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Abstract

The content of this Thesis comes in three parts. Firstly, it shows a compatibility between two
structures on the homology of moduli stacks of certain codimension one categories: Joyce’s vertex
algebra structure and the cohomological Hall algebra (CoHA) structure. Our Theorem 3.10.1 can
be thought of as saying the homology He(M) is a vertex analogue of a “quantum group” (i.e.

triangular bialgebra).

Secondly, the main technical work of this thesis builds up the machinery to let us compute cohomo-
logical Hall algebras using torus localisation. To begin with, we construct a “bivariant” Euler class
and use it to get a clean formulation of torus localisation for singular stacks. We then explain how
combining this, with stratifications of the stacks under consideration, allows us to compute their
CoHA products. We finish by using these techniques to give new formulae for CoHA products,

and a new interpretation of existing ones.

Thirdly, we turn to the question of ¢ deforming Joyce’s vertex algebra structure. We interpret the
well known (g deformed) Frenkel-Segal-Kac free field realisation in terms of homology of moduli

stacks, then make steps to interpreting it as a map of ¢ deformed vertex algebras.

The appendices include the categorical axiomatics needed to talk about vertex analogues of qua-
sitriangular bialgebras and related structures, as well as the construction of the “cohomological”
exponential map for algebraic stacks, which is needed to “linearise” closed embeddings by replacing

them with the associated normal bundle/complex.
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Chapter 1

Introduction

Verter algebra is a rigorous definition of the “holomorphic part” of two dimensional conformal
field theories from physics [BPV]. They were discovered in the 90’s by Borcherds, Beilinson and
Drinfeld [Bol, BD2] and are still at the forefront of our rigorous understanding of quantum field

theory. Today these ideas are spreading ever wider in mathematics [Ga4, GL, Groj].

Let M be the moduli stack of objects in an abelian or triangulated category A. Under some mild
assumptions, Joyce [Jo2] discovered that its homology He(M, Q) is naturally a vertex algebra,

related to enumerative invariants of that category [GJT, Jo3].

Cohomological Hall algebras are a rigorous definition of “algebra of BPS states” from physics [HM].
The idea of Kontsevich and Soibelman [KS] is that, for certain abelian categories A, extensions

in A should put an associative algebra structure on something like the cohomology of M.

Thus, we have moduli stacks M whose cohomology H*(M, Q) carry two structures, Joyce’s vertex
coalgebra and the cohomological Hall algebra. How are they related? Our first goal is to show
that they form a wvertex bialgebra, twisted by a braiding element S(z) solving the Yang-Baxter
equation. Our proof method is an application of the torus localisation formula, and gives new

formulas for cohomological Hall algebras, as well as new interpretations of results in [KS, Da).

Quantum groups are g-deformations of universal enveloping algebras discovered by Drinfeld [Dr],
and have since touched many areas of mathematics [EFK, RT, Wit]. There have been many
attempts to define similar g-deformed vertex algebras [EK, FR, Li2]. Our second goal is to show
how Joyce’s vertex algebras fit into this, giving new interpretations for old results [FJW1, FJW2]

as well as many new examples.



Summary of contents

Chapter 2 introduces the main background concepts for readers who are unfamiliar with them.
To begin with we introduce vertex algebras through the lens of chiral algebras, which is more or
less the same as a vertex algebra but much closer to the relevant physics (which we also briefly
sketch). Then, we explain how to build a vertex algebra structure on the homology He(M, Q)
of moduli spaces of abelian or triangulated categories A. Our approach is a little different from
[Jo2]. Finally, since many of our results will be insensitive to whether our spaces are for instance
topological spaces or Artin stacks, it makes sense to introduce the minimal structure (a sheaf
theory with the six functors) needed to define notions like “(co)homology” and “Borel Moore

homology” with the correct functoriality properties.

Chapter 3 builds up the tools to prove our main Theorem in which A is coherent sheaves on
a smooth proper curve or representations of a finite quiver. In the symmetric case when A is

representations of a finite symmetric quiver it states that

Theorem (Theorem 3.10.1). In the symmetric case, the cohomology of its moduli stack of objects
H®*(My) is a vertex bialgebra under Joyce’s vertex coalgebra YV (—, z) and the cohomological Hall

algebra - structures, i.e.

YV (a,2) - YV(B,2) = YV(a-p,2).

To start Chapter 3 we introduce the different types of cohomological Hall algebra that exist in the
wild. We then define the bivariant Fuler class, which is the “correct” extension of the Euler class
to singular analogues of vector bundles. To justify this assertion we prove a number of properties:
a singular Whitney sum formula, compatibility with the fundamental class and compatibility with

deformation to the normal cone.

We then we turn to abelian localisation. After giving the proof for schemes in terms of the
bivariant Euler class, we explain how to think about abelian localisation for Artin stacks (Theorem
3.5.16). The statement is more subtle than for schemes because Artin stacks can have cohomology
in infinitely many degrees, and so it is no longer enough to just invert equivariant cohomology
classes on the point H7.(pt): we need to invert equivariant classes on the whole space which satisfy

conditions called concentration and specialisation.

Then we explain a method to compute CoHA products using abelian localisation. This recovers
and explains the explicit combinatorial formulas for CoHAs in the literature, e.g. [Da, KS]. As an

example, towards the end of the chapter we use it to give a new formula for the CoHA of a curve



(Theorem 3.13.16).

We then check that the spaces appearing in our CoHAs satisfy the conditions which allow us to use
abelian localisation. We do this by proving a general result: for any space with a Bialynicki-Birula

type stratification, if these conditions hold stratawise then they hold on the whole space.

The general case of Theorem 3.10.1 is more complicated when A is coherent sheaves on an arbitrary
curve or representations of an arbitrary quiver. It says we get a vertex bialgebra twisted by an

element S(z):
YV (a,2) 5 YV (B,2) = YV(x-B,2).

This can be viewed as defining an alternative vertex coalgebra structure on H*(My) @ H®(My).
We then build the categorical theory to show this is the same as a vertex bialgebra in a twist of
the underlying vertex symmetric monoidal category. This is analogous to the story for twists of

ordinary graded bialgebras.

The proof of Theorem 3.10.1 then proceeds by giving explicit formulas for both structures. Joyce’s
vertex coalgebra can be written in terms of Euler classes essentially by definition, which can be
compared to the Euler classes in our explicit formula for the CoHA which appear because the
formulas come from applying abelian localisation. Briefly, we pull back to the locus where the

middle term of the short exact sequence splits as a direct sum

EXtA EXth XMA MAXMA
le MA MA XMA

then notice a torus action on Extg xy, (Ma x M,) coming from scaling the factors of the direct
sum. We prove in section 3.7 that the conditions of abelian localisation are met, then we use
our method of computing CoHAs by abelian localisation to give a formula for push-pull along the

above diagram on the right.

Finally, we use our technique to recover formulas of Kontsevich and Soibelman for the CoHA of a

quiver and give new formulas for the CoHA of a curve.

Chapter 4 is an account on the progress of a project to ¢ deform constructions of vertex algebra
structures on the homology of moduli stacks, with a view to relating them to quantum groups in
the future. After some introductory remarks about quantum groups and quantum affine algebras,
in section 4.4 we explain the main crutch we will use to connect homology of moduli spaces and

(quantum) affine algebras: the FKS isomorphism. More precisely, taking the category A = RepQ@



of representations of an ADE quiver, in section 4.5 and Theorem 4.5.21 we express the FKS
isomorphism explicitly in terms of simple operations on homology, and in sections 4.6 and 4.7
we ¢ deform these calculations. Then, in section 4.8 we give a definition of a ¢ deformation of
the vertex algebra structure on H*(My) (see Theorem 4.8.10). Finally, in 4.9 we discuss future
directions, in particular how we expect to be able to axiomatise this ¢ deformed structure to a ¢

deformed vertex algebra such that the FKS isomorphism is a map of such structures.

Note for examiners: Chapter 3 is largely based on the paper [Lal, chapter 4 will soon be turned
into a paper, and the collaboration in [AKLPR] is related to the work of this Thesis but does not

appear here.



Chapter 2

General background

2.1 Definitions: vertex and factorisation algebras

One can understand or motivate vertex algebras through

1. the corresponding notion in physics of the holomorphic part of a 2d conformal field theory

(section 2.1.25),

2. Beilinson and Drinfeld’s factorisation (or chiral) algebras (section 2.1.1), which more closely

resemble the physics but require more machinery, or

3. just reading the definition (Definition 2.1.9).

2.1.1. Factorisation algebras (sketch). Loosely speaking, a factorisation algebra over an alge-
braic curve X is a vector spaces V,,, ..., V,, living above finitely many points of X, which we are
entitled to parallel transport. The interesting part of the structure is what happens when parallel

transporting V,, and V,, if we collide the points x; and xs.




Before giving the definition we work through an example.

2.1.2. Let X/k be a smooth algebraic curve over a field of characteristic zero. Line bundles £ on

X can be expressed in terms of a divisor
L~ O(nyxy + -+ +npxy)  forze X, n; €Z. (2.1)
This divisor is unique after choosing a meromorphic section ¢, which gives a trivialisation
© ¢ Llx\(a1, 0y = triV. (2.2)

L can be recovered from this trivial line bundle by gluing trivial line bundles on D,,, along

transition functions 2™ on D = D, \{z;}. Here D, ~ Speck[[z]] is the formal disk at x;.

Thus the data of (£, ) canonically “factors” onto finitely many points of X. Indeed, the above

gives a functor
{Line bundles on X with meromorphic section}

— {finite subset {1, ...,2,} € X with line bundles on D,, and trivialisations on D }

which by the Beauville Laszlo theorem is an equivalence of categories.

2.1.3. The data at each point is then a line bundle on D, with a trivialisation along D7 . This
arranges into a space (prestack) Gr,, called the affine Grassmannian, whose functor of points is
Maps(S, Gr,,) = {£; € Pic(SXD,,), ¢ : Llgspx — trivy/ ~.

By [BD1, Thm 4.5.1] it is an ind scheme over k, with a group structure given by tensor product

of line bundles. Its k points are
Gry, (k) = OX(D;)/0% (D) = k(@) /kI[]" ~ Z

which corresponds to the integers n; € Z appearing in the divisor above, and one can show that
Gr,, ~ Z x exp(k((¢))/k[[t]]) as ind schemes."

'Here the ind vector space k((t))/k[[t]] = colimt—"k[[t]]/k[[¢]] is viewed as an ind scheme, by viewing the finite

dimensional vector spaces ¢t~ "k[[t]]/k[[t]] as schemes.



2.1.4. The global data also arranges into a space: the Beilinson Drinfeld Grassmannian Grx

77777

parametrising a line bundle and a trivialisation away from a finite subset. Forgetting the line

bundle gives a flat map to the space (prestack) of nonempty finite subsets of X
Grx — RanX

and its fibre above {1, ...,x,} is the product of the Gr,,. The Ran space RanX is defined as the
colimit of X™ for n > 0 over all diagonal embeddings (corresponding to surjective maps of finite

sets).

For general reasons (see section 2.4.7) it follows from the above that Grxy — RanX admits a flat

connection. See [BD1, MV] for more on Gry.

2.1.5. To get a factorisation algebra, we take the distributions supported on
0 = Gr, =~ Zxexp (k((t))/K[[t]])
which is a vector space V,, with basis the delta function at the origin and its derivatives
Ve, =~ k {5211 e 6’_";5}

in the various normal directions No/qr,, = k{t~*,t72 ... }. Here n; and r vary over all nonnegative

integers.

2.1.6. This is the vector space, what is the structure on it? The above construction globalises, by

taking distributions supported on

triv
RanX < Gry

7



to give a quasicoherent sheaf V' on RanX. Precisely, we take D module pushforward triv,O then
take its O module sections along Grx — RanX. The connection on Gry endows V with a D

module structure, and the factorisation structure implies
Gr{xl,...,z‘n} = Grzl X X Gr93n = ‘/{zla---vxn} = ‘/:El ® T ® %n

if the z; are distinct.

2.1.7. To translate this into a structure on V,, we restrict to the case of two points. Writing
Vi, = V|xn, we get a D module X? whose fibres (as an O module) above the diagonal and its

complement are

Vi > Va Vi Vi

L

X —25 X2 1 XAX

AN

AN

If X is a curve, we have the Mayer Vietoris sequence
Vo = GuiVa S ALY,
where f* denotes the O module pullback.? Thus we get
RVIEV) S AW (2.3)
When X = A', taking global sections gives a map
M@V @y, (x )7 5 Vo@k[r.y. (r —y) ') Ke ).

If the D module is weakly G, equivariant, one can show (e.g. [Bu]) that the restriction of ¢ to

Vo ® Vo ® k[z, y] is uniquely determined by a map
Y Vel — @k — )

which endows V, with the structure of a vertex algebra.

2.1.8. Vertex algebras. We say what a vertex algebra is then describe the one (called the level
zero Heisenberg) corresponding to the above factorisation algebra. The comparative advantages of
vertex algebras over factorisation algebras are that examples are much easier to construct (indeed,
most known examples do not arise “naturally” as factorisation algebras) and it is easier to make

explicit computations.

2This follows since f' = f*[d] for any f: X — Y, where d = dim X — dim Y is the dimension of f.



Definition 2.1.9. A verter algebra is a vector space V with a distiguished vector |0), a map
Y(=2)(=) - VRV — V((2)),
such that the Y(a, 2) for a € V weakly commute (Definition 2.1.13) and
Y (]0),2z) = id, Y(a,2)[0) = o mod zV][z]],

as well as an endomorphism 7" satisfying 710> = 0 and Y (T, z) = 0.Y (o, 2).

Elements of V are called states, |0) the vacuum, T translation and Y («, z) the field of «.

2.1.10. The fibre of a G, equivariant factorisation algebra on X = A! is a vertex algebra. The
translation operator T comes from the G, equivariance, and weak commutativity comes from the

S, equivariance of the factorisation algebra.?

2.1.11. The vertex algebra corresponding to the above factorisation algebra should have underlying

vector space as in section 2.1.5
Vo~ k™0™ 0y ¢ oryn; =0}

We can identify this with functions on the jet space of A, the space of maps from the formal disk
D — A', see section 2.3.4. As we discuss there, infinitesimal translation in D endows V with a

vector field T" given by T'(b_,) = b_,_; and the Liebniz rule
T(bﬁll T bﬁ?|o>) = Z "ibﬁll T bqiiitl;rlbﬁiz‘_l e b’i}|0>.

We then define
Y(b_1|0),2) = > 12",

nz=0

and it follows from the axioms that its derivatives give Y (b_,|0), z). Similarly, we define

Y (" -0 00),2) = [ [V (b=iloy)™.

This is a particularly simple example of a vertex algebra because the fields literally commute, not
just weakly. To get a more representative example of what a vertex algebra looks like we need to

introduce twists (see section 2.5.4).

3Note that if V is any sheaf over RanX then its restriction to X™ is automatically &,, equivariant. This is

because to map X" — RanX lifts to X"/6,, = colimyes, (X — X™) — RanX.



2.1.12. Let V be any vector space and a(z),5(z) : V — V((2)) linear maps. The compositions

a(z)B(w) and a(w)B(z) may be viewed as elements of a common vector space
(EndV)((2))((w)) = (EndV)[z*,w™]] < (EndV)((w))(()).

These inclusions are k[[z, w]] linear so may be viewed as maps of quasicoherent sheaves over the
product of two formal disks D, x D,,. Weak commutativity says that the commutator [«(z), B(w)]

is only supported on the diagonal.

Definition 2.1.13. Linear maps a(z), 8(z) : V — V((2)) weakly commute if

(z = w)"[a(2), Bw)] = 0

for some N >» 0.

2.1.14. Factorisation algebras. Currently, chiral and factorisation (co)algebras (Definitions
2.1.24 and 2.1.22) are perhaps the most successful and conceptual attempt at mathematically

defining aspects of two dimensional conformal field theory.

Whereas other attempts start with a vector space and introduce extra structures by hand to
mimic those in the physics literature, often leaving it unclear why the definitions are one way and
not another, the definition of factorisation coalgebras is remarkably simple: they are factorisable
coalgebras in a certain symmetric monoidal category. This captures the idea of states “living on

a curve”, which can move around and collide to form new states.

2.1.15. We first define an algebraic geometric analogue of the collection of finite subsets of X,
which are allowed to “collide”. Let X be any prestack, and take the functor defined on the category

FSet*“™7 of nonempty finite sets with surjections
XO) : FSet™ — PreStk

sending I to X', and a surjection I — J to the associated diagonal map Ay : X7 — X', The

Ran space of X is the colimit of this diagram
RanX = COhmIeFSetsur,j,opXI.

Thus Maps(S, RanX) is the set of nonempty finite subsets of Maps(S, X), see e.g. [CF, §10].

10



2.1.16. The Ran space is a (nonunital) commutative monoid in PreStk®"™ in two different ways,
meaning that it admits correspondences as below satisfying an associativity condition. The first

comes from taking union of finite sets

RanX x RanX

/ \ (2.4)

RanX x RanX RanX

and the second from taking unions on the locus of disjoint finite subsets

(RanX x RanX)gs;

/ x (2.5)

RanX x RanX RanX

The fibre of m over a nonempty finite subset I € X are the pairs of nonempty finite subsets I, I,

with I = I; u I,. Likewise for 7j, except the subsets I; are disjoint.

2.1.17. One can also define a unital Ran space Ran,, X (see [Gad]), a lax prestack which should
be thought of as parametrising all finite subsets of X (including the empty one).

2.1.18. From now on, assume that X is a seperated scheme of finite type over a field k. It follows
from the definition of the Ran space as a colimit that its category of D modules (see section 2.7.6)
is

DRanX) = limepgeeuri D(XT),
meaning a V € D(RanX) corresponds to a collection of V; € D(XT) with compatible isomorphisms
Vi~ A} Vi for all surjections of (nonempty) finite sets I — J. To give a D module on the unital
Ran space is to in addition supply compatible maps A’ / ;F1 — F; for all maps of finite sets I — J.

For instance, this gives a map Vgy @ wyr — V; for all 1.

2.1.19. By smooth base change, each (nonunital) commutative monoid structure on RanX as an
object in PreStk“"” where the rightwards map to RanX is an open immersion induces a (nonunital)
symmetric monoidal structure on Sh(RanX ). Applying this to the above monoidal structures, we

get the = and chiral tensor products

AR*B = m,(AXB), AN B = 7,55 (AR B).

11



2.1.20. It is easy to describe these tensor products explicitly [FG, §2.3], first

("A ®* B)I = @ A!Iﬂ_IIQ/I(‘AIl BIQ)’

I=I10l;
where direct sum is over all two nonempty subsets Iy, I with I = I; U I5, not necessarily disjoint.
To describe the chiral tensor product, we write j : (X't x X72) 4, — X for the open locus where

the first I; and last I, points are disjoint. Since j' = j*, we have

(A" B); = (Mujuf*ARB) = @ Jrei(An B Bp,),

I=1I1111>

where direct sum is over partitions / = [, 11 [5 into disjoint nonempty subsets.
2.1.21. We now define a factorisation algebra over a scheme X of finite type over a field of
characteristic 0.
Definition 2.1.22. [BD2, FG| A factorisation algebra is a (chiral) cocommutative coalgebra
B € commCoAlg (D(RanX),®")

which factorises: considering the coproduct B — B ®" B, each component

Br — Jjr+J;Br, XIBy, I = Liul,
becomes an equivalence when restricted to the open locus (i.e. after applying j7).

2.1.23. We can apply the construction of (2.1.7) to a general factorisation algebra. What is the

structure that we get?

Definition 2.1.24. [BD2, FG] A chiral algebra is a (chiral) Lie algebra
A € Lie (D(RanX),®")

lying in the image of A, : D(X) — D(RanX).

Francis and Gaitsgory [FG, Thm. 1.2.4] have constructed an equivalence between the categories
of chiral and factorisation algebras by interpreting the construction as in (2.1.7) as an instance of

Koszul duality.

2.1.25. Physics motivations. Factorisation algebras on curves and vertex algebras both attempt
to formalise what physicists mean by holomorphic part of a two dimensional conformal field theory.
Generally speaking, trying to put aspects of quantum field theory (QFT) on a mathematical footing

has been a very fruitful source of new mathematics over the past few decades.

12



2.1.26. Most of this section will not be rigorous mathematics. Rather, the point is to sketch some

aspects of physicists’ points of view on vertex algebras.

2.1.27. First following [Ta], we sketch part of what physicists expect to attach to a quantum field
theory. A quantum field theory @ is defined on a class of manifolds with extra structure §, for
instance a Riemannian manifold or conformal manifold, and dimension d. At minimum it should

assign:

1. an element Zg(N) € k for every d dimension 8-manifold,

2. a vector space Hq(M) of states to any d — 1 dimensional 8-manifold M.
Moreover, it should interact interestingly with manifolds with boundary, assigning

1’. a map

2q(B) :+ Ho(My) — Ho(Ms)
to any d dimensional §-manifold with corners B with boundary M; 11 M.

This data should give a symmetric monoidal functor from some sort of cobordism category
Cobf — Vecty, (2.6)

which should satisfy the Atiyah-Segal axioms [At2, Se3], with both the category and axioms
suitably modified according to 8. In particular, H(J) = k so the two notions of Z¢ both give a

number for manifolds without boundary.

@ should also attach data to manifolds of dimensions d — 2 and lower (this is called an eztended

QFT), lifting the above functor (2.6) to a map of the associated d-categories. Thus it assigns
3. a k linear category to any d — 2 dimensional manifold,
4. a k linear (n — 1)-category to any d — n dimensional manifold, for n > 1.
It should also assign data to extended cobordisms, similarly to the unextended situation (1’).
Separate from this, ) should come with
A. a vector space \722 of point operators,
B. a tensor category \7%9 of line operators,

C. a certain n-category V¢, for every 0 < n < d.
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This data should interact with the extended structure above, e.g. given point operators ¢1, ..., @, €

V% and distinct points 1, ..., z, in a d dimensional & manifold N, we get a number denoted

2N, pr(a1) - pn(xn)) € K

called a correlation function in the xq,...,x,. There are two more relevant expectations about
point operators: V¢ should carry a kind of algebra structure, and in the example of conformal
field theories, V& ~ Hg(S9!). Thus for d = 2 dimensional CFTs we expect an algebra structure

on Hq(S'), and its “holomorphic” subspace is expected to carry a vertex algebra structure.

2.1.28. QFTs often (but not always) come up in the physics literature through path integrals. First
one defines an auxiliary vector space Hg(B) of fields and an action function S : Hg(B) — C for
every d-dimensional 8-manifold B. It is claimed that this vector space carries a measure, denoted

diy, and if B has no boundary one can symbolically write
2o(B) = J eSO ).
He(B)

If B has a boundary it is expected that there should be a restriction map on fields |o5 : Ho(B) —
Hqo(0B). Then if B is a bordism from M; to M,, one can symbolically write

2q(B) : Ho(M;) — Hq(M,), P — e S| v, dep.

Yl =

2.1.29. To be more explicit, we sketch the best understood example to illustrate some of the
above data: topological field theories (TQFTs). Loosely, TQFTs are QFTs which only depend
on the topological structure of the manifold. To be precise, a TQFT is defined to be a symmetric

monoidal functor

Cob? — Vect

from the category of closed oriented d — 1 dimensional manifolds with morphisms cobordisms,

satisfying the Atiyah-Segal axioms (see [Koc, 1.2.23]).

Let us now take the example of 2d TQFTs, which might help us understand 2d CFTs and so

vertex algebras. It assigns:
e a vector space A = Hp(S') to the only connected one manifold S*,
e a map A®" — A®™ for every oriented 2-manifold giving a bordism from ™S* to U™S? (so

it has boundary 1"S* [ [1IS1).
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In particular we get maps

L O
() Aik(I:>

ARA L A

A5 AR A

One can then show that these maps arrange into a Frobenius algebra, and that the categories of

Frobenius algebras and 2d TQFTs are equivalent [Koc, 2.3.24].

2.1.30. Thus vertex algebras should be thought of as the analogue of this Frobenius algebra
structure in the case of d = 2 dimensional conformal field theories (). Note that 2 dimensional
conformal manifolds are the same thing as Riemann surfaces, which is why there is a hope of

linking the subject with algebraic geometry.

Take as the underlying vector space

where S! € C is the circle of radius r > 0 centred at the origin. Now take three points {0, 2,00} S
P! along with three families of circles with origins {0, z, o0} and radii tending to zero. This data is

conformally invariant. In particular, we should get maps depending nontrivially on z € P'\{0, o0}:

Similarly, we get the vacuum |0) — V' just as we got the unit in the 2d TQFT case.

We reiterate that it is expected that Hg(S}) should agree with the vector space of point operators:

this is called the state-operator correspondence. In particular, given any Riemann surface X and
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elements aj, ..., a, € V we should expect correlation functions, in this context usually denoted as

(a(=)--am(=)) + X" — C.

2.1.31. A common class of examples of QFTs are o models. Loosely speaking, fixing a target

manifold 7', a ¢ model is a d dimensional QFT acting on d manifolds by
M +— Maps(M,T).

Strictly speaking the right hand side is not a vector space, so it is necessary to suitably linearise
it, e.g. by taking the vector space of functions. Thus we should expect to get examples of vertex

algebras from something like functions on loop spaces
LT = Maps(S*,T).

Something like this works for any scheme 7' (section 2.3.4) producing a vertex algebra structure
on O(JyT), but it is fairly uninteresting. To get more interesting examples, we need to quantise
the o model, which on the mathematics side corresponds to producing a filtered vertex algebra

whose associated graded is O(J,T).

2.1.32. Remarks. There is a closely related notion of topological factorisation algebra due to
Lurie and developed among others by Costello and Gwilliam, see [Lurl, CG1, CG2]. This point
of view is sometimes taken in the algebraic geometry literature, e.g. [KV2]. In another direction,
Segal [Se2] has a different formalisation of 2d CFTs. On the physics side, 2d CFT is a very large

subject, see e.g. [FMS] for an introduction.

2.2 Properties of vertex algebras

In a vertex algebra, its fields Y (o, 2) = Y, ., a,z ™ ! behave quite similarly to elements in a

commutative algebra. To justify this claim, see the following properties of vertex algebras.

2.2.1. Normally ordered product of fields. It is not possible to compose two linear maps

a(z),B(z) : V. — V((2)), since the z coefficients of

“a(2)B(z) = Z O Bz

n,meZ
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are infinite sums and do not define endomorphisms of V. However, since o,y = 3,7 = 0 for n » 0,

as an ad hoc fix we may salvage this by defining their normally ordered product to be

if
: 04(2)6(2) = Z : Oznﬁm . M2 : O‘nﬁm - O‘nﬁm itn<0

n,meZz ﬁman if n = 0.

This product is neither commutative nor associative. The reason this product is worth considering
is Dong’s lemma [FBZ, 2.3.4], which says that : a(2)5(z) : weakly commute with any field which
a(z) and B(z) both weakly commute with.

If V is a vertex algebra then one can show that
Y(0,2)Y(8,2): = Y{a184]0),2)
for any o, B € V.

Note that o = a_;|0), so compare this to Y (a, z) = Y (a_1]0), 2).

2.2.2. Note that a(2)8(w) = 3 @ Bmz"fw™™"! gives a well defined map V — V((w))((2)), and
also we can define their normally ordered product V — V[[z, w]][z~!,w™!] given by

cafz)f(w) = Z S B 2w

n,meZ

2.2.3. Reconstruction. Vertex algebras can be described in terms of generators, just like alge-
bras. Notice that the algebra structure on a commutative algebra A is uniquely determined by

the multiplication maps
a, : A - A
for {a;}ier a generating set. Conversely, to give a commutative algebra structure on the vector
space A, it is enough to give a nonzero element 1 € A and commuting linear maps a; : A — A so
that a;1 are distinct and
A = span{a;, - - a;, 1}reNiger-
The analogue for vertex algebras is the reconstruction theorem. Let V be a vector space with

endomorphism 7" and nonzero element |0) € V.

Proposition 2.2.4. (Reconstruction theorem [FBZ, Thm. 4.4.1]) A vertez algebra structure on
V' is specified by weakly commuting maps a;(z) = Y, i,z "tV = V((2)) forie I so that
a;(2)|0) € V[|z]] and their constant terms are distinct, [T, o;(z)] = d,a;(2), and

V = Span{a’blﬂ’bl e air,nr|0>}TEN,ik€I7ni€Z'
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The vertex algebra structure is
1
(—ny — D)l (=n, — 1)!

Taking a vertex algebra given by commutative algebra gives back the statement for commutative

Y(aihnl e O‘ir7nr|0>7 Z) = : azinlilail (Z) e azimilair (Z) s

algebras.

2.2.5. Operator product expansion. We have explained generators, we now explain what are

the analogues of relations between generating fields in a vertex algebra.

Let V' be a vector space and «a(z), 8(z) : V' — V((z)) two linear maps. An equivalent formulation
of weak commutativity (Definition 2.1.13) is that their commutator is a finite sum of the delta
function §(z — w) := 3, 2"w™""! and its derivatives:

1

[a(2), B(w)] = ) T ()2,0(2 — w) (2.7)

k=0

for some Y (w) : V- — V((w)). Alternatively, their composition is a finite sum

0(@Bw) = D e (28)

)L
(2 —w)k
where 1/(z — w) is expanded in positive powers of w/z,* and S(w)a(z) is equal to the same
expression with 1/(z — w) expanded in negative powers of w/z.

For vertex algebras the coefficients in (2.7) and (2.8) have an explicit description

Proposition 2.2.6. (Operator product expansion, e.g. [FBZ, §3]) If V is a vertezx algebra

Y(a,2)Y(B,w) = Y(YV(a,2 —w)B,w) = Z Y (apf,w)

_ k+1°
keZ (Z w) N

2.2.7. Thus if a(z), 8(z) weakly commute, we get maps
a(z)B(w) + V. — V[[zwl][z™" (z —w) ™, w™]
ca(2)Bw) 0 Vo— V[[zw]][z Tt w .

We write ~ for the equivalence relation on V[[z,w]]|[z7!, (z — w)™!, w™!] given by quotienting out

by V[[z,w]][z7*, w™'], so e.g. N
a@ptw) ~ Y 2

k=0

“Here,
soz)B(w) = a(z)1B(w) + f(w)a(z)—
denotes the normally ordered product, where if a(z) = > ., @,2" we have written ai(z) = > - ja,2" and

a_(z) =2, 02"
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2.2.8. Modules over vertex algebras. A module over vertex algebra V is a vector space M

with a map
Yyu(=2)(=) : VoM — M((z))

satisfying properties analogous to vertex algebra, see [FBZ, §5.1.1]. It should correspond to the

notion of factorisation comodule of a factorisation coalgebra.

In [Y.Zh], Y. Zhu defined an associative algebra Zhu(V") attached to any graded vertex algebra V,

which controls the representations of V:

Definition 2.2.9. The Zhu algebra of a graded vertex algebra V' is the quotient space
Zhu(V) = V/O(V)

where O(V') is spanned by elements of the form

(1 + 2)e
22

aofl = Res, ( Y(a,z)ﬁ)

where « is homogeneous.

Proposition 2.2.10 ([Y.Zh]). Zhu(V') is an associative algebra, with unit |0y and product

a-f = Res, (%Y(a,z)ﬁ) )

Moreover, there is an equivalence of categories

0
V-Modn = Zhu(V)-Mod M = @M, —» M,

n=0

between the category of N-graded V' modules and of Zhu(V') modules. A homogeneous representa-

tive a of an element in Zhu(V') acts on My by 0tgeg a—1-

For instance, Frenkel and Zhu [FZ, §3] computed the Zhu algebra of the affine vertex algebra

attached to any finite dimensional simple Lie algebra g and any level k:

Zhu(Vi(g)) = U(g),

and if k is a positive integer then Zhu(Ly(g)) = U(g)/{es*"), where ey generates the root space of
the highest root 6.
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2.3 Examples of vertex algebras

2.3.1. Algebras. Every commutative algebra A is a vertex algebra, with field map given by the
algebra product
Y : AQA - A — A((2))

so it is independent of z, translation operator T'= 0 and vacuum [0) = 1.

2.3.2. Differential algebras. Every commutative algebra with derivation (A, 0) is a vertex al-

gebra with field map
Y(O-/7 Z)B = (6zaa) ’ ﬁa (29)

translation operator 7' = ¢ and vacuum |0) = 1.

Definition 2.3.3. A vertex algebra is called holomorphic if the negative modes of the fields vanish,
i.e. the field map factors as Y : V@V — V|[[z]], as is the case above.

In a holomorphic vertex algebra the fields Y («, z) commute, since (z — w) is not a zero divisor in

V[|z,w]]. We can define a product on V' by setting
a - = constant coefficient of Y (a, 2)Y (3, 2)|0)

and show that T defines a derivation, showing that the category of holomorphic vertex algebras

and commutative algebras with derivation are equivalent [FBZ, 1.4].

In a holomorphic vertex algebra, Y (a, 2)Y (8, w) ~ 0, i.e. product and normally ordered product
of fields coincide. Thus one should think about the singular terms in the OPE as being the most

interesting part of the vertex algebra structure.

2.3.4. Jet spaces. Recall from section 2.1.31 the physics heuristic that vertex algebras are meant

to have something to do with loop spaces LT

To make this precise, let 7" be a scheme of finite type over a field k and D = Speck|[[t]] the formal
disk. Instead of loops into T, we should actually consider the arc (or jet) space of T, which is the
(completed) mapping space J,T = Maps(D,T'),> which one can show is a scheme. It is usually of
infinite type.

Note that D carries two vector fields: the Fuler vector field coming from scaling

t% : Zant" — Znant"

5Tts S-valued points are Maps(Sx D, T), where X is the completion of S x D along S x 0.
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and the translation vector field

% : Zant” — Znantn_l.

This induces two vector fields on J,T', also denoted by t% and %; we consider the latter. It follows

that (O(J,T),2) is a commutative vertex algebra. If T is in addition Poisson, then O(J,,T) is a

Poisson vertex algebra.

Jet spaces can be described explicitly, for instance
JoA' = SpecClr_y,z_s,... ]
a point of which should be thought of as a power series

t — Zant" a, € Al

nz=0

Then taking a generator x of O(A'), the value of z_,, at this point is x(a,), so that the derivation

acts as %x_n = (n+ 1)x_,_;. Likewise we have that for any finitely presented algebra A with

generators x; and relations f;, the holomorphic vertex algebra O(Jy,SpecA) is
C [xi,fn]iel,n>0/(fj,fm)je],m>0'
Here, we identify x; 1 = T"x; ;1 to compute f; ,,—1 = T™f; _1. See [AMo] for more.

2.3.5. Aside: quantisation. What is the correct notion of quantisation of a holomorphic vertex

algebra?

In [Lil], Li constructed a canonical decreasing filtration on the underlying vector space of any

vertex algebra V', given by

Vi = span{an —n,—1 Q= 1|0) Yy 20,0 4y 2k

so that V; = V. This filtration satisfies

Viett—n— ifn<0
TV, € Vi V)Ve < 4

Vk+£7n 1f n 2 0

and so we get a holomorphic vertex algebra structure on grV/. V is called a chiral quantisation of

scheme T if grV ~ O(J,T) as vertex algebras.
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2.3.6. However, this associated graded actually carries more structure, a Poisson vertex algebra
structure (see [AMo, §4]). This should be thought of as analogous to the fact that being Poisson is
a smoking gun that a variety or algebra might be quantisable (e.g. deformation quantised). To be
precise, if the scheme T" has a Poisson structure then this endows O(J,T) with a Poisson vertex

algebra structure.

2.3.7. Affine vertex algebras. Let g be a finite dimensional Lie algebra and x : g x g — k be
an ad-invariant bilinear form. The affine vertex algebra Vj(g) which we will define shortly will be
generated in the sense of the Reconstruction Theorem by fields a(z) depending linearly on « € g,

subject to the OPEs

r(a, B) . v, B](w)

d —_—.
(Z—w)21 T W

a(z)f(w) ~
These OPEs imply that the coefficients a;, of a(z) = 3 o, 27" satisfy the commutation relations
of the affine Lie algebra g, and the vertex algebra is a highest weight representation of g of level

k (see Appendix B) and highest weight vector |0).

We now define the affine vertex algebra (or current algebra) to be the maximal highest weight

representation of level k: the Verma module of level k

Ve(g) = IndS 0,k

[t]Pkc

which admits a PBW basis in terms of a basis aq, ..., a,. of g:

Vn(g) = k[al,—na“war,—n]n)l‘

n

The field of a; _1]0) is the power series valued endomorphism «;(z) = Y o,z " !, which together
generate the vertex algebra; thus the field map is determined by the Reconstruction Theorem.
Moreover, T' is uniquely determined by the axiom [T, ;(2)] = d,;(2). It is a chiral quantisation

of the Poisson space g*:
grVi(g) = O(Jwg™).

To contrast jet space examples, we emphasise that for positive n the operators ay, will not all

act trivially so long as k is not zero. This is true even when g is abelian.

2.3.8. By the reconstruction theorem, any highest weight representation of g carries a vertex
algebra structure. An important example is the maximal quotient L,(g) of Vi(g), called the

simple affine vertex algebra.
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2.3.9. If Kk = k- ko/2h" is a multiple of the normalised Killing form rq/2h" (with ko the Killing
form and A" is the dual Coxeter number), then we often write Vj(g), Lx(g) in place of V,.(g), L.(g).

2.3.10. Lattice vertex algebras. Let A € C" be a lattice and k be a 2Z valued bilinear form.
The lattice vertex algebra, first defined by Borcherds [Bol], has associated graded

0(J,C™) @ C[A].

One should think of this as being functions on space of formal loops D* — C"/A. Indeed, there
are A many homotopy classes of loops, and the space of contractible maps form the jet space

JC" = Maps(D, C").
As a vector space, the lattice vertex algebra is
Vi = Vi(C") @ C[A]

where t = C" is viewed as an abelian Lie algebra. To make it into a vertex algebra, we first put

on Vi(C") ® e* the structure of Verma module of t of level one and weight x(\, —) € t*.

This uniquely determines the rest of the fields. For any z € t and )\ € A, writing z(2) and e(2)
for the fields of z_1|0)® 1 and 1 ® ¢, the OPE formula gives
e*w)

Z—w

z(z)eMw) ~ k(A )

or equivalently, [x,, e*(w)] = x(\, z)w"e*(w), which forces

—k —k
6/\(2) = —|—e>‘ . Z)‘Oezk<0 % /\ke_zk>0 “% )‘k'

Here we have written e* for the group algebra action and A\(z) = Y \,27""! as the field given by
viewing A < t. Finally, the sign on V,(g) ® e/ is given by the component ¢, , of any two cocycle

c: A x A— {£1},ie.

oo = Cp = 1, CxuCx+py = CaptvCpuy;

which satisfies in addition

CauCux = (—1)“0")‘)”(“7#”%()\7#)'

2.3.11. To put these formulae into context, consider the logarithmic power series

1
fA(z) = > ~An2 "+ logzAoy + A
n#0

Then up to signs, we have that A\(2) = d({A\(z)) and e*(z) = exp({A(2)). One might expect that

this can be make precise using the framework of logarithmic vertex algebras, see [BVi].
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2.3.12. Borcherds’ bicharacter construction. We have seen that differential algebras A give
holomorphic vertex algebras. Borcherds noticed that if there is additionally a cocommutative
coproduct A, this construction can be twisted. By what? A bicharacter of a commutative,

cocommutative bialgebra A is a linear map r : A® A — k((27!')) with
ra®1) = r(l®a) = 1,
rlab®c) = rla®c)r(b®c), rla®bc) = rla®b)r(a®c),
r(da®c) = o.r(a®b), rla®dc) = —d.r(a®@b)
and the symmetry axiom r(a @b, z) = r(b® a, —2).

Theorem 2.3.13. [Bo2] Let A be a cocommutative, commutative bialgebra with a symmetric

bicharacter r. The formula
Y(e,2)8 = m (e ®id) 1o - Aa@AB) = >(e¥aq))Buyr(ae ® Be) (2.10)

defines a vertex algebra structure on A.

The proof proceeds very similarly to the proof of Theorem 2.6.21 about the vertex algebra structure
on the homology of moduli spaces. In that case, the bialgebra A is the homology of moduli space
with product @, given by the direct sum map and coproduct the dual of the cup product. The

bicharacter is cap product (see below) with a cohomology valued power series ¥ € A¥@AY ((z™1)).

2.3.14. This formula (2.10) involves what should be called the cap product action of r on A®?:
o A®A B AQAQA®A B A A((x ).
Recall that for any cocommutative coalgebra C, the cap product action of C'V is
CVRCE cvecec B,
which agrees with the usual definition in topology when C'is the homology of some space.

2.3.15. Aside: graded, super, ... vertex algebras. One can define a vertex algebra in any
k linear symmetric monoidal category € (see Appendix A), and taking € = Vect gives back the

usual definition. Some other variants:

1. Z graded vertex algebras are vertex algebras in the category of Z graded vector spaces

C = Vectz, where we grade V((z)) by setting |z| = —2.
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2. Vertex superalgebras are vertex algebras in the category of super vector spaces € = Vecty,,

as before setting 2| = 0 mod 2.

In either case, whenever « is homogeneous of degree ||, since Y is grading preserving, its modes
have degree

lan| = |of —2n —1.
It follows that |0) has degree zero and T has degree one. Finally, weak commutativity translates
in this case

(z = w)" (Y (@, )Y (8. 0) = (~1)*MY (8,w)Y (@, 2)) = 0

for homogeneous elements «, 5 and n > 0.

2.3.16. We can define graded and super analogues of the examples in this section, for instance
affine Lie superalgebras attached to a finite dimensional super Lie algebra with an ad-invariant

bilinear form, super lattice vertex algebras attached to a super lattice with bilinear form, etc.

2.3.17. Other examples. There are other examples which we will not touch in this Thesis. Some

of the most important examples are:

e Virasoro. The Virasoro Vir, attached to c € k is generated by a single field T'(z) satisfying

OPE
c/2 2T (w) 0w T (w)

(z —w)* (z —w)? zZ—w

T(:)T(w) ~

which implies that the coefficients of T'(z) define a representation of the Virasoro algebra
of charge c. In particular, any highest weight reprentation gives a vertex algebra, like the

Verma module Vir, and its irreducible quotient L(c). See [DR, Wil] for more.

e W algebras. The Heisenberg and Virasoro are the g = gl;, sl examples of a general con-

struction of the W vertex algebra
W(g, f)

attached to a finite dimensional Lie algebra g and nilpotent element f € g. It admits a
grading such that as a vertex algebra gr'W*(g, f) ~ O(J8;) is functions on the jet space
of the Slodowy slice 8 < g* associated to f. When f = 0 it reduces to the affine vertex
algebra V,(g). It is meant to be a vertex analogue of the “quantum Hamiltonian reduction”

definition of finite W algebras. See [Arl, Ar2] for more.

o Vertex algebras from 2d SCFTs. New vertex algebras are constantly coming out of the

physics literature. One of the most interesting in recent years are the vertex algebras arising
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from 2d SCFTs studied by Beem, Rastelli and others (see for instance [BLL]). Another
interesting example is the triplet W algebra, studied by Adamovi¢ and Milas in [AMi].

2.4 Properties of factorisation algebras

Continuing section 2.1.1, we give more information about factorisation algebras. This helps mo-
tivate the vertex algebraic constructions in this Thesis, but the vertex algebras we cover in this
Thesis have not (yet) been found naturally as factorisation algebras, so the reader may skip this

section if they want.

2.4.1. Unital versions. One disadvantage of the usual Ran space is that the chiral monoidal

structure on Sh(RanX) is not unital. Note that for any non-unital algebra A we only have maps
RierA — RjesA
for any surjection I — J, whereas if it is unital, by inserting the unit we also get maps
Qienn A = Qier,A
for any subset I; < I5. In this way we get a map ®;erA — ®jesA for any map I — J.
We define the unital Ran space as the lax colimit
Ran,, X = ColimFSetop7FSetsurj,opX(_)

where FSet is the category of all finite sets (not necessarily empty) and all maps. Its S points
are the category with objects finite subsets of Maps(S, X) and morphisms inclusions of sets. See

[Ras, §4.9] or [CF, Def. 10.3.3]. The objects in the category
Sh(RanunX) == hmFSet,FSetS"” Sh(XI)

consist of a sheaf V; € Sh(X?) for every nonempty set I and compatible maps A’I / Vi — V; for
every map I — J (which induces A;/; : X7 — X7), such that they are isomorphisms A} 1V SV

for surjections I — J.

2.4.2. We can define unital analogues of the = and chiral correspondences (2.4) and (2.5), and
hence define unital factorisation and chiral algebras. Explicitly, a unital factorisation algebra is a
factorisation algebra V' e Sh(RanX) along with compatible maps A’Il 1,V = Vi, for all inclusions

I, < I, of finite subsets. Thus for instance if V = k € Sh(pt) we get a map
Q.)XI = A;(I/ptk: —> ‘/}
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2.4.3. Factorisation spaces. We similarly get notions of a prestack or quasicoherent sheaf over

RanX and Ran,,X. For instance,
QCOh(RanX) - ].imleFSetsurj QCOh(XI) Prestk/RanX == hmleFSetsurjPreStk/XI

the limit taken over the pullback maps A7} iz Thus, by base change m,j.7* endows these cate-
gories with the chiral symmetric monoidal product, denoted @ and x" respectively.® As before,
(co)commutative (co)algebras with respect to these symmetric monoidal structures whose struc-
ture maps are isomorphisms when restricted to (Xt x X'2), — X7 are called factorisation

(co)algebras. See [CP, Ras].

2.4.4. Factorisation algebras in PreStk/ra,x are called factorisation spaces. For instance, RanX
is itself a unital factorisation space. For an algebra Y e (PreStkganx, x"). the factorisation

condition is equivalent to

JY xY) > jrtng gty xY) = Y xMY) - ity
being an equivalence, where the first map comes from applying the unit of the adjunction. In
particular, for any factorisation space Y this means that we get a pullback

(Y X Y)disj

K/;// |s \\<1$

Y xY (RanX x RanX) s, (2.11)

[ — ~ l

RanX x RanX RanX

Using this correspondence we can thus repeat all the above with Y in place of RanX, giving

definitions of factorisation algebras, spaces, etc. over Y.

2.4.5. For instance, assume the map f is ind-schematic on reduced prestacks, so that f, is defined

on Sh(—). Then given factorisation coalgebra B € Sh(Y'), by applying f, to the structure map
B — 77,7 (BXB)

and applying base change, we see that we get a factorisation algebra f,B. Similarly, in the
quasicoherent case for any f, if we have a factorisation coalgebra & € QCoh(Y"), then base change

we get a factorisation algebra structure on f,€.

SFor amap f : S — T we write f* : PreStk, — PreStk,g for the pullback map on stacks, which has left adjoint
the forgetful functor f,.
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2.4.6. All of this can be more conceptually described in the language of factorisation categories,

see [Ras].

2.4.7. Flat connection. We notice the following remark made by Lurie. A unital factorisation
space whose structure map Y — Ran,, X is flat admits a flat connection, i.e. is the pullback
of a map to Ran,, X4g. It is enough to give compatible isomorphisms between fibres of Y over
infinitesimally close points Ran,,X. Given two tuples of points x,y : S — X' inducing the space

Sreqa tuple, the map of spaces over S given by the unit
Vo = Yy < Y
are isomorphisms. Here Ys denotes the fibre of Y above finite subset S € X. Indeed, they are

maps of flat spaces which become isomorphisms after reducing the base, so are isomorphisms.

2.4.8. Factorisation homology. One advantage of factorisation algebras is that it gives a more
conceptual definition of conformal block. The factorisation (or chiral) homology of A € Sh(RanX)
1s

HM(X,A) = pA = Hl(RanX,A)

where p : RanX — pt. If X is proper, then so is RanX, i.e. p = p, preserves colimits and

factorisation homology can be computed as colimcpgepsuriPx15A 1
2.4.9. HS"(X,B) is usually what is called the space of conformal blocks, see [BD2].

2.4.10. In the classical definition [FBZ, Def. 9.2.7], the space of conformal blocks of a vertex

algebra V' at a point of a curve x € X is the dual to a space of coinvariants
C(X7 Z, V) = (V/UX\;EV)V

and so admits a map C(X,z,V) — V. If the vertex algebra V' = A, is the fibre of a factorisation

algebra A on a smooth curve X, applying adjunction to the proper map 7 : x — RanX gives
A [-2] = i'A = pigtA - pA = H(X, A).

Thus for each z € X we get a map A, — Hﬁ’iz(X , A), which one expects to factor through taking

coinvariants. Likewise, taking a collection of n distinct points i : (21, ..., z,) < RanX gives a map
H (X A)Y > (A @ @ A,)"
which one expects might factor through a map to conformal blocks Hffjﬂn (X,A) - C(X, 21, ey 20, Vo, V).
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2.5 Examples of factorisation algebras

2.5.1. Affine factorisation algebras. Let X be a curve and G a reductive group over k. The

Beilinson Drinfeld Grassmannian Grg x is the prestack given by functor of points
Grgx(S) = {(ml, e Zn, Pop) - n =0, x;€ X(S), PeBung(Xs), ¢ Plxg\(ar,..on) = triv}

where X is the base change to S and Bung(Xs) is the groupoid of G torsors on Xg. It admits
a map to Ran,, X by forgetting everything but the subset of X. Then Grg x is a factorisation

space with factorisation structure”
j*j*(GrG,Xfl X GTG,sz) — Grg xr

taking two G bundles with trivialisations along X\{x;, }i,er, and X\{xs, }i,er, respectively and using

the trivialisations to glue them along X\{w;}ss, where I = I} U I,.%

2.5.2. This factorisation space structure is unital, with unit
triv : RanX — Grgx

given by the trivial G' bundle. Write 7 : Grg x — RanX for the retraction.

2.5.3. One can show that the map Grgx — Ran,,X is ind-schematic [BD1], so the fibres

Grg ...z, above a finite subset of X (k) form an ind-scheme.

n

2.5.4. To form the affine factorisation algebra, take as category of sheaves Sh(—) the category of

holonomic D modules. In particular, it admits a forgetful functor to QCoh(—), and so we can take
Sh(RanX) "S* Sh(Grgyx) — QCoh(Grgx) & QCoh(CGrex) & QCoh(RanX)  (2.12)

where £ € QCoh(Grg x). If £ is factorisable, meaning we have compatible isomorphisms j*(£
L) = j*n*L, or equivalently j*(L; X Ly,) =~ j*L;, then for any factorisation coalgebra A €
QCoh(Grg, x) we get a map

FrARL) = JTAR L - JFHARA) @I (LRL) = jHARLM
which by adjunction is the same as
ARL — T (AR L)

Thus: if A is a factorisation coalgebra, so too is A® L.

"A factorisation structure is an algebra map TxJxd* (Gra,x x Grg,x) — Grg, x, which by adjunction is the same

as a map jj*(Grg,x x Grg,x) — 7*Grg x.
8To be precise, we take these two G bundles P;, P, to P = P; Uerivix\ (e, ,ep Ps.
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2.5.5. We finally note that Grg x is unital so the projection 7 comes from a pullback of a fac-
torisation space GIZ’ v — RanXyg. Thus if £ is also unital then by section (2.4.7) we can lift the

above to a sequence

Sh(RanXar) "™ Sh(Grfy) — QCoh(Gryy) 25 QCoh(CGryy) ™ QCoh(RanXug). (2.13)

2.5.6. There is a distinguished factorisable line bundle £ € Pic(Grg x) called the determinant
bundle, see [FBZ]. Taking the constant holonomic D module k& € Sh(RanX,z) and pushing it

forward to give ¢ = triv.k, we get the affine factorisation algebra of level k € Z:
Ac = m (6@ LEF).

Since ¢ is supported on RanXyr < Grg, +, as an element of D-Mod(RanX) this does not depend

on k: only its factorisation algebra structure is affected by the twist by L.

2.6 Homology of moduli spaces

2.6.1. In this Thesis we will focus on a new class of vertex algebras discovered by Joyce [Jo2].
The idea is that if A is a (abelian, triangulated or dg) category, the extra structure this imposes
on its moduli stack of objects corresponds (after taking homology) to a vertex algebra structure.
For instance, the singularities in the operator product expansions and correlation functions are

controlled by eztensions in A.

Instead of worrying about what it means for a space to be a “moduli spaces of objects” in an
(abelian, triangulated or dg) category, we will instead just say what sort of space admits a vertex
algebra structure on its homology, this includes all standard examples of such moduli spaces. For

more detail on the first question, see [TV].

2.6.2. We will build up the vertex algebra structure piece by piece: by adding more structure each

step, we will build
1. A commutative algebra (Proposition 2.6.4).
2. A commutative algebra with derivation (Definition 2.6.13).
3. A vertex algebra (Theorem 2.6.17).

Note that, by section 2.3, these are all examples of vertex algebras.
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2.6.3. Algebra. What should taking direct sums of objects correspond to on the level of spaces?
Let M be a space with marked point 0 : pt — M and a map

A MxM - M

making it into a commutative monoid in the category of pointed spaces. We will sometimes call

@ the direct sum map. It is easy to see that

Proposition 2.6.4. If (M,0) is a commutative monoid, its cohomology H* (M) is a supercommu-
tative, cocommutative graded Hopf algebra. Its algebra and coalgebra structure are given by cup

product and ®*, its unit and counit are 1 and 0*, and its antipode is S = (—1)%.

Corollary 2.6.5. If (M,0) is a commutative monoid, its homology He(M) = H*(M)" is a com-

mutative, supercocommutative graded Hopf algebra.
In particular, He(M) (and H*(M)) are trivial examples of vertex (co)algebras.
2.6.6. If (MM, 0) is a commutative monoid, write ,Rep for the symmetric monoidal category of left

modules over H*(M), similarly Repy and »Rep,. Their symmetric monoidal structures are given

by the cocommutative coproduct.

2.6.7. An example of a commutative monoid in the category of pointed Artin stacks is BG,, =
(BG,,, triv), the classifying space of line bundles with marked point the trivial line bundle. Tts

monoid structure is given by tensor product of line bundles
® : BG,, x BG,, — BG,, (L, —» L@L

so BG,, is even an abelian group object. As a Hopf algebra its cohomology is the universal

enveloping algebra of a one dimensional Lie algebra t = k - 7 in degree two:
H'(BG,,) = U(t) =~ k[7].

The generator 7 is the first chern class of the tautological line bundle v on BG,,.? Dually,
H.(BG,,) = U(t") =~ k[7]

where t¥ = k- 7 has 7(7) = 1.

9A map into BG,, is defined by what the pullback of v is, so we can define @ by
®*y = 7K7.

It follows that ®*7 = 7 ® 1 + 1 ® 7, and multiples of 7 are the only primitive elements.
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2.6.8. Algebra with derivation. What should the categories being k linear over some field k
correspond to on the level of spaces? It should give the commutative monoid (M, 0) an action by
the group object BG,,

act : BG,, xM — M.

This action then defines for us a derivation

Proposition 2.6.9. Let (M,0) be a commutative monoid with an action of BG,,. Then
t = act,(T®id)

defines a derivation on He(M). Dually,
t = (T®id)act”

defines a coderivation on H*(M).

This follows from the following Lemma about Hopf algebras, because the element ¢ is primitive.
Notice that H*(M) is a Hopf algebra internal to H*(BG,,)-coMod. Likewise, He(M) is a Hopf
algebra internal to He(BG,,,)-Mod.

Lemma 2.6.10. Let A be a graded Hopf algebra with finite dimensional graded pieces, so that its

contragredient dual A is also a Hopf algebra. We have a functor
A-coMod — Mod-AY M - M

acting trivially on the underlying vector space. If M is an algebra internal to A-coMod, the

primitive elements of AY act on M as derivations.

Proof. If M is a left A comodule, we get a right AY module structure by
AYOM B AV @AM "8 k@M ~ M.
For the second part, we claim that if f € AY and m,m’ € M, then

= 2 J(m) fy ()

using Sweedler notation.!® This implies that f acts as a derivation if and only if it is primitive.

To show the claim, we follow Grinberg and Reiner [GrR|, and write

fm-m) = (f@IAMm - m) = (f@id) Y agaly @meymly = Y flagaly) @ memiy),

10T hat is, we write Af =Y’ .f(l) ®f(2) and Am = Za(l) ®@m(2)
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The right hand side is

Z(Af)(au) ® agyy) @ mepymiy) = Z foylawy) fy (afyy) @ mymyy Z fay(m) foy(m').

O

Note that in our case A = H*(BG,,) is cocommutative, so the distinction between left and right

(co)modules in the above disappears.
2.6.11. Tt follows that He(M) (and H*(M)) are commutative (co)algebras with derivation, so define

holomorphic vertex (co)algebras. We will now give a more explicit formula.

Lemma 2.6.12. We have act* = exp(7 ®1t) as maps H* (M) - H*(BG,,) @ H*(M).

Proof. Note that 7*(7") = n!, where the product on cohomology and homology comes from cup

product and tensor product, respectively. To prove this, writing
®, : BG) — BG,,

for the n fold tensor product, we have @y = 11 ® - - - ® 7, where v; is the pullback of v along the
1th projection BG], — BG,,. Thus,

) = B (T®--@T)(@()") = (7@ @7)(a(vRE---&7)")

= (@ @7)(an)+ -+ alw)" = nl

since 7(c1(y)) = 7(7) = 1. We now prove the Lemma. We have

exp(7 ® t)a Zi‘"@—a

nz=0
so all that we need to show is that the 7" coefficient of act*« is t"«/n!, or equivalently
(" ®id)act™ = t".

That the dual endomorphisms on homology are equal is clear: the dual of the right side is action
by t applied n times, and the dual of the left side side is multiplication by 77, thus they are equal
because act : BG,,, x M — M is a group action. n

Thus if we identify

~

H*(BG,,) — k[z] T oz
we get that act* = e*!. Repeating section 2.3.2,
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Definition 2.6.13. Let (M, 0) be a commutative monoid with an action of BG,,. Joyce’s holo-

morphic vertex coalgebra structure on cohomology is
A(z™H - H'(M) — H'(M) @ H*(M)[2] a — act] ®" «

where act; : BG,,, x M? — M? is induced by BG,, acting on the first copy of M.

Thus the vertex coalgebra formula simplifies in a way that the dual vertex algebra formula

Y (0, 2) = ®.(e* 0 ®id) on He(M) does not.

2.6.14. Vertex algebra. Finally, consider the (derived) hom space Homy(a,a'), which is com-

patible with direct sum like
Homy (a1 @ as,a’) = Homy(ay,a') ® Homy(as, ') (2.14)

Homy(a,a} @ ay) = Homy(a,a}) ® Homy(a, ab), (2.15)

and compatible k linearity in that the left and right action of £* on Homy(a, a’) induced by its
action on a and a’ is a representation of weight 1 and —1, respectively. What should this structure

correspond to on the level of moduli spaces?

It corresponds to a perfect complex
0 € Perf(M x M)

(whose fibre above (a,a’) should be thought of as being Homy(a, a’)), which is compatible with

respect to monoidal structure, meaning
(@ X 1d)*9 = 013 @‘923 (216)

(ld X @)*9 = 012@913, (217)

and compatible with the BG,,, action in that it has weight 1 and —1 the left and right BG,,, action

on M x M, respectively, meaning
actid = vx6, acti = ' X0. (2.18)

Here, 0;; = 7,0 is the pullback by the projection m;; : M3 — M? to the ith and jth factors, and
act; is the map BG,, x M? — M? given by acting on the ith factor.
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2.6.15. We can combine all this structure using the bicharacter

U0, 2) = > 2" e (0). (2.19)
k=0
To understand this better, consider for the moment the case when 6 is a vector bundle. Writing
T1,..., T, for its chern roots, the above is (z + x1) - -+ (2 + ). Identifying H*(BG,,) ~ k[z], we
have

U(h) = e(vx0) = e(act]h).

This clearly remains true for any weight one vector bundle (over a base with a BG,, action so

that the notion of weight makes sense).

One can show that W(6) defines a bicharacter on He(M), which is a commutative vertex algebra

by Definition 2.6.13, so can be Borcherds twisted by W (0). If 0 is symmetric:
ck(a*ﬁ) = Ck(ev)

where o : M? — M? is the swap map, and the rank of # is everywhere even, this bicharacter is
symimetric,

o*U(h,z) = V(c*0,z) = V(0Y,z) = V(,—=z)

and so the Borcherds twist by a symmetric bicharacter and so defines a genuine vertex algebra.

This is the starting observation of [Jo2].

2.6.16. We collect everything that we have discussed so far.

Theorem 2.6.17 (Joyce). Let (M,0) be a pointed space with a commutative monoid structure
@D MxM —> M, and a compatible action act : BG,, x M — M. Let § € Perf(M x M) be
symmetric (cx(0) =~ c,(0*0")), compatible with @ and have weights 1 and —1 with respect to the
left and right BG,,, actions on M x M.

If tkO is everywhere even, then
V(e 2)f = @ (¥ @id- V(0)a® p) (2.20)
defines a vertex algebra structure on He(M).

A small modification of the proof of Theorem 2.6.17 below gives

Theorem 2.6.18. (Joyce) Keep the notation of Theorem 2.6.17. If we drop the condition that 6
is symmetric and rkf even, then the same formula (2.20) gives a defines a nonlocal vertex algebra

structure on He(M) (see Definition A.2.2).
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Proof of Theorem 2.6.17. The nontrivial part of the Theorem is weak commutativity. So we begin

by noting

Y(a,2)Y (B, w)y
= @ ((¢" ®id®id) - ¥((id x ®)*0,2) - ([d® e ®@id) - ¥(fa3,w) - a Q@ LR )
= @, ((e” ®id®id) - ¥(012,2) - ([d® e @id) - U(b3, 2) - U(baz, w) - a®5®’y)

where we have written @ : M x M x M — M for the three way direct sum map. Thus to finish
this computation we will need to understand how to commute the middle e** and ¥ (6, z) terms

past each other.

Lemma 2.6.19 (Commutation Lemma). Let X be any space with an action of BG,, and 6 be a

perfect complex on X weight n with respect to the BG,, action. Then
U, 2)e = ' W(h, 2 + nw). (2.21)
Here (6, 2) is as in (2.19) and t the derivation defined in Proposition 2.6.9.

Proof. To begin, we claim that
[t,chi(0)] = nchy_1(0) (2.22)

for k = 1. Indeed, we have
act*chg(f) = chy(y"X0) = 1®chg(f) +nr®chy 1(0) +---
so tchg(0) = nchg_1(0). Thus since t is a derivation on cohomology, t(chg(f)a) = chy(0)ta +
nchy_1(6)«, which proves the claim.
Before continuing, we note that

V(o) = > 2 Fe(0) = 2 exp <—Z(—z)—k(k — 1)!chk(0)> ,

nz=0 k=1

which follows from the definition of chern classes and characters of a perfect complexes as pullbacks

of certain classes in H*(Perf).

Writing B = — 3, (—2) *(k —1)!chy(6), we have by the Baker Campbell Hausdorff formula and
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(2.22) that

k
6wteBefwt = exp Z (ath) B)

4R
= e (2] (ng)k(—z)_r(r—l)lchr_k(9)>

- (X O(_Z) i ;!(_"w/ z)k(r—n!chrk(e))

T —M;O(—z)l(—nw/z)chhzw))

= e (- 1%/2)1&0 >exp< IZ;];) ~(nw/z) %Cm(eo
= exp —rk@é%) exp( ;;;) ~nw/z) <;l)(z—1)!ch,(9)>

= (14 nw/2)™ exp (—Z(—z +nw) (1 — 1)!Chl(0)> :

=1

where we have set (—1)! = 0 for ease of notation. Multiplying both sides by 2™ then gives the

Commutation Lemma. O

Compare this Lemma with [FBZ, Lem. 3.2.3]. Now we can continue our computation: because

015 has weight —1 in the second factor,
Y, 2)Y(B,w)y = @ (7@ @id- V(012,22 — w) - ¥(b13,2) - U(bos,w) - a @ F®7) (2.23)
which we can compare to

Y8, w)Y (a, 2)y
= B, (ewt ®€Zt ®1d . \IJ(¢912, w — Z) : \11(913, w) : \11(023, Z) : 5@ (07 ®")/) (224)
= @ (' @ ®id - U(by1, w — 2) - U(bas, w) - U(b13,2) - a @ BR7)

As U(0, z) defines a symmetric bicharacter (as 6 is symmetric with rkf even) we have
U(ho,w—2) = 0,V (0p,w—2) = ¥(b,z—w),

hence (2.23) and (2.24) are equal, proving weak commutativity. It is then easy to show that
letting 7' = ¢ and |0) be the image of 1 under He(pt) — He(M), the homology is endowed with

the structure of a vertex algebra, proving Theorem 2.6.17. [

37



2.6.20. Orientations. For those who do not like the fact in 2.6.18 that the resulting structure
is a monlocal vertex algebra, we give an alternative way to remove the condition that rkf be even
from Theorem 2.6.17 whilst still remaining a vertex algebra. This requires the introduction of sign
corrections similar to those in the definition of a lattice vertex algebra, which were not unique but

depended on a choice of two cocycle (section 2.3.10).

In our situation these functions are called orientations in [Jo2]. Note that the commutative monoid
structure on (M, 0) makes mo(M) into a commutative monoid with unit 0 given by the image of

70(0) = m(M). An orientation is then a biadditive function
g ’/T()(M) X 7T0(M) jasd 7T0(M X M) — {il}

which satisfies

€00 = €a0 = 1 Capeba = (—1)lmerriduaidon

Eab€at+be = Eab+c Ebe

where 0,5 = O)n,xo,- I m0(M) is in fact a group (as in most examples when M is the moduli

space of objects in a derived category), this defines a two cocycle, i.e. a central extension

0 — Z/2 - 7T0(M2) i 7T0(M2) — 0.

In particular, there are potentially many choices of orientation, and when the rank of 0 is every-
where even £ = 1 is one such choice. Joyce notes in [Jo2] that geometrically € often comes from a

trivialisation of an orientation bundle, a principal Z/2 bundle O — M.

Given an orientation €, we define the operator &€ on He(M x M), which acts on Hy(M,) ® He(M,)
with eigenvalue

Eap = (—1)Klbig, (2.25)

Theorem 2.6.21 (Joyce). With notation as in Theorem 2.6.17, without the condition that rké be

everywhere even. If € is an orientation (section 2.6.20), then
Vi, 2)f = €@y (7' ®@id- ¥()a® f) (2.26)

defines a vertex algebra structure on He(M). If we also drop the condition that 6 be symmetric

(ck(0) = cr(0*0Y)) then this defines a nonlocal vertex algebra (Definition A.2.2).
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2.6.22. If the assignment (a,b) — 1rkf,; is symmetric then the above admits a Z grading by
degHa(M,) = d + rkf,,.
Indeed, if @ € Hy(M,) and 8 € H.(M,), then
D:(a®B) € Hape(Maysp)
has degree d + e + 1k0,4p 046 = d + € + 1k, , + 21k0,;, + vk, and so
| B (a® )| = |a| + |b] + 2rk6, .

The vertex algebra is then degree preserving if we set |z| = —2 because (e** ® id) has degree zero

and W(0, z) = 2™0as 3 2y (6,,) has degree —2rkd, .

2.6.23. Note that for any 6 as in section 2.6.14, the perfect complex 6 @ c*0" is symmetric. Note

however that its rank is not necessarily even.

2.6.24. Examples. The typical example is
M = moduli stack of objects in A

where A is an abelian, triangulated or dg category, and 6 = Ext( , ) the vector bundle or perfect

complex whose fibre above the pair of objects (a,a’) is Ext*(a, a’).

When the category is 2n Calabi Yau, we have
Ext*(a,a’) ~ Ext’(d’,a)Y[2n]

and so we have ¢ (6) = ¢, (0*0"), thus 6 is symmetric. Whe

2.6.25. Example. As the simplest example, take the category Ay = D°(Coh(pt))y of bounded

rank zero Complexes of vector Spaces up to quasiisomorphism
g E,l g Eo g El —> Z(—l)’rkEZ = 0.

Its moduli stack of objects My, = Perf, parametrises families of such structures. Maps into it
correspond to rank zero complexes of vector bundles up to quasiisomorphism. Its cohomology is

thus generated by chern characters:
H.(MAO) = k’[Chl, Chg, . ]
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Readers might have noticed that as a vector space this is just (dual to) the Heisenberg vertex
algebra. In this case Joyce’s construction gives a geometric construction of the Heisenberg algebra

structure on homolong
H-(MAO) = k[Chf,Ch;, e ]

2.6.26. Indeed, consider the field of the vector chy. Writing 6 = v [X]y where v is the (rank zero)

tautological perfect complex over M, we get for n > 0 that

chy, () - (chy @ f) = —1@chn1(7) - 5.

All higher degree polynomials in the chern characters act by zero, so separating ¥(6) = 1+ (¥ (0) —
1) gives

Y(chy,z)8 = @ (e”c{@ﬁ) — (Z (_2)_k

k!chk_1(7)> - .
k=1

Finally, we can rewrite the first term as (and this is where it is important that we are using chern

characters rather than classes)

k=0 k=1

Y(chy,2)8 = ) 2"chy B + (Z(—Z)"““(k— 1)!chk_1(v)> - B.
Thus as operators, we set

ch”, ifn=0
b, —

(=) (n—1)!lch, ; ifn>0
which one can show satisfy the Heisenberg algebra relations at level zero. This means the isomor-
phism of vector spaces to the Heisenberg vertex algebra preserves the field Y(chy, z). Because
this is a generating field of the Heisenberg vertex algebra, by the reconstruction Theorem 2.2.4

this map of vector spaces is actually a vertex algebra isomorphism.

2.6.27. Vector spaces. Moving in the lattice direction, let A = Vect}fgd' be the abelian category
of finite dimensional vector spaces over K. This is a zero dimensional Calabi Yau category, and
its moduli space of objects is

X = [1,-,BGL..

" Here we have taken duals with respect to the monomial basis in the ch,,, and the algebra structure is the one

given by ®,.
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A map into X is uniquely specified by what the pullback is of the tautological vector bundle ~.

Therefore the structure maps @ and act are defined by requiring
@y = yHy  and  act’™y = %Ky,

where 7 is the tautological line bundle on BG,,,. The perfect complex here is simply 6 = " [X] .

2.6.28. To describe the action of @ and act on cohomology, pick a maximal torus T,, € GL,,, so

that the map BT,, — BGL,, identifies
H*(BGL,) = k[t1, ..., t,]°" — k[t1,....,t,] = H(BT,).

The maps @ and act can be lifted to BT,, in a manner similar to the above, and they induce maps
on cohomology

@ ¢ k[s1, . Sny b1y ey tin] = K[S1, s S0] @ K[t s tin],

and

act® 1 k[ty, ..., tn] — E[t]®Kk[t1, ..., t,]

which sends t; — t ® t;. Taking symmetric group invariants then recovers these maps for X.

2.6.29. To explicitly describe the vertex algebra we get, it is easier instead to work with the

derived category € of finite dimensional vector spaces, which has €Y = A. In this case,
M = [],zPerf,

where Perf,, classifies perfect complexes of rank n. Again we have # = v [X]y where ~ is the
tautological perfect complex on M. It is not hard to show that H*(M) ~ V7 is the one dimensional

lattice vertex algebra. Thus the vertex subalgebra corresponding to the abelian category has basis

{oen ---b%ny : n =0, a, = 0}.

2.6.30. At the moment there is no satisfying explanation of Joyce’s constructions at the level of

chiral algebras. It would be interesting to relate these constructions to [KV2].

2.6.31. Variants. Note that we may replace

O v 0D ("0 n,m =0
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and still get a (nonlocal) vertex algebra. The holomorphic case corresponds to setting both integers

to zero. More generally, for any A € k we may replace V() with

TP = z’\rkGZ)\cr(é’)z_r.

r=0

As before, if k has characteristic zero we have

r=1

U(HP) = exp <—AZ(—z)T(r - 1)!chr(9)> :

Indeed, this is true for all nonnegative integral A, and as on each cohomologically graded piece
both sides are polynomials in A agreeing on the positive integers, they are equal. We can repeat

the proof of the Commutation Lemma 2.6.19 to give

Lemma 2.6.32. Let X be a space with a BG,, action. If 0 is a perfect complex on X with weight
n with respect to the BG,,, action, then

(0, 2) = V(0 2+ nw)e™. (2.27)

It follows that in Theorems 2.6.17 and 2.6.21 if chark = 0 and we replace
U(6,2) v W(HPY) Aek
we get a (nonlocal) vertex algebra structure.
2.6.33. Moreover, we may let A\ be a variable, and replacing ¥(f) with ¥(6*) gives a vertex

algebra over the ring k[A]. In particular, if 6; and 0y are any two such perfect complexes then

U (617 @ 63) interpolates between one vertex algebra structure at A = 0 and the other at A = 1.

2.7 Review of the six functors

In this section we will review what we mean by space and sheaf in this thesis.

2.7.1. Grothendieck’s siz functor formalism is an extremely useful enhancement of the notion of
cohomology. Standard properties of cohomology are lifted to the category Sh(X) of sheaves on
the space X. There are many examples of cohomology, likewise, there are many examples of sheaf

theories with the six functors:

1. Topological spaces with Sh(X) the bounded below derived category of sheaves of abelian

groups on X, see [Iv]. Recovers singular cohomology.
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2. Schemes (or more generally, higher Artin stacks [LZ1, LZ2]) X over a field of characteris-
tic prime to ¢, with Sh(X) the bounded derived category of constructible ¢ adic sheaves.

Recovers ¢ adic cohomology.

3. Schemes X over a field of characteristic 0 with Sh(X) the derived category of holonomic D

modules, see [Ber, HTT|. Recovers de Rham cohomology.

4. Complex varieties X (separated and reduced) with Sh(X) the bounded derived category of

mixed Hodge modules, see [Sa]. Recovers polarisable Q mixed Hodge cohomology.
5. Schemes X over k and Sh(X) the category of Beilinson motives, see [CD].

This list is far from exhaustive. In the below we will assume that Sh(X) is a triangulated cat-
egory since this is all we will need in the Thesis, however most six functor formalisms do admit
enhancements to stable co categories. Finally, we warn that one needs to impose additional finite-
ness assumptions in the above examples to define the ! pullback and pushforward functors. For a

general account, see [CD].

2.7.2. What we mean by space and sheaf. We fix a (c0-)category Sp of spaces. A sheaf theory

with the six functors means an assignment to every space of a triangulated (stable co-)category
X € Sp  w»  Sh(X) e Triang

and to every map of spaces two adjoint pairs of triangulated functors (f*, f,) and (fi, f*):
¥ T, i
X->Y wv»  Sh(X) —— Sh(Y)
I
We require that Sh(X) comes equipped with a closed symmetric monoidal structure (®, Hom),'?

and each of the four functors attached to f induce 2-functors Sp®” — Triang, such that
1. f* is monoidal.
2. Given a pullback in Sp

x Ly

]
D A
there are natural base change isomorphisms
N =% — 7~ !
g'f = i7", 9.f = ['g.

12Recall that this means a symmetric monoidal structure ® and an internal Hom functor Hom, satisfying tensor-

Hom adjunction.
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3. There are natural projection formula isomorphisms
(fF) ey G = fi(Texfr9), Homy (£F,9) = f.Homx(F, f'9),
f'Homy (8. ) = Homx(f*S, f'G).

We also require that the structure interact well with maps which are open, closed, proper,
smooth, .... Rather than axiomatise the meaning of these adjectives in Sp, we simply give an

example:

Theorem 2.7.3. [LZ1, LZ2] Let Sp be the category of dg higher Artin stacks locally of finite type
over a field whose characteristic is prime to . Then the triangulated (stable co-)category Sh(X)

of constructible ¢ adic sheaves satisfies the above, and also satisfies

4. For any schematic map f we have a natural transformation fy = f., which is an equivalence
if fis proper.
5. If i and j are complementary closed and open embeddings, there are distinguished triangles
(fibre sequences)
.o . .o+l
e = id = J =
.ol . .o+l
J+) = id = i, =
called the Mayer Vietoris sequence.
6. If i is a closed embedding, the counit i*i, = id is an equivalence.
7. Sh(pt) = D"(Vectq,).
8. If f is smooth of dimension d then there is an equivalence f' = f*(2d).

Here (2d)y = [2d](d) where (d) denotes the dth Tate twist. The adjunction (f*, f.) can be extended
to arbitrary maps of dg higher Artin stacks.

2.7.4. Conventions. We will use Sh(X) to denote the triangulated stable co category of a sheaf
theory with the six functors. In particular, its homotopy category is a triangulated category; we
will often abuse notation by also denoting it by Sh(X). This will not cause confusion because
invariants like cohomology of a space (see below) are built from Sh(X) or from its homotopy

category in identical ways.

We will use as our category Sp of spaces the category of derived Artin stacks over a field of char-

acteristic zero. This will include all moduli stacks we will be covering. The reason for considering
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derived Artin stacks is that this is the correct framework when talking about fundamental classes

(see e.g. [?] or Appendix C).

2.7.5. Consequent notions. From a sheaf theory with the six functors, a number of different

notions can be defined.

1. Cohomology. Writing pxy : X — pt for the projection to a point, the cohomology (with
compact support) of a sheaf F € Sh(X) is

H.(X,ff) = pX’*357 H;(X,.rf) = pXJSt.

By adjunction cohomology is equivalently Homgp(x)(kx, ). The constant sheaf with value
A € Sh(pt) = D?(Vecty) is Ax = p% A, and the cohomology (with compact support) of X is

the cohomology (with compact support) of the constant sheaf ky.

2. Homology. The dualising sheaf of a space X is wx = pyk. The (Borel Moore) homology of
a space X is!3

H.(X) = DPxiwWx, H?M(X) = PxxWx.
3. Gysin sequence. If ¢ and j are complementary closed and open embeddings, the Gysin

sequence is the distinguished triangle

.| . o oew Tl
i =i = gt =

formed by applying +* to the Mayer Vietoris sequence.

4. Cup product. Because f* is a monoidal functor, its right adjoint f, is lax monoidal and its

lax monoidal structure

takes commutative monoids to commutative monoids, see [GL, Prop. 3.2.3.1]. In particular,
applying this to the commutative monoid kx (which is the unit in Sh(X)), we get an algebra
map

H*(X)®H"(X) - H*(X)

called the cup product.

13Sometimes we also denote Borel Moore homology by H];M.
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5. Pullback. By applying the unit id = f,f* and counit ff' = id we get a map
[ (Y, §) — HY(X, f*9), fo @ HIX, F'G) — HAY.9)
and if G is an commutative monoid f* is a map of algebras. This shows that (co)homology
of spaces is (contravariantly) functorial.

6. Poincaré duality. The Verdier dual endofunctor is
DX = f}ComX(—,wX).

When f is a finite type map of schemes, the natural transformation id = D% is an equiva-

lence, exchanging
fiDx = Dyf, /Dy = Dxf*

see [SGAS, Ex. I]. Thus the two Mayer Vietoris sequences above are Verdier dual. Noting
that Dy is nothing but taking the dual vector space, we get the Poincaré duality isomorphism

for X a smooth scheme of finite type

H'(X,F) = HY(X,Dx)".

7. Cohomology of classifying spaces. Let G be a smooth connected algebraic group. To describe
the category of sheaves on the classifying space BG, we use the fact that 7' is conservative

and apply Lurie Barr Beck as in [DGai, §7.2]. Consider the pullback

G —— pt

ool

pt —— BG
so that by smooth base change, mmk = oy0'k = H*(G)V. Thus by Lurie Barr Beck,

Sh(BG) ~ H*(G)"-Mod(Sh(pt)) = H"(G)'-Mod

is the category of modules over the dg algebra B = H°(G)Y. For instance, since kpg

corresponds to the trivial B module, taking cohomology corresponds to
H.(BG, —) = HOInSh(Bg) (k‘Bg, —) =~ HOII]B(]C, —).

In particular, the cohomology H*(BG) = Homp(k, k) is the Koszul dual of B. By taking
an explicit projective resolution, we see that if H*(G) is freely generated in degrees 2d; — 1,

then the cohomology H®(BG) is freely generated in degrees 2d;.
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8. Bivariant homology. The bivariant homology (sometimes also called relative Borel Moore

homology) of the map f is
H(X/Y) = H*(X, f'ky).

Moreover H* (X /Y') is a bivariant theory in the sense of Fulton and MacPherson [FM, §7.4],

1.e.

(a) there is a product map

H'(X/V)@H(Y/Z) - H'(X/Z) for XLY 52

(b) if f is proper there is a pushforward map f, : H*(X/Z) — H*(Y/Z),

(c) and there is a pullback map

g HU(X/Y) - HY (XYY)  for lg lg
X —Y
The product takes two bivariant classes kx — f'ky and ky — ¢'kz to their composition

kx — f'ky — f'¢'kz, proper pushforward is given by f.f' = fif' = id, and pullback is
given by base change f' = f'g.g* ~ g*?!g*_

These three structures together satisfy:

Ay) The product is associative: (- 8)-v=a-(8-7).

Ay) Pushforward is functorial: if fi, f, are composable proper maps, f1.(fos(a)) = (f1f2)+ ().
Asz) Pullback is functorial: if gq, g2 are composable maps, g; (g3 (a)) = (g192)* ().

Ay3) Product and pullback commute: g*(a - ) = g* () - g*(5).

Asz) Pushforward and pullback commute: ¢* f,a = f.g*a for any Cartesian diagrams

7 Loy — x
1)
Z > Y > X

where f is proper, and any class o € H(Z/X).

Ais3) The projection formula for any Cartesian diagram: - foa = fL(¢"* 5 - «)
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71y —x
where f is proper, and classes « € H(Z/X) and f € H(Y'/Y).

C) Skew-commutativity: g*a -3 = (—1)de(@)des(d) £+(3) . o for any Cartesian diagram

v s x

b

y L x

and classes « € H(Y/X) and g € H(X'/X).

There is also a notion of wvirtual fundamental class attached to any quasismooth map between

derived Artin stacks, see section C.4.

2.7.6. Extending sheaf theories. We can define sheaves on more general categories of spaces,

at the cost of losing the six functors, see e.g. [Ga3]. Consider just the f' functor
Sh'(—) : Sch”” — Triang.

Then if f' preserves limits (as is the case when it has a left adjoint f,), we can extend this functor
to prestacks Y by continuity:
Sh'(Y) = lim Sh'(S)

S—-Y
SeSch

and similarly for lax prestacks, see [Ga3, §1,§2]. Moreover,

1. In many cases, e.g. D modules, then by [GaR, Thm 2.1.2] for any ind schematic map of

prestacks f: X — Y we get two functors
f« @ Sh(X) — Sh(Y) f' o Sh(Y) — Sh(X)

satisfying base change. Moreover, (f,, f') are adjoint if f is proper and (f', f) are adjoint

if f is an open embedding.

2. In the case of constructible sheaves over topological spaces, ¢ adic sheaves over a base of
characteristic prime to ¢ or holonomic D modules over a base of characteristic 0, then if

f: X — Y is any map of prestacks then we get functors
fi : Sh(X) — Sh(Y) f': Sh(Y) — Sh(X)
such that (f), f') is an adjunction, see [Ga3, Cor. 1.4.2] for details.
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Chapter 3

Cohomological Hall algebras

3.1 Cohomological Hall algebras

3.1.1. Cohomological Hall algebra is the catch-all name for some algebras associated to the moduli
space of objects in abelian categories A, formed by turning the abelian category structure into an

algebra structure, e.g. by taking cohomology.

The modern definition was discovered by Kontsevich and Soibelman in [KS] for A = Rep(Q, W)
the representations of a quiver with potential, drawing on analogies with the string theory notion
of algebra of BPS states due to Harvey and Moore [HM], and the earlier notion of Hall algebra of
a finitary category due to Ringel and Hall, see [Sc|.

3.1.2. Hall algebras. If A is an abelian category with a finiteness condition, Ringel and Hall

gave
HA = C [7’(’0 (A)]

the structure of an associative algebra, by using extensions in the category A. The condition
is finitary, meaning Hom(a,a’) and Ext'(a,d’) are finite for all objects a,a’. Examples include

representations of a quiver over F,, or coherent sheaves on a scheme defined over F,,.

Theorem 3.1.3 (Ringel [Rin]). If A is a finitary abelian category, and a,a’ € A,

a-a = {a,a") Z e (3.1)

a—e—a’

defines an algebra structure on Hy, where we sum over all short exact sequences, and

1 ) :
N = | | Ext!(a, a’)|(-D".
(@, a”) |Autal - |Auta’|\/ [Ext*(a, )
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The term x(a, a’) = [T |Exti(a,a’)| V" is called the multiplicative Euler form, and defines a homo-
morphism K(A) x K(A) — Q. Similarly, Y(a,a’) = 1/x(a,a’)x(a’,a) is called the symmetrised

multiplicative Euler form.

3.1.4. Green discovered that this can be extended to a bialgebra structure. Note that Hy is
graded by K(A), allowing us to take the completed tensor product with itself. Green defined the

map

R 1 ,
A : Hy - H®QHy, e — Thute] Z Vx(a,a)a®a (3.2)

a—e—a’
where we sum over all short exact sequences, and showed that it is a topological' coalgebra.
However, even ignoring convergence issues, we do not literally have a bialgebra structure. The

coproduct will only be compatible with the twisted product
A(fg) = A(f) -+ Alg)
defined on homogenous elements by
(a®Db) - (c®d) = X(b,c)(ac® bd).

Note that both product (3.1) and coproduct (3.2) preserve the grading by K(A), and twisted
bialgebras are just bialgebras for a certain symmetric monoidal structure 7¢ on the category

Vectiay of K(A)-graded vector spaces (see 3.1.6 below).

Theorem 3.1.5 ([Gre]). Let dim A < 1. Then Hy is a topological bialgebra in (Vectkay, Ts), with
product (3.1), coproduct (3.2), and (co)unit (evaluation at) the zero object 0 € ObjA.

3.1.6. The isomorphisms
Sie : CA®C, M CyeC, S C,0C,
can be extended by cocontinuity to K(A)-graded isomorphisms
Tsyw - VOW = WV

for all graded vector spaces V,W. Here A\, u € K(A) and C, is the one dimensional vector space
with grading A\. Then 7g defines a symmetric monoidal structure (see section A.1.3) on Vectka),

as the conditions are implied by ¥ being a homomorphism and symmetric in both factors.

li.e. not only are all the coalgebra axioms satisfied, but all terms are well defined, which is not a priori clear

due to convergence issues (see the discussion after [Sc, Prop 1.4]).
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3.1.7. The Hall algebra has an interpretation in terms of the moduli stack M, parametrising
objects in A: in all the relevant examples, it exists as an algebraic stack over a field k£ with points
My (k) =~ mo(A). There is also a stack Ext, parametrising short exact sequences in A. Thus we

have maps
Ext A

/ \ (3.3)

MAXMA

which on k points sends

0—>a—>6—>a —>0

. / \ (3.4)

The Hall algebra Hy can then be interpreted as constructible functions on the Artin stack My,
see [Jol|. Informally, one interprets the Hall algebra as pulling back constructible functions by ¢

then pushing forward by p.

3.1.8. Cohomological Hall algebras. Cohomological Hall algebras take the correspondence
(3.3), but instead of applying constructible functions to get the Hall algebra, apply cohomology

or similar invariant like Borel Moore homology. For a review of cohomology, see section 2.7.

3.1.9. Let X € Alg(Art®™) be an Artin stack which is an associative algebra in the category of

Artin stacks with morphisms correspondences. This means that there is a map
1:pt - X

and a correspondence

/ \ (3.5)

X x X

satisfying an associativity condition, and 1 is a unit.?

2This means that the two pullbacks

Cl2)3 C1(23)
b b
XxC \ CxX \C (3.6)
N N <N TN
(X xX)x X X x X X x (X x X) X x X X

are isomorphic correspondences, and that X >~ C' x xxx (pt x X) = C X xxx (X x pt).
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Definition 3.1.10. Let X be an Artin stack as in 3.1.9. Assume p is proper. The following

structures are all called cohomological Hall algebras (or CoHAs):
1. If p quasismooth, (H*(X), p.q*).
2. If q is quasismooth, (HZM(X), p.q*).

3. If p is quasismooth, (H*(X, F), p.¢*) for any sheaf F € Sh(X) with a map ¢*(FXF) — p*F

satisfying an associativity condition.

Recall that in cohomology, there are all pullbacks and quasismooth proper pushforwards. In Borel
Moore homology, there are quasismooth pullbacks and proper pushforwards. The reason is that
all these maps are constructed using fundamental classes and proper pushforwards in bivariant

homology, see Appendix C.5. The third map is constructed by
(X, ) QH'(X,F) ~ H'(X x X,TRTF) & H(C,¢*(FRTF)) — H'(C,p*T)
[c/X] H-—Qd(a p!S") Py H-—2d(X7 )
where [C/X] is the fundamental class and p, is the (bivariant) pushforward by p.
3.1.11. We list some examples. Let A be an abelian category. In all relevant cases there is a

moduli stack of objects M, which fits into a correspondence (3.3), and a quasicoherent sheaf

Ext4(—, —) defined on A x A whose fibre above (a, a’) is the dg vector space Ext4(a, a’), such that
¢Exty(—,—) = T,.

Thus we should expect T, to Tor amplitude in (—oo, dim A], in particular p should be quasismooth

when A has dimension at most one: in examples this is clear since M, and Ext, are smooth.

1. dimA < 1. H*(My) is a cohomological Hall algebra when
A = Rep@, CohC

is the category of representations of a quiver () or coherent sheaves on a smooth proper curve

C. See [KS].

Moreover, in [PS, Prop. 3.10] Porta and Sala show that for A = Coh(X) coherent sheaves on a
smooth proper scheme over C, then ¢ has Tor amplitude in (—oo, dim A — 1], so it is quasismooth

when A has dimension two and below.
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2. dimA < 2. H?™ (M) is a cohomological Hall algebra when
A = RepPy, HiggsC, CohS

is the category of representations of the preprojective algebra of a quiver (), Higgs sheaves
on a smooth proper curve C, or coherent sheaves on a smooth proper surface S. The first

two are just the cotangent categories of Rep@ and CohC', meaning that their moduli stacks

are just Ty, and T . See [YZ1, YZ2, KV2].

3. The third example is related to the 3 Calabi Yau category
A = Rep(Q, W)

the representations of a quiver with potential. In [KS, §7], Kontsevich and Soibelman in [KS]
consider the “critical cohomology”, a certain dual of the compactly supported cohomology

of a sheaf of vanishing cycles. Note that
H (X, 9)" = H'(X,Dy),

so this really is analogous to Theorem 3.1.10,% see [KS].

3.1.12. History. Cohomological Hall algebras in the modern form of Theorem 3.1.10 were first
introduced by Kontsevich and Soibelman in [KS], which was preceded by other attempts to define
CoHAs for quivers. They defined the CoHA of a quiver with potential and showed that its Poincare

polynomial is given in terms of DT invariants.

In certain cases the category Coh(Y)y of zero dimensional torsion sheaves on a 3 Calabi Yau
variety can be realised as representations of a certain quiver with potential. When Y = C2,
Rapc¢ék, Soibelman, Yang and Zhao [RSYZ1] showed that the double of the equivariant spherical
CoHA is the affine Yangian of gl(1), and showed that there is an action on the cohomology of the
moduli space of spiked instantons in P?, and generalise this to 3 Calabi Yau toric threefolds in
[RSYZ2]. This allowed them to make progress on the conjecture that assigns to any toric Calabi

Yau n-fold X a certain vertex algebra Wx ;. ...
We now turn to dimension two categories.

The construction of CoHAs is very similar to the construction by Grojnowski and Nakajima [Groj,

Na] of an action of the Heisenberg algebra (W algebra of gl(1)) on the cohomology H®(Hilb(S5))

3In [KS] they work with a variant of the category of mixed Hodge modules.
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of the Hilbert scheme of points on a smooth surface S, which is an example of the AGT corre-
spondence for gl(1). The relation to three dimensional CoHAs is by “dimensional reduction”, as
proposed in [KS], see also work of Davison [Dal, which relates the dimensional reduction of the

CoHA attached to a quiver with potential with Yangians.

Moreover, Yang and Zhao [YZ1, YZ2] have related the Drinfeld double of H?M(MRepr) to affine
Yangians, Kapranov and Vasserot [KV2] have related the CoHA of a surface to factorisation
algebras. Sala and Schiffmann [SS] have given a description of the CoHA of Higgs bundles on
a curve. Working in the analytic category, Kapranov and Vasserot [KV2]| have shown that the
CoHA of dimension zero torsion sheaves on a smooth proper surface Coh(.S), carries a (topological)

factorisation algebra structure.

3.1.13. What we prove. How is this relevant to the current work? Some common features of

CoHAs as above are:
1. the (often mysterious) relation to “affine” objects: Yangians and vertex algebras,
2. the existence of a (localised) coproduct on the CoHA.*

In the setting of dimension one abelian categories, we combine the two: the CoHA is a vertex
coalgebra (not just has an action of one), and this vertex coalgebra structure is a (vertex analogue
of) a coproduct on the CoHA. Moreover, we explain the singularities occuring in the localised
coproducts and formulas for CoHAs: they are the Euler classes turning up when one computes

the CoHA using torus localisation.

3.2 The bivariant Euler class

3.2.1. Euler classes in topology. Let X be a topological space and £ — X a complex vector
bundle over it. Associated to this a long exact sequence on cohomology called the Thom-Gysin

sequence:

— H"*F(X) - H(X) - HY(F\X) — .- (3.7)

Since these are all maps of H*(X) modules, the first map is multiplication by an element e(F) €

H?*E(X), defined to be the Euler class of E.

4We did not state it explicitly, but every time in the literature a CoHA is compared to a Yangian, one needs to

Drinfeld double the CoHA, for which one needs a coproduct compatible with the algebra structure.
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3.2.2. The Thom-Gysin sequence (3.7) can lifted to a distinguished triangle of sheaves on X,

meaning that taking derived global sections gives (3.7).
Here and in the following, we use the language of the six functors, see section 2.7 for a review.

Write Sh(X) for the derived category of sheaves of k vector spaces on X. The Gysin sequence is
the distinguished triangle in Sh(X)
i‘kp — i*kp — %tk 5 (3.8)

where i : X — E denotes the zero section, j : F\X — F is its open complement and kg is the
constant sheaf with fibre k.> Thus i'kg — i*kg is a sheaf level description of multiplication by the

Euler class.

3.2.3. Euler classes in geometry. We now consider any category of spaces X admitting a

category of sheaves Sh(X) with the six functor formalism (see section 2.7 ).
Ifi: X - Y is any closed embedding, we still have a Gysin sequence
i‘ky — i*ky — i*jutky 5 (3.9)
taking cohomology of which gives the Thom Gysin sequence
- - H'(X/Y) - HY(X) - HY(X, %) hy) — - (3.10)

whose first term is the bivariant homology of X — Y, and the third should be thought of as
the cohomology of a small neighbourhood of X in Y, with X removed. As before, j is the open

complement of 7.

Definition 3.2.4. Let i : X — Y be a closed embedding admitting a retraction ¥ — X. Its
bivariant Euler class e(Y /X) is the element of the bivariant homology H*(Y/X),

e(Y/X) = i,l,
where i, : H*(X) - H*(Y/X).

Here, i, denotes the proper pushforward map on bivariant homology H*(X) = H*(X/X) —
H*(Y/X). It is easy to show that the first map in the Thom Gysin sequence (3.10) is cup product
on the right with e(Y/X), via

H'(X/Y)Q@H(Y/X) — H(X/X) ~ H'(X).

This prompts the following definition.

STraditionally i'kg is called the local cohomology sheaf of the closed embedding i.
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Definition 3.2.5. For any closed embedding i : X — Y, (right) multiplication by its bivariant
Euler class is

e(Y/X) : H'(X/Y) — H(X),

the first term in the Thom Gysin sequence, induced by the natural transformation i' = i*.

3.2.6. Relation to ordinary Euler classes. The bivariant Euler class of a vector bundle should
give an actual cohomology class on the base, the usual notion of Euler class. This holds more

generally in the smooth setting:

Definition 3.2.7. Let i : X — Y be a closed embedding admitting a smooth retractionp : ¥ — X
of dimension d. Its Euler class e(Y) is the element of H?**(X) defined by

H*(X/Y) [Y/X]

~e(Y/X\
H.

H*24(X)

el (3.11)
i e(Y)

(X)

This indeed defines an element because all maps in (3.11) are graded H*(X) module morphisms.
Here [Y/X] is the fundamental class (section C.4), which is an isomorphism by smoothness, since
then by purity the fundamental class gives an isomorphism ky = p'kx[2d]. A consequence of the

definition is
e(V/X) = [Y/X]-e(Y) = pe(v)-[Y/X]. (3.12)

3.2.8. Functoriality. Take a map between two closed embeddings: a pullback square

It is then easy to show that

Lemma 3.2.9. For any class o« € H'(X/Y),

frla-e(Y/X)) = (fa)-e(Y/X).

Next take two closed embeddings admitting a retraction, and a map between them, meaning two

pullback squares

S
~|

3l
S

<_
|

<_
k"a

<_
|

<
~

3
<




Then we have
Proposition 3.2.10. As classes in H* (Y /X),
fre(Y/X) = e(Y/X).
Proof. Because pullback and pushforward commute,
fre(Y/X) = friudlx = Lf*lxy = Lly = e(Y/X).

]

3.2.11. Whitney sum, smooth case. The classical Whitney sum formula says that given a

short exact sequence of vector bundles

we have e(E) = e(E)) - e(Ey), so the Euler class is multiplicative. In particular, it descends to
a map on K theory. To rephrase this in terms of bivariant Euler classes, note that there is a

(homotopy) pullback diagram
E1 — F

l l (3.14)

X 45 R

and 1 induces an isomorphism

~

v* : HY(E/E,) > H'(E,/X).
In particular, even though E — FE5 does not in general admit a section, we can define
e(E/Ey) = (V") e(B1/X).

We then get

Proposition 3.2.12 (Whitney sum). Under a short exact sequence of vector bundles (3.13),
e(E/X) = e(E/E,)-e(Ey/X).
Then applying (3.11) gives e(E) = e(F1)e(Fs) as elements of He(X).

Proof. Apply the projection formula (section 2.7.5) to the diagram

57



B -2 B

|

X 5 R y X

we get that

U e(E/Ey) - 1) = e(E/Ep) -l
as elements of H*(E/X). The left hand side is ¥,e(E1/X) = e(E/X), and the right hand side is
e(E/Ey) - e(Ey/X). O

3.2.13. Example. For an example we compute the universal Euler class of vector bundles. Recall
that every line bundle is the pullback by a map into BG,, of the tautological line bundle v =
A'/G,,. The Thom Gysin sequence then involves multiplication by the Euler class e(7):

. — H2(BG,) Y H'(BG,) —» H'(pt) — ---
since (A"\0)/G,,, = pt. We can identify all the cohomology groups,
R T N

and so e(y) = t, rescaling t if necessary. A more delicate analysis, e.g. using integral (-adic

cohomology, will show that e(7®") = n - e(y).

3.2.14. We can repeat this analysis for the vector bundle
v = V/G - BG

where G is any complex reductive group and V' is any finite dimensional representation. Taking
V = C" the standard representation of G = GL, gives the universal rank n vector bundle.

Choosing a maximal torus 7" and taking the pullback

V)T —— BT

!

V/G —— BG

we get that the image of e(y) under
H*'(BG) ~ H'(BT)" — H*(BT)
is

e(y) = [[r™".

AEA
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Here we have identified H*(BT) ~ C[A] as a polynomial algebra generated by the character lattice
A = Homg,, (7', G,) in degree two, and V) is the summand of V' on which T" acts by A. For the
standard representation of GL,, the Euler class e(C"/GL,,) is the element

ty-t, € H'(BT) =~ Cl[ty,...,t,].

3.3 Localisation

Inverting equivariant cohomology classes is a powerful tool because two conflicting effects are often

simultaneously true:
1. inverting does not lose much information (none if inverting non zero divisors), yet

2. dissimilar spaces can have the same cohomologies after inversion: abelian localisation (section
3.5) covers the case of a closed subspace, and we will see that the localised cohomology of

singular spaces behaves like for smooth spaces (see section 3.4).
In this section we set up the notation.
3.3.1. Fix a base Artin stack B, and let S € H*(B) be a multiplicative subset. We call
My = M[S™]
the localisation of a H*(B) module M.
3.3.2. Specialisation and concentration.
Definition 3.3.3 (Concentration). An Artin stack Y over B is (S-)concentrated if
H.(Y)loc ~ 0.

We say a closed embedding i : X — Y over B is (S-)concentrated if Y\X is concentrated.

Definition 3.3.4 (Specialisation). A closed embedding i : X — Y over B is (S-)specialised if
e(Y/X) : H.(X/Y)loc - H.(X)loc

is an isomorphism.
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It may be useful to see the following commuting diagram of H*(X) modules, whose rows are long

exact sequences

s HY(XJY) 2 HY(Y) —— H (VX)) —— -

H l l (3.15)

L HXY) P ) s (X k) —— -

where j is the open complement of i. So concentration/specialisation just says that, upon local-
ising, the right term in the top/bottom row of (3.15) vanishes, or equivalently the left map is an

isomorphism. It also follows that
Lemma 3.3.5. If i* is an isomorphism then concentration and specialisation are equivalent

For example, this is the case when the fibres of Y over X are cohomologically trivial, like when Y’

is a vector bundle, cone bundle or perfect complex over X.

3.3.6. Pullbacks.

Lemma 3.3.7. Let i : X — Y be a concentrated and specialised closed embedding, and consider

the Cartesian square

Qy —
|
X

Then the pullback map i* : H*(X/Y) — H*(QY /X)) is an isomorphism after localisation.

<

—_—

Proof. We have a commuting diagram

H*(X/Y) —2— H'(Y)

[

H*(QY/X) —— H*(X)

Note that z, is an isomorphism on the nose since (Y), = X. Both i, and i* : H*(Y) — H*(X)

are isomorphisms after localisation by the hypothesis, proving the claim. O

Lemma 3.3.8. Let i : X — Y be a concentrated closed embedding, and W — X be any map.
Then the cup product
H'(W/X) ®uex) H'(X/Y) — H'(W/Y)
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s an isomorphism after localisation, i.e. we have

HY (W/X)i0e ®n® (x)0c H (X /Y )toc = H (W/Y )ioc

loc

Proof. After stratifying Y, we get a commuting diagram of long exact sequences

H* (Wo/Y) > HY(W/Y) s H(W)Y) ——

d d ‘|

H' (Wo/X) @) HY(X/Y) — H(W/X) @) HU(X/Y) — H*(W1/X) @nexy HY(X/Y) 5

where Wy = W xy X and Wy = W xy (Y\X). The right two vector spaces vanish after localisation
because W is concentrated. Thus it suffices to prove the Lemma after replacing W with Wy, which

follows immediately since (Wy)y = X.

]

Proposition 3.3.9. Let X — Y} be maps admitting restrictions (k = 1,2,3), fitting into the

Cartesian square
Y — X

l l (3.16)

Yo — Y3
Assume that the map iz : X — Y3 is a concentrated and specialised closed embedding. Then the

pullback map on bivariant homology
iy« H(Y2/Y3)ie = H'(Y1/X)ioc
s an isomorphism.
Proof. Noting that (3.17) is a diagram over Y3; we now stratify Y3 by
X - ¥ « VX

and the pullbacks of (3.17) are

Yl\f/l — X Y, — = &
l l l l (3.17)
Yo\, — X Y, — Y3\X

where Y; = Y; xy, (Y3\X), is contained in Y;\X. This gives a commuting diagram
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H*(V\Y1/X) — H'(¥1/X) — H'(V1/X) ——

o i 1

HY(Y2\Ya/Y) —— H'(Y/Yy) —— H'(Yo/Yy) —
Both spaces on the right vanish after localisation, the top because Y; = @, and the bottom by
concentration, as H*(Y3\ X )i, = 0 implies that H'(Y/Q)loc =0.

It remains to show the left vertical arrow is an isomorphism after localisation. This follows because

it fits as the bottom arrow into the following commuting diagram

HE (Ya\V/X) @ue oy HY(X/Y) 225 H(¥i\T4/23) @nex) H (QV3/X)

lu l“ (3.18)

H (Y2\Ya/Ys) i » H*(Yi\Y1/X)

where QY3 = X Xy, X, coming from the pair of pullback squares

Yi\; > QYs

L

Y5\ Ys y X N

~

The top rightwards arrow in (3.18) is an is an isomorphism after localisation because 73 : QY3 — X
is an isomorphism on classical parts and by Lemma 3.3.7. The vertical arrows are isomorphisms
after localisation by Lemma 3.3.8 applied to the concentrated closed embedding X — Y3, finishing
the proof. n

Corollary 3.3.10. In the setting of Proposition 3.3.9, if Yo — Y3 is quasismooth and
[Ya/Ys]- : H'(Yy) — H'(Yy/Yy)

s an isomorphism after localisation, the same is true for
[Vi/X] : H'(X) — H'(¥y/X).

Proof. Follows from the commuting diagram

H(Vs) 225 1o (vy/v5)

sk sk
%T zST

HY(X) 2% 1o (vy/X)
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The most basic example of this is

Corollary 3.3.11. Let E be a strict G,, equivariant perfect complex in tor amplitude < 1 and
nonzero G, weights. In particular it is a bounded complex of vector bundles E;. Then after

inverting S = (e(E1),e(Es), ... ),
[E/X] : H (X)) — H'(E/X)ic
18 an isomorphism.

Proof. Begin by writing F¢y and E-; for the perfect complexes formed by discarding all vector

bundles in the complex except in degrees < 0 and > 1, respectively. Then F is the fibre

EFE—— X

| !

Ecy —— Exi[1]

Note that X — F5i[1] is a concentrated and specialised closed embedding with respect to S =
(e(E1),e(E2),... ), by Lemma 3.3.30. Moreover, since F¢y and E-;[1] are smooth over X, it
follows that multiplication by the fundamental class of E<y — F<;[1] is an isomorphism on the
nose. Applying Corollary 3.3.11, we get that multiplication by [E/X] is an isomorphism after

localisation. O

3.3.12. Functoriality. We now turn to the functoriality properties of concentration and special-

1sation.

Lemma 3.3.13. Let Y — Y’ be a surjective map of spaces over X whose fibres have trivial

cohomology. Then'Y is concentrated if and only if Y' is.
Proof. Applying the Leray sequence to this map gives that H*(Y5) = H*(Y) as H*(X)-modules. [

Proposition 3.3.14. Let Y — Y’ be a map of spaces over X. Then if Y' is concentrated, so is
Y.

Proof. There is a map of algebras H*(X) — H*(Y’) —» H*(Y), and so

. H*(Y')gye
H'(Y) = Resyely/H'(Y)
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is the restriction of H*(Y) viewed as a H*(Y’)-module to a H*(X)-module. In particular, since

H*(Y")1oc = 0 we have

H.(Y)loc = H.(Y) ®H°(X) H.(X)loc = H.(Y) ®H°(Y’) H.(Y,)loc = 0.

The above proof can be summarised as

Lemma 3.3.15. Let ¢ : A — B be a map of commutative rings and S € A a multiplicative subset
such that Blo(S)™'] = 0. If M is an A module arising from restriction of a B module, then
M[S~'] = 0.

We now turn to sheafifying this.

3.3.16. Sheaves of algebras. Let A be a commutative monoid in Sh(X). This means that it

admits product and unit maps
e kx — A m: AQRA — A

satisfying the axioms of a commutative monoid. Call such A a sheaf of algebras over X.
3.3.17. For instance, ky is a sheaf of algebras.

3.3.18. This structure is preserved by:

1. =pullbacks. Given a map f:Y — X the functor f* : Sh(X) — Sh(Y) is monoidal, so f*A

is naturally a sheaf of algebras.
2. =-pushforwards. Given a map g : X — Z, the sheaf g,A is a sheaf of algebras with product
GA® geA = gug (A @ g:A) = gu(g* A ® g gA) — gu(AR®A) 5 g A,

and unit

gx€

kZ - g*g*kZ = g*kX - g*ﬂ

These two structures are compatible as follows:

Lemma 3.3.19. The maps A — f.f*A and g*g.A — A, induced by the (co)units of the adjunc-

tions (f*, f«) and (g*, g+), are maps of sheaves of algebras over X.

As a basic example of the this, the cohomology H*(X,A) is an algebra and there is a map
H*(X,A)x — A from the constant sheaf of algebras with value H*(X, A).
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3.3.20. Sheaves of modules. Let M € Sh(X) be an A-module, i.e. it comes with a map
a: AM — M

compatible with the commutative monoid structure on A. We sometimes call this a sheaf of A

modules over X.

3.3.21. This structure is preserved by:
1. =-pullbacks. Given a map f:Y — X, then f*M is a f*A module.
2. #-pushforwards. Given a map g : X — Z, then g,M is a g,A module.

3. l-pullbacks. Given amap f:Y — X, then f'M is a f*A module, via the projection formula
AFAR M) =~ AR AfM — ABM 5 M
which corresponds by adjunction to a map

FAQ M — fM.

4. l-pushforwards. Given a map g : X — Z, then gM is a g,A module, with action given by

the projection formula:

GARgM ~ g(d*gARM) > g(A@M) & gM.

Moreover, the (co)units of the (f*, f.) and (fi, ') adjunctions applied to M are maps of modules

over the appropriate sheaves of algebras.

3.3.22. For instance, considering A = kx, we get that the cohomology and compactly supported
cohomology of any sheaf M

pM = HI(X,M) pM = H*'(X,M)

is a module over H*(X), where p : X — pt. The same statement applied to a map f: X — Z
gives that the cohomology of the fibres f,kx acts on the relative cohomology f,M and compactly
supported cohomology fiM.

65



3.3.23. We have the following useful proposition:

Proposition 3.3.24. Let A be a sheaf of algebras over X and M € Sh(X). If F is an A module,
then the action of kx on F factors through the map

kx — A.
In particular, the action of H*(X) on H*(X,F) factors through H*(X) — H* (X, A).
Proof. By tensor Hom adjunction we have a map of sheaves of algebras in Sh(X)
A — End(M).

In particular, because kx is initial in the category of sheaves of algebras over X, its action on M

will factor

This leads easily to many corollaries. Let F € Sh(X).

Corollary 3.3.25. For any map g : X — Z, the action of H*(Z) on H*(Z, 9F) factors through
H*(Z) - H*(X).

Corollary 3.3.26. For any two maps

the action of H*(Z) on H*(W, hyh’q.F), where a,b,c € {+,!}, factors through each of the maps

H*(Z) — H*(X)

| |

H* (W) —— H(W, h*g.kx)
Proof. There is a map from the diagram of sheaves of algebras

g*kX
l (3.19)

h*h*/{fz E— h*h*g*k’x
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into End(h,htg.F). Indeed, this follows for the horizontal arrow in (3.19) by using Proposition
3.3.24 on ¢,F and then applying h.h*. For the vertical arrow of (3.19), it follows by the definition
of the action of g.kx on h h*g.kx. O

When j : X — Z is an open embedding and ¢ : W — Z is its complementary closed embedding,
this says that the action of H*(Z) on the cohomology of i’j.F factors through the cohomology
H*(W,*j,k), which may be thought of as the cohomology of a punctured neighbourhood of the
closed subspace. This in particular admits a map from the cohomology of both the open and the

closed subspaces.

3.3.27. We can build more interesting example as follows, where the modules themselves are
commutative monoids. Let f; : Y; - X be any maps and A a commutative monoid in Sh(X).

Then we have a sequence of maps of commutative monoids in Sh(X)
kx = A = fuufiA = faufifufiA — -
and taking cohomologies gives a sequence of maps of algebras
H'(X) — HY(X,A) — H'(M, ffA) — H' (Y., S fiA) — - (3.20)
It follows from Proposition 3.3.24 that

Corollary 3.3.28. If S < H*(X) is a multiplicative subset and one algebra in (3.20) localises to

zero, so does every algebra to its right.

3.3.29. Example: cohomology sheaves. Let E € Perf(X) be a strict G,, equivariant perfect
complex over Artin stack X with nonnegative weights, i.e. quasiisomorphic to a bounded complex

of vector bundles over X
E ~ ("'_>E—1d;)lE0@>E1_)"')'
Then

Lemma 3.3.30. Assume in addition all the E; are concentrated. If we set S; = (e(E;)), the total
space (see [To, §3.3]) of H'(E) is S;-concentrated and S;-specialised.

Proof. Because H'(F) — X has contractible fibres, concentration and specialisation are equiva-
lent. Then we apply Proposition 3.3.14 to kerd; — E; to give that E; being concentrated implies
that ker d; is concentrated, then Lemma 3.3.13 to ker d; — H'(E), whose fibres are contractible,
to give that H'(F) is concentrated too. O
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For instance, let G,, act on Y trivially, and E € Perf(Y/G,,) be a strict perfect complex with
nonzero BG,,, weights. Then E is a direct sum of strict perfect complexes E(n) on X with weight
n € Z\0, and so each term F(n); in the bounded complex of vector bundles quasiisomorphic to
E(n) is concentrated, and so each E; = @ FE(n); is concentrated and the conditions of the Lemma

are satisfied.

3.4 Application to stacks and singular spaces

3.4.1. The reason Fulton and MacPherson [FM] invented bivariant homology was to study singular

spaces. So it is not surprising that the bivariant Fuler class will be well-suited to singular spaces.

3.4.2. The general picture is that the cohomology of sheaves on singular spaces is much more
complicated than for smooth spaces. However, if all maps are T-equivariant for the action of a

torus 7', the free part of cohomology often behaves exactly as in the smooth case!

3.4.3. Instead of requiring that we localise Hy(pt) modules by tensoring with the fraction field,
we localise with respect to an arbitrary multiplicative subset in H*(X). This is necessary when

dealing with Artin stacks, see Example 3.5.27.

3.4.4. Relation to inverted Euler classes. When the morphism is concentrated, the bivariant

Euler class defines a honest localised cohomology class on X:

Definition 3.4.5. Let ¢ : X — Y be a closed embedding admitting a quasismooth retraction

Y — X of dimension d. If 7 is specialised, its (inverse) localised Euler class is the element e(Y) ™!

of H™2%(X) defined by

Y/X]

H*(X/Y)

\ //’\( (3.21)
(Y /X) vy

H*(X)
If S € H*(X) be a multiplicative subset such that upon localising -[Y/X] is an isomorphism, then

the localised Euler class is its inverse e(Y) € H*/(X).

Note that since (3.21) is a diagram of H"(X),c modules, the dotted map is multiplication by
an element of H24(X)y.. In the smooth setting, e(Y)~! is inverse to the Euler class e(Y) of

Definition 3.2.7, i.e. we can take S = (1) in the above.
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3.4.6. Singular Whitney sum formula. The bivariant Euler class can do more for us. Consider
a homotopy fiber in the category of spaces (which we recall for us means derived Artin stacks)

over X admitting a section which is a closed embedding

i 5y 4y (3.22)

3.4.7. Note that (3.22) being a homotopy fiber product means that those maps fit into a pullback

square
Y, — Y

l l (3.23)

X 25,
Let S < H*(X) be a multiplicative subset.

Lemma 3.4.8. If X — Y, is S-concentrated, pullback by iy induces an isomorphism upon locali-

sation

Z; : H.(Y/}/é)loc — H.(}/l/X)loc-

Proof. Expand the diagram (3.23) to a diagram of pullback squares whose rows are complementary

closed and open embeddings

Vi 25 Y « 2 Y\Y,

b

X 12 Y2 ¢ J2 Y2\X

~

Then we have distinguished triangle
Bjnjsk — Bk — Blizizh -
whose long exact sequence on cohomology is
o HU(Y,Buk) - H(Y/Y2) B H(1/X) - -

Note that the action of H*(X) on H*(Y, 8'jak) factors through the pullback H®(X) — H*(Y2\X).
Thus since H*(Y2\X)1oc = 0 by concentration, the localisation of this module H*(Y, 8721k )10 also

vanishes, proving the Lemma. O

It follows from Lemma 3.4.8 that we can define an element
e(Y/Ys) € HY(Y /Y2)ioc
by setting i5e(Y/Ys) = e(Y1/X).
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Proposition 3.4.9 (Singular Whitney sum). If X — Y3 is S-concentrated, then as elements of
H.(Y/X)loc;
e(Y/X) = e(Y/Y2) - e(Y2/X).

Proof. Exactly the same as the proof of 3.2.12, using Lemma 3.4.8. O]

3.4.10. Example: distinguished triangle of perfect complexes. A large class of examples
of homotopy fibres (3.22) come from distinguished triangles of perfect complexes in nonnegative
degree (as otherwise the zero section may no longer be a closed embedding, e.g. as for vector
bundle stacks)

E > E - (B3

since the map on total spaces (see [To]) is a homotopy fibre (and cofiber)
E - E — FE" (3.24)
If £’ is S-concentrated (equivalently, S-specialised) then the singular Whitney sum gives
e(E'/X) = e(E'/E")e(E"/X). (3.25)

If all three zero sections are concentrated then we also get the singular Whitney sum for the left

rotated distinguished triangle
E — E" > E[1] &

but not necessarily the right rotated unless F is concentrated in degrees > 1.

3.4.11. With the right quasismoothness assumptions we can use fundamental classes to turn (3.25)

into a statement in the honest localised cohomology H* (X )jqc.

Assume that each term in (3.24) is quasismooth (so the perfect complexes have tor amplitude in
[0,1]), and the map E' — E” is also quasismooth. Then we have the commuting diagram
H(X)®@H(X) ——— H*(X)
ﬂZ,,@idl~
H*(E")@H"(E"/X) [E'/X]-
(/511" /XY |
H*(F'/E")®@H*(E"/X) —— H"(F'/X)
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In particular, if the fundamental classes over X of each term in (3.24) give isomorphisms on

localised cohomologies, we get an equality in H®(X ),
e(E') = e(E)-e(E")
where the above elements of H*(X),. are defined as
[E'/X]-e(E) = e(E'/X) [E"/X]-e(E") = e(E"/X),
as well as [E'/E"] - miue(E) = e(E'/E"), which is equivalent to

[E/X]-e(E) = i([E/E"] - e(E)) = e(B/X).

3.4.12. To be extremely explicit, we consider the homotopy fibre E = (Ey % E;) of a map of
vector bundles:

E—>E0—>E1

Note that each perfect complex has tor amplitude in [0, 1] and so its total space is quasismooth.
Because Ey and E; are smooth over X, the map Ey — FE; is quasismooth and the above assumption

on fundamental classes being isomorphisms holds.

We make G,, act trivially on X, which lifts to an action on each of the above by scaling the fibres,

giving a homotopy fibre

over X/G,, = X x BG,,. Noting that the zero section X/G,, — E;/G,, is concentrated if we

invert the equivariant Euler class S = (eg,, (E1)), the singular Whitney sum formula gives

ea,,(Eo/X) = eg,, (Eo/E1)ea,, (F1/X) (3.26)

as elements of Hg (Fo/X)oe. Using section 3.4.11 we get the usual sorts of expressions one

encounters when dealing with virtual abelian localisation (e.g. [GP])

GGm (E) = GGm (Eo)/ec;m (El)

3.5 Abelian localisation

3.5.1. Background. Take an action of a torus 7" on X (a manifold, scheme, stack, ... ). Abelian
localisation says that under suitable conditions the equivariant cohomology of X and its fixed

locus X7 are almost equal
HYH(X) “~ 7" Hy(XT). (3.27)
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This can really simplify computations with cohomology, e.g. giving integration formulae for equiv-

ariant classes on X.

3.5.2. What (3.27) means more precisely is their localisations agreee after localising with respect
to some multiplicative subset of H7.(X) (see section 3.3.1). For instance, when X is a scheme or
manifold the classical Theorem 3.5.7 due to Atiyah and Bott says that as H7.(pt) modules their

free parts agree:
H3 (X) ®us (por) FracH7(pt) ~ H3(XT) ®us (pr) FracH(pt). (3.28)

Note that H.(pt), the equivariant cohomology of a point, is a polynomial algebra in rk7T variables.

So when T' = G,,, has rank one this simply says

Hg, (X)[t7'] ~ Hg, (XS]

3.5.3. Abelian localisation is one of the main techniques in enumerative geometry, e.g. to compute
Gromov Witten [Beh, MNOP] or Donaldson Thomas [Th, MNOP] invariants. These are defined
as integrals of certain “tautological” cohomology classes on moduli stacks, and when these moduli
stacks have a torus action we can use abelian localisation computations onto the fixed locus.
Sometimes the fixed locus is even a disjoint union of points, reducing us to a weighted point count

(i.e. combinatorics).

3.5.4. Abelian localisation was first proven by Atiyah and Bott [AB], and Berline and Vergne
[BVe]. In algebraic geometry, abelian localisation for Chow homology was proven for schemes
by Edidin and Graham [EG], Delgine Mumford stacks by Kresch, and generalised to the singular
Deligne Mumford setting the setting by Graber and Panharipande [GP]. Aranha, Khan, Latyntsev,
Park and Ravi [AKLPR] generalise this to general reductive groups instead of just tori, in arbitrary
characteristic, general Borel-Moore homology theories, and for Artin stacks whose stabilisers are

small enough (e.g. Deligne Mumford).

3.5.5. Remark. An equivariant map between stacks with G actions is a map fg between their

quotient stacks

X —Y

| |

X/G - v/G
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When the context is clear we will often drop the subscript G from fg, e.g. pullback on equivariant
cohomology will be denoted f* not f£. Note that f does not determine f; uniquely, for instance

each homomorphism G — G determines a map BG — BG which lifts to the trivial map pt — pt.

3.5.6. Localisation for smooth schemes. We begin by translating Atiyah and Bott’s [AB]
proof of abelian localisation (for manifolds) into algebraic geometry (smooth schemes). This will
also explain what we need to generalise in order to prove abelian localisation for more complicated

spaces.

Theorem 3.5.7 (Abelian localisation for smooth schemes). Fiz T a torus acting on smooth
schemes of finite type Z, X, on Z trivially. Suppose i : Z — X is a T-equivariant closed embedding
and on all points on the complement the stabiliser is a proper subgroup of T'. Then the localised

pullback and pushfoward maps are isomorphisms -
Z.* . H’}(Z)loc = H;“+2d(X)loc 2* . H’}(X)loc — H’}(Z)loc

where d is the codimension of i. We have written loc for localisation of a Hy.(pt) module with

respect to all nonzero elements:

Moe = M ®u2 (pt) FracHz(pt).

Why does the fixed locus X7 not appear in the statement? Consider that abelian localisation is
certainly true for Z = X. Thus, it is not important whether Z is a fixed locus or not, only that

the torus action on its complement is close to being free (has low dimensional stabilisers).
Corollary 3.5.8. The Euler class e(N;) € H*Y(Z)1c of the normal bundle is invertible, and

id = i,

(3.29)

as endomorphisms of H3(X)ioc.
Proof. Both claims follow since the map i*i, is multiplication by e(IN;). O

Corollary 3.5.9 (Integration Formula). If Z and X are proper,

Jo = Lo

Proof. (Equivariant) integration SZ means proper pushforward along Z/T" — BT. Because this

as maps Hy(X)1oe = Hy(pt)1oc-

map factors as Z/T — X/T — BT, we have §, = {, i\, so we are done by applying {, to
(3.29). 0
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3.5.10. Proof of Theorem 3.5.7. We proceed in two steps:
1. Concentration. Show H7.(X\Z)1oc = 0 by Thomason’s generic slice Theorem.

2. Specialisation. Show the Fuler class is unit in localised cohomology, by reducing to the case

that X is a vector bundle over Z using “the exponential map”.

Recall from section 3.3.2 the commuting diagram of H7.(pt) modules whose rows are long exact
sequences
D HT2(Z) s HM(X) —— HR(X\Z) — -
H l l (3.30)
s 1y (2) Y e (2) —— (2, k) —— -
Thus concentration will give that 7, is an isomorphism after localisation. Specialisation gives that

-¢(X/Z) is an isomorphism after localisation, hence i* is too.

3.5.11. Proving concentration is simple in the rank one case T' = G,,,. The quotient stack (X\Z)/T
is Deligne Mumford since all its stabilisers are étale [Ol, Cor. 8.4.2]. As it is in addition of finite
type, its cohomology H}(X\Z) is finite dimensional by [Ed, Prop. 4.39]. In particular, the degree

two generator of Hy.(pt) = k[t] acts nilpotently, and so its localisation is zero.

3.5.12. Note that we did not use the smoothness assumption at all. We will now prove concentra-
tion in the higher rank case for Z, X as in the Theorem but without the smoothness assumption,
proceeding by induction on the dimension of X\Z. Finally, note that if the action on X\Z were

free or had étale stabilisers the above proof would apply.

3.5.13. To prove concentration in general we as in [AKLPR] we use Thomason’s generic slice
Theorem [Th'n, Thm. 4.10], which says that any scheme with a 7" action admits a T invariant

nonempty affine open U and as stacks over BT,
U/T ~V x BT’

for some subgroup 7" < T and some affine scheme V. In particular, the action of Hy.(pt) on any

sheaf cohomology H7 (U, F) factors through

H7(pt) — Hi(pt).

Applying this to X\Z, by assumption on the stabilisers this map has nonzero kernel because

T' < T is a proper subgroup and so Hy(U, )i, = 0. By iterating this, we may assume that the
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complement of U has dimension strictly less than U. Then if F is any T equivariant sheaf on X\ Z

we take the Mayer Vietoris sequence
T H;((X\Z)\U, Z‘!g:)loc - H}(X\Z, Fhoc — H;“(Uaj*ff)loc -

We have shown that the term on the right vanishes, and the left term vanishes by induction on

dimension. Thus H}(X\Z, F)joc = 0 for any sheaf F, in particular H7.(X\Z)1oc = 0.

3.5.14. Having proven concentration, abelian localisation follows for the zero section of the nor-
mal bundle Z — N;, and for any closed embedding whose pullback on cohomology gives an

isomorphism. In the differential geometric setting we would now consider the exponential map
N;
27 e
\ ;(
to relate the Euler classes of X and N;. This does not exist in algebraic geometry, but we have
its cohomological shadow, the ezponential map on bivariant cohomology (section C.2) which is

compatible with bivariant Fuler classes via
i) Hr(Z/NG)

L] / L]
H(Z) ~ |1 (expy)
—
2 HL(Z/X)
Because these spaces are smooth we can identify the bivariant cohomologies with the cohomology
of Z using fundamental classes, giving
H7(Z/N;)
e(N;/X) T v [Z/N;
0 T
~ [H® (exp;) Hy24(2Z)
—

XD HN(Z)X)

H7(2)

[2/X]

and so since ¢(IN;/Z) is a unit in localised cohomology, so is e(X/Z). This proves specialisation,

and so completes the proof of Theorem 3.5.7.

3.5.15. General abelian localisation. We summarise the above proof in a theorem, which
tautological but useful to have. As usual we work with a sheaf theory admitting the six functors

(see section 2.7).

5



Theorem 3.5.16 (Abelian localisation). Let i : Z — X be a closed embedding of spaces and
S c H*(X) a multiplicative subset. If i is S-concentrated (3.3.3) and S-specialised (3.5.4) then

i* : H.(Z/X)loc > H.(X)loc Z* : H.(X)loc > H.(Z)loc
are 1somorphisms.

Proof. Follows from the definitions of concentration and specialisation by localising the diagram

(3.15) of H*(X) modules. O

Informally, this theorem says that for abelian localisation to be true it is enough that the Euler

class is a unit and the cohomology of the open complement is torsion.

3.5.17. By Example 3.5.27, even in the T equivariant case inverting a subset S < Hz(pt) is
often not enough to ensure concentration and specialisation. This is why in the above we invert

S < HY(X).

3.5.18. Integration formulae. Let::Z — X be a closed embedding which is concentrated and
specialised with respect to multiplicative subset S < H*(X), as in Theorem 3.5.16. As for any

closed embedding, T; is concentrated in degrees [1,c0).

In particular, if T; is concentrated in degrees < 2 (as is the case if Z and X are quasismooth over
a common base) then the normal complex N; = T;[1] is concentrated in degrees [0, 1] and so its
total space

is quasismooth. Moreover, note that because it is an isomorphism on the level of cohomology,
Z — Nj; is S specialised if and only if it is S concentrated. As a consequence of abelian localisation,

we get

Corollary 3.5.19 (Integration formula). Assume N; is concentrated in degrees < 1 and its zero

section is S-specialised, so that by section 3.3.6 we have an isomorphism
IN:/Z] : H*(Z/Ni)oe — H*(Z)10c-

Then identifying H*(Z /X )10c =~ H*(Z)10c by a — (expa) - [N;/Z], we have

id — zi(;; ; (3.31)

as endomorphisms of H* (X )ioc, where e(N;) € H*(Z) is the localised Euler class of N;.
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Proof. Follows from the commuting diagram of isomorphisms

(Z/X)loc eXP) Z/N loc l; H. 2d loc

~

~

L] K ~
H' (Xee _ ~|exin 270,
T

H.(Z)IOC

by section C.2, where the bottom right arrow is the definition of e(N;) and d is the rank of N;.
Note that H*(exp) is an isomorphism because the middle triangle commutes and its vertical edges

are isomorphisms since both ¢ and the zero section of IN; are S-specialised (see section C.2). [

Corollary 3.5.20 (Sheaf cohomology abelian localisation). With notation as in Theorem 8.5.16,
for any F € Sh(X), the maps

iv  HY(Z,i'F)oe > H(X, Fioc * o HY (X, Foe = H(Z,7* F)ioc
are 1somorphisms.

Proof. Consider the diagram of H*(X) modules

5 HY(Z,i'F) —2 H(X,F) —— HY(X\Z,j*F) —— -

H l l (3.32)

1240 YA w2, i) —— HY(Z,i%,F) —— -
Note that the action of H*(X) on the module H*(X\Z, 7*F) factors though the map of algebras
H'(X) — H'(X\Z, j*k)
and the action on the module H*(Z,*5,F) factors through the map of algebras®
H*(X) — H'(Z,i*j.k).

Thus both H*(X)-modules localise to zero, because the action factors through rings whose locali-

sations vanish by Theorem 3.5.16. O

Applying this to the dualising sheaf F = wy, we get the statement for Borel Moore homology

6Recall that if A is a associative algebra in Sh(X), then so is fy f*A for any map f:Y — X, and A — f, f*A
is a map of algebra objects. In particular, applying this to A = kx and applying this twice we get that i,i*j.j*kx

is an algebra object in Sh(X), and hence its cohomology is an algebra.
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Corollary 3.5.21 (Borel Moore abelian localisation). With notation as in Theorem 3.5.16, the
maps

(P H}.SM(Z)IOC - H].BM(X)IOC it H].BM(X)IOC - HI.BM(Z/X)IOC

are isomorphisms, where Hpy(Z/X) is bivariant Borel Moore homology (section 2.7.5).

3.5.22. We make a note about how the localised Euler class relates with proper pushforwards,

keeping the notation of Corollary 3.5.19. Consider a commuting diagram

(3.33)

where p and p are proper quasismooth maps. Then we have the following commuting diagram

i H.(Z/Y)IOC H.(Z/Y)loc
. T V1%
H*(X/Y )1oc [x/v] N:/Y] [Z/Y]
'[X/Y}T 2/ X e = HY(Z/N e T HY (D)o (3.34)
. - N
H (X)loc x ~|-e(X/Z) (N, /7
i H.(Z)loc

The middle square commutes by section C.2. Then if S comes from the pullback of a multi-

plicative subset of H*(Y'), we can apply proper pushforward on localised bivariant cohomology
H* (X /Y )ioe = H*(Y )10 to get that

. = D, 3.35

b P e(N;) ( )

as maps H*(X)joe = H"(Y)1oc. This is classically written as
-1
X x e(Ny)

3.5.23. Example: vector spaces. Let us consider the simplest case where the multiplicative

group T' = G,, acts vector space X = V by scaling, and taking Z = {0} the fixed locus. The

Thom Gysin sequence is

= HE (0] B Hg, (V) - H(PV) - -
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Here PV = (V\0)/G,,. As a sequence of H*(BT') ~ k[t] modules, this is
0 — k[t] & k[t] — K[t]/t* — 0

where n is the rank of V. Then since H*(PV) is finite dimensional, it is a torsion module and so
H*(PV)joc = 0.

3.5.24. Example: flag varieties. Let G be a complex reductive group, 7" a maximal torus B
a Borel subgroup. The flag variety G/B admits an action by T" and a Bruhat stratification into
affine spaces, labelled by elements of the Weyl group
G/B = || BwuB/B =~ ][] A"™. (3.36)
weW weW
It follows from the Mayer Vietoris sequence that H*(G/B) as a vector space is C[W] (as an algebra
it is W coinvariants Hi-(pt) ®us (pyw ®Kk) where w has degree 2/(w).

Alternatively, the action of T" has one fixed point per stratum, so by Theorem 3.5.7 the localised

equivariant cohomology is free with dimension |W| over the fraction field:

i* + Hp(G/B)ioe > P FracHy(pt) ~ C[W]® FracH7(pt)
weW

as algebras.

3.5.25. Other natural examples include partial flag varieties or smooth toric varieties. More
generally for any smooth projective variety with torus action we can apply the Bialynicki-Birula
theorem to get a stratification into generalising (3.39) using attracting sets of the fixed points.

See section 3.7.

3.5.26. Example: stacks. We thank Hyeonjun Park for pointing the following example out to

us. Take the zero section of the tautological line bundle on BG,,
i : BG,, — A'/G,,
with T'= G,,, acting on the fibres by scaling. Its quotient by T is
ir : B(G,, xT) — A'/(G,, xT).

The pushforward 7, fails to be an isomorphism, even after inverting any multiplicative subset of

nonzero divisors in k[t] = H7(pt). Indeed, it fits into the Mayer Vietoris sequence
T Hé}_rfxT(pt) Zif HE}mxT(Al) - H.(Gm/(Gm X T)) — (337)
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and the last term H*(G,,/(G,, x T')) ~ k[t] is a torsion free H}(pt) module. To fix this, note that
(3.40) is identified with the Gysin sequence

o k[ t] Bk t] - k] — -
where the first term is multiplication by the Euler class of ir. It follows that if we take
S = (z+t) € H(BG,)

then abelian localisation as in Theorem 3.5.7 holds. Moreover, because x + t is not a zero divisor,
abelian localisation does not just hold for the “stupid” reason that a zero divisor was inverted so

all vector spaces are zero.

Proposition 3.5.27. Let Z be an Artin stack over a field of characteristic zero and E a vector

bundle. Assume T is a torus acting on the fibres of E. Then the T equivariant zero section
ir :» Z/T — E/T

is S-concentrated and S-specialised for S = (ep(E)).” Moreover, if T acts with nonzero weights

then S consists of non zero divisors.

Proof. Specialisation and concentration are equivalent since ¢}. is an isomorphism. Specialisation
follows by definition, since multiplication by the Euler class is clearly an isomorphism if we invert

it. To show the second claim, writing H7.(pt) = k[t1, ..., t,], we note that
er(E) = (wy+x1) - (w, +x,.) € HA(Z) ~ H(2)[ty, ..., tn]

where w; = Y W;;t; are the weights of the action (with W;; locally constant functions on Z) and
x; are the chern roots. Recall that these are defined by pulling back the map to BGL, given by
E/T:

I !

Z/T —— BGL,

Here Fl denotes the flag bundle. Note that p*(E/T) splits as a direct sum of line bundles, the
first chern class of the ith is denoted w; + x;. Since the weights w; are nonzero, wy - - - w, is not a

zero divisor and hence er(FE) is also not a zero divisor. ]

"Here er(E) denotes equivariant Euler class of E, defined as the Euler class of E/T.
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3.5.28. Remark. Take a cartesian square of smooth schemes

7 15X

b

7 s X
Assume this diagram is equivariant for the action of a torus 7', that the horizontal maps are closed
embeddings which are specialised and concentrated, and the vertical maps are proper. Then
applying the integration formula (3.29) twice gives

*fu(=) _ i i fu(—)
e(N;) " e(Ny)

- ) = 1) = (59 (339

as maps on localised cohomology. Equation (3.41) is sometimes called the functorial integration

formula.

3.5.29. There is a folk conjecture that the Grothendieck Riemann Roch Theorem can be formu-
lated as being a special case of abelian localisation. Let p: X — Y be a smooth and proper map

of schemes, and consider the cartesian square of formal schemes
X —— LX
lp lﬁp
Y —— LY
where £X is the free loop space of X, see [KV1, §3]. Then the idea is that the Grothendieck

Riemann Roch formula
ch(p,F)td(Ty) = p.(ch(F)td(Tx)),

as elements of Chow homology and for F € Ko(X), closely resembles the functorial integration
formula (3.41), with the Todd class td(Ty) taking the role of the inverse of the undefined Euler
class “e(IN,)”. This is of course not defined using the above framework because LY — Y is not
locally of finite type, so we do not have access to the usual six functor formalism to study it. See

[Liu] or [At1] for more details.

3.6 CoHA products by abelian localisation

We can use the integration formula to compute CoHA products on non-equivariant cohomology,

like so.
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3.6.1. Linear algebra. So as to make the proceeding clearer, we record an easy fact. Consider

maps of vector spaces
VvV, —2Y 5 1,

lal lo@ (3.39)

W, 2 W,

Then if o has a section, the following also commutes

VIL%

] laz

W, 2 Wy
In particular,

Lemma 3.6.2. If oy has a section, oy uniquely determines oy .

3.6.3. The examples we will care about will come from equivariant cohomology:

He (Y1) — Hg(Y2)

| |

H'(Y1) —— H'(¥2)

Here G acts on Artin stacks Y;. If both the GG actions are trivial then the section comes from the

identity k& — H¢,(pt), giving
H*(Y;) — Hg(Yi) ~ H'(Y;) ®H'(BG).

Thus if we want to prove results in the nonequivariant setting about maps H*(Y;) — H"(Y3),
Lemma 3.6.2 allows us to instead prove results in the equivariant setting. We will sometimes
abuse notation, when given a map ¢ : H (Y1) — H{(Y2), by also denoting by ¢ the induced map
H*(Y1) — H*(Y2).

3.6.4. CoHA products. Fix base Artin stacks Y; and Y5, and consider a correspondence

/ X (3.40)

Y3 Ys
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3.6.5. Now we explain how to use abelian localisation to compute CoHA products. Let i : Z — X

be a closed embedding

]
< 4— N\
|

(3.41)

Note that if p and p (or ¢ and §) are quasismooth then the conormal complex N} = T?[-1] is
contained in Tor amplitude < 1, where T; denotes the tangent complex of the morphism i, so that
the total space

N, - 7

is quasismooth over Z.

Theorem 3.6.6. Assume Z — X is a closed embedding which is S-concentrated (3.3.3) and S-
specialised (3.3.4) over Yy with respect to a multiplicative subset S € H*(Y3) of nonzero divisors.

Assume that p is proper and quasismooth, then as maps H* (Y1) — H*(Y3),

<)

o q (_)
P«q = Dy G(NZ) (342)

Proof. We have the maps

*

H'(V) & H'(X) = H' (X B H (Voo
and the first claim follows by decomposing idy*(x),,, according to the integration formula (3.31).
Consider the commuting diagram

H.(X)loc L} H.72d(Y2)loc

T T (3.43)

H.(Yi) q H.(X) DPx Ho_Qd(Y.z)

By applying (—)¢* to the relative integration formula (3.35), the upper row of (3.46) is

P+q" = D,

viewed as maps H®(Y}) — H*(Y2)1,c whose image lies in H*(Y3) € H*(Y2)10c.
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3.6.7. In line with our trichotomous Definition 3.1.10 of CoHAs, it is natural to expect a second
Borel Moore and third sheaf theory version of the above Theorem 3.6.6. For instance, if p is qua-
sismooth and we have &; € Sh(Y;) with a map ¢*F, — p*F, satisfying an associativity condition,
then as maps H* (Y}, F;) — H*(Ys, F2), we expect that

b = 210 (3.44)
To verify this would require developing the exponential map for general sheaf cohomology, which

we have not done but is probably not hard, after which the proof of this expectation is likely to

proceed as above.

3.6.8. CoHAs via equivariant cohomology. In practice, we will usually consider the case
where (3.44) consist of T-equivariant maps, where T' is a torus, and the action on the Y; are
trivial. Then we apply Theorem 3.6.6 to the quotient diagram (3.44)/T, to get that

Pr«qr = pT*e(NiT)'

In particular, composing with the pullback ¢, : H3(Y5) — H*(Y3) and the section ¢, : H*(Yy) —
H7.(Y1), we have
* * o — 5%01(—)
pq" = @2(prsar)o1 = $2Drs N
as maps H'(Y;) — H*(Y3). In the following we will abuse notation by suppressing ; from the
notation, e.g. writing

ACS)
P«q" = Dr«qy = Drs :
T (N’LT)

The reason this situation is useful to consider in the first place is that if the 7" action on the Y;

)

will be trivial, it is often easy to see when a multiplicative subset S < H7.(Y;) = H*(Y))[t1, ..., tn]
of a polynomial ring consists of nonzero divisors, e.g. see the proof of Proposition 3.5.28 for an

example.

3.6.9. Limit CoHA products. When applying the above, in many examples it is hard to directly
verify that Z — X is concentrated and specialised because its normal complex N; € Perf(Z7) is
not strict (representable as a bounded complex of vector bundles). However, it is often easy to

find an increasing open cover on which it ¢s strict.
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Thus, consider for each n > 0 a diagram

Zn
Tn lzn Pn
In = X, (3.45)
ZEN
Yin Yo
with maps of diagrams Jo — J; — --- — J which are open embeddings on each object. Here

we have written J for the diagram (3.44). Finally, let S,, < H"(Y2,,) be a compatible system of

multiplicative subset of nonzero divisors, and write S = lim S,,.

Theorem 3.6.10. Assume Z, — X, is a closed embedding which is S,-concentrated and S, -
specialised over Y, with respect to a multiplicative subset S,, € H*(Ya,,) of nonzero divisors, for

each n = 0. Assume that p, is proper, quasismooth and
H*(Y;) = limH"(Y;,),

Finally, assume in the sequence Jo — J1 — -+ — J that all squares with vertical arrows i,,p, or
P, (or in the Borel Moore case, i,,q, orq,) are cartesian. Then the first result of Theorem 3.6.6
holds, 1i.e.

£ = a*(_)
as maps H* (Y1) — H*(Y2). On the right hand side, we pass via S localised cohomology to divide

by e(N;).

Proof. By Theorem 3.6.6, we have for each finite n > 0 that

pn*qz = Dnx

e(N;,)
Thus the limit of both sides, which define maps H*(Y;) — H*(Y3), are the same. The limit of the
left side is p,q*, and the limit of the right side is p, Z*l&_)) O

Likewise, we expect that there to be Borel Moore and sheaf versions of this Theorem.

3.6.11. In practice when computing (non Borel Moore) CoHAs we take the constant family Y} ,, =
Yi, a family of open embeddings Y, whose closed complement has increasing codimension, and
form Z,, X, by pullback. Moreover, the multiplicative subset (e¢(IN;,)) is contained in a pullback

of a multiplicative subset in H*(Y}), see section 3.8.13.
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3.6.12. Heuristic to compute CoHAs. Consider a space X as in section 3.1.9, for instance

admitting a correspondence

/ K (3.46)

X xX X
and define cohomological Hall algebra by Definition 3.1.10. We will now explain how to compute

explicit formulas for it using the previous sections

3.6.13. The idea is to use a split locus, which is any function
@ X - X

whose pullback gives an injection on cohomology. The simpler the cohomology of X? the more

useful this heuristic will be.

We then form a diagram by taking the pullback

CXXXS

Cy XXS (3.47)
X x X/ X X y

and we have

@*(CoHA) = @'p.¢* = p.®* ¢".

We then assume there is an action of a torus 7" on C'x x X* such that p and ¢@® are torus equivariant
for the trivial actions on the target spaces (see sections 3.11, 3.13 and 3.13 for examples), and
let C* — C' x x X* be an equivariant closed embedding from a space with trivial 7" action. Then

consider

CS

@l
<
3

(3.48)
XS

N
X/ \Xy

X x

and applying Theorem 3.6.6, we get



Proposition 3.6.14. Assume that p (and therefore p and p) is proper, and that
1. p is quasismooth, or
2. q and @ are quasismooth, or

3. pis quasismooth and F € Sh(X) admits a map ¢*(FKRF) — p*F satisfying an associativity

condition.

Assume that i is concentrated and specialised, as is the zero section of its normal complex, then

for the three above CoHAs coming from Definition 3.1.10 we have the following formulas:

@*(CoHA) = @p ¢* = D,

(3.49)

3.6.15. Note that for that for equation (3.52) to be useful in the third case, we should also require
that the pullback @* : H*(X,JF) — H*(X*,®*F) be injective.

3.6.16. It is sometimes useful to know a more explicit form of N;. As K-theory classes we have,

by repeatedly applying the distinguished triangle the tangent complex of a composition,

[N;] = [i*®" Teyx] — [Tosyxs]- (3.50)

3.6.17. Examples. We will use this heuristic in two different ways when X = My is the moduli

space of objects in abelian category A.

e To prove our main Theorem 3.10.1, we will use X* = X? the space classifying pairs of objects

in A.

e To give explicit formulas for CoHAs in sections 3.12 and 3.13, we will take X* to be something

like tuples of rank one” objects in A.

In both cases, @ is the direct sum map.

3.6.18. In both applications, the space C' x x X* = Exty xy, M7 classifies short exact sequences

with a splitting of the middle term ¢ : € ~ @E;, either into two objects or multiple rank one
objects, depending on the application.
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The rank of the torus 7" will be the number of these summand, with a torus element 7 € T acting

on the above by
0_>817—_O‘><_D8i’87—_1182_,0_

Then (3.54) splits as a direct sum of exact sequences if and only if it is fixed under the 7" action.
We write C° = Ext® for the space parametrising direct sums of two short exact sequences, or
direct sums of many short exact sequences whose middle term has rank one, depending on the

application.

Thus we have

Ext’

® l

EXtA XMy Mil

My x M M,

3

If we write

0 — @8171' ®—a>i @81 % @8272' — 0

for a point of Ext}, the map p sends it to @E;, and the map @ sends it to (BE;,;, BEs;).

3.6.19. In particular, in these cases the map @ lifts to

&
TR
M x M3 Ext?
8 lz P
Ox@ Exty X, M,
Ma x My M,

The lift however is not unique, e.g. we can postcompose @ with any automorphism of M5, over

My.
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3.6.20. Localised CoHA products. Assume that the map @ can be a lifted to a map to the

split locus:

(3.52)

In this case by the integration formula (3.31) we can lift the CoHA map p,q* to amap

~ %k
- (=)
Py "e(Ny)

H*(X*) @ HY(X?)

o] e
H*(X) @ H'(X) —*— H*(X)

The top horizontal map we call a localised CoHA product. It does not give an algebra structure on

H"(X*)1c because of the noncanonicity of the lift @. However, it restricts to the CoHA product

on H*(X), and so is often useful in giving explicit formulas for it, e.g. [KS]. Compare the notion

of localised coproduct in [Dal.

3.7 Concentration for Bialynicki-Birula style stratified spaces

To simplify the spaces we will be interested in, we will cut them up into strata whose behaviour
is much simpler. For our purposes, a stratification of an Artin stack X is an increasing union of

closed Artin substacks
g =X, <Xy - X, X, =X

whose strata are X; = 72-\7@-,1. This allows us to use Mayer Vietoris and Gysin sequences to

inductively prove statements about X by working stratawise.

3.7.1. For “Biatynicki-Birula” type stratifications (see [JS, Bi] for a classical account), we now
show that concentration and specialisation for the strata implies concentration for the whole space.

Let S < H*(X) be a multiplicative subset and s : Z — X be a closed embedding.
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3.7.2. Assume Xj; is a stratification of X such that the induced closed embeddings

S; . Zz = Z(\X,LL)XI
are isomorphisms on cohomology, and admit retractions X; — Z;. In particular, s; is S-concentrated
if and only if it is S-specialised.

Lemma 3.7.3. If each s; is S-specialised, then so is s.

Proof. We want to show
H*(Z, s* k)1 = 0.

Assume that X has two strata, an open stratum X; and its complement X, the general case
proceeding similarly using induction. Let ¢ : U — X be the open complement of Z, and form the

pullback squares
U<+1— U

Lo

=
<)
4

AN

~

|

Xy —o X <L X, (3.53)
SQT S 51T
Zo — s 7 1 7,

We will now consider some commuting diagrams of long exact sequences, first coming from the

horizontal direciton in (3.56), then secondly coming from the vertical direction.
First, we have a long exact sequence
c—— H(Z,GisTtuk) —— H(Z, s*tuk) ——— H"(Zo, sitosk) — - -- (3.54)

The localisation of the right term vanishes because sg is S-specialised. So it is enough to show

that H*(Z, 7,8%t14k)10c = 0.
Second, we fit it into a long exact sequence
- — H.(Z,j!STtl*k') E— H.(Zl,STtl*k') E— H.(Zo,z*j*STtl*]{?) —_— (355)

so it is enough to show that localising the middle and right terms kills them. The localisation of

the middle term vanishes because s; is S-specialised.

The localisation of the right term actually vanishes for the same reason, using ideas in section
3.3.16. Note that A = j,s1.87t1t7k is a commutative monoid in Sh(X) (see section 3.3.18).

Moreover,
H* (X, A)oe = 0
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because s; is S-specialised. It follows from Corollary 3.3.28 that
H* (X, 143" i A)oe = 0.
However, this is nothing but
H*(Z,0%7,57t1.k) = H(Z, 504777, 51t1:tTk) = H(Z,1* jus1a8Tt1tk) = H (X, 1,0%J."A).
Thus the right term of (3.58) vanishes too, proving our claim and the proposition. O
Proposition 3.7.4. If each s; is S-concentrated, then so is s.

Proof. We want to show
H* (X\2)1e = 0.
Proceed as in Lemma 3.7.3, assuming that there is an open stratum X; and a closed stratum X,

the general case proceeding similarly using induction, giving the diagram 3.56.

First, we have a commuting diagram of long exact sequences

;K

- —— HY(X, jik) — H'(X) — H'(Xy) —— -

l l lw (3.56)

Tk

- —— H(Z,5k) —— H*'(Z) —— H*(Zy) —— -~

The right vertical map is an isomorphism because pullback by sy gives an isomorphism on coho-

mology. We then consider another commuting diagram of long exact sequences

L HUX k) —— HY(X)) —— H(Xo, % k) —— -

l lw l (3.57)

- —— HY(Z 3k) —— HY(Z)) —— HY (%, 7°7,k) — -

The middle vertical map is an isomorphism because pullback by s; gives an isomorphism. The
cone of the right vertical map is

H* (X0, 1% jutuk).

To show that its localisation vanishes, we again use the using ideas in section 3.3.16. Writing
A = jut1.t7k, we have that
H.(X"A)loc = H.(Ul)loc =0

because s; is concentrated. It follows from Corollary 3.3.28 that the localised cohomology of
A = i,i* 0% A
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also vanishes. Note that by section 3.3.21, the cohomology of A’ acts on H'(Xo,i*j*tuk) =
H* (X, i4% 5. 5% jotntik), and the action of H*(X) factors through H*(X) — H"(X,A’). Thus it
follows that

H* (X0, *jut1ik)ioc = 0.

We have shown that all maps in (3.60), and hence (3.59), are isomorphisms after localisation. In

particular, s* : H*(X)e — H*(Z)10c.
To finish, we consider the commuting diagram of long exact sequences

. —— H'(X, k) —— H*(X) —~—— H'(Z) —— ---

H lt* l (3.58)

- —— HY(X,tk) —— H'(X\Z) —— H'(Z, s*t k) —— -+~

so we have

H.(X\Z)loc ad H.(Z, S*t*k?)loc.
The right side fits into a long exact sequence
c—— H*(Zy, sttoul'k) —— H*(Z, s*t,.k) SAEN H*(Z, s*jut14tik) — -« (3.59)

Now, the action of H*(X) on the left term factors through H*(X) — H"(Xy, to.tsk) = H*(Xo\Zo)
(see section 3.3.23), whose localisation is zero because s is concentrated. Similarly, the action on
the right term factors through H*(X) — H* (X1, t1.tfk) = H*(X;\Z1), whose localisation vanishes
for the same reason. Thus localisation kills all terms in (3.62), and so H*(X\ 7)o = 0. O

3.7.5. Fundamental classes. Note that we also have the following result

Proposition 3.7.6. Given a quasismooth map w: X — Z over a base B, the fundamental class
[X/Z] : H(Z/B)ioe. — H*(X/B)ioe

15 an 1somorphism if any only if they are stratawise, i.e. writing X; = X Xz, Z,
[Xi/Zi] - H.(Zi/B)loc - H.(Xi/B)loc

are isomorphisms.

Proof. For simplicity assume that Z = Z; U Z; has two strata, one closed and one open. Dropping
loc subscripts, in this case the Proposition follows from the five lemma applied to the following

commuting diagram
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H*(Xo/B) — H'(X/B) —— H'(X1/B) —1»

XU/ZO]T [X/Z]T Xl/zlﬁ

H*(%,/B) —— H*(Z/B) —— H"(Z,/B) ——
The general case proceeds by induction on the number of strata. O]
Proposition 3.7.7. Given a quasismooth map 7 : X — Z, the fundamental class
[X/Z] © H(Z)ie — H(X/Z)10c
18 an isomorphism if any only if they are stratawise, i.e.
[Xi/Zi] - H.(Zi)loc - H.(Xi/Zi)loc
are 1somorphisms.
Proof. By the previous Proposition applied to B = Z we just need to show that
[Xi/Zi] - H.(Zi/Z)loc - H.(Xi/Z)loc
are isomorphisms. Dropping the loc subscripts, consider

H*(Z)) ®ue (2 H'(Z:/2) “25 W (X,/ Z;) @ue 2,y B (Z:/ 2)

Nlu | Nlu

H*(Z,/7) /2 H*(X,/Z)

The right vertical arrow is an isomorphism because the following is an isomorphism the diagram

is an isomorphism

H*(Z;) @ue (20 H' (Z) 280 (X,/ Z:) @z H'(Z)

Nlu .. | lu

H*(Xi/Z;)

finishing the proof. O]

3.8 Application: moduli stacks

In this section we apply the results of section 3.7 to the moduli stacks we are interested in.
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3.8.1. Let X be a moduli stack parametrising objects in an abelian category, i.e. either a stack
as in section 3.11.2, or just the moduli of vector bundles, representations of a quiver or coherent

sheaves on a curve. Also consider
N = Ext, M = Ext xy X?

the moduli stacks parametrising an object with a subobject, and two objects with a subobject of

their direct sum, respectively.

3.8.2. Write v; € 72 and 71 € 7, @7, for the tautological vector bundles or quiver representation

bundles on N x N, or coherent sheaves on C' x N x N.

3.8.3. There is a map (which in the three main examples is a closed embedding)
i NxN - M Frcer,F cé ) » (FraF cerpe).
Now, this map usually does not admit a retraction. However, using the obvious G,,, action
G, xM - M t-(Fece&t@é) = () - Fce&rdén),
one might have expected that taking the ¢ — 0 limit could give a retraction to ¢:
M -7 NxN Fce@e ) — (kerFc &t imFc &)

given by taking the kernel and image of the map F < ET @ E~ — 7. The reason this is does not
define a map is that whilst one can take image and kernels in abelian categories, this is not true in
families. For instance, when X is the moduli stack of vector spaces, a map to N x N is uniquely
determined by the pullbacks of the tautological vector bundles v € 75 on N x N, however we
cannot set the pullbacks of v, and 77 to be ker; and imv;, since kernels and images of vector

bundles are not themselves vector bundles.

3.8.4. However, we can define a stratified retraction to the map i. Write M for the moduli stack

parametrising two objects with a subobject
Fcétoe

such that the image and kernel of F under the map ¥ — E* @ &~ — &~ are also objects of the

category familywise. We get a commuting diagram of exact sequences

0 —— kerF s F > imF —— 0
l l l (3.60)
0 s EF s ETDE > &7 > 0
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which thus defines a map
lim : M — NxN (Fcer@E) — (ker TS E,iMFC &)

which is a retraction of i : N x N — M. One can show that M is a disjoint union of the strata in

a stratification of M.

3.8.5. We spell out how to define 7 and lim very explicitly. As noted, N'xN carries four tautological
vector bundles, 7{" € 75 and 7; € 75, and the space M carries y; < Y5 @y as well as ker vy

and imy;. We thus define lim : M — N x N by lim*y5" = 75 and
lim*y = kern, lim*y; = imy;.

Similarly, i : N x N — M is defined by i*75 = vF and i*y, = 77 @7

3.8.6. The fibres of lim above (F* < €7,F~ < £€7) consist of maps of extensions

0 s FT s F sy F- —— 0
l la l (3.61)
0 s ET s ETPE s &7 s 0

We can now compute the fibre of lim using

Lemma 3.8.7. Let A be an abelian category with objects T+ < EX. Then the choices of diagram
of extensions (3.64) biject with Hom(F~, ET/FT).

Proof. Given a map of extensions (3.64), we get a map
T =3F/F" 5 (ETee)/FT —» ET/FT.
Conversely, given a map A : F~ — €T/F" we can form

Ft —— &F X+ g+ F — F

| |

[ L

It is easy to check that the top row is an exact sequence, that the induced diagram

0 > Ft > ET ><3+/5r+9:_ > F- > 0
0 s EF s ETPE s EF s 0
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commutes, and that this gives a bijection. O]

When A is semisimple, we can choose a splitting F ~ F* @ F~ and having made this choice
the diagrams (3.64) biject with Hom(F~, ). Since the choices of splitting are parametrised by
Hom(F,F"), and Hom(F, ")/ Hom(F ,F*) = Hom(F~,ET/F*), we again recover the above

result in the semisimple case.
It follows from Lemma 3.8.7 that
Corollary 3.8.8. M is the total space of Hom(v; , v /77), where:

1. When A is the category of representations of a finite quiver Q, v means the tautological Q
representation bundles on N x N, and Hom(v; , V5 /v5") means the coherent sheaf on N x N

given by Q representation coherent sheaf morphisms (as in section 3.12.3).

2. In particular, when A is the category of finite dimensional vector spaces, ;" are the tauto-
logical vector bundles on N x N and Hom(vy; ,v5 /v") = Hom(yy ,75 /71 ) is the ordinary

internal vector bundle Hom.

3. When A is the category of coherent sheaves on a curve C, v;- are the tautological coherent
sheaves on C x NxN and Hom(v; , v /77") = Home(vy ,75 /71) denotes the relative sections
Hom (1,75 /1) along C.

3.8.9. The G,, action on the fibres of lim sends

0 S = F- —— 0

L

0 y EF y ETPET

~

~

™
|

o

to

t -1
0 >3”+(1) F —— 0

i F
| oo

0 s ET s ETPET &~ s ()

~

g

and all other maps in the diagram are unchanged. In particular, the induced G,, action on the
vector space Hom(F~, €*/F*) has weight one. This all upgrades to a G,, action on M, by acting
on Hom(vy, 5 /7)) with weight one.

3.8.10. Specialisation. In this section, we show that the total space of the normal complex to

it (N xN)/G, — M/G,, is specialised (or equivalently, concentrated) over N x N/G,,. More
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than this, we have a G,, equivariant diagram

N xN

(3.62)

X x X

and we will show that N;/G,, is specialised with respect to a multiplicative subset for S of

He (X x X).

3.8.11. Moduli of vector spaces. In this case M is a vector bundle of G,,, weight one over N x N,
hence M = N;. By Proposition (3.5.28), N;/G,, is specialised after inverting the equivariant Euler

class
e(N)) = eq, (Fom(y 73 /7)) = [ [(@i—t) € Hg (N xN),
where z; are the chern roots of N;. Next, because Hom(~v; , 7, /77") is the subbundle of a quotient

of Hom(vy,75),
ea,,(Hom(v, 75 /1)) | ea, (Hom(v,77))

and so i is S = (eg,, (Hom(y;,75")) concentrated.

3.8.12. Moduli of quiver representations. For notation on quiver representation and their

moduli, see section 3.12. As before,

M = Homg(vi,v3 /)

and Homg(y;,75 /77 is a sub of a quotient of the vector bundle Homg (75,75 ) in the category
of coherent sheaves on N x N. In particular, applying Lemma 3.3.30 we get that ¢ is specialised

with respect to S = (eg,, (Homg(v3,73)))-

3.8.13. Moduli of coherent sheaves on a curve. As in the above two cases, 7 is specialised
with respect to any multiplicative subset for which the total space of Home(v, , 7, ). However,
we need to be careful because in this case Home(v, , 74 ) is not a vector bundle, nor does it have

a global resolution by vector bundles.

Note that Home (7, , 75 ) is the zeroeth cohomology sheaf of the perfect complex Exte (v, 75 ),
which as for any perfect complex is strict (is quasiisomorphic to a bounded complex of vector

bundles) when restricted to any quasi-compact open.

97



Pick an ample line bundle on our curve C. The moduli stack X of coherent sheaves is an increasing
union of the moduli stack X, of m regular sheaves for m € Z, which are quasicompact, see [Hu,

§1.7]. We thus get a G,, equivariant commuting diagram

N,, x N,,
[ NG
Mm (3.63)
Xm)

X < X,
the pullback via the open embedding X,, x X,,, — X x X of (3.65). Note that since p, p,,, are proper
they are in particular quasicompact, hence N,, x N,, is quasicompact. Thus the Ext complex is

quasiisomorphic to a bounded complex of vector bundles

Exte(13 7 e = (o0 = B,V S B BB ).
Thus, by Lemma 3.3.30 the total space of Home (75,75 )|, xx,, 18 specialised with respect to the
multiplciative subset S,, = (eg,,(EY,)) of Hg (N x Ny,). Now, since X is smooth and on each

connected component the codimension of X,, x X,, in X x X tends to infinity as m — o0,® we

have that H*(X) = lim H*(X,,).

Thus, enlarging S,, if necessary, we have a compatible system (S, )mez of multiplicative subsets of
He, (N x Nyp,) with respect to which (N;/G,)
lim Hém (Xm x X)), we may use the process in 3.6.9, applying Theorem 3.6.10 to compute the

Nonx N 18 specialised. Then since Hg, (X x X) =

CoHA products of the moduli of coherent sheaves on a curve.

3.9 Cup product compatibility

3.9.1. Let (M,0) be a commutative monoid in pointed spaces as in section 2.6.3. Then by (2.6.4)
its cohomology H = H*(M) is a cocommutative Hopf algebra, under cup product and coproduct

the pullback by the monoid structure map M x M — M.

3.9.2. CoHA compatibility. Assume that moreover that M € Alg(Art®™), i.e. it is an algebra

in the category of correspondences, giving

/ K (3.64)

8Indeed, note that X = Uez X, and X,,\X,, is closed.
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and moreover that p is proper and quasismooth, so that by Definition 3.1.10 its cohomology is

given the cohomological algebra structure.
Proposition 3.9.3. Ifp* = ¢*®* as maps H* (M) — H*(Ext), then the cohomological Hall algebra
makes H* (M) into an algebra internal to H® (M)-Mod.

Proof. We need to show that CoHA multiplication is a map in Repy, i.e. that for every a € H*(M),

H*(M) @ H* (M) 2225 1 (M)
l@*”' l’”' (3.65)
H* (M) @ H* (M) 2225 1 (M)

Since the cup product is induced by pullback along the diagonal, (3.68) commutes because the

following diagram of spaces commutes and its right square is a pullback

Ext

/ le (3.66)

M? M x Ext M

(@Xid).Al y w lA

M x M2 Mx M

]

It is unclear whether this generalises to cohomological Hall algebras on Borel Moore homology or

sheaf cohomology (CoHAs 2. and 3. in Definition 3.1.10).

3.9.4. Vertex algebra compatibility. The compatibility with the (nonlocal) vertex algebra
structure is more subtle. It is not true that H*(M) is a (nonlocal) vertex coalgebra in the symmetric

monoidal category H-Mod: it interacts nontrivially with the derivation on H.
Let M be a space as in section 2.6. Then

Proposition 3.9.5. The nonlocal Joyce vertex coalgebra structure (see Theorem 2.6.18) makes
H® (M) into a nonlocal vertex coalgebra in the spectral symmetric monoidal category H-Mod, (see

Definitions A.4.2 and A.4.12) of the category of H modules with a compatible derivation.

Proof. We want to show that for every o € H*(M), the cofield map is compatible with the action
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of H:
H (M) = B () @ H' (V) ((=71)

l‘“’ la‘*f@*“' (3.67)

° A(Z) . ° _
H* (M) — H* (M) @ H*(M)((=7))
This follows directly from the definition A(a, z) = U(f)act? (@*a). O

3.9.6. The same is true if we consider the (nonlocal) Joyce vertex coalgebra structure with deriva-

tion attached to an orientation e, of Theorem 2.6.21.

3.10 Main result

In this section we state the main Theorem 3.10.1 and give the proof (section 3.10.4).

Let M, be the moduli stack of representations of a quiver (), or coherent sheaves on a smooth

proper curve C. Its cohomology H*(My,) has the following structures:
1. A cocommutative Hopf algebra structure with derivation, which we denote by H = H*(My).
2. A cohomological Hall algebra (Definition 3.1.10).
3. The Joyce nonlocal vertex coalgebra structure (Theorem 2.6.18).

Moreover, as we have seen in section (3.9), the CoHA and vertex coalgebra structures are com-
patible with the Hopf algebra structure, i.e. are internal to the category H-Mod,; of H modules

with compatible derivation.

Theorem 3.10.1. The cohomology H* (M) forms a vertex bialgebra in the vertex symmetric

monoidal category H-Mod, induced by Yang Baxter matriz (see section A.5)

S(z) = U(0,2)/V(c*0",2).

To be very explicit, this means that the following diagram of vector spaces commutes

H(M)®2 2220 12 (V)% ((2)
|ia®ss(z)@id

. H* (M)®4((2)) (3.68)
e

H (M) —— s H* (M) ((2)
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where A(z) is Joyce’s vertex coalgebra structure, m is the cohomological Hall algebra structure,
and o is the spectral symmetric monoidal structure (see section A.4). Equivalently, ¢ is the
ordinary symmetric monoidal structure swapping the factors, and S(z) = ¥(0, z)/V(c*6, 2); we

will use this notation for the rest of the proof.

The proof rests on a method which computes CoHA-style products using abelian localisation. An

application of them will later allow us to give explicit formulas for CoHA products (sections 2.3,

3.12 and 3.13).

3.10.2. Example. We will first demonstrate this method in the zero dimensional case, where we
use it to compute the CoHA product for A = Vect{gd' the category of finite dimensional vector

spaces.

We give a detailed description of the moduli stacks in section 3.11, but recall that My is the union

of BGL,, over nonnegative n, and the CoHA correspondence is a disjoint union of

N

BGL,, x BGL,, BGL,+m

where P, ,,, © GL, 4., is the stabiliser of a fixed dimension n subspace.

The first step in the method is to consider a split locus of the target: any map @ pullback along

which gives an injection on cohomology. To compute the CoHA product we will choose

BTn+m

N

BGL,, x BGL,, BGL,m

where T,,,, € GL,,,, are the diagonal matrices. Thus BT, ,, classifies n + m tuples of line

bundles, and the map @ sends

@ : (Ll,...,Ln+m) — Ll@@'gn-&-m

and identifies H*(BGL,, 4, ) with &,,4,, invariants inside H* (BT}, .n) =~ k[t1, ..., tnim]-
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Second, we take the cartesian product

Pmm\GLn-&-m/Tn-&-m

BT, (3.69)

/ \
BP, .
/ \ y
BGL, x BGL,, BGLy s

The cartesian product classifies short exact sequence of vector bundles with a splitting of the

middle term
0> & 5 &im B &0 >0 O Eim = L1 @@ L. (3.70)

Third, note that this stack admits an action of a torus 7,,,,,, coming from its action on BT}, .,,.

Explicitly, this sends
t:(,B,0) = (97 tpa, Bp™t o, tp)

As the closed substack playing the role of the fixed locus, we consider the stack classifying
0= L@ ®Liy = L1® - @Lpp — L @@L, — 0 (3.71)

where the £;, £; are line bundles, which is labelled by the partitions of {1,...,n +m} into two sets

of sizes n and m. Write X for the set of these.

HUEE BTn+m
| :
Pnam\GLn-i-m/Tn-i-m
X
’ BTn+m

BGL, x BGL,,

We can now compute the CoHA product. The point is that the map p is extremely simple, it is
just the identity on each component. Thus the hardest part of the CoHA product (integration) is

replaced by a triviality. Moreover, the map g on each component is the composite
G, : BT,.m ™3 BT, x BT,, — BGL, x BGL,,
where 7, is the projection corresponding to the partition o.
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Thus by the integration formula (3.29), we get that

e _ - T(0) _ N o)
P«q - pT* 6(NZ) - Z e(Na,i)‘

To be extremely explicit, we have

(No) = [TT ]t te)

i=1 j=1
where we have made a choice of lift the partition o to a pair of jointly surjective maps o :
{1,...,n},{1,....,m} — {1,...,n + m}. Thus the CoHA map sends

Flt ) - gt ot — 2e(N—l)f(tgl,...,tgn)g(tgl,...,tam). (3.72)
oEX o5t

This recovers the formula in [KS, Thm. 2].

3.10.3. Notice that the right side of (3.75) is a priori valued in the localised cohomology H* (BT}, 41 )ioc,
i.e. the Euler class in the denominator may not be cancelled. However, when the inputs are
symmetric group invariant, the denominator cancels and the right side is also symmetric group

invariant: we have a commuting diagram

H.(BTn)loc ® H.(BTm)loc — H.(BTner)loc

T T (3.73)

H*(BGL,) ® H(BGL,,) —— H*(BGL, )

We stress that to define the top arrow in (3.76), we need to choose of lift of every partition o € ¥
to a jointly surjective pair of functions & : {1,...,n},{1,....,m} — {1,...,n + m}. In particular,

there is no reason to expect it to define an algebra structure.

3.10.4. Proof of Theorem 3.10.1. We use the split locus consisting of objects which are a direct
sum of two subobjects:

@ZME[—)MA,
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and apply the method of section 3.10.2. Note that since @ admits a section it is injective on

cohomology. We have a commuting diagram

(3.74)

The following subdiagram of (3.77) is equivariant for both the action T’

Ext?
[N
Extg xp, M% (3.75)
Mu x My M
and we can use abelian localisation (Theorem 3.5.16) to compute’

@"(CoHA product) = @*p_¢* = Pr. (3.76)

e(N;) -
See section 3.6.8 for the relation to the T equivariant structure. Note also that @ and p are
equivariant for the BG,, action on the spaces scaling the left factors; we write act for the corre-
sponding pullback map on cohomology after identifying H*(BG,,) ~ k[z]. Finally, @ factors T-

and BG,,-equivariantly as

& Ext?
/ | p
M?q X Mi{ EXtA XMy ME[ (377)
MA X MA le

9Note that i is of finite presentation and its normal complex is perfect because the same is true for p and p, so

the conditions of Theorem 3.6.6 are met.
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We now turn to proving the theorem. To do this, we first write out in detail the diagram (3.71)

relating the vertex algebra and cohomological Hall algebra structures:

H (V4 x Ma) 2 10V < M) 255 H (VG x M) (=) H (M x M) ((2))
i i lﬂ23~523(z)
E H* (M3 x M%) ((2))
i i l(g@)*(qxq)*
. o* . 9 act® (—) N ; () . 5
H' (My) ——— H (M) H (M) ((2)) H (M) ((2))
(3.78)
Firstly, by the integration formula (3.79), the left square commutes if we pick
&)
a = Py, e(Nl) .
Second, by BG,,, equivariance of the maps, the middle square commutes if we take
_ &)
6 - pT* (Nz) .
Thirdly and finally, we need the right square to commute, that is
U (0)p % = *o5s (S U(OHEO)(—
( )pT*\I,(N) = (. X pp)elar X qr)* 055 (Sas(2) V(O EO)(—)) - (3.79)

The rest of the proof then consists of showing (3.82).

To begin with, since b = p x p equation (3.82) would be implied by the equality in H*(Ext})((z))

i) = (qr x qr)* o33 (S23(2) V(0 H0)) .

W(IN;)

We can further reduce since since p* = ¢*@* and ¢* is an isomorphism, to the equality in H"(M? x

MZ)((2)) )

({gr x qr)*)~"¥(N;)
To understand the pieces of (3.82), we first compute the W(N;) term. Note that as W(—) defines

V(@7 x ©7)0)

= 05353(2)05; V(0 EH0). (3.80)

a map on K theory, so we will proceed by simplifying [N;].

Lemma 3.10.5. We have ((q x ¢)*) '[N;] = [03;(® x @)*6] — [0 FH 0].

Proof. By repeatedly applying the distinguished triangle for the tangent complex of a composition
we get that

[Nz] = [2* N TEXtA/MA] - [TExti/Mi] = @*9] - [q*e q*@]
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Then since @ = 093(q x q), this is
[Ni] = [(gx )" 03,(@ x ©)*0] = [(¢ x ¢)* (0 BI)].
[

We next simplify all the terms in (3.83). Label the connected components of M? x M? by

quadruples of connected components of M = My:
M2 x M3 = L[(Ma1 x Mg, ) x (M, x Mg,).
As usual, denote by 0,, g, for the pullback of # under the projection
(Mo, x Mg,) x (M, x Mg,) — M,, x Mg,

and similarly for other indices. Then writing s for the section of ¢ x ¢ given by taking trivial

extensions, and so s* = ((¢ x ¢)*)~!, we have the following T equivariantly

1. ps is the direct sum map
Ds (MCM X M[ﬁ) X (Ma2 X Mﬁz) - Maﬁ-ﬂl X Maz-i—ﬁz
and so we have

(@ X @)*9 = 8*2_9*9 = 60!1,042 @9061752 ®9/3170¢2 @ 0/31,52'

2. LikeWiSG, 0 0= (9041”31 &) 9a2,52.
3. Together with Lemma 3.10.5 this implies that ((¢ x ¢)*) '[N;] = [0ay.8,] + [0as.5]-

Thus equation (3.83) is equivalent to

\Ij(eoq,ocz)ql(eal,ﬁz)q](gﬁmm)‘11(051752)
\IJ(QOCLBQ)\II(QOZ%Bl)

Simplifying further, this is

= 0-33523(Z>q}(9a17a2)\y(0ﬁl,ﬂ2)'

Sas(z) = % (3.81)

which thus completes the proof of Theorem 3.10.1.
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3.11 Example: Vector spaces

3.11.1. The most basic example is when
d.
A = Vect};

is finite dimensional vector spaces over a field K. It is a zero dimensional Calabi Yau category.

Its moduli stack of objects is

My = ]_[ BGL,,.

n=0

Giving a map into My, is equivalent to giving a vector bundle on the source. Writing 7;, < GL,

for the diagonal matrices, we have an identification
H*(BGL,) = H*(BT,)®" =~ k[ti,...,t,]"".

Writing +,, for the universal rank n vector bundle over BGL,,, this is freely generated by the chern
classes ¢;(7,), which are identified with the elementary symmetric polynomials in the ¢;. It follows
that the cohomology of the moduli stack is

H*(Ma) = @ kltin, oo tnn)

n=0

3.11.2. Cohomological Hall algebra. The moduli stack of extensions is
Exty = [] BPum
n,m=0
where P, ,, < GL,, is the stabiliser of a fixed dimension n subspace. Thus to map into BF, ,,
is to give a rank n + m vector bundle with a rank n subbundle. Note that P, ,, is a parabolic
subgroup, 80 GLy, /Py, 1s smooth and proper, and the quotient by its unipotent radical gives a

short exact sequence

1 - Upym — P,m — GL, xGL,, — 1.

Thus the connected components of the CoHA extension correspondence (3.3) are

BP,.m
PN

The map p, whose fibres are GL,,1,,/P, m, is representable, smooth and proper. Pullback by the
map ¢, whose fibres BU,, ,,, are cohomologically trivial, gives an isomorphism on cohomology. In

any case, both p and ¢ must be quasismooth because all involved stacks are smooth.

107



3.11.3. Computation. In section 3.10.2, we used abelian localisation to compute the CoHA
product for A, recovering the formula of [KS, Thm. 2. So the reader can appreciate that method
more, we will now demonstrate how one might compute the CoHA product in a “brute force”
way. It is much harder to repeat for higher dimensional categories, and the answer it gives is less

explicit.

3.11.4. Note that BP, ,, carries a tautological short exact sequence of vector bundles

This is a slight abuse of notation: these are the pullbacks by ¢ and p of v,, v, and ¥,1m. The
CoHA product on cohomology is then

H*(BGL,) @ H*(BGL,) & H*(BP,,.) % H"*(BGL,..n)

where d = dim GL,,1,,/P,,m. There is a general formula for the cohomology of fibre bundles whose
fibres are partial flag varieties (see e.g. [And, Prop. 5.1]), giving us that H*(BP,,,) is generated

by the chern classes of 7, and 7, subject to the single relation
(Ynem) = c(m)c(ym),
which can be rewritten as
H*(BPym) = H'(BGLyww) [ei(v)]i/ (c(vnrm)/cOm) i + k> m)
and has a basis over H*(BGL,,1,,) given by
nci(’yn)ki for >, ki <m.
It follows that for some constant x € k,
pe = K -coeffy (ym(=). (3.82)

3.11.5. Over a point, GLy, /P, carries a tautological rank n vector bundle £, < O™*™, and by

the above
H(GLun/Pam) = k(€] (Om)Thmys s 0n) ) -

It follows that the top dimensional cohomology is generated by
Cn(((:n)m S Htop(GLner/Pn,m)'

We can thus compute the coefficient in (3.85) as

K = J cn(Ex)™.
GLn+m/Pn,m
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3.12 Example: Representations of a quiver

3.12.1. We now consider the example where
A = Rep,@Q

is the category of representations of a finite quiver () (meaning finitely many vertices).

3.12.2. A quiver is a set |Q| of vertices and a set of arrows e : p — ¢ between pairs of vertices.
A representation of () is a vector space attached to each vertex and a linear map between the
relevant vector spaces attached to each arrow. The dimension of a representation is the element

v € NI€l representing the dimension of these vector spaces.

3.12.3. Let @ be a quiver. A Q) representation bundle V is a vector bundle V, attached to each
vertex ¢ € |@] and a map of vector bundles p, : V, — V for every edge e : p — ¢ of Q. When
() = e is the one vertex no loops quiver this is just a vector bundle. If V, W are () representation

bundles, then their tensor product V & W another @) representation bundle, defined by
Vew), = V,eW, pvewg = Pva® pwg
Likewise, the hom space Homg(V, W) is the vector subbundle
Homg(V, W) < [1,3om(V,, W)

of maps ¢, : V, = W, intertwining the {py,,} and {pw,}. See also equation (3.86).

3.12.4. Similarly, we can define () representation coherent sheaves, and likewise for any other

notion of sheaf. We can define ® and Homg exactly as above.

3.12.5. Moduli spaces. The moduli stack of quiver representations

My = ] Ma,

’YEN‘Q‘

has connected components labelled by the dimension of the representation

M-A,'V = He:p—)qum(k’yp7k’yq)/HqﬂQ‘GL(k’yq)‘

Thus a map into My is precisely a () representation bundle. In particular, the cohomology of

My, is symmetric group invariants inside a polynomial algebra:

H.(MAy’Y) = ®qe|Q|k[xq,17"‘7xq77q]b’yq'
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3.12.6. Another way to view the construction is this. We have the vector bundles &, the pullbacks

of the tautological vector bundle via
qu@‘BGL(k:W) — BGL(k),
then the moduli space is the total space of a hom space:

MAKY = He:p%qum(S}”gq)'

Note that M, carries a tautological vector bundle éq for each vertex ¢ and a map of vector bundles
é: éq — ép for every edge e in the quiver.!® Use the subscript i to denote pullback of a vector

bundle, map etc. by the ith projection My x My — My.

It is now also easy to describe the Ext complex Ext € Perf(My x My): it has a global resolution
by a two term complex of vector bundles in degrees [0, 1] corresponding to the usual complex used

to compute Ext groups of quiver representations:

Ext = (Hqum(éq,l,éq,z) — ne:pﬁqum(ép,l,éq,Q)) (3.83)

sending

(Soq)q = (é%pl%l - SO‘]Qél)e:p—»q '

3.12.7. In particular, there is a clear analogue for the derived category of representations of ().
We set
o = [ Fo
~1eZIQ!
whose components are now labelled by the entire Grothendieck group Z'?l and not just the positive

cone N9 where

JC/[A,7 = n Hom(€&,, E,)

e:p—»q
where €, is the (total space of) the perfect complex induced by the pullback of the tautological

perfect complex via

[1,ciqPerty,, — Perf,.

Thus points of M 4 correspond to a perfect complex for each vertex of @), and a map (not just a
map up to quasi-isomorphism) between appropriate perfect complexes for each edge. This is not

quite the same thing as an object

10¢ , is the pullback of &, under the projection M, —» L entar | L4ejqBGL(K™).
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3.12.8. Vertex algebra structure. See section 4.3 and in particular Proposition 4.3.8, which
says that the homology of the moduli stack of derived category of quiver representations equipped
with the symmetrised Ext complex is a lattice vertex algebra. In particular the homology of the
moduli stack of quiver representations is a vertex subalgebra - note that the inclusion My —
Mpeay pulls back tautological perfect complexes to tautological vector bundles and so gives a

surjection on cohomology and injection on homology.

3.12.9. Cohomological Hall algebra. Drop all A’s from the subscript from now on. To demon-
strate our method (section 3.6.12) we will compute the formula for the quiver CoHA in [KS, Thm.
2].

Take as the split locus the moduli space parametrising tuples of rank one representations

M = H(Hjele)

J
which admits a direct sum map @ : M*® — M. The connected components are labelled by finite

sets J.

Given a short exact sequence

0 - & — & —- & — 0

and a splitting of the middle term as a sum of rank one representations (say summands labelled
by J), if the whole exact sequence splits as a direct sum over J we can write it as a sum using
rank one representations

0 — L, » L;; - 0—-0

0 —-0— L, - L;, -0

as j1 and j, vary over disjoint subsets J; and Jo with J = Jy 11 J,.

3.12.10. Thus, the connected components of

Ext® = H (HjleJlEthvO X ngngEXthl)
J=J1uJ2

are labelled by pairs of finite sets Ji, J, where Ext; o parametrises extensions of a rank zero object
by a rank one object and vice-versa for Extg;. Since there are no nontrivial such extensions, we
have

EXtLO =~ EXtOJ g Ml

and we have

Bxt' = [ (ITen™ % [er¥0)

J=J1uds
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3.12.11. The localised CoHA correspondence (see section 3.6.20) is

]_[J:J1LIJ2 (HjleJlMl x Hj26J2M1)
@/ x (3.84)
HJ1 <Hjl€J1Ml> X HJQ (HjQEJle) L1 (Hjejml)

where @ is the identity, and 7 is the identity on each connected component. Moreover, by equation

(3.53) we have
[Nz] == [7/* (‘B* TEXt/M] — [TEX‘LS/MS] = [(—'\BI* (@ X @)*EXt:I — O

where Ext is the Ext complex in (3.86).

3.12.12. It is possible to give an explicit formula for e(N;) € H*(Ext®),.. Writing £; for the
pullback of the tautological line bundle under

M M = ]J_[ (ITjen 1) ]J_[ (ITedt) = M

we have that @*&, = [[,,;£;, and so
(@ X @)*EXt = Hjl,jz (Hqum(LqJ‘Nﬁ’q,h) - He:p—»qum(’Cpajl7LQ7j2))
as perfect complexes on the Jp, Joth component of M* x M?. It follows that

e(N;) = Hp,qnjl,jg (@pj — xq,jz)X(p’q) (3.85)

where x(p,q) = 0y, — Gp 4 is the Euler form, and a,, is the number of edges from p to g.

3.12.13. Putting all this together, the integration formula 3.29 recovers the explicit formula for
the (localised) CoHA product [KS, Thm. 2]: the localised CoHA map

H* (M) @ HY(M®) — H*(M®)1oc

on the connected component of M?* x M? labelled by finite sets J; and Js, is given by

A ) _ fl(xq,jl)f2(xq,j2)
fi(@g ) - fo(gs) J:%;[h e(N;) (3.86)

with e(N;) as in (3.88). Here f; is a polynomial in variables z, ;, labelled by elements of |Q| and

Ji, and the sum is taken over all the ways
Jud, > J
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of writing a fixed finite set J as a disjoint of J; and J;. Given any such partition, we identity
elements of J; and J, with the corresponding element of J. Now, in particular, restricting to

symmetric group invariant polynomials, the same formula gives the genuine CoHA product

H'(OM) @ H (M) — H*(M).

3.13 Example: Coherent sheaves on a curve

Let C' be a smooth projective curve over an algebraically closed field, and
A = Coh(C)

the category of coherent sheaves over it. Applying our heuristic is trickier than in the quiver case

because there are nontrivial rank zero objects.

3.13.1. The moduli stack of objects in A is defined by functor of points
Maps(S,M,) = {F e Coh(S x C), F is flat over C'}.

One can show that this is an Artin stack locally of finite type, which we will denote by Coh = M.

Its connected components are labelled by the rank r and degree d of the coherent sheaf:

Coh = [] Cohf.

reN,deZ

3.13.2. Cohomology. The cohomology of these moduli stacks is fairly simple, just polynomial
algebra on a super vector space. However, there is a slight subtlety coming from the fact that
there are nontrivial rank zero objects. To begin, consider the tautological coherent sheaf & on

C x M. If we pick a basis of the cohomology of C'
HY(C) = k{1}, H'Y(C) = k{bi,....,by,}, H*C) = k{o}
we may decompose the chern classes of € in H*(C' x M) as
¢() = 1®a; + Zbk,z'@ﬁk,i + o ®;.
Fixing the following graded vector space
We = E{ai—1,b14, .., bag i, Citiza (3.87)
where |a;| = 24, |b;| = 2i — 1 and |¢;| = 2i — 2, we have
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Proposition 3.13.3 ([Hel|). For positive rank r > 0, there is an isomorphism of graded supercom-

mutative algebras
Sym(We) = H' (M)

sending (ai, bk,i, ci) — (Oéi, ﬁlmy%‘)-

The rank zero case is different because the support of the tautological coherent sheaf gives more

cohomology classes. To begin,

Lemma 3.13.4. The degree one rank zero moduli space is M} ~ C x BG,,.

Proof. Given a coherent sheaf ¥ on C' x S which is flat over C', we may take its support to give
an S-valued point of C, Suppd : S — C. Moreover, we get a line bundle p,J on S by projection
along S x C'— S. This defines a map M} — C x BG,,. The inverse map is by taking an S-valued
point ¢ : S — C and a line bundle £ on S, and sending it to p*£ ® O(c), which defines a degree

one rank zero coherent sheaf on S. O
We consider the graded vector space
Ve = H*(C x BG,,). (3.88)

Heinloth then shows

Proposition 3.13.5 ([He]). The cohomology of the rank zero degree d moduli stack is

H*(MY) =~ Sym¢(Vp).
Note that M} = @ if d < 0.

3.13.6. Vertex algebra structure. By work of Gross, the vertex algebra structure on the mod-
uli stack of the derived category of coherent sheaves is a lattice vertex superalgebra attached to
the superlattice (K7,,(CohC), ), where K3, is the higher topological K-theory and Y is the sym-

metrised Euler form (see [Gro2]). In particular, for the same reason as in section 3.12.8 the moduli

stack of coherent sheaves will be a vertex subalgebra.

3.13.7. Extensions. The moduli space of extensions has connected components

dd'
Ext ot

114



labelled by the rank and degree (r,d), (r,d') of the subobject and quotient: these are the ranks

and degrees of the terms of the tautological short exact sequence of coherent sheaves on C'x Extf’f,,

U U
0 — & — gitd — ¢&f, — 0.

3.13.8. Cohomological Hall algebra. Take as split locus the moduli space parametrising finite

direct sums of rank zero and one coherent sheaves. Its connected components are
(Coh& x --- x Cohg") x (Coh% x - x Cohfm)
for integers d; and positive integers e;. In other words,

o = 1] My 1] (Moo

I—->N J—Z

where the union is over all finite sets I, J and functions e: I — N and d : J — Z.

3.13.9. The split locus map @ : Coh® — Coh takes the direct sum. It gives an injection on

cohomology. In fact, just the map
® : Coh{" x --. x Coh{" — Coh?

gives an injection on cohomology, where r > 1 and d; are any integers with d = > d;. Indeed, the
pullback of the tautological coherent sheaf & on C' x Coh? is (—Dj €, where &; is the tautological

coherent sheaf on C' x Coh(lij . Then for any homology class a € He(C'), we have

(id x @)* (o~ chi(€)) = - (id x ®)*chi(€) = > - chy(€

(
Thus, the composition H*(Coh?) e H*(T] Coh?) — H'(Cohilj ) sends is an isomorphism and so

@* is an injection on cohomology.

3.13.10. Likewise, for Ext® take the stack classifying tuples of short exact sequences of coherent
sheaves whose middle term has rank zero or one. Its connected components are products of three

types of extension moduli spaces
Cohfy, Coh{, Cohff.
In formulae this reads

Ext® = L[ (erKC h€1k732k) L[ (Hjlech h 117611 % H]zeJQC hen )
K3N J=JilLJa—>ZxN
The first union is over all finite sets K and pairs of functions ej,e; : K — N. The second is

over all finite sets J with a partition into two subsets J = J; I J5, and functions d : J — Z and

e:J— N.
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3.13.11. We proceed with computing the localised CoHA product. The top row

& Ext®

3

Coh® x Coh?® Coh?®

of the diagram (3.55) can be understood in terms of the following three simple correspondences
Cohg' Cohg Coh{;
vN v X v N\
Cohg' x Cohy>  Cohg'** Coh¢ x Coh! Coh¢*d Coh? x Coh Coh{*e
(3.89)

More precisely, on each connected component of Ext®, it is

di. e s
(erKCOhg,lg’e%) X (HjlejlcOhlfé Y x HerJQCOhSﬁ )

(erKCOh81k+62k) X (Hj1€J1 COh?h o X szer COhCllj2 e )

e d; e
(] [xex Cohp'*) x (HjlejlcOhljl X HpngCOhojz)

e €; d
X ([ [rex Cohg™*) x (HjlejlcOhOH x ngeJQCOhln)
(3.90)
which is simply a product of the correspondences (3.92). The associated maps on connected

components send

(K7 Jla JZ)

7

((KUJQ,Jl),(KL[Jl,JQ)) (K, Jlﬂjz)

3

In particular, given a connected component of Coh® x Coh® labelled by finite sets ((11, J1), (12, J2)),

to define a lift @ requires a (non-canonical) choice of partitions

KuJ, > I KuJ, > I (3.91)

3.13.12. We fix some notation. Fix a connected component ¢ of Ext®, i.e. fix background finite

sets K, Jp, Jo, functions ej,e0: K > Non K,andd:J —>Z ande:J—> Non J = J11.J;.

e For any k € K, write T, ; for the pullback of T, via the kth projection

s €1k,€2k
Ext; — Cohglg™.
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e Similarly for Tg;, and T, ;,.

Similarly, fix a connected component ¢ of Coh®xCoh?, i.e. fix background finite sets (11, J;), (I3, Jo)
and functionse: [y > N,d:Jy > Zand e : I, >N, d : J, > Z.

e For any ay,ay € K, write 0,, 4, for the pullback of the Ext complex by the a, bth projetion

(Coh® x Coh®)y — Cohy™ x Cohgiw.

e Similarly define 6,, ,, for any a;,as € K 11J; 1 Js.

Having chosen a partition (3.94), we can define @ and the above perfect complexes are related by

*®

o (ekk?ejl,jl?ejmjz) e (Ta,kaTﬁ,jNT%Jé)'

3.13.13. We now compute the Euler class of the normal complex of the closed embedding i :

Ext® — Ext xgon Coh®; using (3.53), which says that
[Ni] = [i* @ Textjcon) — [Texes/con] = [ (@ x @)*6] — [T5]

where 6 = Ext is the Ext complex. The second summand is easy to compute because p is just a

product of the maps «, § and ~, so the tangent complex is just a direct sum

TT’ = HkGKTO‘vk @ Hj1€J1 T/ijl @ HjQEJQT'ijQ'

The first summand is
(@ x @)*‘9 = C—Baieli]_[,]ieaha?‘
Thus given a choice of identifications (3.94), we can write this as
(@ X @)*9 = @aiEKuleJggalan'
It follows that

Lemma 3.13.14. [N;] is the sum of [® 04, 4,] over a; € K 11.J, 11.Jy with ay # as.

3.13.15. We can now use the integration formula to compute the localised CoHA product for the
moduli stack of coherent sheaves on C. It is defined on the vector space

H.(COhs) = C—B ®z‘eIVCi’ ® ®jeJWé

I-N
J-Z

where Vi and WY, are just copies of the vector spaces (3.91) for d = d; and (3.90). Applying the

integration formula then gives that
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Theorem 3.13.16. Fiz two connected components of Coh®; labelled by finite sets (I, J1), (I, J2)

and functions on them as in section 3.13.8. The localised CoHA product
H®(Coh®) @ H*(Coh®) — H"(Coh®)jec
on each summand
(®1e1, Ve ©®,en W) © (®iyer, V& @ Qe WE ) = (@esc Ve © e, W2

s given by

loc

®f — ) <® O/i®633®73?> (‘f;(if). (3.92)

I1=~KuJy \Kk,j1,j2
Io~KuJ;

Here K is a finite set of size |I1| — | Jo| = |I2| — | J1|, the product being zero if these two quantities
are not equal, and the sum is over identifications of I, Iy with the marked sets as in (3.94). The

Euler class e(N;) is given as in (3.13.14).
In the above we have used the pushforwards by «, 3, to define maps
ok L VEQVE - VE L B L VIQWE - W 42 WEQVE - W

Thus their tensor product in (3.95) along with the identifications [} ~ K 11.J; and I, ~ K 11.J; as
in (3.94) define a map

<®i1€]1 ch} ® ®j1€J1 Wé}) ® <®i2€[2 VCZ? ® ®j2€J2 Wé?)
- (6<>kekvcl‘f ® ®j2€]2 VCJ;2 ® ®jleJ1 Wé'l) ® (@kekvcl? ® ®jleJ1 VCJ;1 ® ®j2€]2 Wé«2>
- (@keKVC]? ® ®jeJ1LL]2 Wé) oc

This gives a fairly explicit description of the CoHA product, modulo computing the pushforwards
OZ*7 /B*a 7* .

3.13.17. The CoHA «. First consider the rank zero correspondence

Cohgy
>N
Cohg! x Cohg? Cohg! ™

The work [He] of Heinloth can be easily adapted to show that the CoHA product a,q* is thus the

usual algebra structure on

Sym(Ve) = @ H(Cohy).

e=0

Since « is generically finite, T, generically vanishes.
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3.13.18. Stratification. To continue, it is useful to consider the stratification on Coh given by
the length ¢ of torsion subsheaf:
Coh? = [ ]Coh".

£=0

The closure relations of this stratification is Coh®’ = Loyse Coh®* . All strata are smooth.

Sending a coherent sheaf to its torsion subsheaf and torsion-free quotient gives
Coh™" — Cohj) x Bun?™*.

This is a vector bundle of rank ¢, the zero section being the direct sum map. It follows that the

(th stratum has codimension ¢ inside Coh?.

3.13.19. The CoHA 3. Turn secondly to

Cohgz‘f
7 N
Coh¢ x Coh? Coht™
Whilst (3, is complicated to work out, its stratified pieces with respect to the stratification

Coh‘f“’e < Coh?™ by length ¢ of torsion subsheaf are easy to compute. Setting f = d + e — £, we

have

Coh¢ x (Coh! ™ x Pic/) +—— Cohg’ff6 x Pic/ —— Coh}) x Pic/

! ! |

Cohfj x Coh{~* «+—*—— Cthj‘f’é S Coh{*™**
Cob x Cobj —— Cobf{ ——"—— Cohd*

We have defined Cohgf’z so the lower right square is Cartesian. The upper right square is Cartesian
because there are no nonzero maps from a torsion sheaf into a line bundle. The top row of vertical

arrows are all vector bundles, so that
Bexq; = rank zero CoHA product ® idys(pier)-

Now, one can show that ¢* and [, are uniquely determined by their restriction to the strata, and
so the above uniquely determines the first postive rank CoHA product £,q*. Moreover, by the

above T, are given in terms of T,.
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3.13.20. The CoHA ~. Finally we consider the last positive rank case
d,e
Cohi’
VN
Coh{ x Coh§ Coh{*e
Partial information about the CoHA product can be computed by stratifying the base of v:

d,el e d+el
Coh®&f — 22y Cond*e

| !

Coh{ x Coh§ «—— Coh{; —— Coh{™*

. . ded . . .
However, in contrast to last section, Coh{y" is more complicated because there exist nonzero

maps from line bundles into torsion sheaves. To proceed in computing 4, we apply an argument

suggested to us by Kevin Lin. First fix some notation:

1) Cohi”e’e classifies rank one degree d + e coherent sheaves € whose torsion part J has length

¢. That is to say, it classifies short exact sequences
T > & > Q

of a degree (¢ torsion sheaf T by a degree f = d + e — £ line bundle Q.

d : :
2) Coh{’j classifies extensions

0> & —>8& -8 -0
where &’ has rank one and degree d, and £” has rank zero and degree e.

3) The pullback Cohcllf)’é classifies

T’ > & > Q ? d ?
T y € > Q l d+e f
T > & > Q' ? e ?

where all rows and columns are exact sequences, the left horizontal arrows are maximal

torsion subsheaves, and the degrees are indicated on the right.

Note that fixing one of the ?’s determines the rest. Thus there is a stratification Cohff’w c Coh’fgg’z
given by bounding the length of J7, classifying the same data as above, except that the degrees

are fixed:
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T’ s & s O 4 d

> f
T y € > Q l d+e f
KJ"/I N 8// N Q/I > g/l e < f/l

Notice that the strata are labelled by 0 < ¢’ </, so in particular there are finitely many strata.

3) Write M for the space classifying

I Qf / f!
T » & > Q 14 d+e f
T Q o f//

with notation as in (3)) above. Similarly, write M for the space classifying

T — T —— O v d

| | '
T , & » Q 0 d+e f
(J"/I (J"/l @ QII Ql/ €/l e f/l

The point of considering M is that we have the pullback

el/ gl/ . f/ fl/
Cohl " x Picl{/" ——— ™

| F

Cohf x Pic/ ——— Coh{™**

and the horizontal arrows give isomorphisms on cohomology, so m, is easy to compute. This can

be used to gain information about 7., using the diagram
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M

T

d,e .l
Cohy,

ljl,

d.el
Cohi,

2

-

The bottom two maps are proper, and the top two are affine space fibrations. Applying cohomology

/\

H* (M) H* (Coh g™, jomk)

Cohd+e N4

to M7k — k thus gives

(Cohdeﬁﬁ)

hd+€ f

where we have omitted grading shifts from the notation. This determines what 7, is on the image
of H (COhdeee 7jgl[k}).

3.13.21. Finally, we make the obvious comment that although the above does give a partial

description of 7,, one hopes that there exists a more explicit one.
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Chapter 4

Quantum groups and vertex algebras

4.1 Drinfeld Jimbo quantum groups

4.1.1. Quantisation of algebras. Given a k algebra A, one can ask what deformations it admits,
i.e. a flat algebra A over a base augmented algebra B, whose fibre over k is A: there is a pushout
in the category of k algebras

A A

T T (4.1)
k <—— B

For instance, the algebra A = C[z, p] from classical mechanics admits a quantisation
A = C[[h]|z,p) where [z,p] = h

over the base B = C[[A]]. There is a large body of work about quantising (functions on) spaces
with Poisson structure, for instance see [Kon|. However, we will be interested in deforming non-

commutative algebras. For more on deformation theory, see [Ge, Ha).

4.1.2. One of the most interesting algebras to consider is the universal enveloping algebra U(g)
of a finite dimensional Lie algebra. This may be thought of as a sort of noncommutative space of
functions on the Poisson space g*, so one might expect it to have interesting deformation theoretic

properties. However,

Proposition 4.1.3 (e.g. [BMP]). Every deformation of the algebra U(g) over k[[R]] is equivalent

to the trivial deformation.
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Proof sketch. Let A be any such deformation. As a vector space, A = U(g)[[A]], with the multi-

plication map given by

mz(, ) = mug(, ) + ~hu(, ) + RPua(, ) + -

where 1, : U(g)®? — U(g). However, one can show that the first nonzero pu, defines an element

of HH*(U(g), U(g)). One can show that this vanishes, hence so too do all of the f,. O

So at first glance it might seem like the deformation theory of U(g) is uninteresting. The funda-
mental insight of Drinfeld [Dr] was that to properly study the deformations of U(g), one needs to

remember its coalgebra structure.

4.1.4. By a deformation of an algebra A with extra structure (bialgebra, Hopf algebra,...) over
a base augmented algebra B, we mean an algebra fl, flat over B, with the same structure and
amap A — A preserving that structure, fitting into a pushout of algebras (4.1). A deformation

over k[[h]] is called a one parameter deformation.

4.1.5. Drinfeld Jimbo quantum groups. The universal enveloping algebra of any Lie algebra

U(g) carries a cocommutative coalgebra structure, given by
Az = 1Qz + z®1
which makes U(g) into Hopf algebra with antipode S = (—1)4° given by the degree function on
Ul(g).
Drinfeld discovered that

Proposition 4.1.6. [Dr, Ex. 6.2] Let g be any simple Kac Moody Lie algebra (see Appendiz B)
over C, e.g. a finite dimensional semisimple Lie algebra. There is a montrivial one parameter

deformation Uy(g) of the Hopf algebra U(g), such that

1) It admits an involution 6 which is an (co)algebra (anti)automorphism, such that & mod h

1s the Cartan involution.

2) The is a cocommutative Hopf subalgebra C' (here C' = Uy(t)) stable under 0 such that the
map C/h — U(g) is injective with image U (t).

Moreover, any other such one parameter deformation is isomorphic to Uy(g) as algebras over
C[[r]]/n*.
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We will now give an explicit description of this deformation.

Definition 4.1.7. Let g be a simple Kac Moody Lie algebra over C. The Drinfeld Jimbo quantum
group Up(g) is the Hopf algebra over C[[A]] defined as follows. It is generated as a topological

algebra by {z; , h;, ;] } where i varies over the simple roots of g, with algebra relations

hi —h;
- q; — 4,
[z, 2;] = 5i’j—qi—q{1 (4.3)

and the quantum Serre relations, labelled by pairs of different simple roots 7 # j:

Z”(—l)k(l _kAij)qi(l’f )eay ()T =0, (4.4)

where A is the Cartan matrix of g, ¢; = exp(d;h) for d; € N the exponents,! and ( )q are the

quantum binomial coefficients. Its coproduct is defined by
Ah = 1Qhi+h®1 (4.5)

Azt = 1@z + 17 Qg Ar; = ¢ '@y + 27 @1 (4.6)

+
i

its counit by e(h;) = e(x;) = 0, and its antipode by

S(h;) = —h; S(xf) = —q™hiat, (4.7)

One can check by hand that this defines a Hopf algebra structure on Uy(g).

4.1.8. Drinfeld double. We now explain in a more conceptual way why Uy,(g) is a quasitriangular

Hopf algebra, and where its definition 4.1.7 came from.

4.1.9. Recall that the opposite of a coalgebra A with extra structure (bialgebra, Hopf algebra,. . .)
is the same vector space A°? with the opposite coproduct A’ = oA, and the other structure

unchanged.

!These are defined as the unique set of coprime positive integers such that the matrix (d;A;i;) is symmetric, see

[CP, § A.1]. In the ADE cases we will be considering, all d; = 1.
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4.1.10. Any Hopf algebra A is the “positive part” of a larger Hopf algebra D(A) called its Drinfeld
double:

Proposition 4.1.11 ([Dr]). Let A be a Hopf algebra. There is a unique quasitriangular Hopf
algebra structure on

D(A) = ARQ AV
such that the natural inclusions of A and AY°P are Hopf algebra maps, with R matriz the image

of the canonical element under the embedding A ® (AY)? — D(A)® D(A).

Also see [Maj, EGNO]. The Drinfeld double can be viewed as taking the Ej centre, see [Lur2].

4.1.12. To apply this to give another construction of Drinfeld Jimbo quantum groups, pick com-
plementary Borel subalgebras by © g and endow the algebra Uy(b4) with a cocommutative Hopf

algebra structure

Ahy = 1@+ hi®1 Az = 1@z +12; ®1. (4.8)

4.1.13. To relate its Drinfeld double to quantum groups, we then consider the Drinfeld pairing
(see [ES, §12.3])
(o) Un(b)@UR(b)? — C((h)).

This is perfect pairing of bialgebras, meaning that the induced maps
Un(bs) — Un(b_)" Un(b-)" — Un(bs)" (4.9)

are algebra isomorphisms. The Drinfeld pairing is defined by its values on the generators 1, h;, xf,

which are all zero except
1 _ 0i

where k : t®t — C is the Killing form.

4.1.14. Because the Drinfeld pairing is perfect, the Drinfeld double is identified with Uy (b )&Uy(b_).
We recover the Drinfeld Jimbo quantum groups after quotienting by the diagonal copy of Uy (t)

0 — U(t) — DUs(b+)) — Un(g) — 0.

Because these are maps of Hopf algebras, the R matrix of U,(g) can be recovered by taking the
image of the R matrix of the Drinfeld double. Letting a, be a basis of U(n,) and a® the dual
basis of Uy(n_) with respect to the Drinfeld pairing, it follows that the R matrix is

R = h2h®h Z a, ® a”,
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see [ES, §12.13]. For instance, when g = sy,

nin 1)n
R — 3h®h <2”— n
q E q - e" ® f".

n=0 ]q

4.1.15. Rational and integral forms. A rational form of the Drinfeld Jimbo quantum group

is a Q(q) algebra whose base change to C[[h]] is Ux(g).

Definition 4.1.16. [CP, §9.1] Let g be a simple Kac Moody Lie algebra over C. The (adjoint)
rational form U,(g) of the Drinfeld Jimbo quantum group is the Hopf algebra over Q(gq) generated

as a Q(g)-subalgebra of Uy(g) by {z; , ks, z;} where k; = ¢/ and i varies over simple roots of g.

An integral form of the Drinfeld Jimbo quantum group is a Z[q, ¢ '] algebra whose base change
to Q(q) is U,(g), see [CP, §9.2]. Thus, given any integral form we may specialise it to any nonzero
value of q. There are three main integral forms, whose specialisations agree unless ¢ is a root of

unity. As a Z[q,q '] subalgebra of the rational form, they are

1. The Lusztig quantum group U**(g) introduced by Lusztig [Lus, Thm. 6.7], is generated by
the divided powers z/[n],,! and

]’CZ,O . 1—[ kq@ k’;lqimil
n N m=1 2 '71

for n > 0.

2. The Kac-DeConcini quantum group Uch(g) introduced by Kac and De Concini [DK], is

generated by x7, k; and l; k_l.

—-4q;

3. The small quantum group uy(g) is defined as the image of the map U}*“(g) — U""(g), which

is not injective.

4.1.17. An interesting question following this chapter is the relation between integral forms of

quantum groups and integral (e.g. integral singular or f-adic) cohomology of moduli stacks.

4.1.18. Kazhdan Lusztig equivalence. We very briefly note that quantum groups are inti-
mately related with the other material in this thesis, i.e. two dimensional conformal field theories.
On the physics side this comes from the work of Reshetikhin and Turaev [RT] relating 3d TQFTs
and 2d CFTs. The main mathematical incarnation is the Kazhdan Lusztig equivalence [KL] be-
tween something close to U,(g)-Mod where g is a simple finite dimensional complex Lie algebra and

G(9)

¢ is a root of unity, and the category (g-Mod), "’ of integrable modules over g at a certain level.

See work of Chen and Fu [CF] for a conceptual explanation involving factorisation machinery.
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4.2 Quantum affine algebras

There are two different realisations of the universal enveloping algebra U(g) of an affine Lie algebra,
which are best understood in terms of the double loop space, or the associated toroidal algebra
ﬁ. Both notions admit ¢ deformations, which are called quantum affine and quantum toroidal

algebras.

4.2.1. Let g be a finite dimensional Lie algebra of rank r, with simple roots ay,...,a,.. We can

form the affine Lie algebra g, but there are two different ways of realising it:

1. View g as a central extension of the loop algebra of g. Thus U(g) is generated by

Loy hans Ty a = o,..,q, necd,
subject to the relations
[ha(2), 25, (w)] = Ayag, (2)6(z — w), [ha(2), hay(w)] =0,

[x;ﬁ(z) ol (w)] = 8 ;ha;(2)0(z —w) + Koy, a;)0,0(z — w),

) aj

and the power series analogues of the Serre relations, where for an element a € g we have set

a(z) = Zanz’”’l.

nez

2. View g as a Kac Moody Lie algebra in its own right, so that U(g) is generated by r + 1 many

sly triples of Chevalley generators
zy, ha,xl, a = g, 01, ..., O,

satisfying the relations set out by the affine Cartan matrix ﬁ,
[hai, (L’ij] = Aijxij [ha“ ha].] = O,
[25, 28] = 0ijha,,

and the Serre relations, where we emphasise that here ¢, j vary among 0,1, ..., 7.

4.2.2. Toroidal algebras. Both of these realisations naturally live inside the toroidal (Lie) al-

gebra g, see e.g. IMRY].
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4.2.3. Let g be a finite dimensional simple Lie algebra with its normalised invariant form s and

A any commutative algebra, over C. Then Kassel [Kas| showed that
u=A®g ® Q. /d0

is the universal central extension of the Lie algebra A®g which is perfect (Lie bracket is surjective).

The QY /dQY is central and the rest of the Lie bracket is given by

[e@z,bQy| = ab® [x,y] — (a-db)k(x,y).

4.2.4. In particular, if we apply this to the algebra of functions on the n torus

then the universal central extension we get is denoted u = g1, or for small values of n, g, g, E;, cee

It should be thought of as (a central extension of) the Lie algebra to the higher loop space
Maps((C*)", G).

We will call gpg) = E; the toroidal Lie algebra.

4.2.5. A map of commutative algebras A; — A, induces a map on the associated central extensions
u; — Uo. In particular, the two different maps
C[t*'] — C[ti', 5] t ot
induces two different maps
§ =9
which are exchanged by the involution on ﬁ induced by swapping ¢; and ¢5. The point is then that

these correspond to the two realisations of g. Indeed, the algebra E; is generated by

+ _
Ty s Pans T, a = oy, a1,...,0,., n € 7

with relations similar to the above (see [MRY, §3]). Ignoring ag, or ignoring all nonzero n, gives

the two copies of g inside E;, whose intersection in g.

4.2.6. Quantum analogues. The whole above story can be g-deformed. There are two subalge-

bras whose intersection is the Drinfeld Jimbo quantum group

Uy(g) — U,(9)

l l (4.11)

Uy(g) — Uq(ﬁ)
See [FJW2, GKV, He].
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4.2.7. We will instead describe the formal case, where we have an intersection of topological

algebras over C[[h]]

Un(g) — Un(o)

! !

Un(@) —— Un(g)
which contains (4.11). Let g be a finite dimensional complex Lie algebra. The quantum toroidal

algebra Uy(g) is the topological algebra over C[[h]] generated by

b, x 1 = 0,1,....,m, neZ,

L,y en

with ¢t! central, subject to

1 c?n _ Cf2n
[Rins hjm] = On—m—[nAiyly———
n a4 — g
+ _ -t
[h’i707 j,m] - i141]‘/L‘]',7n
1
‘ + _ - , Finl . x
[hz,mﬁj,m] = n[nAlJ] ;€ xj,n—s-m
+ + +Aij + &+ _ .+ + + +
xm+11’j,m ¢ TTinTinyr = 4 Z]xznx]m—i-l xjm+1x‘
n—m n—m
+ _ . 5 C( )¢'Ln+ —C = )¢2n+m
[xin7 j,m] - Uiy —
q; — C]i

along with the quantum Serre relations
i syt F oE coopt
Z Z ( ) 71'(7,) xkv'r‘rr(k) x]7mxkzrﬂ(k+l) xmvrﬂ'(m)
TEXm k=0 qi
where m =1 — A;; and 74, ..., 7, is any sequence of integers. Here,
= Y ot = (hh + (g —q ") ) ezt ) .
k=0 =0

As before, ¢; = exp(d;h). In the notation of [CP], we have replaced ¢ by 2¢. See also [He] for a

discussion of the rational form.

4.3 Moduli stack of derived quiver representations

4.3.1. Recall from section 3.12 that for any finite quiver (), the moduli stack of finite dimensional

representations of () can be written as a total space

N P O,®dg\a
H [TepgFom(yy R [1,BGLa, (4.12)

deNIQI
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where 7;9 is the tautological rank d, vector bundle over BGLg,, which we have identified with its

pullback along ]_[q BGL4, — BGLg,. Here a,, is the number of edges e : p — ¢ in Q.

4.3.2. We now turn to what should be the moduli stack of the derived category D°(RepQ) of
quiver representations. To begin with, attached to each element of the category is a wirtual
multidimension vector d € Z'9l. To form the moduli stack, the correct analogue of BGLy, is
Perfy,, the higher stack parametrising perfect complexes, see [To]. It carries a universal perfect
complex 74, of rank d,, and so we define the moduli stack of objects in the derived category

D*(RepQ) to be the total space

dp dq a
MQ = ]_[ l_lfa:paqj—(’-orn(f}/l’())9 7,.)/q® )pq - Hqurqu' (413)

dez!?!

4.3.3. One can show that for each n € Z the cohomology?
H*(Perf,) = kfci,co,... ]

is generated by the chern classes ¢; = ¢;(7y) of the tautological Perfect complex v on the higher
Artin stack Perf,,, see e.g. [To]. Moreover, because the fibres of the map (4.13) are contractible,

we have that

H.(MQ) = @ ®q€|Q‘k[cl,q7 C?,qa s ]7

is freely generated by chern classes of pullbacks of tautological perfect complexes on | | Jerty,.

4.3.4. Note that these constructions are functorial in the quiver: if Q — Q' is a map of quivers,

we can restrict (derived) representations of @’ to @ and so getting maps of moduli stacks
MG — M My — M.

The maps (4.12) and (4.13) come from taking the inclusion |Q] — @ of the quiver with the same

vertices as () and no edges.

4.3.5. Maps into Mg classify a perfect complex for each vertex of (), and a map between the
associated perfect complexes for each edge of ). This is a perfect complex analogue of ) rep-
resentation bundle. Thus Mg carries tautological perfect complexes, also denoted 7,, and maps

between them ¢, , : v, — 7, for each edge.

2Remember that cohomology H'(—) is defined for any higher Artin stack, see section 2.7.
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4.3.6. Vertex algebra structure. Both the spaces Mg and Mg carry the structures in section

2.6, so making their homologies into vertex algebras. We spell this out for My. The point
0:pt = Mg

is given by the zero perfect complex, i.e. defined by the pullbacks of all tautological perfect

complexes being zero. The commutative monoid structure
@D : Mg xMg — Mg

is defined by @*y, = v,H, and ®*pp 4 = ¢p s Hepq. The BG,, action
act : BG,, x Mg — Mg

is defined by act*y, = vX v, and act*y, , = id X ¢, 4, Where v is the tautological line bundle over
BG,,. Thus the tautological perfect complexes on Mg all have weight one with respect to the
BG,, action. The perfect complex

= Perf(MQ X MQ)

is defined as in section 3.8.12 as the symmetrisation § = 0 @ 6*0" of the Ext complex 6, which is
a cone

= 1

0 — Hqﬂ'fom(’yq,l, 7%2) - He:paqg—com(yp,b 7(]72) i)
of the map sending (fy)q — (py,.0fp — fqu)e;qu' Here the subscript ¢ refers to pullback with
respect to the ith projection Mg x Mg — M. In particular, as a K theory class

[@] = (‘B (5p,q - ap,q)thJ X ’Yq,Z]

p,q€|Q|

as an element of K(Mg x M), as well as

0] = @ (2004 — Gpq — Aqp) ['va,l ® Vg.2]-

p,g€lQ)

4.3.7. The connected components of M, are labelled by the lattice A ~ 79 and the symmetrised

Euler form defines on it a bilinear form
k: AxA - C k(a, B) = 1k(f]n, x5)-

When (@ is a Dynkin quiver these are the coroot lattice and normalised Killing form, and its values
on simple roots give the Cartan matrix: x(o;, ;) = A;;. Finally, as noted in [FK] there is a unique

two cocycle coming from the central extension
0 — {1} - A - A - 0
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such that the commutator of «, 8 € A is
afa™!pTt = (=),

Note that this defines an orientation as in section 2.6.20 because s(a,a) is even for all a € A.

Thus, we fix the choice of this orientation for the rest of the chapter.

Proposition 4.3.8. Joyce’s vertex algebra structure on He(Mg) attached to the above data is the
lattice vertex algebra attached to the lattice (A, k).

Proof. Arguing just as in section 2.6.25 we can compute the vertex algebra structure on the

homology of the zero connected component to be the vertex algebra
He(Mgo) =~ Vi(t) t = AyC.

The same computation shows that the t action on Ho(Mg.») gives it the structure of a level one
weight A representation of 1. In the rank one case this follows because in the notation of section
2.6.25, Y (chy, 2)1x,, = 2*Mchi(v]n,, )Y + -+, and the higher rank cases follow similarly. As
discussed in section 2.3.10 uniquely determines He(Mg) to be the lattice vertex algebra attached
to (A, k). O

4.4 Free field realisations

4.4.1. One useful way to work with (vertex) algebras is using generators and relations, realising
them as a quotient of something simpler. Free field realisations are in a sense dual to this: to
work with a (vertex) algebra, realise it as a subalgebra of something simpler. This simpler vertex
algebra is often a lattice vertex algebra, which are sometimes referred to in the physics literature

as free fields.

4.4.2. The prototypical “geometric” example of free field realisations is when one has a sheaf of

algebras A over X, then the restriction to an open
A(X) - A(U)

is often often injective, and if the geometry of U much simpler than X then A(U) itself tends to

also be simpler.
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For instance, let G be a complex algebraic group with Borel subgroup B, and g its Lie algebra.
Then U(g) acts as differential operators on the flag variety G/B, and Beilinson and Bernstein

localisation [BB] says that restricting to the big cell U ~ A" gives an injection
U(g)o = D(G/B) — D(A") ~ C{x1,....;Tn, 0pyy ey On, )

from (a central quotient of) the universal envloping algebra, realised as differential operators on

the flag variety, into the Weyl algebra.

4.4.3. This can be generalised to the Wakimoto free field realisation due to Wakimoto, B. Feigin
and E. Frenkel [Wa, FF]. Replacing differential operators with chiral differential operators, they

obtain at critical level maps of vertex algebras

v

Rerit

(@) = Da(G/B) — Dep(U) =~ Den(A")

and the kernel of the first map is also given by a central character, see [AMa], giving as image

L., (g). They also deform this map to non-critical level.

4.4.4. FKS isomorphism. The Frenkel-Kac-Segal [FK, Sel] free field realisations of affine vertex
algebras we will be considering in this section are different. Firstly, they are defined at level one
rather than at critical level, second, they are only defined for ADE type Lie algebras, and third, the
free field vertex algebra in question is a lattice vertex algebra rather than the Wakimoto module.

The simplest version gives an isomorphism

L1 (5[2) 5 V\/ﬁZ

expressing the lattice vertex algebra V. 5, as the simple affine vertex algebra L, (sl;).

4.4.5. Let g denote a finite dimensional Lie algebra of ADE type, A its root lattice, h < g be
a Cartan subalgebra and {a;} € A a basis of simple roots. Let x be the normalised invariant

bilinear form on g, giving the basis {h;} € b of the coroot lattice A dual to the simple roots.

We can make the above choices so that this forms a part of a Chevalley basis {z, h;} < g of the

algebra U(g), which we assume from now on.

4.4.6. Denote by Vj , the resulting lattice vertex algebra. As a t module,

N7

where the  action on the second component is trivial. There are three families of endomorphisms

acting on this vector space:
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e h, for h e t and n € Z, defined by the 1 action.
o ¢ for a € A, defined by the group algebra structure on C[A].

o 0, for for a € A, defined on C[A] by d,e” = k(a, B)e” and extended trivially to Vj ..

4.4.7. The main result of [FJW1] was an explicit description of this vertex algebra.
Theorem 4.4.8. [FJW1, 7.3] There is a surjection of vertex algebras
T Vi(g) = Vae

inducing an isomorphism Li(g) = Vi ..

Proof. For any element of o € A C t, we get an endomorphism valued power series by

YE(z) = &._exp (Z —_pz )exp( Z — 2 ”) o0, (4.14)

n=1 n>1
To define the map 7, it is enough to dictate where the generating fields attached to the Chevalley
basis are sent to:

g (2) = YiH(z), hi(z) — hi(z),

i
where h(z) = _, h,z7""". To show that this is a map of vertex algebras, it is enough to show
that these fields also generate Vj , and that m preserves the operator product expansions: this is
done in [FJW1] where they compute the operator product expansions of these fields explicitly. It
is then clear that 7 is surjective, and comparing characters (e.g. using the Weyl-Kac character

formula) gives the isomorphism to L;(g). O

Thus the action of U(t) on V(a5 extends to an action of U(g).

4.4.9. Note that in [FJW1] the signs & are incorporated into their definition [FJW1, (7.1)] of the
toroidal Lie algebra ﬁ, whereas we incorporate them into the fields (4.14). Our above definition of

g has g[t£', t£'] as a quotient, which would not be the case for the definition in [FJW1].

4.4.10. Geometric interpretation. The geometric origin of the FKS isomorphism was discov-
ered by Zhu in [X.Zh]. Let G be a simply connected algebraic group of ADE type and T" a maximal

torus. This gives a closed embedding on the associated Beilinson Drinfeld Grassmannians

GrTX —> GrG X

N e

RanX
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where as usual X is a smooth curve over a field of characteristic zero. By [X.Zh, 3.3.1] their

determinant bundles are related by
i*Lo ~ L, 1Ly =~ La®O0cr -
The FKS isomorphism will then be induced by the unit of the adjunction
Lo — i, Lg = Lo ® Ogrp - (4.15)

Indeed, proceeding similarly to in section 2.5, it is noted in [X.Zh] that the simple affine vertex

algebra attached of level k attached to G and the lattice vertex algebra attached to A is

Ac = (peLEM)Y, Ax = (pr+L1)" = (Pe+(La® Ocrpy )
Thus the unit adjunction (4.15) gives a map of factorisation algebras
Az — Ag, (4.16)
and so a map of vertex algebras Vi , — Li(g). Notice that this is in the other direction that
might be expected. This map is the FKS isomorphism:

Theorem 4.4.11. [X.Zh, 3.3.2] The map (4.16) is an isomorphism of factorisation algebras.

4.5 Moduli interpretation

In this section we begin by giving a moduli space interpretation of the FKS isomorphism (Theorem
4.4.8), as a warm up to the g-deformed case in what follows. Let @) be an ADE quiver attached
to Lie algebra g, with Cartan matrix A;;. Reserve the letter d for a virtual multidimension vector

de 79

4.5.1. As an algebra under cup product, the cohomology of M; = Mg 4 is freely generated by

chern characters
H*(Mg) = E[{che(vilne,)}]

where ¢ ranges over positive integers and ¢ the simple roots.

4.5.2. Turning to homology, consider the dual classes of, € Ho(Mg) = H'(Mgy)" defined by
sending chy(7i|a,) — 1 and all other monomials in chern characters to zero. The direct sum map

@ : M? — M includes an algebra structure on homology He(M), which we denote by -.
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Lemma 4.5.3. The product [],,(07,)" sends

[ [ehe(vilae )™ = ] [nei!

and kills all other monomials in chern characters.

Proof. The product of oy ; ,...,00, ; is the element of H*(Mo)" given by

stn

# ®0? i
H'(My) & H (OM)®" 5% k® ~ k

Thus the lemma follows by additivity of chern characters under direct sum. O

Corollary 4.5.4. The subalgebra Ha(Mo) < He(M) is freely generated by the of;, where { ranges

over positive integers and i the simple roots.

4.5.5. The cup product and direct sum map combine to give a bialgebra structure on H*(M), as
in section 2.6. Together with the antipode given by taking monomial degree, we get that H*(M)
is a Hopf algebra, and if we write

¥+ — H'(M)

for the vector subspace generated by chern characters chy(7;), the above results then imply

A~

Proposition 4.5.6. H* (M) ~ U(t,) as graded Hopf algebras.

Dually, writing
/t\_ — H.(MO)

for the vector subspace generated by the dual chern characters oy;, we have that that He(Mo) ~

U (@) as Hopf algebras. It follows from this, or from an explicit computation, that

Corollary 4.5.7. The subspace t, < H*(M,) (likewise t- < Ho(M,)) consists of primitive ele-

ments.

4.5.8. Heisenberg algebra action. As for any Hopf algebra, any element p € He(My) of its dual

defines an endomorphism
pY L H (M) & H (M) @ H (M) B k@H (M) ~ H (M)

This makes H*(M,), actually all of H*(M), into a module for He(Mj). Since the Hopf algebra is
cocommutative it does not matter whether we acted by p on the right or left. Moreover, from

Lemma 2.6.10, if p € He(Mp) is a primitive element p¥ is a derivation.
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4.5.9. Similarly, p defines an endomorphism of any Hopf module, for instance H*(M), and we
also denote this by pV. If the Hopf module is a Hopf algebra as in the case H*(M), pV is again a

derivation.

4.5.10. We can use this to get an action of the Heisenberg algebra on H® (M), identifying it with
the Heisenberg Lie algebra by

Clt,t™!] = C[t]@t'C[t7!] ~ t, @t = t

Note that %i are abelian Lie subalgebras of t. Now,

Proposition 4.5.11. H*(M) is a representation of the Heisenberg algebra t of level one, under

the identifications

1 v
ij—n-1 = mo-?z+1,z’ o hin = ) Aynlch,(v) (4.17)
‘ j
forn = 0.

Proof. We need to show that the generators (4.17) satisfy the commutation relations of the Heisen-
berg algebra
[hi,n7 hj,m] = nén,,mAijid

where n,m € Z. This is implied by the Weyl relations [a,gziv ,che(v;)] = 6 ;0keid. The Weyl

relations themselves follow because

ori(che(v;)) = 010k
and because as the oy ; are primitive, they define derivations on H*(M). O

Moreover, H* (M) =~ V) is the Verma module of weight A\ = 2 d;«;.

4.5.12. We make a note of what structures the BG,, action gives rise to. Begin by noting that
as a Hopf algebra He(BG,,,) ~ U(Cr) is the symmetric algebra on one generator. Moreover, the
Hopf algebra H*(M) is a Hopf module for He(BG,,), so in particular 7v : H*(M) — H*(M) is a

derivation. Moreover,

Lemma 4.5.13. 7Vchy(v;) = chy 1(vi) and 70} ; = 0}, ; when £ > 0.
Proof. The definition of 7V is
. act® . . [Cl(’YI)]@id ) .
H*M) = H'(BG,,) ® H'(M) = E®H' (M) ~ H*(M)
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where 7; is the tautological line bundle on BG,, and [ci(71)] € H*(BG,,)" takes the c¢;(y1)
coefficient of a cohomology class. Thus the first claim holds since act*y; = v, X]7;, which then
implies the second by duality. O]

4.5.14. Free field realisation. There is an isomorphism
t = Hy(My)

sending h; to of ;.

Lemma 4.5.15. For any (8 € He(M)

ch(8) - (o), ®B) = ZAij-(l()@chk,l(vj)ﬁ)

whenever k > 0.

Proof. Recall that as a K theory class on M2,

[0] = > Ay[Hom(v:,7;)].
1,J
The result now follows from additivity of chern characters under direct sums, after noting that

cho(ila,) = 0 implies

chy,(Hom(;]at,,75))01: @ B = chi(7; |y ®@75)01, ® 8 = 1o ® chi1(75) 8-

We can now compute the field in Joyce’s vertex algebra structure on He(M)

0 2Rk (—2)" 0
Y(0y;,2)8 = @ I eXP |~ Z Tk:!chke 0., Qp
k=0 k=1
gk (—2)~*
= 69*; R (0?,i®5 +1® ( Z A= —klche_1(vjbe.) | B
>0 k>1,j
ZkU i —2z —k
= Z ]:'Jrl ﬁ + Z Azj( ) k’!Chkfl("}/j j\/[e)ﬂ
k=0 ’ k=1,j

4.5.16. Next, writing §; € Z? for the dimension vector (4;); := &; j, we identify

Y]
HoMys) =~ 910, — 8
under which the Chevalley generators z;° € g+, are identified with 1;, the homology class dual

to the identity cohomology class.
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4.5.17. There is an isomorphism
e == 1y @ He(My) = He(Myin)
and its dual map on cohomology, which is also denoted e®.
Lemma 4.5.18. For any finite set of vertices i,, and positive integers £, > 0,
e[ ot = [Talie

Proof. By additivity of chern characters under direct sum, the dual map on cohomology acts as

e“ [T che, (i, Iny, 1) = [ 1che, (%, v, ), from which the lemma follows. O

It follows from this that

o <(5Z, Oé> if =0
[e®, che(7:)] =
0 if ¢ >0
where (—, —) is the bilinear form on 7'l with orthonormal basis §;. Moreover, by the associativity

of @, (e*A)- B =e*(A-B) = A-(e*B). Finally, we have

Proposition 4.5.19. As He(My) valued power series,

+oy, _
exp ( T]“Zk> = e¥% exp (2t) €51,
k>0 ’

Proof. We first expand the left hand side. Its z"th coefficient is the sum of

0 mi 0 Uy
1 Olrsi Tk
ml'mr' kll /{ZT'

summed over all finite sets of positive integers m;, and pairwise Fdistinct positive integers k; with

> .mjk; = n. Thus combining this with lemma 4.5.3, we have

ol . .
k>0

For the right side, we prepare by noticing that e *t¥e® is a derivation of H*(M) sending

cho(boige,) i €=0
Chg_l(’}/ibv[d) ife>0

e “tYercho(vilm,) =

Thus writing n = >, m;k;, this observation allows us to compute
e “exp (zt) e 1g - chy, (Yilao)™ = lo-e™exp (2t”)e “chy, (7iln)™

1 v —ain m;
- 10.m(e+a12t e 1) Chkj('yib\/[o) 7



mi my
since chg(yi|a; ) = 1, it follows that this is also equal to (k:%') S (%) Zhimatetheme O

We can now compute the field of 14; as

L 2Rtk z*
(éiai,bziﬁ(a“b)) . Y(].ii, Z)B = P, 7 exp (Z Tk'Chk0> (]-il ® 6)

k=0 k=1
= 1+’L eXp(Z AZ] L kchk'}/j> 5
k=15
= eTigFrigetai] . exp ( Z A” - kChWJ> B
k=15

= exp (eiaizte )10 exp < Z AU ? kchk%> “i3

k=15

= exp ( k' ) exp ( Z Az_] k Chk’y;) B
k>0 k>1,j

where we have used the fact that (e*A) - B = A - (e*B). Here € € {£1} are the orientations, as in
section 2.6.20, and 5 € He(M,).

4.5.20. We summarise what we have shown in a Theorem. Take the identification Vx , = He(Mg)
sending

lay = 1o, ;1|0 = of; (4.18)
where ¢ varies over the simple roots of g. As before,
Theorem 4.5.21. Compose the identification (4.18) with the FKS isomorphism. The resulting

isomorphism of vertex algebras Li(g) — He(Mg) has an explicit description on the level of fields

as

I:_r (Z) — éiah_ exp ( ) €xp ( Z Az] k? Chk73> +aizﬂ(iai77)a
k>0

k>1,j

kol i
hi(z) = )] ]j“ + > Ay k) klchy 1 (7).

k=0 k>1,j

4.5.22. The Cartan involution. Any automorphism of a lattice A induces an automorphism of
the vertex algebra V. In particular, the involution —id : A — A induces the Cartan involution T
on Vi, sending

T Y(e*z) — Y(e 9 z2), T a(z) —» —a(z)

fora e A C t.
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4.5.23. Let g be a semisimple Lie algebra. Then the Cartan involution 7 : g — g induces a vertex
algebra involution 7 : Vi(g) — Vi(g) of the affine vertex algebra, and of its simple quotient Ly (g).
It sends

T X

SH

(2) = 2/ (2), T hi(z) = —hi(2).

Then if g is of ADE type the maps in the FKS theorem 4.4.8

Vi(g) — Li(g) = Vi

are equivariant for the actions of these involutions.

4.5.24. The moduli stack interpretation of this is the following. The shift operator [1] : D*(RepQ) —
D*(Rep@Q) induces a map 7 : M — M preserving the commutative monoid and BG,, action struc-
tures and 6, since Ext*(€[1], F[1]) = Ext*(€,F). Note that 7 is not an involution, but 72 is A’
homotopic to the identity, so 7 induces an involution on (co)homology, see [Jo2]. Thus it induces
an involution of the vertex algebra He(M), and upon identifying He(M) ~ Vjx it corresponds to

the Cartan involution.

4.6 Quantum FKS isomorphism

4.6.1. We now review the matter of ¢g-deforming the FKS isomorphism.

The first problem we encounter is what sort of objects a “quantum FKS isomorphism” should be
a map between. One would hope that it should be a map between some notion of quantum vertex
algebras. In the first work on the subject by Frenkel, Jing and Wang in [FJW2], they essentially
only considered it as a map of U,(g) modules given by certain power series which they called ¢

vertex operators.

In future work, we plan to interpret these power series as fields in a quantum vertex algebra, using

the moduli stack interpretation of the quantum FKS isomorphism which we will explore below.

~. ~.

4.6.2. To begin with, one deforms the U(t) module structure to a U,(t) module structure
VA,H,(] = ‘/’L,K,(I@C[A]

where Vi, is the Verma representation of U,(t) of level one. Define the endomorphisms h,,, ¢®

and J, as before in 4.4.6.
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Theorem 4.6.3. [FJW2, 8.7] There is a map of U,(g) modules
Tg ¢+ Vig8) = Vang (4.19)

inducing an isomorphism L1 ,(g) = VA kg and specialising at ¢ = 1 to the FKS map 7 = 7.

Proof. For any element of o € A < t and integer k € Z we define an endomorphism valued power
series by

< 1 + n 1 -n ey
Yai,k(z) ‘= E&q,— €XpP <Z ma—n(q(k+k)/2z> > €xXp <_ Z man(q(kik)mz) > e Zaa.

n=1 nz=1

To define the map 7y, it is enough to say where the generating fields attached to the Chevalley

basis are sent to:

T, 1 2 (2) o Yaiwl(z), Ty ¢ hin — hin.
The proof proceeds as in the classical case, and is outlined in [FJW2]. ]

4.6.4. To be explicit, we send

™ 1 1
7 (z) V3 &, exp —ay 2" fexp [ = Y =ain(gt2) ) i
2 [n] ,;1 [n]

nz=1

7 (2) - €oy,— OXP <_ Z ﬁai,n(qlz)ﬂ) exXp (Z ﬁai,n2n> e i y0-ai,

n=1 n=1

Or to be more symmetric (and removing ¢ factors from the first exponential), we have

T Z 1 Z 1
qiéaai‘x;r (Z) '_q) éai,* eXp ( [ ]ai,nzn> eXp <_ [ ]ai,n(qlz)n> eaizaai qiéaa% (420>
n n

nxzl n=1
_ls g 1 n ]‘ —-n —Qy la
q 2z, (qz) — €_q4,— €xp —2 —a; _p2" | exp Z —a; n(q2) e %iy0—oig 2=
=] =il

(4.21)

4.6.5. Variant. We make a note that may be safely skipped. As remarked in [FJW2], note that

there is another map which works, defined by

Ty (Z) Lﬂf é,%,exp



Written more symmetrically,

_1 _ g . 1 1 1 o 1
q Qa*ail‘;_(q 12) Ve € _q,; — €XP <— Z mcuy_,y:”) exp < mai,n(q lz) n) € azzafaiq 267%7
n=1 nx=1

wT 1 1 )
Qféao‘ix;(z) ' ;- OXP Z = _p2" | exp | — Z —a;n(qz) ™" eo‘lza“iq’%aai.
1] = (]

n=1

(4.23)

Note that wm, and 7, are not dual by the quantum Cartan involution (see below). Rather, they
differ by the deformation of the identity w = id ® ¢, where ¢ is the endomorphism of Clq,q™!]

induced by sending ¢" to ¢=". We will not consider this variant in the following.

4.6.6. Quantum Cartan involution. We expect the quantum Cartan involution should ex-
change

(4.20) — (4.21).

This is achieved sending «;,, —> —a;,, €* +— e~ and ¢+ ¢~'. Let us make this more precise.

4.6.7. For a lattice A we will define the quantum Cartan involution 7, = 7 ® ¢ on the vector
space V , = VA ®c Clg, ¢ '], where 7 is the usual Cartan involution of section 4.5.22 and ¢ is the

involution of Clq, ¢ !] sending ¢" + ¢~™. Thus it sends
Tq . )\(Z) [ _)\(Z), Tq : eA(z) |_)ef/\(z)’ Tq . qn —s qn

where A € A € A ®z C. Note that 7, fixes the quantum integers [n], and does indeed swap
(4.20), (4.21) when applied to the lattice A = A.

4.6.8. Let g be a finite dimensional semisimple Lie algebra. So as for the quantum FKS map of
Theorem 4.6.3 to be involution equivariant when g is of ADE type, the quantum Cartan involution
7, on the vector space Vi ,(g) we define so that it swaps the right sides of (4.20), (4.21) if we work
in Vj ,i2(g). We send

7y 0 oaf(2) o gy (gz), Ty (2) =g

7, ¢ hi(z) = —hi(2), T, ¢" — g

Here for v a root we write 0, for the endomorphism of Vj(g) (and V; ,(g) when extended g linearly)

which multiplies an eigenvector of [, o, —] by its eigenvalue. By considering a PBW basis, under
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the quantum FKS isomorphism of Theorem 4.6.3 this corresponds to J, as in the usual notation
for lattice vertex algebras (see section 4.4.6). We expect that the above induces an involution on

Ly ,(g). One also expects that it should define a map of ¢-deformed vertex algebras.

4.7 Moduli interpretation, quantum case

A~

4.7.1. To begin with, recall that we have an isomorphism of U(t) modules

where the U(t) module structure on the right is defined using the commutative monoid structure

on M and the cap product action of cohomology on homology.

We want to deform this to an identification of C[g, ¢~'] modules

Vi, ~ H.M), (4.24)

»q

restricting to isomorphisms ng ~ Hu(M,), for each a € A. Such an identification is equivalent

A~ A~

to the choice of a deformation of the U(t) action on He(M) to a U,(t) action on He(M),, such that
each He(M,) is a level one highest weight Verma module of the appropriate weight.
4.7.2. Thus, to construct an identification (4.24) we make the following construction

Proposition 4.7.3. H*(M), is a representation of the quantum Heisenberg algebra Uq@) of level

one, under the identifications

s = g e = S ) = S0 ;) (125

forn = 0.

Proof. We need to show that the generators (4.25) satisfy the commutation relations of the Heisen-
berg algebra
Ayj :
o] = bun 2 prlia
n

where n,m € Z. As in the classical case, this is implied by the Weyl relations. O
To be explicit, the induced identification (4.24) sends

e* — 1,
and acts on the other modes as (4.25).
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4.7.4. We note again the fact that there is an identification A®zC ~ t, so we freely view elements

of A like «; as elements of t.

4.7.5. Quantum Cartan involution. Having fixed an identification (4.24), what is the induced
involution on He(M), = He(M) ®c Clg, ¢ ']? It follows from equations (4.25) and that e* and

1, are interchanged that it is simply 7, = 7 ® ¢, where 7 is as in section 4.5.22 induced by

[1] : D*(Rep@) — D"(RepQ).
4.7.6. To summarise the last two sections: if g is of ADE type, then we get a map of U, (%) modules

Vig(g) — VA,q = He(M),

which is equivariant for the quantum Cartan involution defined on all three vector spaces.

4.8 ¢-deformed Joyce vertex algebra

4.8.1. In this section we are going to define a g-deformation of the Joyce vertex algebra structure

of Theorem 2.6.21. It will be defined on the vector space He(M), = He(M) ®c C[q, ¢ !].

4.8.2. The main question is in this ¢ deformed Joyce vertex algebra structure what should be the
fields Y'(11,,,2). It follows from Proposition 4.7.3 and Theorem 4.6.3 that
Proposition 4.8.3. The composite map

Vigle) —» Va, = H.(M),

acts on the level of fields as

0'
PR > g (gt exp< T ) exp<2
k>0 ! k=1

k‘ )

) i (4.26)

klchg_1(v5)- (4.27)

=
—~
&

!
ing
l\z
?rq

+

i
\VM

Moreover, since the quantum Cartan involution 7, on He(M), exchanges 1, and 1_,, we require

that it interchange Y (1., z) and Y (1_,, 2).

In particular, we should not set Y (14,,,2) to be x;(z) since these are not swapped under the

quantum Cartan involution, but rather

Y(Lia,2) = q 2%%af (¢F22) (4.28)
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since it is (4.20) and (4.21) that are swapped by the quantum Cartan involution.?

4.8.4. Deformed bicharacter. If we want to make (4.28) true, we need to interpret the ¢*!

factors. We do so by choosing a linear functional
Y (M) = A - C

defined uniquely by 1(c;) = 1. Then we set

v, (0) = (q%wlz)rkeexp Zwk!chk((@i,j [Aijk]fyivfyj) (4.29)
=k [+]

where 1); is the locally constant function taking value ¥ (a) on M, x M. Here, we have extended
the chern character C[g"/?, ¢~/?] linearly to K(M x M),/2, so that the above defines an element
of H(M x M),12((271)). Its specialisation

recovers the usual bicharacter (2.19) inducing Joyce’s vertex algebra structure on He(M).

4.8.5. By ¢ linearity we extend the maps on homology arising from the geometry of M (see section
2.6) to

@* . H.(M)q1/2®H.(M)q1/z — H.(M)q1/2, act* . H.(BGm)®H.(M)q1/2 — H.(M)q1/2.

Definition 4.8.6. In the above setting, the g-deformed Joyce vertex algebra structure on He(M) 12
is the map

Y - H.(M)q1/2 ®H.(M)q1/2 - H.(M)quz((z))

sending
Y(a,z)8 = @, (e ®id- ¥, (0)a® B).

3To make the formula more symmetric we have made the variable change z +— ¢~

1/22.
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4.8.7. Fields. We now compare Proposition 4.7.3 to the fields in the ¢-deformed Joyce vertex
algebra structure. We compute

0 2k 0
Y(Jlm 2)f = @ Z W\Dq(e)al,i ® B

k=0

= Ds %exp (Z (_k) k! hk(@zy[/% ]k]% .’VJ)> U?,i®ﬁ

kgh [Ajk] (—2)7* ) )
= @, o), ®B+1 ®< klchg_1(;) | B
;é% k! ( 1 0 ;g;j k] &k bl
2ok [Aijk] (—2) "
- @, ——-a%®ﬁ+1 ( : Mm»(v0ﬁ>
_ Z Z O'kJrlz ( ) k}'Chk 1(’Yj)ﬁ
k=0 k=15

We have used that ¢(0) = 0. Under the identifications (4.25) in Proposition 4.7.3,

n
Y(a),, 2) = Z—hmz_”_l.
i=o 7]

4.8.8. Similarly, using Lemma 4.5.19 we can compute

-1

(Eraun(q™2) @) 7 Y (144, 2)8

2Rk
= (43*];]?%(9)(%1@@
2 (—2)7F 4 k] Y
= €14, -exp (kzll [kj] Tk'chwj 16
=1,

Ai k] 2k
— eiaze+aiezteiailo - exp ( Z [ J ] < l{?'Chk’Y]> 6
k

21».7’

= exp( +alzt6i°‘1) 1o - exp ( Z
k=15
= exp (Z ?zk> exp ( Z [k]

k>0 k>=1,5

o

where 3 € H*(M,).
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4.8.9. We summarise the above in a Theorem.

Theorem 4.8.10. The quantum FKS isomorphism and the q deformed Joyce structure are com-

patible in the sense that the FKS map Vi j2(g) — Va . gz — He(M) 12 sends

q 2z (7)o Y (Lia,2), hi(2) = Y(01;:2).

4.9 Axiomatics

4.9.1. In this section we ask the open question of how to interpret Definition 4.8.6 as an example
of a sort of ¢g-deformed vertex algebra. We also recall the notion of Joyce of deformed vertex

algebra, which should be closely related into any answer that is given to this question.

4.9.2. History. Over the years there have been many attempts to find a g-analogue of vertex
algebras, e.g. due to Borcherds, Etingof and Kac, Frenkel and Reshitikin and Li [Bo2, EK, FR, Li2].
However, many of the basic questions about them have yet to be answered, for instance whether
there is a g-analogue notion of factorisation algebra. Many structures appearing in algebra like
quantum affine algebras, quantum Yangians and quantum W algebras may have attached g-vertex

algebras, which would be a powerful new (geometric) lens to understand these structures.

4.9.3. Open question. We are left with the question: is there a definition of g-deformed vertex
algebra which includes the structure on He(M), introduced in Definition 4.8.67 Moreover, is there
a definition of ¢g-deformed affine vertex algebra such that the quantum FKS map in Theorem 4.6.3

comes from a map of g-deformed vertex algebras?

4.9.4. g-deformed vertex algebras. We recall what [Jo2| calls g-deformed vertex algebra. The
definition is inspired by an equivalent definition of vertex algebras, which in terms of factorisation
algebras on a curve X takes account of the sheaves living over X" for all n > 0 and not just

n = 0,1,2. One considers the maps

Ve — V[z1, . znlll(z — 2) 7

i,j=1

which in terms of the usual vertex algebra definition are just o ®- - -Qav, — Y (aq, 21) - - - Y (au, 2,)[0).
Thus the vertex algebra structure is encoded in maps as above, together with compatibility con-

ditions between them.
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Definition 4.9.5. [Jo2] Let ¢ € C*. A g¢-deformed nonlocal vertex algebra is a vector space V

and maps

Yo = You(zi, ey 20) © VO — V|21, 20)][(zi — ¢"2) 1 ke Z])

ij=1
for all n = 0,1... satisfying:

1. Identity. Yy = id,.

2. Exponential. Y;(2z1)Y1(wq) = Yi(z1 + wq) and Y;(0) = idy.

3. Associativity. Given elements «q,...,a, € V (though of as being at points 21, ..., 2z,) and

B,y B €V (at wy, ..., wy,), we have
Yo(21, 21,0, 21, oy 20) (1 @ - @ i1 @ [V (Wi oo, Wi )1 @+ @ B @ i1 @ -+ @ o)
for any ¢ is equal to

Yn+m—1(217 ey Rj=1, W1y eeey Wipy Zi41y --0y Zn)(al ® e ®ai—1 ®61 ® Tt ®6m ® (07N | ® Ut ® an)'
If in addition the Y,, are &,, invariant, it is called a g-deformed vertex algebra.

4.9.6. By the associativity axiom, the Y,, for n = 3 may be defined in terms of Y5, in which case
the associativity axiom becomes a set of compatibility relations between the Y; and Y;. By the

exponential axiom, we may write Y;(z) = ¢*T for some operator 7.

4.9.7. Definition 4.9.5 should be viewed as a working definition, to be updated as the theory is
worked out more, e.g. the notion of g-factorisation algebra discovered. It is also pleasant that it
is very close to the definitions of [EK, Li2], and admits certain vertex algebraic properties lie the

Zhu algebra.

4.9.8. How is thus structure related to the structure in Definition 4.8.67

To begin with, let M, 6, (¢) be as in 2.6.17 (or 2.6.21), so that the homology He(M) is canonically

a (nonlocal) vertex algebra.

In addition to this, we then let G,, act on the fibres of 6. As for all actions of tori on Artin stacks,

we have

Dye(M x M x BGyp) = [ [ Dge(M x M),

keZ

150



see [AKLPR]. In particular, any perfect complex § on M x M x BG,, splits as a direct sum

0 = C—Dkez‘g(k)®7®k'

Now, we can extend the chern character to a map
K(M x M x BG,,) — H"(M x M)[q,q']

sending >, V(k) @ 7®F — ., , ch(V(k))q" where V(k) € K(M x M). The proof of the following

proposition is essentially the same as the proof of Theorems 2.6.17 or 2.6.21.

Proposition 4.9.9. Keeping the the above notation,
Y, = @ <ezlt Q- @e™ Héi,j‘l’q(%‘; i Zj)(—)>
i#]
is a g-deformed nonlocal vertex algebra as in Definition 4.9.5. Here 0;; is the pullback of 0 via the

ijth projection M™ — M? and for V € Perf(M x M x BG,,) we set

V Z, ’LU Z Z Z2—q ’LU rkV( )—r (q w)%rk\?(k)fscns(v) c H'(M « M)[q,qil]

keZ r,s=0
where ¢, 4(V) is the H (M) @ H*(M) summand of ¢, (V) € H (M x M). Finally, & ; is & as
in section 2.6.20 acting on the ijth component of H*(M)®",

4.9.10. In particular, setting n = 2 and w = 0,

Ya(a, B85 2,0)

gives back the Definition 4.8.6, but with the ¢/ term absent. Thus, the problem becomes how to
alter Definition 4.9.5 so as to incorporate the v shift.

4.9.11. Affine ¢-deformed vertex algebras. Let g be a simple finite dimensional Lie algebra.
Given the (so far unmade) definition of ¢ deformed vertex algebra, we would like to endow the
Verma module Vj ,(g) with such a structure, in a way that the FKS map 4.19 is a map of ¢

deformed vertex algebras.

4.9.12. Attached to each generator h;, z;" in a Chevalley basis, it is reasonable to guess that the

following might define a ¢ deformed vertex algebra:

hi(2) = h_iz7' + Z hinz "1, Z:pmz n=l

neZ\O nez

H—

For instance, we have the following Proposition (and notice that the power series > h; 2z~ "! do

not admit similar operator product expansions):
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Proposition 4.9.13. The fields h;(z) have operator product expansions

kid kid kid
hi(z)hj(w) = (z — ¢ w)? + (z — ¢ 3w)? T (z—q " Dw)?

mod V||z, w]]

where r = k(h;, hj) and g = g;.

Proof. We compute

[hi(2), hj(w)] = )

nk(hihi) _ o —nk(hi,hg)
= Oy Z 1 d cz "y

= 0, Z(q"(ﬁ(huhj)—l) + gk =3) g gnlelhihy) =)y cp sty n

n

= 0,0(z — ¢ W)+ - + 0u0(z — ¢ " Mw)e
Finally, note that the central element ¢ acts as multiplication by k on Vi(g).

Similarly, we have

Proposition 4.9.14. The fields h;(z),z;(2) have operator product expansions

@) = I B S e Vil
where r = k(h;, h;) and q = g;.
Proof. We compute
[hi(2), 2 (w)] = %[hi,n,xfm]znlwml
- DR
= E(q”(’” D gl ® gl Dyt ey !
= E(QH(TI) A S e P Z xjikw k=l
nm keZ
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Arguing similarly, we get
Proposition 4.9.15. The fields ¥ () have operator product expansions

1 g w) = ¢ (w)
Z; (Z){Ej (w) - 5%] (Z—’LU) q_q,1

mod V||[z, w]]

where r = k(h;, h;) and g = g;.

Since [x:—“n,x;—rm] does not admit a simple closed form expression in quantum toroidal or affine
algebras, it is less clear what the operator product expansion of x} (z) with itself will be. We leave

this to future work.
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Appendix A

Variant notions

A.1 Varying the background category

A.1.1. Ordinarily one defines vertex algebras inside the category Vect = Vect,, of vector spaces
over a field k. We recall how to replace Vect with a more general background category (Definition
A.1.14). Applying this to the categories Vectz/, and Vectz of vector superspaces and graded vector
spaces will recover the notion of vertex superalgebra and graded vertex algebra. Taking Vect,,

vector spaces graded by an abelian group A, recovers the definition of Dong and Lepowsky [DL].

A.1.2. For completeness we first write down some category theory definitions, see e.g. [Ric, §§]

or [EGNO].
A.1.3. Structures on monoidal categories.
Definition A.1.4. A monoidal category is a category € with a functor
® :CxC - €
an object e and natural isomorphisms
Qeyenes @ (1R )Rz = 1 Q (2 ® c3) A 1 eRc S pe 1 c®e >

for all ¢, ¢, ¢9, c3, satisfying the pentagon identity
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Qe @co ,€3,C4

(1 ®c2) ® (c3® ¢y) (1 ®ca) ®e3) ®cy)
acl,cQ,%/ Y%%@id
1 ®(ca®(c3®¢y))) (1 ®(ca®c3)) ® ey
idm %@3’;
c1® (2 ®c3) ® cy)
and the triangle identity
a1 ®(e®c) e DL
1 ®ca

That is, these diagrams commute for all ¢y, ¢, ¢3, ¢4.

Definition A.1.5. Monoidal category € is called symmetric monoidal if in addition there are
binatural isomorphisms

Teren - C1QC2 — 2®C;

with symmetry condition 7., ¢,Te, o, = 1d, and satisfying the hexagon identity

(1 ®ca) ®cs iy 3 ® (c1 ® ca)

CMCV w782

1 ®(ca®cs) (c3®ec1) ® e (A1)
id@h /m@d

Qe ,e3,c

1 ® (3R ) —=F (1 ®c3) ® ¢y
and p. = A\eTee.

Often the symbol o instead of 7 is used to denote the symmetric braiding in Definition A.1.5. We

now weaken this notion by discarding the symmetry condition:

Definition A.1.6. Monoidal category C is called braided monoidal if in addition there are binat-
ural isomorphisms

ﬁcl,cg . Cl®02 - C2(@61
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satisfying the two heragon identities, (A.1) and

6c1 ,co®cg

a®(®c3) — (2®c3) ®c

—1 —1
QCV w'cl

(1 ®c2) ®cs ¢ ® (c3®cy) (A.2)
ﬂqm 1 %1@3

Qcy,cq,e3

(C2®c)®@c; —— 2 ® (c1 @ cy)

and p. = A\:fee and Becpe = Ac.

These structures A.1.4, A.1.5 and A.1.6 are are called strict if all the a’s are identities.

A.1.7. These definitions are more natural in the language of co-categories, see [Lur2, Ex. 1.2.4].
One can define monoidal, braided monoidal and symmetric monoidal structures on co-categories,
and show they the same thing as F, F, and F, monoidal structures. Thus monoidal categories
are associative algebras, and symmetric monoidal categories are commutative algebras, in the

category of co-categories.

A.1.8. Tensor categories. Let C be a k linear abelian monoidal category, such that the tensor
product ® : € x € — € is cocontinuous (in particular additive), and bilinear on morphisms, and

the structure maps v, ¢, ¢, Pc;, Ac are additive in each variable and multilinear on morphisms. We

Cc2,

call such a category k linear monoidal.

A k linear symmetric (braided) monoidal structure on € is a symmetric (braided) monoidal struc-
ture on the underlying category such that 7., ., (B, ,) are additive in each variable and multilinear

on morphisms.

Again, these structures are called strict if the a’s are identities.

A.1.9. Power series. Let C be a k linear symmetric monoidal category. We define
Cllz]] = € ®vec, kl[2]]-Mod := Ek[[z]]-Mod(C).

Thus, an object of C[[z]] is an object ¢ of € together with a map m, : k[[z]] ®e ¢ — ¢ respecting
the algebra structure on k[[z]] € ObC. Since k[[z]] is a cocommutative bialgebra, C[[z]] inherits
a symmetric monoidal structure from € and k[[z]]-Mod, i.e. ¢®cypy ¢ = ¢ ®e ¢’ as objects of C,

with the k[[z]] action induced by the coproduct k[[z]] — k[[z]] ®e k[[=]]-
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A.1.10. For instance, writing & € € for the unit object, k[[z]] is an object in C[[z]]. It is a

commutative monoid in fact, and C[[z]] is its category of algebras in C.

A.1.11. As with all module categories, the “tensor by k[[z]]” functor is left adjoint to the forgetful
functor,

k[[z]] : ¢ — €C[[=]], For : C[[z]] — €.
Note that For is conservative. There is also the trivial module functor
triv : € — C[[z]]

which together with For allows us identify with of € as elements of C[[z]] and vice versa.

A.1.12. Similarly, we can define modifications of € for other power series rings, e.g. C((z,w)),
C((2)),. .. and the above remarks in section A.1.11 will also apply. However, these categories will
not necessarily be symmetric monoidal so much of the material in section A.4 will not apply if we

replace C[[z]] with them.

A.1.13. Vertex algebras in a general symmetric monoidal category. Let C be a symmetric

monoidal k linear category, with unit denoted k.
Definition A.1.14. A vertex algebra in C is an object ¢ with a map
Y(2) : c®c — ¢((2))

and maps |0) : k — ¢, T : ¢ — ¢, satisfying the axioms in Definition 2.1.9.

A.1.15. For instance, let us show how to define the notion of weak commutativity in this setting.

Take the map

1d®Y (w) Y (z)®id

c@c@c = (c@c)((w) = c((w)(2) = e[z wH]

and the map

Y (w)®id

(c®a)((2) = (W) — cf[,wH]].

Thus for any elements «, 8 : k — ¢ we get two maps

cR®c®c & c®cec®c

ARY (2)
—
c — c[[zﬂ, wil]].

which are the analogues of Y (a, 2)Y (5, w) and Y (8, w)Y («, z). Weak commutativity says that

their difference composed with id ® (z — w)™ vanishes when n is high enough.
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A.2 Varying the algebraic structure

There are some variants of the notion of vertex algebra, which we briefly discuss in this section.
Vertex algebras are like commutative algebras in two ways: a commutative algebra with derivation
is a vertex algebra by section 2.3.2, and factorisation algebras (which are commutative algebras

in some category) give rise to vertex algebras.

The variants we will discuss, and their unaffinised analogues, are

(Co)commutative (co)algebra Vertex (co)algebra
(Co)algebra s Nonlocal vertex (co)algebra
Bialgebra s Vertex bialgebra

Quasitriangular bialgebra v Quasitriangular vertex bialgebra

Given a structure on the left, if we equip it with a compatible derivation, we get the structure on
the right, see e.g. [Gro2]. We leave the question of interpreting these structures in terms of the

chiral and * symmetric monoidal structures on Sh(RanX).

A.2.1. Nonlocal vertex algebras. First we recall the vertex analogue of associative algebra due

to Bakalov, Kac and Li in [BK, Lil, Li2].

Definition A.2.2. A nonlocal vertex algebra is a vertex algebra as in Definition A.1.14, but with

the weak commutativity condition replaced with weak associativity: for all o, 3 € V/,
(2 = w)"Y (Y (0, 2)8,—w)y = (2= w)"Y (a2 = w)Y (8, —w)y (A3)

for n > 0.

A.2.3. The reader is warned that in the literature the word (non)commutative vertex algebra

means (non)holomorphic, not (non)local.

A.2.4. Vertex coalgebras. We now give the dual notion of a vertex algebra.

Definition A.2.5. A vertex coalgebra is a vector space V' with a linear functional (0| : V' — k,

an endomorphism 7" satisfying {0|7" = 0, and a map
Alz) 1V - VeV((:z)
which weakly cocommutes, (T'® 1)A(q, z) = 0,A(q, z) and
(0| ®id)A = id, (id®<{0])A =id mod 2V ® V[z].
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A slightly modified version of this definition appears in [Hu]. In the case where V is a graded
vertex coalgebra with finite dimensional weight spaces however, both definitions are equivalent,

see section A.2.7 below.

A.2.6. The definition of weak cocommutativity is the dual notion of weak commutativity. A(z)

is said to weakly cocommute if for every ¢ € (V&)
(z = w)"¢ ((iId @ A(2))A(w) — (0 ®id)(i[d® A(w))A(z)) = 0
for n » 0.

A2.7 TtV is a vertex algebra, then its dual V* is a vertex coalgebra, and vice versa. Indeed,

note that weak commutativity can be written as: for all v e V®3,
(z—w)"(Y(2)(Y(w)®id) = Y(w)(id® Y (2))(c®id))v = 0

for n » 0, where we have written Y (z) : VQV — V((z)) for the vertex algebra field map. Likewise,
if V' is a graded vertex algebra then its contragredient dual V'V is a graded vertex coalgebra, and
vice versa. Since V'Y ~ V canonically if the weight spaces are finite dimensional, this sets up an
equivalence of categories between graded vertex algebras and coalgebras whose graded pieces are

finite dimensional.
Likewise, the dual analogue of nonlocal vertex algebra is

Definition A.2.8. A nonlocal vertex coalgebra is a vertex coalgebra as in A.2.5, but with weak

cocommutativity replaced with weak coassociativity: for all v € V and ¢ € (V®3)",
(z —w)"¢ (A(z) ®id)A(—w)y — (([d @ A(2))A(z —w)y)) = 0

for n > 0.

As before, there is an equivalence between graded nonlocal vertex algebras and graded nonlocal

vertex coalgebras whose graded pieces are finite dimensional.

A.2.9. Skew symmetry. Let A be a coalgebra in a symmetric monoidal category C. Its opposite

is the coalgebra with the same counit, and coproduct
AP = gA.
It is cocommuative if and only if A? = A.
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A.2.10. Let V be a nonlocal vertex coalgebra. Its opposite is the nonlocal vertex coalgebra with

the same covacuum, and cofield map
AP(2) = oA(—z)e.

It is local (i.e. defines a vertex coalgebra) if and only if A°?(z) = A(z), see [Hu, Prop. 2.3].

A.2.11. Dually, one can define the opposite algebra product a -,, b = b - a, which is equal to the
original if and only if it is commutative, and the opposite nonlocal vertex algebra YP(«, )5 =

Y (B, —2)a, with Y =Y if and only if the vertex algebra is local, see [BK, Rem. 4.8]

A.2.12. For instance, consider Joyce’s nonlocal vertex algebra (see Theorem 2.6.18). We have
Ao, z) = U(0,z)act] , ®" «
and so, since e’’’ = act* by Lemma 2.6.12,
AP(a,z) = W(0*0,—z)act; @ act]a = V(00" z)act] , ®" a.

That is, the opposite of the Joyce nonlocal vertex (co)algebra attached to 6 is the Joyce nonlocal

vertex (co)algebra attached to o*6".

Similarly, if we want to include orientations, the opposite of the Joyce nonlocal vertex (co)algebra

of Theorem 2.6.21 attached to 0, ¢ is the Joyce nonlocal vertex (co)algebra attached to o*6", c*é.

A.2.13. (Quasitriangular) vertex bialgebras. We first recall some standard definitions from

algebra, see e.g. [Dr, ES, EGNO].

Definition A.2.14. A bialgebra is an associative algebra A with a compatible coalgebra structure
(A, A, g), meaning
Aa-b) = A(a)-A(b), (A.4)

foralla,be A, and e®@c(a®b) =<(a-b), (1) =1 and A(1) =1Q 1.

A bialgebra A is cocommutative if cA = A where 0 : AQ A - A® A is the map swapping the

factors, and almost cocommutative if there is an invertible element R € A ® A with
oA(a) = RA(a)R™! (A.5)
if all @ € A. It is called a quasitriangular bialgebra if in addition the hexagon identities hold:
(AQid)(R) = Rizhos, (d®A)(R) = RisRio. (A.6)

Here e.g. Ry3 denotes the element 1 @ R € A®3,
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Lemma A.2.15. If A is a quasitriangular bialgebra, R sastisfies the Yang Baxter equation
RigRi3Ro3 = RazRi3Rio.

PTOOf. We have R12R13R23 = Rlz(A ®1d) (R) = (O’A ®ld) (R)R12 = R23R13R12. ]

A.2.16. To organise these definitions, recall from [Lur2] the sequence of operads
Ey - B4 —» Ey— - — FEg.

Their algebras inside the category Cat of categories are (see [Lur2, §1.2])

Pointed categories «— Monoidal categories < Braided monoidal categories « ---

-« Symmetric monoidal categories.
Now let A be an associative algebra in Vect, and consider its category A-Mod of left modules.

A priori, it carries no extra structure other than having a distinguished object A, i.e. it is an Ej
category. If we want it to be a monoidal category, i.e. the tensor product M ®; N of every module

to carry a A module structure, then the action of A on A ®; A would give a map
A — Endamoa(A®r A) =~ AQy A,

which defines a coproduct, and makes A into a bialgebra. This is symmetric monoidal if A is

cocommutative, and braided monoidal if A is quasitriangular, with with braiding given by
M®N & MoN S No M,

which is A linear by almost commutativity, see [ES, Prop. 14.2]. Thus the corresponding algebraic

structures to the above are
Algebra <« Bialgebra « Quasitriangular bialgebra « --- « Cocommutative biaglebra.

More precisely, there is an equivalence of categories between lifts of the associative algebra struc-
ture on A to a bialgebra, quasitriangular bialgebra and cocommutative bialgebra structure, and

lifts of the F;, F5 and E, structures along A-Mod — Vect, respectively.
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A.2.17. We now turn to the vertex analogue of the above, loosely following [Jo2].

Definition A.2.18. A vertex bialgebra is a nonlocal vertex coalgebra V' with a compatible asso-

ciative algebra structure, meaning
Ala-B,2) = Ale,2) - A(B, 2) (A7)
for all o, 8 € V, and (0] ® {0|(a ® b) = (0|(ab), (0|(1) = 1 and A(1,2) = 1 ® 1.
A vertex bialgebra V' is almost local if there is an invertible R(z) € V ® V((27!)) such that
A%(a,z) = R(z)A(a, 2)R(z)™ (A.8)
for all a € V', as well as compatibility with T’
(T @id)R(2) = R(z +w)(e"’ ®id), ([d®e"R(z) = R(z—w)(id®e“"). (A.9)
It is a quasitriangular vertex bialgebra if in addition the hexagon identities hold
(A(2)®id)(R(w)) = Riz(z+w)Ras(w), (Id®A(2))(R(w)) = Riz(w)Ri2(w—2z). (A.10)
A.2.19. Almost locality. There is another possible generalisation that does not require the

algebra structure on V. A vertex coalgebra V' is called weakly almost local if there is an invertible

k((z!')) linear endomorphism S(z) € EndV ® V((271)) such that
A%P(a,z) = S(2)- Ao, 2)
for all a € V', as well as as well as compatibility with T’
(e"T®id)S(z) = S(z+w)(e"" ®@id), (id®@e*N)S(z) = S(z—w)(id®e*T). (A.11)
It is a weak quasitriangular vertex coalgebra if in addition the hexagon identities hold
(A(2) ®id)S(w) = Si3(z + w)Sas(w), (d®A(2)S(w) = Siz(w)Siz(w —2). (A.12)
Our computations in section A.2.12 show that

Proposition A.2.20. Consider Joyce’s nonlocal vertex coalgebra structure on H* (M) of Theorem

2.6.18. It is weakly almost local, for

S(z) = W(c*0Y,2)/V(0,2).

Proof. Compatibility with 7" and the hexagon identities follow from the Commutation Lemma

2.6.19. That A?(«a, z) = S(z) - A(«, z) holds follows from section A.2.12. O
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A.3 Representations of a holomorphic vertex bialgebra

Before discussing spectral monoidal categories in the next section, we write down the motivating
case, with the main example being the Hopf algebra structure on H*(M) given by @* and cup

product (see section 2.6).

A.3.1. Let H be a holomorphic vertex bialgebra (in any background & linear symmetric monoidal
category V), or equivalently a cocommutative bialgebra H along with a derivation 0. Write
€ = H-Mod; for the category of modules with derivation over the underlying associative algebra.

This is symmetric monoidal.

The motivating question is: what extra structure does the holomorphic vertex coalgebra structure

endow to CG?

A.3.2. The product ®.. To begin with, for any H modules M, N, the vertex coalgebra map
AlzY : H - H®H[[z]]

gives a map

H®M®N) — (Mo N)[[-]]
or equivalently, a &[[2]] linear map
H®M@N)[[z]] - (MQN)[[]]
compatible with the algebra structure of H. Thus, we get
(M@ N)[[2]] € H-Mod(k[[2]]-Mod)

where H is endowed with a trivial k[[z]] module action. In particular, endowing k[[z]] with a

trivial H module structure,
H-Mod(k[[z]]-Mod) = H®k[[z]]-Mod = k[[z]]-Mod(H-Mod) = k[[z]]-Mod(C),

which we have previously denoted C[[z]]. Thus, we get a binatural functor

Definition A.3.3. If H is a holomorphic vertex bialgebra and € the category of modules over the

underlying associative algebra, we set

®: = ()@ NI = €x € — C[f]].
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We then see that

Lemma A.3.4. ®. is a lax monoidal functor.
Proof. Given modules M, My and M], M}, we have a natural map
(M, @ Mp)[[2]] @ (M} @ Mp)[[2]] — ((M1 @ M]) ® (Mo ® My))][=]]
and le.y) = k — le ®: le = k[[2]]. It is easy to check associativity and unitality. O

In particular, this allows us to compose the functors ®, and ®,,:

= (k[[=]], k)-Mod(€ x €)
Ry (k[[2]] ®w k)-Mod(C[[w]])

= k[[z, w]]-Mod(C[[w]])

[
= K[[z]]-Mod(€[[w]])
= Cffzwll.

We have used that ®,, is lax monoidal hence induces a map on module categories. The result of
the above will be denoted ®,,(®.,id), and similarly for other compositions. To be very explicit,

this functor is induced by the map

A(w™1)

H %Y (He H)[[w]] 2C%

(He H)[[]l@ H)[[w]] — (H®H® H)[[z,w]]. (A.13)

A.3.5. Note that strictly speaking ®,(®.,id) is an abuse of notation, since the functors ®,, and
(®.,1d) are not composable: instead of ®,, we more precisely mean the map induced by ®,, on

module categories. Note that we have

o CllITxC o e[z ]
Z’/ \oblv
CxCxQC C
e

(oblv,id) Cx@ Qw e[[w]]

T
S el < e

so that the upper composition (which we are referring to as oblv composed with ®,(®,,id)) is
computed by applying (®.,id) then forgetting the k[[z]] module structure, then applying ®,, and
forgetting the k[[w]] module structure.
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A.3.6. Associativity. We may consider ®,,(id,®.) and ®,(®,,id). These give two different H
module structures on (L ® M ® N)[[z,w]] € k[[z, w]]-Mod, one induced by (A.13) and the other
by

A(w™1)

H %Y (He H)[w]] "2

(He (H@ H)[[zIDllw]] — (H®H® H)[[2,w]]. (A.14)

where oblv is the forgetful functor. In our notation above, these module structures are denoted
(L®, M)®, N and L ®, (M ®, N). Notice that the two variables have swapped. Thus, we get

two different functors which we denote

CxCxC — C[[zu]] (A.15)

A.3.7. To understand (A.15), it says that there are two actions of h € H on the vector space
L® M ® N . Firstly, the H module structure on ((L ® M) ® N)[[z, w]] is as multiplication by

(e’ ®id®id)(A®id)(e*? ®id)Ah = ("7 ®¢*? @id)(A ®id)Ah, (A.16)

where we have used Ae*? = (*? ® e*%)A, and secondly the H module L ® (M ® N)[[z,w]] is as

multiplication by
(id® e’ ®id)(id ® A) (e ®id)Ah = (e* ® "’ ®id)(id ® A)Ah. (A.17)
These differ by an (invertible) factor of (¢*? ® e* )7 @ id).

A.3.8. Before we define the analogue of an associator «, we first need a commutation Lemma

Lemma A.3.9. Let (A,0) be an associative algebra with derivation and (M, dy) an A module
with derivation. Then as elements of End(M][[z]]), for each a € A we have

(ezaa) — 62:91»1 -aq - 67251\4.
Proof. Follows from the definition oy (h-m) = d(h) - m + h - dpr(m) of compatible derivation. [

Comparing equations (A.16) and (A.17) and applying Lemma A.3.9, it then follows that

Corollary A.3.10. If L, M, N are H modules with compatible derivations, then there is an

k[[z, w]] linear isomorphism

apun(zw)  (LQM)QN)[[z,w]] = (L& (M@ N))[[zw]]
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sending
(1@m®n) — (e M id)(lQmen),

moreover it is an isomorphism of H modules

aL,M,N(Z;w) . (L®2M)®wN = L®w(M®zN)

Again, notice that the variables z, w have swapped. Here we have suppressed the identifications
(LM)®N ~ L®(M® N) coming from the background symmetric monoidal category from

the notation.

Note that the above does not mean that H-Mod is a symmetric monoidal category, since we had
to adjoin the formal variables z, w. In that case, how do we think about this structure? Answering

this question is the point of the next section A.4.

A.3.11. Failure of the naive pentagon identity. For any objects c1, ca, c3, ¢4 of C, we would

like the following to commute

Qe @uen,eg,eq (251)
(c1 Qu €2) ®. (3 Qu Ca) 18wez.cs,cat™y ((c1 ®u €2) ®y €3) ®. ¢4)

Acy,eo,c3@cq (va) &CQ,C:g (wyu)®zid

1 ®, (2 Ry (c3 Ry ¢4)) (1 ®y (2 Ry 3)) ®, ¢4

y
id@zacg,C3,C4 (wyu) ,””’, a61,C2®uC3,C4(Z7w)

1 ®; ((c2 ®y 3) Ru 1)

However, the dotted arrow is not defined, since its codomain should be (¢; ®, (c2 ®, ¢3)) &, c4.

To resolve this, we thus need a way by which we can switch the variable order.
A.3.12. Variable commutativity. Let L, M, N be H modules with a compatible derivation.
Then h € H acts on L ®, (M ®, N) as multiplication by
(d® e’ ®id)(id ® A) (e @id)Ah = (¥ ® "’ ®id)(id @ A)Ah.
and acts on L ®,, (M ®, N) as multiplication by
(d® e ®id)(id ® A) (e’ @id)Ah = ("’ ®e* ®id)(id @ A)Ah.
Thus we have another Corollary of Lemma A.3.9

Corollary A.3.13. If L, M, N are H modules with compatible derivations, then there is an

k([z, w]] linear isomorphism
YL (zw) s (L@ MN))[[zw]] = (L& (M N))[[zw]]
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sending

(1@m®n) — (™%l M id)(lmen),

moreover it is an isomorphism of H modules

’YL,M7N(Z7w) . L@z(M®wN) = L®w(M®ZN)

It is then straightforward to check

Proposition A.3.14. For any ci,ca,c3,c4 € C, the modified pentagon identity

c1®uweg,c3,c4 (z,u)
_—

(c1 Qu C2) ®. (c3 ®y 04)a ((c1 Ru €2) Ry €3) ®, ¢4)

Qcyeq,e3 (W,u)®,id
acl,c2,c3®uc4V \
(€1 ®u (2 R 3)) V. ¢4

¢1 ®: (2 ®u (3 ®u 1)) Ter e 63 (ww)®:id

(€1 R (2 ®y 3)) R ¢4
id@zac ,c3,C (w’u)
2,€3,¢4 //aw/®uc?,,C4(Z,w)

1 ®; ((c2 ®y c3) Oy 1)
(A.18)

commutes.

Note that if we ignore the explicit forms for v and «, the content of this Proposition is that
the modification needed to make the pentagon identity commute only depends on the first three
factors and on u, w. We do not preclude the fact that there may be further compatibilities between

~v and a.

A.3.15. Similarly, conjugating v by « gives an isomorphism of H modules

Youn(zw) @ (LR&IM Ry N = (LQy M)®: N.

A.3.16. Units. Note that there is no obvious analogue of a right unit. However, there is a quotient

map

M®,1le ~ M[[z]] - M

where h € H acts on M[[z]] as multiplication by (e**h) and k[[z]] as multiplication by z, and

k[[z]] acts trivially on M. Similarly, there is no left unit but an isomorphism
k. M ~ MI[t]]

where the right hand side is triv(oblvM[[z]]), i.e. equal to M[[z]] as an element of € but with
the trivial k[[z]] action.
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A.3.17. Symmetric structure. There is also an analogue of a symmetric monoidal structure.

Proposition A.3.18. If M, N are H modules with compatible derivations, then there is an iso-

morphism of k[[z]] modules
mun(z) © (M@N)[[2]] = (N @ M)[[-]]

sending

(m®n) — (e’zaN ® ezaM) (n®m),

moreover it is an isomorphism of H modules

TM,N(Z) c M®, N = N®, M.

It is easy to check that

Proposition A.3.19. For any ci, ca, c3 € C, the modified hexagon identity

Te1®zca,c3 (w)

(1 ®u 2) ®; 3 —— 3 ®y (1 ®; 2)

Qcg,cq,co (w,z)
Qcq,eg,c3 (z,w)
(c3®; 1) O C2

C1 ®z (02 ®w C3) T’Yc3~,cl,62 (z,w)
\ (c3®. c1) Qu C2
1d®2Tey,cq (W) /
2,3 ) o) Tep,e3(2)®zid
01 ®. (c3 Qu €2) —— (1 Qu 3) ®. 2

commautes.

(A.19)

A.3.20. We remark that it is clearly an interesting question to ask what analogous structure the

category of modules of a non holomorphic vertex bialgebra has, with the expectation that it is

likely to be easier to work over the Ran space instead of piecemeal definitions involving power

series. Also note that the above does not trivially generalise upon replacing C[[z]] with €((z)),

since C((z)) does not inherit a symmetric monoidal structure from € as k((z)) does not have a

natural coproduct and hence is not naturally a cocommutative bialgebra.

A.4 Spectral symmetric monoidal categories

Our definition of spectral symmetric monoidal categories is set up to describe the naturally arising

examples we consider in section 2.6. One hopes that it is related to a (unmade as far the author
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knows) definition of a symmetric or braided monoidal category “over the Ran space of a curve,

factorisably”.

Spectral R matrices and spectral Yang Baxter equations were first discovered by Cherednik [Che].

Our definition is potentially related is Soibelman’s [So| definition of a meromorphic tensor category.

We recommend reading section A.3 first, since that section contains the main example; this section

is just an axiomatisation of that one.

A.4.1. Spectral monoidal category.

Definition A.4.2. A spectral monoidal category is a k linear symmetric monoidal category € with
a lax monoidal functor

®. : CxC — C[[z]]
together with natural isomorphisms*
Oy enes(2,0) 0 €1 @z (2@ €3) = (€1 Qu €2) @ C3

Vernenes(Z,0) 1 01 @, (2 R c3) = 1 Ry (2 ®,, ¢3)

for all ¢, ¢y, 2, c3 € C, where «, 7y are isomorphisms in the category C[[z, w]], satisfying the spectral

pentagon identity (A.18) for all ¢y, o, c3, ¢4 € C. 1t is called unital if there are natural maps
Ae(2) @ 1e®.c > ¢ pe(2) 1 c®, 1l — trive

satisfying the spectral triangle identity

acl,le,cg (sz)

C1 ®z (16 ®w C2) ” (Cl ®w 1@) ®z Co
id@)\m pey (w)Rid
1 Q. C

for all ¢1, ¢ € C.

A.4.3. Via the functor triv : € — C[[z]], we may identify monoidal categories as (fairly trivial)

examples of spectral monoidal categories, whose tensor product does not depend on z.

A.4.4. Let H be a holomorphic vertex bialgebra. Then the purpose of section A.3 was to show
that the category H-Mody of H modules with compatible derivation is a unital spectral monoidal

category, with

M®,N = (M®N)[[z]] h-(m@n) = ((?®id)Ah) - (m@n).
L As before we have written c[[t]] = triv(oblve[[2]]).
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A.4.5. However, we note that H-Mod, is also a (nonunital) spectral monoidal category for the

product

M®,N = (M®N)((2)) h-(m@n) = ((*®id)AR) - (mQn).

A.4.6. More generally, if A is any k[[z]] algebra then
M® N = (MQN)®QA h-(m@n) = ((¢*@id)(Ah®14)) - (M@n)® 14

defines a spectral monoidal structure, where z0 = z® 0 is an endomorphism of H ® A. It is unital

if there is a map of k[[z]] algebras A — k.

A4

Definition A.4.8. Let € be a spectral k linear monoidal category. A spectral symmetric monoidal

structure on € is a k((z)) linear binatural isomorphism
Teres(2) 0 1@, 00 = ®, 0

with symmetry condition ., c,(2)Te,.e, (—2) = id, satisfying the spectral hezagon identity (A.19)
and the following commutes

1@®zcne’—C(Z)> 1€®zc

Ac(zx AZ)
c

for all ¢ € €, which we write as p.(2)71,.(2) = A\(2).

A4.9.

Definition A.4.10. Let C be a k linear spectral monoidal category. A spectral braided monoidal

structure on € is a binatural isomorphism

Beren(2) 1 1 Q00 = 2Q;

and satisfying the spectral hexagon identities: (A.19) and

170



Bc ,co®zc
1,¢2® 3(w)(

1 Qu (2 ®; c3) C2 ®, 3) Qy 1

Qcg,c3,cq (w,2)~!
0‘01,02703(1”72)_1 \
Co ®w (Cl ®z 03)

(C]_ ®Z 02) ®w C3 ﬁc3’C1762 (Z7w) (AZO)

2 ®; (3 ®y 1)
ey ca )i o
id@z/gcl,t:3 (w)

Qeg,cq,e (w,z)’1
(CQ ®z Cl) ®w C3 2L> C2 ®w (Cl ®w C3)
)

and finally p.(2) = Ac(2)Bee(2) and Bo.o(—2)pe(z) = Ao(2).

A.4.11. Vertex coalgebras in a general spectral symmetric monoidal category. Let C be

a spectral symmetric monoidal & linear category, and denote 1¢ = k.

Definition A.4.12. A (nonlocal) vertex coalgebra in € is an object ¢ with a map in C
A(z) : ¢ - ¢®,c

as well as maps (0] : ¢ = k and T : ¢ — ¢, satisfying the analogous axioms to those in Definition

A.2.5 (A.2.8). Here we have written ¢ ®, ¢ for oblv(c®;, c).

A.4.13. Taking € = Vect,, recovers the usual definition of coalgebra, holomorphic vertex coalgebra

and vertex coalgebra, by taking

A.4.14. Let € = H-Mod; be as in section A.3 and 7 is the spectral symmetric braiding as in
section A.3.17. If we are in Joyce’s example where H = (H*(M),-,®*) and V = H*(M) is as in

Theorem 2.6.18 then the commutation relation
(e @e)V(0,2) = ¥, —2)(e " ®e*)

implies that
aA(—z)ezT = vy (2)A(2).

In particular, this suggests that the opposite of a vertex coalgebra as in Definition A.4.12 should
be defined as 1y (2)A(z) .
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A.5 Yang Baxter matrices

A.5.1. Let V be a symmetric monoidal category, with symmetric braiding o.

Ab52. Let H = (H,-,®*) be a cocommutative bialgebra in V, and R € H ® H an invertible

element with:
1. o®* (h) = R®* (h)R™!, e.g. R is central (since @* cocommutative).
2. R satisfies the hexagon identities

(@ ®id)(R) = Rizla (iId®®*)(R) = RizRu, (A.21)

where for instance R, means R® 1.
It follows that

Lemma A.5.3. R satisfies the Yang Baxter equation
RigRi3Ro3 = RazRizRio. (A.22)
Proof. We have

RisR13R23 = Ri2(®* ®1d)(S) = (0 @" ®id)(S) Rz
= RozR3R1s.

Definition A.5.4. Such an R € H ® H is called a Yang Baxter matrix.

Lemma A.5.5. There is an equivalence of categories between symmetric monoidal structures on

C = H-Mod and invertible elements R satisfying 1. and 2.

Proof sketch. Any such R induces the braiding, denoted g,
Brun : MON &5 MQN 5 N@ M.

Conversely, if § is a braiding, we can take R = oy g (1). ]
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A5.6. Let A be a cocommutative coalgebra in (H-Mod, g). Equivalently, this means it is a

coalgebra with
1. BrA(a) = A(a) for all a € A.
2. 0A(a) = R"'A(a) for all a € A.
Lemma A.5.7. If A is in addition a cocommutative bialgebra, R satisfies the A hexagon identities
(A®id)-S = Ri3Ry3 - (A®id) (d®A)-S = RizRi2- (A®id)

as morphisms A%? — A®3,

Proof. By H linearity we have A(ah) = @*(a) - A(a), then the Lemma follows by the @&* hexagon
identities (A.21). O

A.5.8. Spectral Yang Baxter matrices. Let V be a background £ linear symmetric monoidal

category with symmetric braiding o.

A59. Let H=(H,-,®* T) be a cocommutative bialgebra with derivation in V. Equivalently, H

is a holomorphic vertex bialgebra with
®*(2) = (" ®id)- @ : H > H®H|[[z]].
A.5.10. We endow the category € = H-Mod,; of H modules with a compatible derivation with
the spectral monoidal structure M ®. N = (M ® N)[[2*!]]. Thus @*(z) can be viewed as a map
@®(z) : H > H®. H.

Since ®, is lax monoidal, there is an algebra structure on H &, H, and for any modules M, N €

H-Mody, M ®. N is a module for this algebra.

Definition A.5.11. A spectral Yang Baxter matriz is an invertible element R(z) € H ®, H or
invertible map R(z) : H®, H — H ®, H in C[[z]], with:

1. @*°P(h,z) = R(z) ®* (h,2)R(2)7", e.g. R(2) is central.”
2. R(z) satisfies the spectral hexagon identities

(@ (w) ®: 1d)(R(2)) = Ris(z +w)Ras(2) (id ®. ®"(w))(R(2)) = Ruis(2)Riz(z — w).

2Since @*(z) is a (local) vertex coalgebra and so @*(z) = @*°P(z).
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Here we have denoted Ry3(z + w) and Ras(z) for the images of R(w) ®, id and id ® R(w)

under

A7, 1 (w

(H@uH)®.H > H®, (H®w H) """ He, (Ho,H) > (H®wH)®., H

H®. (H®,H) - (H®,H)®.H

respectively, and likewise for Ry3(z2) and Rya(z — w).?

A.5.12. In our running moduli stack example H = (H*(M),®*,-), the hexagon relations are
satisfied by R(z) = ¥(V, 2) or R(z) = U(W, 2)~! for any V, W € Perf(M x M) with BG,,, weights
(—1,1) and (1, —1) respectively. In this case, we can understand the above notation in the hexagon

identities more easily: as an element of H ® H ® H we have
for any variable ¢, where m;; : M® — M? is the ijth projection.
A.5.13. When R(z) is an endomorphism that is not simply multiplication by an element in the

algebra structure of H ®, H, we sometimes also denote it by S(z).

Lemma A.5.14. R(z) satisfies the spectral Yang Baxter equation

R12(Z)R13(Z + UJ)RQg(’U)) = RQg(U))ng(Z + U))ng(Z). <A24)

Lemma A.5.15. Invertible elements (or endomorhisms) R(z) satisfying 1. and 2. induce a
spectral symmetric monoidal structure on the cateqgory H-Mod, of H modules with compatible

derivation.

Proof sketch. Any such R(z) induces the braiding, denoted Sg(z),

Braun(z) : M. N "9 Me. N

T, N (2
—

' N®, M.

We expect that the converse to this Lemma is also true.

3These definitions are made precisely so that if we take the spectral hexagon identities (A.19), (A.20) and replace
7(z) with R(z)7(z), then the diagrams still commute.

174



A.5.16. Let V be a local vertex coalgebra in (H-Mod, fr(z)), see Appendix A. Equivalently, this

means it is a nonlocal vertex coalgebra with
1. Br(z)A(e*Ta, —2) = A, 2) for all « € V.
2. A%P(a,z) = ocAl(e*Ta,—2) = R(2) 'A(a, 2) for all a € V.
Lemma A.5.17. If V is in addition a local vertex bialgebra, R(z) satisfies the A(z) hexagon

identities

(A(2) ®id) - R(w) = Ri3(z +w)Ros(w) - (A(z) ®id), (A.25)

(d®A(2)) - R(w) = Riz(w)Riz(w — 2) - Id ® A(2)). (A.26)

A.5.18. We note that there is a discrepancy with section A.2.19. Indeed, one would hope that

Joyce’s nonlocal vertex coalgebra structure on H*(M) is almost local, for the same
S(z) = V(0,2)/¥(c"0, 2)

as appearing in Theorem 3.10.1, which defines a spectral symmetric monoidal structure on €.
However, Joyce’s nonlocal vertex coalgebra structure is actually almost nonlocal in the sense of
section A.2.19 for

S(z) = V(0,2)/V(c%0Y, 2).

Note that §,0*0 both have weights (—1, 1), so this second expression for S(z) cannot be expected
to satisfy the hexagon relations. This suggests that the definition of almost locality in a spectral
monoidal category should be possible to make, but is different from that definition appearing in

section A.2.19.
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Appendix B

Kac Moody algebras

Studying Kac Moody Lie algebras gives a common framework under which to study both the Lie
algebras of finite dimensional algebraic groups G and of their loop spaces LG, centrally extended.
Despite sometimes being infinite dimensional, they are almost as well behaved as finite dimensional

Lie algebras, e.g. in their representation theory.

In this section we give a brief review of Kac Moody algebras and their representations. See e.g.

[Ca, Kac, CP] for more details.

B.1 Finite dimensional Lie algebras

For motivation we begin by reviewing some facts about finite dimensional Lie algebras. We will

work over an algebraically closed ground field of characteristic 0.

B.1.1. Let g be a finite dimensional semisimple Lie algebra. Pick a Borel subalgebra b < g
(sometimes denoted b*), and an opposite Borel subalgebra b~. Their intersection b* n b~ which
is a Cartan subalgebra, denoted t. Write n and n™ for the unipotent radicals of b and b™; we have
n = [b,b], and
g=1n ®tdOn".
The action of t splits g into eigenspaces
g = t&D
acd
and the nonzero eigenvalues & < t* are called roots. They consist of positive and negative roots

d+ C P, defined as the eigenvalues of the action of t on n*. A positive root which is not the sum
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of any two other positive roots is called a simple root, write {«;} € ®* for these.

Their Z span of the roots forms a lattice called the root lattice A < t*, and the cones associated

to ®* are denoted A%. The simple roots form a basis for A.

B.1.2. For example, g = sl, splits into three one dimensional eigenspaces

e h f

and the there is one irreducible representation of sly for each dimension n > 0, whose one dimen-

sional h-eigenspaces are

-n  —n+2 n—2 n
o -
[ [ [ ] [ ]
~_ ~ —~ Y~

where we have labelled the eigenvalue (or weight) and represented the action of e and f on the

eigenspaces by left and right moving arrows. The roots are ® = {£2} and the root lattice is
A = 27Z.

B.1.3. Returning to the general case, dimg, = 1 for any root a. By the Jacobson Morozov

theorem there is a unique copy of sly

5[2,a = k{fauhomea} c g

where f, and e, lie in the eigenspaces g_, and g,. Requiring that a(h,) = 2 uniquely determines

these three generators, and implies
a(hg) = weight of gz under the action of sly,, on g.

The set of the h, are called coroots and are denoted ®¥ < t, and their Z span is the coroot lattice

AV ct.
B.1.4. The Cartan bilinear form on A is defined on positive roots by
A AxA - Z (a, B) — alhg)

and extended it to all of A by linearity. It is not symmetric in general. With respect to the basis of

simple roots «y, it is represented by the matrix A;; = A(w, @;), which one can show is an example
of
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Definition B.1.5. A generalised Cartan matriz is an integral matrix A;; with A; =2, A;; <0

for i # 7, and Aj = 0 whenever A;; = 0.
Indecomposable generalised Cartan matrices split into three classes:
1. Finite if all principal minors are positive.
2. Affine if all of its proper principal minors are positive and det A = 0.
3. Indefinite otherwise.
If g is a simple finite dimensional Lie algebra, its Cartan matrix has finite type, and conversely

Theorem B.1.6. There is a bijection between simple finite dimensional Lie algebras and inde-

composable generalised Cartan matrices which have finite type.

B.2 Kac Moody algebras

The inverse construction producing a Lie algebra from Cartan matrix works for any n x n matrix

A. The resulting Lie algebra g(A) is called the Kac-Moody Lie algebra attached to A.

B.2.1. First, we take the Cartan t(A), which is a vector space of dimension
dimt(A) = n + corankA,

along with subsets {hy,...,h,} < t(A) and {oy,...,a,} S t(A)* with o;(h;) = Aj;. There is a
unique choice of this data up to isomorphism. Then we form the Lie algebra go(A) with so-called

“Chevalley” generators e;, h;, f; and relations
[hzahj] = 07 [hHe]] = a](hz)eja
lei, ;] = dizhi, [hi, f5] = —a;(ha) fj.

Writing v for its maximal ideal, the Kac Moody algebra is g(A) := go(A)/t. When A is indecom-
posable of finite type, v is generated by the Serre relations for ¢ # j:

(ades)Ae; = (adf)A5f; = 0.
B.2.2. Write n (or n*) and n~ for the subalgebras generated by the e; and the f;, respectively.
For all Kac Moody Lie algebras g = g(A) we have
g=nOtdnt. (B.1)
Similarly, we can write b and b~ for the direct sum of n and n~ with t.
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B.2.3. A well behaved category of representations is category O. Its objects are representations V'
on which t acts diagonalisably with finite dimensional weight spaces, and so that the set of weights

with nonzero eigenspaces is contained in the downward closure of a finite set Ay, ..., A; € t*.
The Verma module of weight \ € t* is

My = IndjDky

where we have composed b — b/n ~ t to get a one dimensional representation of b. Its simple

quotient is written Ly. It is easy to check that both live in category O.

Theorem B.2.4. [Kac, 9.3] The Ly are the irreducible representations in O.

B.2.5. The Cartan matrix is related to the the Killing form. If g is finite dimensional it is the

invariant bilinear form defined by

K:gxg — k (z,y) — try(zy)

and if g is simple it is the unique such form up to scaling. For any matrix A which is symmetrisable
(the product DS of an invertible diagonal matrix D and a permutation matrix ), the Kac Moody
algebra g(A) also carries an invariant bilinear form by [Kac, 2.2]. Its restriction to the Cartan

determines the Cartan matrix

(ai7 aj)

(a’ia ai) .

When g = sly we have (h,h) = 8, (e, f) = 4 and other products are zero. Its Cartan matrix is
A= (2).

A(Oéi, Oéj) = 2

B.3 Affine Lie algebras

The Lie algebras of loop spaces LG give rise to Kac Moody algebras of affine type. In physics one
studies projective representations of LG, or equivalently representations of a central extension of
LG.
B.3.1. The loop algebra of a finite dimensional Lie algebra g is

Lg = g® k[t,t ']

Writing x,, = x ® t", the Lie algebra structure is given by [, ym] = [2,Y]nim- Fix an invariant

bilinear form « : g x g — k. The affine Lie algebra is the central extension
0 > ke > g —> Lg — 0,
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and having choosing a splitting as a vector space, its Lie bracket is

[Z0, Ym] = [T, Ylntm + n0pymor(x, y)c.

B.3.2. Central extensions are classified by H?(Lg, k). Attached to s we get the residue two cocycle

f(@) A gt) — Resi—or(f'(t),g(t))dt

and g is the resulting central extension.

B.3.3. When g is simple we can (non-centrally) extend once more to get a Kac Moody vertex
algebra

where [d, —] acts on g as td;, so in particular z,, is an eigenvector with eigenvalue n.

Proposition B.3.4. [Kac, §7.4] g’ = g(ﬁ) is a Kac Moody algebra with Cartan matriz
i 2 —0(hy)
—Oéi(hg) Aij
Its Cartan subalgebra is
tA) = t@®kc®kd,

within which the simple coroots are hg = ¢ — hg along with the simple coroots h; of t. Likewise,

~

using the the dual basis t(A)* = t* @ kc* @ kd* we have simple root ag = d* — 60, from which we
can deduce the form of the Cartan matriz above. Writing e;, f; for the Chevalley generators of g,

the Chevalley generators of g’ are

E; = e, F; = fi, Ey = ¢®t Fy = [t
where eg € g_g and fy € go form part of an sly triple where 6 is the highest root of g.
One usually denotes A = ¢*.

B.3.5. For instance, in the §[2 case the Chevalley generators are e, f_; = f®t ! and e; = e®t, f.

Thus, we can draw the weight space decomposition of 5A[2 as

[ ] [ ] {C f: ! [ ] [ ]
[ ] . [ ] . 6.1 . ? . [ ] . [ ]

This picture is a subset of the two dimensional space t* @ kd* < t(ﬁl) with horizontal and vertical

axes given by the oy and «; coefficients.
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B.3.6. The triangular decomposition (B.1) for affine vertex algebras given by the Chevalley gen-
erators in equation

g = (gt jen )@ (t@ke) ® (n. ®1g[t]).

In the 5A[2 case, this corresponds in the root space picture to negative, zero and positive values of

the horizontal coordinate.

B.3.7. Representations. Since ¢ € g is central, it acts on any irreducible representation of g
by a scalar, which is called the level of that representation. Thus irreducible representations are

parametrised by levels £ € k and a weight A € t* of the finite dimensional Lie algebra.
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Appendix C

Fundamental classes and the exponential

map

This appendix collects a lot of the technical machinery we will need. If s : Z — X is closed
embedding of Artin stacks, in the first two sections we construct the cohomological exponential
map
H(exp,) : H*(Z/X) — H*(Z/Ngx)

and explain how it interlaces to the bivariant Euler classes (Definition 3.2.4), and, when it is
defined, fundamental classes (Definition C.4.1)

e(Z/X) : H'(Z/X) — H'(X), [2/X] - HY(2) - H'(Z/X),
with e(Z/Ny) and [Z/N].
We also give relative statements of these results. In practice, often the closed embedding s is not
quasismooth but the individual spaces Z and X are (over some common base), and so although

the fundamental class [Z/X] is not defined, [Z] and [X] are. In this case, we say how the

cohomological exponential map interlaces [Z] and [X].

In the last two sections, we record the construction of fundamental classes and umkehr maps for

the reader’s convenience.

C.1 Toy model: topological case

If i : Z — X is a closed embedding of manifolds, we can define the exponential map on an open

neighbourhood of Z inside the normal bundle N;
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N;

1
|
I exp

4 \ i
X
By the tubular neighbourhood theorem, exp gives is an open immersion of manifolds. If exp were

to extend to the whole normal bundle, we would get a fundamental class
[Ni/X] e H'(N;/X),
multiplication by which is compatible with Euler and fundamental classes
H*(Z) ——— H"(2) H*(Z) =——— H"(2)

(
~e<Z/X>l le(Z/Nn [Z/X]l l[Z/Ni] (C.1)
1 (Z/X) & g2/ 0 e(z/x) &2 e z/Ny)

Here c is the real codimension of the closed embedding.

C.2 Cohomological exponential map

In algebraic geometry we cannot define an exponential map. Fortunately, we can in algebraic

geometry define analogues of the horizontal arrows in (C.1).

Let s : Z — X be any map for which deformation to the normal complex is defined, e.g. closed

embeddings of finite presentation or quasismooth maps. Define the cohomological exponential map
exp : H(Z/N,) —» H'(Z/X)

by composing the two dotted arrows

(7 /X)) 4 mmmmm e H*(Z % Gp/X % G)
wXAl} V
H(Z/X x AY) 220102 « Al/X x A1)
and
H*(Z % G/ X % Gip) 4 mmmmmmm oo H*(Z/N,)
Z/Zx Al

H.(Z X Al/DS) [ﬁ
The first dotted map is defined by picking a retraction of j% ,:, so the the map is independent
of this choice. Note that N, — D, is the pullback of 0 — A!, so is quasismooth and has a

fundamental class.
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It is easy to show that

Proposition C.2.1. If i : Z — X is a closed embedding of finite presentation (resp. and is

quasismooth), we have the left (resp. and the right) commuting diagrams

H*(Z) =——= H"(2) H*(Z) =————= H"(2)
-e<Z/X>l l-a(Z/Nn [Z/X]l l-[Z/Nd (C.2)
H*(Z/X) «—— H"(Z/N;) H™(Z/X) +—— H"(Z/N;)

Proof. Follows from the compatibility of Euler and fundamental classes, and for the right diagram,
the composition rule for fundamental classes. O
In particular,

Corollary C.2.2. (Cohomological tubular neighbourhood theorem) If Z and X are smooth, exp
1s an isomorphism. More generally, if Z — X and Z — N; are specialised, then exp is an

1somorphism modulo torsion.
Moreover,

Proposition C.2.3. Ifi : Z — X is a closed embedding of finite presentation over a base B.

Then if Z, X are quasismooth over B, we have a commuting diagram

H'(Z/B) === H"(Z/B)
[X/B]T T N/ (C.3)
H(2/X) < (/N

Note that the assumptions of the Proposition imply that N; — Z (and so N; — B) is quasismooth.
Finally, we note a functoriality statement

Proposition C.2.4. If s is any map as in (C.2), then any pullback

7 25X H*(Z/N5) —= H*(Z/X)
l? lf gives commuting diagram I* f*T
7 — 5 X H*(Z/N,) —2 H*(Z/X)

where we have denoted [ : Ng = N xz 7 — N,.

Proof. Follows since the construction of D, is stable under arbitrary base change of X. O
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C.3 Borel Moore variant

Let s : Z — X be any map defined over base space B for which deformation to the normal complex

is defined, e.g. closed embeddings of finite presentation or quasismooth maps.
Assume that the localised pushforward along ¢ : N, — D, vanishes:

i H(Ny/B)oe — H'(Dy/Bic.
Define the (Borel Moore) cohomological exponential map

exp : H(X/B). — H(N,/B)ioe

by composing the two dotted arrows

%‘Aw

H*(X/B x A e LA (X % AY/B x Al
and
HO(X % G/ B # Gy )ige —-mmmmemmrmemmmemmemem e  H (N /Bl
w [Ny
[B/BxAl]

H.(DS/B X Al)loc —

Our assumption allows us to take a section of j; . as before.

C.3.1. Assume that Z, X are quasismooth over a common base. Then D, — X x A! is quasismooth

and we have a commuting diagram
H*(Z/B)oc —>— H*(X x A'/B)jge — H"(X X Gp/B)ioe ——
l{Ns/zy j{Ds/XxAl}- H
H*(N,/B)ioe —*— H*(D,/B)ioc ——— H'(X % Gp/B)ioe —

and the following are equivalent: 7, = 0, j* is an injection, or either vertical map is an isomorphism.

C.4 Virtual fundamental classes

We recap the construction of the (virtual) fundamental class from [Kh]. Let f : X — Y be a
quasismooth map, which gives the deformation to the normal complex sitting in a diagram of

stacks over Y:
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Y x G, ;) Dx/y <Z— Nx/y

Consider the natural transformation ¢ = pp, /Y*(—)pbx/y. If we replace Dx/y with the trivial

family Y x A,
YxGm%YxAléY

we likewise get a natural transformation ;.. Then as endofunctors of Sh(Y') we have

¢triv(i*i!) = ld 77Z}(Z>X<Z') = pNx/y*p!I\IX/Y = f*f'<2d>

where we have used that Ny, — X is smooth of dimension d, and

2ﬂtriv(j*j!) = prGm*p!YxGm = w(]*j')

We now argue as for the construction of the cohomological exponential map, noting that for the

trivial family, in the Borel Moore distinguished triangle

N

id = j. = dd'1]

the boundary map admits a canonical section 7y, a1, see [DJK, 3.2.2]. Thus we have

wtriv('YyXAl w(an/y)

Ui (i) = )%iv(j*j’[—l]) = Y0g 1) =T e, (C.4)

Definition C.4.1. Let f : X — Y be a quasismooth map of relative dimension d. The funda-

mental class map is the natural transformation induced by (C.4) and (f*, f,) adjunction:

fr = f{2d).
Taking cohomology, the fundamental class [X/Y] e H?4(X/Y) is the the image of 1 € H°(Y).
Theorem C.4.2 ([Kh]). Let f: X — Y be a quasismooth map of derived Artin stacks. Then

1) Under any pullback of derived stacks

— W

g

N

— Y

we have [Z /W] = ¢*[X/Y].
2) Given two quasismooth maps X —Y — Z, we have [X/Z] = | X/Y]-|Y/Z].

3) (Purity) If f is smooth, the fundamental class f* = f'(2d) is an equivalence.
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Lemma C.4.3. If f: X — Y is smooth of relative dimension d, then the cup product
H'(W/X) = H*(W/Y) a = a-[X/Y]

s an isomorphism for any map g : W — X.

Proof. 1t follows from purity that
H.(Wﬂ!kX) = H.(W79!f*kY) = Hofzd(Wyg!f!kY)

]

C.4.4. The fundamental class induces a map f*ky — f'ky{2d), and one can show that the

fundamental class map is given in terms of it using the projection formula:

1) = fFO®fhy = FF()Ofhv2d) — f((-)@ky)2d) = f(-)2d).

C.5 Umkehr maps

C.5.1. Cohomology version. For any map f: X — Y and any F € Sh(Y), recall that we can
always define the pullback map
f* - H(V,F) - H(Y, [*F)
coming from the natural transformation id = f, f*. However, if f is quasismooth and proper of
dimension d we can use the fundamental class to define the wrong-way pushforward (or umkehr)
maps
fo o H(X, ') — HT(Y.9)

coming from the natural transformation

fof” B fp@dy = ff2d) = i),
It is easy to see that both pushforward and pullback maps are functorial with respect to compo-

sition of maps. Next, because of the compatibility of fundamental classes with pullback squares,

we have

Lemma C.5.2. For any pullback square

G v
boob
x 1,y

such that f (and hence f) is proper and quasismooth, g* f, = f,g* as maps H*(Z) — H*(Y).
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C.5.3. Borel Moore version. Likewise, for any proper map f : X — Y and any F € Sh(Y') we

have a map
fo o HY(X, f'F) — H(Y,T)

coming from the natural tranformation f,f' = id. If f is also quasismooth (and not necessarily

proper) we get the umkehr pullback map
5 HY(Y,F) —» H7(X, f'F)
coming from the natural transformation

id = £ 5L o,

C.5.4. This gives the usual pushforward and pullback maps for cohomology and Borel Moore
homology, e.g. [BM].
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