Gt| - T_<_2(M_1)+1|(¢ - lbcon)8|Gt|

1
< r’c’i(“’l)“fr’“’lls\gth

Lo,
<r T sl o < t°sl.len

This is the case k = 0, and the higher-order cases are entirely analogous. O
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Next, we need to take a second look at the asymptotic expansion of Lemma for
wac and adapt it to a suitable estimate on N*4.

Lemma 4.9. For wac, and wcs as above, we can write them on the gluing region Gy as
follows:

WAC,t = TC@CU)AC + (5wAC,t, wes = ’/’Cacwcs + 5wcs.

Then there is € > 0 such that Swac € CZ° (V(Gy)) (with CE_.-norms bounded uniformly
int) and dwes € O (V(Gy)). On N*' we have furthermore for some € < e:

owaceleler ., <t Yl
/
|’t<5wCS‘GtHLk CheliA < tV )HthLQCtA

Proof. From Lemma it is clear that we can find € > 0 and dwac; such that:

WAC,t = TcagwAc + dwacy-

construction in the proof of Lemma [2.37] is continuous with respect to the operator ID.
Since we are working with a family {A4; };cp0,) where Ay = A, at least for sufficiently small ¢
we will have boundedness. The result in the conically singular case is completely analogous
to the AC case, so that dwcg € Che can be constructed. Note that in the CS case, stronger
decay means a higher rate, whereas in the AC case, stronger decay means a lower rate.
Now we move onto the bounds on N*4. In the following we set vol(G;) = Jor c ~4dvol.

The uniform boundedness (in ) of the C* _ norms of wac, follow from the fact that the
i

¢ < ¢
||t 5wACtHLZg+’tA vol(Gy)t rnGaXMwACt\C<+ »

< vol(G)t¢ max |dwac(t) |

Chel tA
ol(Gy)i¢ (t)g e

<v
< Vol(Gt>te(1—u/)—u’e’ 5 te(l—r/)—u HthLp

k,CtA”

Here we used the fact that vol(G;) = O(|’thL£<tA). Note that the exponent of ¢ is

positive for sufficiently small ¢’. Finally, the calculation for the conically singular case is
more direct:

[dwesllee ., S vol(Gi) max [dwesler

SVol(Grt e St w1y

kCtA

]

Proof of Prop.[{.7]. Note first that [Dw; is only non-zero in the gluing annulus G since w;
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is interpolating between two exact solutions in this region. From the expression:

¢

w; = pwes + (1 — @)t wacy

and using the fact that ) = )., + 61) with 610 a small perturbation (see Lemma [2.37))
we can compute the following:

Dw; = (Dcon + 512>)wt
= chon(waS + (1 - w)tchC,t) + élbwt

Already, we see from Proposition that for € > 0 sufficiently small there is a a > 0 such
that:

10 Dwl g

E ctetA < tantHLP

k+1,C+1,tA°

Furthermore, if we use the asymptotic expansions from Lemma [£.9) and the fact that
Ocwes = Ocwacy we see that:

Deon(pwes + (1 — 0)twact) = Peon(r* (Ocwes) e + dwes + (1 — @)t dwacy)
= Deon(pwes + (1 — @)t Swacy),

since d;wes is by definition a (-eigensection, and thus r¢(d;wcs) an infinitesimal Cayley
deformation of the cone. Now, since both dwcg and tcéwAC,t have LY el A DOTINS bounded

/ . .
by t* ||w||z» . for some o/, €’ > 0, we see that we get the desired expression:
k,¢,tA

”wthL” S tmin{a’a/}”thLP

k,+min{e, e/ }—1,tA ~ k+11<7tA.

We found a solution up to order r¢ to the linearised Cayley equation. We next solve the
equation in LZ,C +etas for which we recall that the inverses of the Cayley operators D yia
(up to the kernel) have operator norms uniformly bounded in ¢ as in Lemma [3.12, More
precisely there are subspaces £, C Cg°(v(N*')) such that for any u € L} ., ,(v(N'*))
with u L x; (for a suitably chosen inner product) we have:

el g S N Pullzg

k,CHetA T k—1,(+e—1,tA

(4.12)

This relies on the fact that ¢ + € is not a critical rate and that both ), and Pqg are
unobstructed at rate ¢ + e. We proved this in Proposition [3.28] We also already showed
that when both operators on the pieces are surjective, then so is /) on N*4. This is the
contents of Proposition [3.14] In particular, this means that there is a unique u; L x; such
that:

mut = lDwt,
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and furthermore:

e S HlDUtHL”

k,CHetA 7 k—1,(+e—1,tA

= || Pwl g

k—1,C+e—1,tA

< «

< el
Thus in particular we get a normal vector field w; — wu;, which is an infinitesimal

deformation vector field on N** and which we understand up to second order (orders ¢

and ¢+ ¢€). We now need to make the leap to a deformation vector field on the true Cayley
['(N,tA, ).

Proposition 4.10. Let N C (M, ®) be an unobstructed CS, Cayley (1 < p < 2) with
a unique singular point, and assume that its cone C C R® is semi-stable. Let A C R®
be an unobstructed ACy Cayley (A < 0) with a matching cone and sufficiently small
scale. Assume that the operator ID ¢ is an isomorphism just below the critical rate ( =
max{Z¢c N (—oo, A} and that all the AC Cayley deformations of A below rate 0 are
of rate exactly (. We then have that for any two matching infinitesimal deformation
vector field wog € I%S(N) and wac € IiC(A) there are glued vector fields wcs §; wac €
Z(T(N,tA, ®)) such that (after identifying v(N*4) ~ v(I'(N,tA, ®))) we have:

wes B wac = Wy + dwy. (4.13)

Here uilly ., = O(|logt]) and il

< tY|wellpe  , with o > 0. In particular
kChe A RG,tA
this implies that |dw,| < |w| ast — 0.

Proof. We first note that by the a priori gluing estimates from Proposition|3.6{and Lemma
we have that:

[ Dyea — Drviamllop ST

for some v > 1. In particular for sufficiently small ¢ we also get:

||(lDNtA|fii)_1 - (wF(N,tA,q))LiL)_lHOp 5 t7_1~

Thus the same procedure as above will allow us to prove that we can perturb our in-
finitesimal deformation vector field w; — u; on N* to an infinitesimal deformation vector
field weg 8¢ wac on I'(N,tA, @), with a just a further Eie—perturbation, whose norm we
can bound in exactly the same way. This concludes the proof. O]

Deformations in the parallel directions

We will now discuss the deformations of nearly singular Cayley submanifolds that can be
interpreted as running parallel to the singular locus in the base of the fibration. Whereas in
the previous section we looked at deformations of rate { < 0 coming from the AC piece,
we now look at the deformations of the next higher rate 0, which can be understood
as coming from translations of the conically singular points in the CS piece. The key
difference however compared to the previous section is that the Cayley operator IPog on
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N is never unobstructed at rates above 0. This is because we assume unobstructedness of
Dcs at rates slightly below 0 where ind IDg < 4 by the fibration property. However the
multiplicity of the critical rate 0 € P is at least 8 whenever the Cayley cone is not a
plane (in which case it is 4). Thus for all the conical models we are interested in we see
by Theorem that inds Dog < 0 for any § > 0.

Now the following problem appears back on N'4: if ¢ € LZ,&—I,t 4(E), then there is

always a unique w € L}, 5., (v(N*")) such that Pw = & with w 1% ker I, independent
of §. Now for rates ¢ < 0 < 0 we have the important estimate from Proposition [3.12}

< Oléley

k,0—1,tA

lwllee, ., (4.14)

with C' > 0 independent of the neck size t. This crucially relies on the fact that both pieces
of the gluing be unobstructed. However this is not true any more if ¢ falls outside this
range. Indeed if § > 0 then IDog admits non-trivial obstructions, i.e. there are elements
ob € Ly 5 1 (Ex) which are not in the image of D¢s. Since these obstructions disappear
once § crosses 0, this means that Degwe, = &op for some wop, € CST(v(N)). Thus from
the perspective of wgy, the rate of decay of Dogwep is higher than expected (—1 + &
instead of the weaker rate of —1). This is the reason why the estimate cannot hold
as is. Indeed, we see for § just slightly positive that the kernel of D¢ is (d(¢) + d(0))-
dimensional, while )og has trivial kernel. In particular from Theorem we see that
the bound does hold, but only if we have w L%+ x, where r, is (d(¢) + d(0))-
dimensional. Since d(¢)+d(0) > 5 that means that asymptotically there are some elements
in LZ s_1.:4(F) on the glued manifold which simply do not admit a small pre-image under
ID yea. Hence if we want to proceed as in the previous section we need to avoid JDw; having
too large a component in this “bad sector”.

Example 4.11. Consider the model fibration:

fo: C* — C?
(z,y, z,w) = (22 + 3> + 2%, w).

It is modelled on the quadratic cone C, = {z* + y* + 2 = 0,w = 0}, for which we
know from Example that d(—1) = 2,d(0) = 8,d(1) = 22 and that there are no
other critical rates in the range [—1,1]. If this local model were part of a fibration by
unobstructed Cayleys of a compact Spin(7)-manifold, then we would have for € > 0 small:

ind_Pcg = ind_Pac = 2.

Thus in particular ind. Pcg = 2 + d(0) = 2 + 8 = 10. This means that [Pw; needs to lie
in a codimension 10 — dimker I yta = 6 subspace of Ly . (E) in order to perturb w; to
a true solution with a small perturbation (i.e. using the bound (4.14])).

We now go back to the deformation theory of NV as an unobstructed CS,, Cayley with
moving points and cones. Using the notation of Remark [2.45] by solving the deformation
problem we get a smooth submanifold P C U of possible vertex locations and cone
deformations of neighbouring CS,, Cayleys. We remark that the higher-rate deformation
of the cone in a given CS Cayley is already determined by the translation applied to the
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point (as there are no deformations that fix the singular point). Hence if N has singular
point p and cone C' C R®, then T, (p,0)P can be identified with the possible translation
directions of the conically singular point. This will be a subspace 65 C T, M of dimension
dim M{4(N). Now we can decompose the kernel of ), at rate € > 0 as follows:

ker Pac = I50(A) @ (O @ On). (4.15)

Here IiC(A) are the deformations of rate ( < 0 that we discussed in the previous section,
Oy are the deformation vector fields corresponding to the unobstructed directions 6y
of the conically singular problem, and O3 is spanned by vector fields corresponding to
obstructed translations of the cone. We can choose compactly supported approximations
ug of elements u € ©F such that u L ©y pointwise. This then gives rise to a splitting of
the pseudokernel k; as follows:

Kt = K¢t D Kot D Kob,t-

Note that all the sections from the family of pseudo-kernels are entirely supported on N4
We can now consider, as in the previous section, two infinitesimal deformation vector fields
wac € I8o(A), wes € Tos(N) with matching boundary conditions o = ywac = dowes.
We then pre-glue them together as before to obtain w; € C*(v(N*1)) with:

[ Dwll g St lwellzp

kre—1,tA ™ k+1,e,tA’

where € > 0 is a small constant. We now perturb slightly, so that w; L Kop. This is
possible, since by assumption wac must be aligned with an unobstructed direction for the
CS problem, as the two vector fields have matching boundary conditions. Now, since Ko, ¢
consists of compactly supported normal vector fields which are pointwise orthogonal to the
unobstructed perturbation directions such as wcs, we must have ||m,,, , [w]|| 12, .0
as t — 0, where 7, , is the L3 -orthogonal projection onto k. Thus we can perturb to
Wy = Wy — Ty, , [wy] such that we still have ||lDwt||L£ i S 75“||u~)t||L§Jr1 _,, and additionally
Wy L Kobt. We are now in a position to run the aréurﬁent from the prﬁe’vious section again

using the bound (4.14)) to obtain:

Proposition 4.12. Let N C (M, ®) be an unobstructed CS,, Cayley (1 < p < 2) with
a unique singular point, and assume that its cone C C R® is semi-stable. Let A C R® be
an unobstructed ACy Cayley (A < 0) with matching cone and sufficiently small scale. We
then have that for any two matching infinitesimal deformation vector field wes € Tog(N)
and wac € I8o(A) there are glued vector fields wes #; wac € Z(D(N,tA, ®)) such that
(after identifying v(N'4) ~ v(I'(N,tA, ®))) we have:

wes B wac = Wy + dwy. (4.16)

Here ||wt||L£§tA = O(|logt|) and ||dw;|

. P S ta”wt“Li,o,m' In particular this implies
that |dw| < |wy| as t — 0.
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Stability of strong fibrations

Now we have shown that if the close to singular fibres of a Cayley fibration admit de-
formations of exactly two different asymptotic rates, namely the normal deformations at
rate ( < 0 and the parallel deformations at rate 0, then under the change of Spin(7)-
structure the infinitesimal deformation vector fields are perturbed by adding additional
terms which are in L}, ., ,(v(N*)) and L} ., 4(v(N')) respectively, and are always
bounded uniformly in ¢. We can now use this to show that the strong fibration property
is stable under perturbation, given some additional assumptions.

Let us assume that we have a strong Cayley fibration f : (M, ®) — B as in Definition
with discriminant A C B of dimension [ = 1 or 2. Already this means that all compact
and conically singular Cayley fibres of f are unobstructed in their respective moduli spaces
in the cases coming from complex geometry we consider later on, see Propositions |5.3[and
.4l The singular cones of the conically singular Cayleys share their set of weights 2 C R,
and we let ( = max{Z N (—o0,0)}. We then require additionally that each conically
singular Cayley be simple in the following sense:

Definition 4.13. A conically singular Cayley N C M is called simple if the Cayley
operator JPog has index 4 just below the critical weight ¢ and is unobstructed.

Consider now an atlas {(Us, ¢s)}aer of the base B, where ¢, : U, — B1(0) C R*is a
diffeomorphism. If U, N A # 0, then we further assume that this chart is compatible with
the gluing map I' in the sense that we identify B;(0) ~ Ucso X Uac,a, Where Ucg,o C
MEG(N) and Upca C M/A_\C(A) with the condition that f~'(p2'(N,A)) = I'(N, A).
On top of this we consider the framings {e; }i=1234 of TBly, such e;, = 0;. For each
b € B\ A we thus get four infinitesimal deformation vector fields wy 4, ..., Wy, Which
are just the lifts of e; o(b) via f. For b € A, we can again find a local frame, such that
Ty(Ucs o) = span{e; 4(b),...,e14(b)} and Ty(Uac,a)s = span{ei1.4(b), ..., es4(b)}. Note
that in this case, e1q,...,€4 € CP(V(N™)) and €14, .., €40 € CZ(¥(N™)). Note
also that at or near a singular point w,,...,w;, are what we above called the parallel
infinitesimal deformation vector fields and w41 4, - . ., w4 o are the orthogonal deformation
vector fields.

For a given b € U, consider the following function in C*°(f~1(b)):

dety, = det(wy, ..., wy, P Wi, - - ,,o_Cw4). (4.17)

Our final assumption on the initial fibration will be a condition on det, .

Definition 4.14. A Cayley fibration is called nondegenerate if there is a constant
C > 0 such that for all « € I,b € B and x € f~1(b):

C< debt(x) <C™

This means that the infinitesimal vector fields never vanish for any Cayley in the fibration,
and that the deformations of the cone of rate ¢ and 0 have no zeros as well.

Consider now a variation of the Spin(7)-structure {®;}scs with ®,, = ®. For each
a € I,be U, we then get a family of determinant maps det,; s, depending continuously
on s € §. The key insight is the following:
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Lemma 4.15. If det,;s > 0 for all a,b and s € V' an open neighbourhood of sy € S,

then the universal families Univ(M(N, ®y)) form strong fibrations of M.

Proof. As we have dim A < 2, we may apply the weak fibration theorem to conclude
that small perturbations of (M, ®) are still weakly fibering. Thus if N C M is any Cayley
fibre then

evs : Univ(M(N,dy)) — M

are homotopic maps for s € V of degree one in the sense of pseudo-cycles. Each of
these maps is stratified smooth, thus in particular a local diffeomorphism on the open
stratum as det,ps > 0 for every s € V. Indeed, if the derivative Dev, were to fail to
be an isomorphism at a point p € N, this means that dim D ev,(p)[v,(N)] < 3 (as N is
nonsingular) and det,s(p) = 0. For the same reason, the maps ev, remain orientation
preserving.

But an orientation preserving local diffeomorphism of degree one must necessarily be
a global diffeomorphism, as the algebraic count (which in this case is simply the naive
count) of pre-images of a point equals the degree. O

We then have that far away from the singular fibres, the w; perturb smoothly in
L7, (v(N)). In particular, by compactness of M, we can ensure that deta;s > 1C > 0
for some open neighbourhood V' of sq, for all fibres that are a given distance away from
the singularities simultaneously. Near the singular fibres, we see from the gluing results
Proposition [4.10] and Proposition that wi,...,w; perturb by continuously vary-

ing additional terms dwy g, ...,0w,, € LY . ,(v(N*)) and wyyq,...,w, additional terms
Wit -5 0was € LY oy (V(N')). Now since Ly 5,4 < C3,, are continuous embed-
dings with bounded embedding constants, we see that det(wy, ..., w;, p~ w1, ..., p Swy)

varies continuously in C°, uniformly in ¢. In other words,
||deta,b,s - deta,b,so ||CO < C1detd<87 SO)a

where Cqet > 0 is independent of the neck size t. In particular, for a given chart we can find
an open neighbourhood V,, of sy € S such that detyp > %C’ > 0 for any s € V,,. Hence,
since we can cover B with finitely many charts, this means that for s € Vg, = VN[, Va
we maintain the fibration property of the nonsingular fibres. From this, we can also deduce
that the singular fibres do not intersect the nonsingular fibres.

Indeed, assume that for some s € V), there is a singular fibre N intersecting a non-
singular fibre V. Then by what we just proved, the fibres near N are locally still fibering,
thus in particular for ¢ > 0 sufficiently small, F(N ,tA, @) will intersect another nonsin-
gular fibre, which is, of course impossible, as the nonsingular fibres are still fibering for
®,. Finally, as the conically singular fibres are unobstructed, we have from Theorem [2.42
that their infinitesimal deformation vector fields deform smoothly under the variation of
Spin(7)-structure ®,. Since the moduli space of all singular fibres with all possible degen-
erations is a compact topological space, a similar argument with determinant maps can be
applied to show that they too will remain intersection-free for s in an open neighbourhood
of s5. We thus proved:
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Theorem 4.16 (Stability of strong fibrations). Let (M, ®) be a Spin(7)-manifold which is
strongly fibred by conically singular Cayleys which are simple, such that all the Cayleys in
the fibration are unobstructed. Assume that the fibration is nondegenerate as in Definition
U-1J Let {®}ses be a smooth family of deformations of the Spin(7)-structure ® = @ .
Then there is an open neighbourhood sq € U C S such that for all s € U the manifold
(M, D) can still be strongly fibred.

Example 4.17. As we will see in Chapter 5], complex fibrations of Calabi-Yau fourfolds
with Morse type singularities satisfy the conditions of Theorem [4.16| Hence such complex
fibrations are stable under small deformations of the Calabi—Yau structure, as a Cayley
submanifold in the homology class of a complex surface is necessarily a complex surface
again by Stokes’ theorem.
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Chapter 5

Gluing construction of a
Kovalev-Lefschetz fibration

In this last chapter we give examples of strong fibrations by Cayley submanifolds of a
family of torsion-free Spin(7)-manifolds, which are products of the circle S* with twisted
connected sum Go-manifolds. The latter were first introduced by Kovalev [23] and are
compact Gy-manifolds obtained by gluing two asymptotically cylindrical Go-manifolds
together along a sufficiently long neck. The construction was later extended to include
more general gluing maps by Corti, Haskins, Pacini and Nordstrém [9]. The ACyl G»-
manifolds are constructed from Fano threefolds [§] in such a way that their link contains
two copies of S! which may be interchanged or twisted when gluing. By their construction,
the pre-glued approximations of compact GGo-manifolds come with coassociative fibrations
that admit complex singularities.

By taking the product with S!, we obtain Cayley fibrations on Spin(7)-manifolds
with small torsion. Over either end, the fibration looks like a complex fibration by sur-
faces. However the entire Spin(7)-manifold does not admit a global complex structure. By
choosing the Fano ingredients carefully we can ensure that the fibration, which locally is
a complex fibration, has singularities which are at worst of Morse type.

5.1 The complex quadric

For a moment let us focus on the local model fy near a singular point, given by the
following holomorphic fibration:

fo:C* — C?
(z,y, z,w) — (2> +y* + 2% w).

Hence f;'(0,7n) ~ C, is a quadric cone and the nearby nonsingular fibres are the asymp-
totically conical Cayleys A, = f; (¢,0). We note that the holomorphic normal bundle
v0(A,) is trivial. To see this explicitly, consider the following two nowhere vanishing
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sections of v10(A,):

siac(,y, z,w) = Oy,

Dy + 0y + 0,
|(2,y,2,0)]*
We remark that s; oc is an infinitesimal deformation corresponding to a translation w —
w + a and thus of rate 0, whereas sp ac is of rate —1 and corresponds to a variation in
the parameter €. In other words, the normal bundle of A, is trivial exactly because of

the existence of the fibration fy. Next, we prove a Liouville theorem for A, in order to
compute H°(v10(A,)):

SQ,AC(%% Z,W) = (51)

Proposition 5.1 (Liouville theorem). Any bounded holomorphic function on A. is con-
stant.

Proof. We can embed:
A, C A, Cc CP*,

where A, is the completion {z? + y*> + 2% = eu®,w = 0} C CP* (with homogeneous
coordinates [x : y : 2z : w : u] on CP*). Since A, is compact and nonsingular, any
bounded holomorphic function on A, is automatically constant. Now, using a removable
singularities theorem in higher dimensions (such as [46, Thm. 1.23]) and noting that
A.\ A. € CP* is a non-singular subvariety, we can extend any bounded holomorphic
function on A, to a holomorphic function on A., which concludes the proof. n

We can now use this to prove the unobstructedness of A, as a Cayley.

Proposition 5.2. The ACy Cayley A, C (R%,®q) for e € C\ 0 is unobstructed and has
no infinitesimal deformations at rate —2 < A\ < —1.

Proof. Following [37, Prop. 3.5] we can write the Cayley operator on a complex ACy
surface in (R® @) as D¢ = O + 0" mapping between the spaces:

O (WA & (A"A® v(Al))) — O, (AM A @ vH0(Al).

Thus if (u,v) € O (10(A) D (A2 A @v10(A,))) satisfies Ou+0*v = 0 then the pair (u,v)
corresponds to an infinitesimal Cayley deformation vector field. If in addition, we have
Ou = 0 and 0*v = 0, then (u,v) is in fact an infinitesimal complex deformation [37, Cor.
4.7]. To start, we will prove that for A < —1 any infinitesimal Cayley deformation is
necessarily an infinitesimal complex deformation. For this note that if Ou + 0*v = 0, then

we automatically have 0*0u = —0*0*v = 0. Now, since Ju has rate A — 1 < —2 we also
have du € L*(A% A, @ v'(A,)). This leads us to:

0 :/ (0*Ou, u) dvol :/ (Ou, Ou) dvol = ||0ul|z2.
AE Ae

In particular Ou = 0, which entails 9*v = 0, and thus any infinitesimal Cayley deformation
is in fact also infinitesimal complex. Now, since there are no bounded and non-constant
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holomorphic functions on A, by Proposition [5.1] there are no other infinitesimal complex
deformations of rate less than or equal to —1 besides constant multiples of sy oc. Thus
the kernel of the Cayley operator kerI) ,c must be trivial at this rate.

Finally, we prove the surjectivity of the Cayley operator at rate A > —2. This is
equivalent to the injectivity of its formal adjoint IDZC = (0%, 0) which maps between the
spaces:

EO4—>\<AO’1AG ® VLO(AG)) — CSOE;—)\@LO(AE) D (AO’QAE ® VLO(AE)))-

But we have C%_,(A*' A, @ v'9(A,)) = C>,_,(A®' A, ® C?) since the normal bundle is
trivial. So if Jv = 0 and 0*v = 0, then in fact v is a harmonic 1-form with values in C?,
as A, is Kéhler. Now v is square-integrable (by our assumption on the rate), and thus we
can invoke [28, Thm. 0.14], which says that in this situation square-integrable harmonic
one-forms are in one-to-one correspondence with elements of H*(A.) = 0. Thus we get
v = 0, and the Cayley operator is surjective. O

5.2 Complex fibrations of Calabi—Yau fourfolds

Proposition 5.3. Let f : M® — B* be a complex fibration, where M is a smooth Calabi—
Yau fourfold and B is a smooth, complex two-dimensional base. If a fibre F' is diffeomor-
phic to a nonsingular K3 surface then it is unobstructed as a Cayley submanifold and has
a four-dimensional Cayley moduli space.

Proof. First, we have from Proposition that the index of a fibre F' as above is given
by:

ind Pr = 1(o(F)+ x(F)) = [F]- [F] = 3(-16 +24) — 0 = 4.

Here the self-intersection number [F] - [F] vanishes by the fibration property. The fibre
F admits at least 4 Cayley deformations by perturbing to nearby fibres, which is equal
to the index of the elliptic problem. Hence, showing unobstructedness is equivalent to
showing that there are exactly 4 infinitesimal Cayley deformations. Now by [36, Lemma
4.7], we have that infinitesimal Cayley deformations are necessarily infinitesimal complex
deformations. However, because F'is part of a complex fibration locally, the holomorphic
normal bundle v(F) = O(F) @ O(F) is trivial and we have H(v(F)) ~ C* by compact-
ness of F'. This concludes the proof, as holomorphic normal vector fields are exactly the
infinitesimal Cayley deformations. O]

Proposition 5.4. Let f : M® — B* be a complex fibration, where M is a smooth Calabi—
Yau fourfold and B is a smooth, complex two-dimensional base. Suppose that the fibration
1s modelled near a singular point on the complex quadric fibration

fo:C* — C?
(z,y, z,w) — (22 +y* + 2% w).

Assume furthermore that each singular fibre contains at most two singular points and that
the nonsingular fibres are diffeomorphic to nonsingular K3-surfaces. Finally the singular
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locus A C B should take the form of a union of transversely intersecting smooth sub-
manifolds. In that case dim A = 2 and each Cayley in the fibration is unobstructed in its
moduli space, where we allow moving points and cones.

Proof. We denote a nonsingular fibre of the fibration by F', a singular fibre with a unique
singular point by F and a singular fibre with two singularities by Fi,. The expectation is
that nonsingular fibres are generic, fibres with one singularity appear in codimension 2 and
fibres with two singularities appear in codimension 4. We will now show more precisely
that the indices of the deformation problems are given by:

indD = 4, ind1+ewcs,ps =2, and ind1+elpcs,Fss =0.

Here € > 0 is small and the operators 12057 r, and 12057 r, take into account the deformations
of the points and cones. We first note that the equality ind/), = 4 is the contents of
Proposition . Next, the critical rates of the quadratic cone C, in the range (—2,2) are
known from Example [I.35], and have multiplicities:

d(—1)=2, d(0)=38, d(1)=22, d(—1++/5)=6.

Thus using Theorem [1.32| we see that the index of the problem with varying cones and
points at rate 1 + € is equal to the index of the operator with fixed points and cones, but
at rate —1 4 €.

Now, by gluing one or two matching AC-manifold A, onto the conically singular points
with we obtain nonsingular F' ~ I'(F,, A, ) ~ I'(F, (Ae, Ae), ). Thus we have (using
ind_; [P rc = 2 from Proposition ):

. . fix . .
1nd1+e]pcs,Fs = 1nd—1+e]pcs,ps = ind IDF - 1Hd—1+elpAc =4-2=2

and
indy 4 Pog p,, = ind_1 g)éF
=ind Pp —ind_1 1 Ppc — ind 14 Pac
—4_2-2-0,

From this it is also clear we we should not expect unobstructed fibres with three or more
singularities, as they would have strictly negative virtual dimension. We have now proven
the index claims.

In order to prove unobstructedness in the singular case (the compact case has been
taken care of in Proposition it is thus sufficient to prove that the spaces of infinitesimal
Cayley deformations are exactly real two-dimensional and zero-dimensional respectively.

First, consider the a fibre with a single conical singularity F, = f~1(b) \ {p}, with
the conically singular point p removed. Let 0;,0, € T, B be two tangent vectors, where
we assume J; € T,A and dy € T A. As the differential D f only vanishes at the conically
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singular points, we see that the holomorphic sections of v(Fj) given by:

S1 = Df*[al]7
S9 — Df*[ag],

are nowhere vanishing, and thus span v(Fs) = O(F;) @ O(Fs). We note that s; has rate
O(1) when approaching the vertex p, as it comes from deforming the conically singular
manifold to a nearby conically singular one (i.e. moving within A C B). However as
imDf(p) = T,A, we see that |sy| must diverge as we approach the cone. Indeed from the
local model fy we see that s, must be asymptotic to sy ac from Equation (5.1)), and thus
of rate O(r™1).

Now we are in a position to repeat the proof of Proposition [5.2] We first note that Fj
also has a Liouville theorem. Suppose that h : Fy, — C is a bounded holomorphic function.
Then blowing up F, at the conically singular point, we obtain a nonsingular 7 : Fy — F,
which is a biholomorphism away from a single exceptional and nonsingular curve ) =
771 (p). We can then apply a removable singularities theorem in higher dimension [46,
Thm 1.23] to conclude that % extends to a holomorphic function on F,. Thus h must
be constant in the first place. Hence the only complex deformations of rate 0 or above
are the deformations coming from moving F, within the fibration. Now can use the same
integration by parts argument that we used for the AC case to show that there are no
further deformations which are Cayley but not complex.

For the singular fibres with two singularities we again see that v(Fys) = O(Fss) @
O(F,). However now F,, = f~1(b), where b € A is a transverse intersection point. Thus
deforming b € A within A results in one singularity persisting, with the other one being
resolved. Thus our discussion from above shows that all normal sections of Fi, necessarily
blow up with rate O(r~!) near one of the singular points. In particular the conically
singular fibres with two singularities are rigid and therefore unobstructed. O

5.3 Fibrations on twisted connected sums

In this section we introduce the twisted connected sum construction, first described by
Kovalev [23], and later extended by Corti-Haskins-Nordstrom-Pacini |9]. It gives rise to
torsion-free Go-manifolds via perturbation of an explicit small torsion glued Gy-manifold.
From their construction, these pre-glued manifolds M admit natural fibrations by coas-
sociatives. Our stability theorem allows us to perturb the induced Cayley fibration
on M x S, which ultimately allows us to prove the existence of coassociative fibrations
of Gy-manifolds as well.

Cylindrical Calabi—Yau 3-folds

Let (S, 1, wWso, goo, 2oo) be a K3 surface with a fixed hyperkéhler structure. Assume that
(X6, J,w,g,Q) is a noncompact Calabi-Yau threefold. We say that X is asymptotically
cylindrical of rate A < 0 or (ACyl,), limiting to the hyperkéhler surface S if there is
a compact subset K C X and a diffeomorphism f : X \ K — Ry x S! x S with the
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following properties for all £ > 0:

[V*(g = (9o + dt* + ds?))| = O(e),
VF(w — (Weo + dt A ds)) = do, where |V¥o| = O(eM),
VE(Q — (ds — idt) A Qo) = dE, where |[V*S| = O(eM).

Here R x S! has coordinates (t,s) and | - |,V are defined with respect to the prod-
uct metric on Ry x S* x S. Asymptotically cylindrical Calabi-Yau threefolds can be
constructed from compact Fano three folds using the following theorem.

Theorem 5.5 (Thm. 2.6 in [§]). Let Z be a compact Kihler threefold with a morphism
f:Z — CP!, with a smooth connected reduced fibre S that is an anticanonical divisor,
and let V.= Z\ S. If (S, J,ws, gs,s) is a hyperkdihler structure on the complex surface
(S, J) such that [ws| € HYY(S) is the restriction of the Kihler class on Z, then there is a
CY3 structure (V, J,w, g, Q) on V which is asymptotically cylindrical to the CY3 cylinder
R x S' x S induced by the hyperkdihler structure on (S, J,ws, gs, Qs).

Now we will discuss briefly how to obtain such f, Z and S as in the theorem above. In
fact Corti, Haskins, Nordstrom and Pacini impose extra conditions on maps f : Z — CP!
which make them more suitable for the twisted connected sum construction.

Definition 5.6 (Building block). A nonsingular complex algebraic threefold Z together
with a projective morphism f : Z — CP! is called a building block if the following
conditions are satisfied:

1. The anti-canonical class —K; € H?*(Z,7Z) is primitive, i.e. not an integer multiple
of another class in H*(Z,Z).

2. The pre-image S = f~1(00) is a nonsingular K3 surface and S ~ —K as divisors.

3. If k: HX(Z,Z) — H?(S,Z) is the map induced by the embedding S < Z, then
im k — H?(S,7Z) is primitive, i.e. H*(S,Z)/imk is torsion-free as an abelian group.

4. The groups H*(Z,7Z) and H*(Z,Z) are torsion-free.

There are multiple ways to construct building blocks. The first was introduced by Ko-
valev in [23] and starts with a Fano threefold as in Definition [I.4] This was later extended
in [9] by Corti, Haskins, Pacini, Nordstrém to what they call semi-Fano threefolds, which
can be thought of as desingularisations of certain mildly singular Fano varieties. They out-
number Fano threefolds by several orders of magnitude. Finally there is a different type of
building block coming from K3 surfaces with non-symplectic involutions [25] which yields
different examples still (however these will not be of interest to us from the point of view
of fibrations).

In all these examples we obtain a building block f : Z — CP! where the generic fibre
of f is a smooth K3 surface. Singular fibres appear in complex codimension 1, but in
general we cannot say much about the kinds of singularities that appear. Hence we will
go through the first construction of building blocks (starting from (semi-)Fano threefolds)
and give an example where we can determine the singularities explicitly.
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So suppose X is a Fano threefold, such as for instance a smooth quartic in CP*. Then
a generic anticanonical divisor in X (which is effective by the Fano property) is a smooth
K3 surface by a classical result of Sokurov [42]. We then make the assumption that the
linear system | — K x| contains two nonsingular members Sy, So, such that C' = SyNS is a
transverse intersection, and thus a nonsingular curve. In this case the pencil described by
Sp and S, exhausts X and has base locus exactly C'. If we now blow up X at C' to obtain
a new manifold Z, the pencil generated by the proper transforms Sy and S of Sy and
Ss respectively will be base point free. Thus we obtain a holomorphic map f : Z — CP!
with generically smooth K3 fibres such that f~'(0) = Sy and f~'(c0) = Sa.

Proposition 5.7 (Proposition 3.17 in [9]). The map f : Z — CP' determines a building
block.

Example 5.8. Consider the following quartic polynomial on CP* with homogeneous
coordinates [xg : 1 : T : X3 : Ty]:

P =g+ + 25 + 25 + 2] + 25(v0 + 1021 + 10025).

Consider the smooth complex submanifold X = {P = 0} C CP*. Then, using the ad-
junction formula, we can see that the canonical bundle wq of @) is given by:

wx = (weps @ Ocps(Q))|x= (Ocps(—5) ® Ocps(4))|x= Ocps(—1)|x.

In particular the anticanonical bundle wk% = O(1)|x is ample, and the anticanonical
divisors are exactly the hyperplane sections of X. So we can take for instance:

So={x3=0} N X ~ {5+ 2] + 25 + 23 =0} C CP?
Soo:{$4:0}mX
~ {a§ + 2] + x5 + 23 + 23(x0 + 102, + 100z,)} € CP3.

Both are smooth K3 surfaces. They intersect transversely in a curve
C ~{xg + ]+ x5 =0} CCP%

A general element of the pencil generated by Sy and S, is the intersection of X with the
plane {axz + bry} = 0 C CP* The base point free pencil induced in Z can be described
outside the exceptional divisor as the map:

f:Z\E— CP'
[IO X1 X9 X3 fI?4] — [ZEg : 274].
The fibres in Z are isomorphic to their images in X and thus we can restrict our search for
singularities to the complement of the exceptional divisor, i.e. we can work in the original

quartic X. A point = [xg : x1 : x9 : x5 : 4] on X \ C will be singular for a hyperplane
section exactly when DP(z) € span{dzs,dz4}. Thus the singular points can be described
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as the subvariety S C CP* defined by the set of equations:

P =0, Ty 4+t + x5 + 25 + 2§ + 23 (zo + 10z, + 10023) = 0,
0P =0, 4o + 23 =0,

P =0, 7\ 42%+ 1023 =0,

O,P =0 43 4+ 100z3 = 0.

By Bézout’s theorem, the algebraic count of solutions to this system of equations (meaning
that we count points with their scheme theoretic multiplicity) is the product of the degrees
of the equations, hence 32 - 4. In this specific case, the full number of solutions is attained,
hence all of them have multiplicity one. To see this, note first that any non-zero solution
must have 3 # 0. So we are free to set 3 = 1, and solve the three equations z} = ¢;z}
(¢; € C\0) first. We thus get 3* distinct possibilities for the tuple (xg, 21, z2). Now for
each such choice we can solve the first equation for x4 in exactly four different ways, as it
reduces to an equation of the form x} = c(zg, x1, z2) where ¢ # 0.

Notice also that no two solutions lie in the same hyperplane section, as they all have
different values of [z3 : x4]. Indeed once x5 is chosen, this determines xg, 21,22 up to a
choice of a third root of unity. Now xq 4+ 1027 + 100x5 can never take identical values for
xo, T1, xo differing only by a multiple of a root of unity. This explains the slightly odd
choice of xg + 10z; + 100z, instead of something more symmetric like z¢ + x1 + x5 for
instance. In the latter case permuting xg, z1, x2 while keeping x3, z4 the same maps the
singular set onto itself, and thus multiple singularities appear on one fibre.

Now as mentioned above, all points of S have multiplicity 1. That means that if
(o 1 @1 1y w3 4] € S we have that dim Og,, = 1, where Og,, denotes the local ring of
S at p. Now fix a singular point p of X NII, where II is a hyperplane in CP*. By choosing
affine coordinates around the singular point p € Il we may assume that our singular fibre
is given by f~'(0) for a polynomial map f : C* — C which additionally satisfies f(0) = 0
(Ogs corresponds to p € SNII) and Df(0) = 0 (thus every term in f is at least of second
order). In this picture we see that:

C[x07 X1, .']}2]

(a()fa alfa a?f) '

We now claim that if the dimension of this local ring is 1, then we can choose coordinates
such that f = 22 + 7 + 23 + O(2?). In particular it suffices to show that if the quadratic
terms of f do not form a nondegenerate quadratic form, then dim Og, > 1. Suppose that
this is the case, so that after a linear change of coordinates we can assume that z2 does
not appear as a term in f. Then we clearly have dyf = cx3 + O(x3, z1, x3), and similarly
O1f and Oy f do not contain a linear term proportional to zo. Thus 1 and z( are non-zero
and linearly independent elements of Og,, and thus dim Og, > 1.

So in particular we have proven that all the singularities that appear in this example
of a building block are isomorphic to the quadratic cone singularity 22 + ¢ + 22 = 0 in
C?, as all the singularities have multiplicity one. This can alternatively also be checked
explicitly by looking at the defining equations of .S in more detail.

The property of only having Morse type singularities, all in separate fibres, is Zariski
open, i.e. it is true for X in an open subset of its deformation type and for Sy, S, in

OS,p =
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an open subset of the corresponding linear anticanonical system. Since this moduli space
is irreducible as a complex variety, it is generically true for Fano threefolds arising from

quartics in CP?*. Thus we showed the same is true for a dense Zariski open subset of FV4,
where A = —Kx € N = H?(Sp).

Twisted connected sum construction of Go-manifolds

Now we have established the basic properties of building blocks, which by Theorem
can be used to construct ACyl Calabi-Yau threefolds. Starting from a building block
fz : Z — CP" with chosen K3 fibre K = f,'(00) (seen as a complex manifold), we can
choose a hyperkéahler structure (Weo, goo, {200 ) compatible with (K, I'), under the condition
that [we] € HY(K) is the restriction of a Kéhler class on the ambient Z. This is an open
condition, but may be non-trivial. Using Theorem we thus get an ACyl CY structure
on X =7\ K.

By taking the product with S! we get an asymptotically cylindrical G-manifold M =
X x St with associative form ¢, defined by ¢ = dt A w + ReQ as in Example . As
Z \ K and X are biholomorphic, we see that X is also fibred by generically smooth K3
surfaces via the same map fy = fz]|ns: Z\ K ~ X — CP'\ {oo}. On M, this induces
a corresponding fibration f: M — S x (CP!\ c0) by coassociative submanifolds.

On the cylindrical end of M, the fibration is diffeomorphic to the projection map

7 Rog x St x 8t x K - Ry x ST x St

By the ACyl,-condition (with A < 0) the metric on the link converges exponentially to

gs1 X gst X Goo-

The key idea of the twisted connected sum construction is to take two cylindrical
Go-manifolds M, M_ with isometric asymptotic hyperkéahler K3s K, K_ and glue them
together by a diffeomorphism for T" > 0:

G:(T,T+1)xS"xS'x K, — (T, T+1) x S" x ' x K_ (5.2)
(ta 0(17 gbap) — (2T + 1— ta 0177 gaa t(p))v

where v : K, — K_ is a suitably chosen isometry. We exchange the two circles with
the gluing diffeomorphism so that the fundamental group of the glued manifold becomes
finite, and thus the holonomy will be exactly G5 by a result of Joyce [15, Prop. 10.2.2].
In terms of the hyperkihler structure on (Ki,wl, w?, w3, I, gs), where Qi = w? +iwl
is the complex volume form, the asymptotic associative form can be written as:

Poo,+ = d@a A Wex Ky T Re Q(CXK;{:
= df, A (dt A dfy + wy) + Re(dfy, — idt) A (wi + iw?)
=df, Adt Adby + df, Awl + dby A wl + dt A w?.
In particular to ensure that ¢, + match up on the overlap, we need:

w«, 1 _ 2 %, 2 2 « 3 _ 3
vwl =wy, twl =w, tw =-wy,
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which is equivalent to asking that v is a hyperkahler rotation between K. as in Equation
(1.7). Let the parametrisations of the ends of M, as cylinders be denoted by W4 : Rog x
St x S x K. < M. For T > 1 we consider the following truncated manifolds:

Myps =M\ Vi([T+1,00) x S* x S' x K4).

Over the cylindrical end Rog x L ~ Ry x St x ST x K, we have both the Gs-structure
¢+ induced from M, as well as the product Ga-structure ¢ +. Define a smooth cut-off
function feue @ R x [0,1] such that feu|(—so= 0 and feut|j1,00)= 1. We can now define
a (non torsion free) Gy-structure interpolating between the two on My 1 by declaring it
equal to ¢4 away from the cylindrical end, and on the end by the formula:

@T,:t(tap) = fcut(t - T)QO:E + (1 - fcut(t - T))SOOO,:E‘

For T >> 1 we will have |y — poo 1| (m711)xr = O(e*) small. Hence ¢r 4 (¢, p) will be a
small perturbation of ¢ 1+, and thus again a associative form. Notice that 7 1 is exactly
equal to ¢ + on (T+1, T+2) x L and torsion-free everywhere except over the interpolation
region (T, T+1) x L, where |[Vpr 4| € O(e*?). Thus, after choosing a hyperkéhler rotation
matching up My we can glue Mr 4 over the regions (7' + 1,7 +2) x L C My . using the
gluing map G from to obtain a Gy-manifold (My, ¢7,). This can be perturbed to a
torsion-free GGy-manifold.

Theorem 5.9 (Theorem 3.12in [9]). Let (X4, J+,ws, g+, Q1) be two asymptotically cylin-
drical Calabi-Yau 3-folds whose asymptotic ends are of the form Rsox S x K4 for a pair of
hyperkdhler K3 surfaces K., and suppose there exists a hyperkdahler rotationv: Ky — K_.
Define closed Gy—structures pr, on the twisted connected sum M., as above. For sufficiently
large T' there is a torsion-free perturbation of pr. within its cohomology class.

It can be shown that this perturbation will become arbitrarily small as 7" increases. The
most difficult aspect of the gluing construction is certainly finding pieces with compatible
Calabi—Yau cylindrical ends. This we call the matching problem. The asymptotically
cylindrical Calabi—Yau threefolds we consider come from building blocks, which in turn
come from (semi-)Fano threefolds with a choice of anticanonical K3 divisors.

We now give an outline of the matching procedure from [9]. Consider the deformation
types of two Fano manifolds Y. which are polarised by the lattices N, C A and N_ C A
respectively. Assume that N. has signature (1,7.). Recall the forgetful morphisms sV* :
FN+ — KN+ which takes pairs (Y, S) of Fano threefolds in the deformation type of Y.
and anticanonical K3 divisors S C Y, to the polarised K3 moduli space S € KV:. We
know from Proposition [I.5]that this morphism is dominant on each irreducible component
of FN+. This gives us a first restriction on K3 surfaces which can appear as asymptotic
links for the gluing problem, as they must lie in open dense subsets Uy C Dy, , which are
determined by s+ and a reference marking.

The next step is to consider the hyperkahler structure. To make the discussion simpler,
we assume that the lattices N1 have trivial intersection and are orthogonal to one another.
This way we can avoid introducing the construction of an orthogonal pushout of two
lattices and also have more concise notation. Define T = (N, @& N_)+. Consider the
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following subset of the hyperkahler K3 domain:
D=DnN((Ny ®R)" x (N_@R)" x (T @ R)).

Here L denotes the positive cone of a lattice L. The submanifold D is real 20-dimensional.
Now as the period domain of Ny-polarised K3 surfaces can be identified with positive two-
planes in Ni ® R as in Equation , there are two natural projection maps 74 : D —
Dy, given by:

T (Wi, w_,wp) = span({ws, £wy) € Dy, .

Recall from Equation that the hyperkéhler rotation of the triple (w,,w_,wpy) €
Db is exactly (w_,w,, —wp). Hence m_ is just the mapping to the complex structure of
the hyperkahler rotated K3. So in particular candidates for asymptotic hyperkahler K3
surfaces must be contained in the subset 7' (Ux) N7Z='(U_). It turns out that the image
of 71 in Dy, is areal (20 — ry)-dimensional submanifold in a real 2(20 — r)-dimensional
space. So it is not clear a priori that im 7. and UL even intersect.

However one can show that im 7. is an embedded totally real submanifold. Since it is
also of maximal dimension it must intersect any open Zariski dense subset, such as U...

Finally, we also need to take into account not only the complex geometry of the two K3
surfaces, but their Kahler geometry as well. Indeed if the hyperkahler structure is given
by the triple (w;,w_,wp), then the complex geometry is determined by (w_,wp) (via 7y
as above), while the Kéhler class will be w,, and similarly for the hyperkéhler rotation.
So if Amp, are the ample cones of the polarised K3 surfaces we need that the set:

A= {(wg,w_,wp) : ws € Amp_}

is non-empty. In good cases, this can be shown to be a (Euclidean) open subset of D,
see [8, Prop.6.9]. Thus, since 7' (Us)Nw='(U_) is open dense, there must be a hyperkiihler
structure satisfying all the conditions, and thus the matching is possible. We note at this
point that imposing a finite number of open dense conditions on either complex K3 surface
does not impact the matching procedure.

Example 5.10. Consider the twisted connected sums of two building blocks in the de-
formation type of Example . In this case the matching is possible by [9, Prop. 6.18]
(the matching is what they call perpendicular; in these cases the condition on the Kéhler
classes are automatically satisfied) and we can see from Table 5 in 9] that the resulting
Go-manifold will have b> = 0 and b®> = 155. The example is also discussed in more detail
as Example 1 in Section 7 of [9].

Coassociative fibrations on connected sums

We now turn our attention to the fibrations which naturally arise from the twisted con-
nected sum construction of Ga-manifolds.

Proposition 5.11 (Prop. 2.18 in [24]). The fibrations f+ : My — S' x CP' \ oo join
together to form a fibration fr : M, — S3.
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Figure 5.1: Decomposition of the twisted connected sum into 2n + 3 pieces.

Proof. Gluing My 4 identifies the K3 fibres of the two fibrations by construction. On the
level of the base space, this reduces to gluing two solid tori S! x D? (where D? is the two
dimensional disk with boundary) along their boundaries via the map

Stx 8t — St x S (a,b) — (b, a).

This gluing is diffeomorphic to S3, and the decomposition into tori is in fact a Hee-
gard splitting of S3. Consider now a fixed K3 surface on the overlap fi'(t,0,,6;). It is
coassociative with respect to ¢ by construction and we easily see that it also is coas-
sociative with respect to ¢ +. Thus it remains coassociative for any linear combination
cpr + (1 — €)oo+ With 0 < e < 1. O

Let us now apply the twisted connected sum construction to building blocks with the
additional property that the fibres of the map f : Z — CP! are either nonsingular K3
surfaces or have conical singularities modelled on the cone C, = {z% + 12+ 2% = 0} C C*.
A possible building block arises from a quartic in CP* as explained in Example [5.8]

Ensuring the matching up of two building blocks (Z., f1) is an involved procedure, as
we already mentioned above. But since the additional condition we impose is Zariski open
dense on the moduli space K4, the matching goes through as without change. Thus we
can find two matching building blocks so that the glued fibrations fr also have the same
kind of complex conical singularities. On the tubular intermediate region all the fibres
will be smooth K3s.

The upshot is that we are given a smooth twisted connected sum G5-manifold M7 and
for any 7" > 1 sufficiently large a G-structure ¢ such that ||V<,0T||LZ < M with A < 0.
These come with coassociative fibrations by (possibly singular) K3 surfaces, which over
either end are products of complex fibrations of Calabi-~Yau threefolds with a circle S*. In
the gluing region there is no complex structure for which this is true, however this region
has finite volume, and converges to a piece of a GG cylinder.

If we then take the product with S' once more we obtain a Spin(7)-manifold (X =

M x S', ®r = dt A ¢ + %), which admits a torsion-free deformation ®r, also of product
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type, from Theorem [5.9f The deformations required to achieve torsion freeness become
smaller as T' increases, in the sense that ||®7 — (i)THLg = O(e*) where \ < 0.

Now geometrically either end of X can by construction be considered a Calabi-Yau
fourfold with a fibration by complex surfaces, and the gluing region is converging towards
a finite volume piece of a Spin(7)-cylinder. In particular we can use Propositions and
to see that away from the gluing region the fibres, both compact and singular with
either one or singularities, are unobstructed as Cayleys. Regarding the gluing region we
note that unobstructedness is an open condition in the choice of Spin(7)-structure. Thus
while we cannot apply Proposition directly, we see that it applies to the limiting
cylindrical Spin(7)-structure. Hence the fibres in the gluing region will be unobstructed
for all T'> 1.

Now we are in a position to prove the stability of the fibration as we pass from the
Spin(7)-structure ®; to the torsion-free Spin(7)-structure ®5. For this, we imagine cutting
up (M,,®,) (for n € N), a manifold of diameter approximately 2n into 2n + 3 pieces.
These pieces are first of all the two compact pieces )+ C Xi. Next we have for either
side the n pieces Cy+ = @3 ((k — 3,k +13) x L) x S* for 0 < k < n. Finally we have the
glued piece I = p3'((n+ 1,n+ 25) x L) x S*. Notice that both Q1 as well as the Cy 4
for 0 < k < n — 1 when seen as Go-manifolds remain constant as n increases. The two
pieces C,, + are where the interpolation between the ACyl, structure ¢ and the exactly
cylindrical Gg-structure ¢ 1+ happens. Finally I is exactly cylindrical, independent of n.

Now, since we checked unobstructedness of all the fibres in the fibration we may apply
Theorem to each piece separately, as long as we can ensure nondegeneracy of the
fibration. This is clearly satisfied for any piece without a singular fibre. The finitely many
pieces with singular fibres can be considered as Calabi-Yau fourfolds with fibrations by
complex surfaces and Morse-type singularities. From this we can conclude non-degeneracy,
since we know the local model near the singular point.

Thus for each piece there is a maximal $yax € (0, 1] such that for each 0 < s < Syax the
fibration property of the fibres in just that piece is preserved for ®,, s = @, + s(Ci)n —d,).
Now, since the preglued Spin(7) structure on each piece is eventually constant, we see
that as n increases, sy for that piece increases and reaches 1 eventually. This is because
H@n — O, o < e with A < 0. Eventually ®,, will lie in the open neighbourhood about
®,, for which stability of the fibration is given. Like this we see that for any choice of
finitely many pieces, we can ensure the stability of the fibration on the union of these
pieces for any sufficiently large T

On the other hand we have (Cy+,¥|c, ) — (I,¢]r) in C*°. In fact if we consider
the path of Spin(7)-structures v(7') = (=T + %)*(I)ihTi%’TJr%]XL (where (=T + 3)* is

the pullback by translation) on [0,2] x L, then the ACyl condition on My gives us that
[Y(T) = Pool 2 < e*, for A < 0. Stability of the fibration is true in a quantitative sense,
meaning that there is a ball B(®, €) around @, where the moduli space of Cayleys for the
given Spin(7)-structure is still fibering. Thus there will be a ball of radius € — e2T around
v(T) so that the same is true. But now, since the distance || @7 — Opflp < <1—eM
for T sufficiently large, the torsion-free Spin(7)-structure will stay within a ball of fibering
Spin(7)-structures around (Cj 4, ¢k+). In this way we can thus prove stability of the
fibration for all pieces with index above a minimal n,;,. The previous argument then

takes care of the finitely many remaining pieces. Thus we have proven the following:
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Theorem 5.12 (Existence of strong Kovalev-Lefschetz fibrations on Spin(7)-manifolds).
There are compact, torsion-free Spin(7)-manifolds of holonomy Gy which admit fibrations
by generically smooth Cayley submanifolds. The singular Cayley submanifolds may have
at most two conical singularities.

From this we can deduce that the stability result also holds for the initial GGo-manifold,
using the following auxiliary result.

Lemma 5.13. Let (M,g,7) be a manifold together with a calibration T. Assume that
T = ¥ + p, where ¢ is another calibration and p is a closed form. Let N C M be 7-
calibrated submanifold such that fN p=0. Then N is 1-calibrated.

Proof. We have that by assumption dvoly = 7|y. Now note that:

/dvolN—/7'|N—/w]N+p\N—/1/J|N</dvolN.
N N N N N

If there is a point with ¢|y(p) < dvoly(p), then we must have [, 1|y < [y dvoly, a
contradiction. Thus 9|y = dvoly and N is ¢-calibrated. O

Now we set 7 = ®, 1) = xp and p = ds A ¢ in the previous proposition, where s € S*
is a coordinate on the circle in X = M x S'. As a K3 fibre N of the initial fibration is
contained in M x {s} for a single point s € S, we clearly have [, dsA¢ = 0. Next, as the
perturbed Cayleys are continuous deformations of the initial (possibly conically singular)
Cayleys and the new Gy-structure ¢ is cohomologous to ¢, we still have [ ydsA@=0hby
Stokes’ Theorem. Hence the Cayleys for & are also calibrated by *, meaning that their
tangent planes are contained in M x {s} and they are in fact coassociative. Thus we have
shown:

Corollary 5.14 (Existence of coassociative fibrations). There are compact, torsion-free
Go-manifolds of full holonomy which admit fibrations by coassociative submanifolds.

Example 5.15. Consider the GGo-manifold obtained by gluing two copies of the quartic
building block from Example[5.8], as in Example[5.10] This Go-manifold has Betti numbers
b, = 0 and b® = 155. Furthermore, as the the conical singularities are stable and no
fibre has more than one singular point, the resulting coassociative fibration will have
2-3%.4 =216 connected components of singular coassociatives.

5.4 Full holonomy and further work

Even though we proved Theoremin the Spin(7) setting, we concluded with the example
of a fibration of a G5-manifold by coassociative submanifolds in Example |5.15] This then
induces an example of a non trivial fibration of a compact Spin(7)-manifold, which is
however of product type. Thus it is in particular not an example of full holonomy and as
such not using Theorem [4.3|to its fullest potential. This is due to a lack of known examples
of fibrations on pre-glued Spin(7)-manifolds. We suggest that future work should both
search for more examples of fibrations and try to widen the scope of Theorem [4.3] by for
instance allowing more general kinds of singularities.
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More concretely, we expect that similarly well-behaved fibrations in the G5 setting
can be constructed from many more semi-Fano threefolds, thanks to a discussion with
Mark Haskins. This is because the anticanonical system is generally quite large (e.g. it
has complex dimension 4 in the case of the quartic in CP?), and thus it should be possible
to avoid problematic singularities by choosing a suitably generic pencil and invoking a
Bertini-type theorem.

Slightly more speculatively one might find examples of suitable fibrations on the second
construction of Spin(7)-manifolds, due to Joyce [14], whose starting point are Calabi—Yau
orbifolds. In his thesis, Clancy [7, Section 7.4.4] gives an example of how this can be done,
based on the twistor fibration f : CP? — S*. Unfortunately, using his method directly,
bad singularities like (ED will appear in codimension 4. However, it may be possible that a
modified version of the construction could avoid non conical singularities. Alternatively,
the stability Theorem could potentially be extended to include non conical singular-
ities. This requires us to develop the deformation theory of Cayley submanifolds with
more complicated singularities, such as , and more advanced analytical tools than are
currently available.
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