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Abstract

The content of this Thesis comes in three parts. Firstly, it shows a compatibility between two

structures on the homology of moduli stacks of certain codimension one categories: Joyce’s vertex

algebra structure and the cohomological Hall algebra (CoHA) structure. Our Theorem 3.10.1 can

be thought of as saying the homology H rpMq is a vertex analogue of a “quantum group” (i.e.

triangular bialgebra).

Secondly, the main technical work of this thesis builds up the machinery to let us compute cohomo-

logical Hall algebras using torus localisation. To begin with, we construct a “bivariant” Euler class

and use it to get a clean formulation of torus localisation for singular stacks. We then explain how

combining this, with stratifications of the stacks under consideration, allows us to compute their

CoHA products. We finish by using these techniques to give new formulae for CoHA products,

and a new interpretation of existing ones.

Thirdly, we turn to the question of q deforming Joyce’s vertex algebra structure. We interpret the

well known (q deformed) Frenkel-Segal-Kac free field realisation in terms of homology of moduli

stacks, then make steps to interpreting it as a map of q deformed vertex algebras.

The appendices include the categorical axiomatics needed to talk about vertex analogues of qua-

sitriangular bialgebras and related structures, as well as the construction of the “cohomological”

exponential map for algebraic stacks, which is needed to “linearise” closed embeddings by replacing

them with the associated normal bundle/complex.
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Chapter 1

Introduction

Vertex algebra is a rigorous definition of the “holomorphic part” of two dimensional conformal

field theories from physics [BPV]. They were discovered in the 90’s by Borcherds, Beilinson and

Drinfeld [Bo1, BD2] and are still at the forefront of our rigorous understanding of quantum field

theory. Today these ideas are spreading ever wider in mathematics [Ga4, GL, Groj].

Let M be the moduli stack of objects in an abelian or triangulated category A. Under some mild

assumptions, Joyce [Jo2] discovered that its homology H rpM,Qq is naturally a vertex algebra,

related to enumerative invariants of that category [GJT, Jo3].

Cohomological Hall algebras are a rigorous definition of “algebra of BPS states” from physics [HM].

The idea of Kontsevich and Soibelman [KS] is that, for certain abelian categories A, extensions

in A should put an associative algebra structure on something like the cohomology of M.

Thus, we have moduli stacks M whose cohomology H
r
pM,Qq carry two structures, Joyce’s vertex

coalgebra and the cohomological Hall algebra. How are they related? Our first goal is to show

that they form a vertex bialgebra, twisted by a braiding element Spzq solving the Yang-Baxter

equation. Our proof method is an application of the torus localisation formula, and gives new

formulas for cohomological Hall algebras, as well as new interpretations of results in [KS, Da].

Quantum groups are q-deformations of universal enveloping algebras discovered by Drinfeld [Dr],

and have since touched many areas of mathematics [EFK, RT, Wit]. There have been many

attempts to define similar q-deformed vertex algebras [EK, FR, Li2]. Our second goal is to show

how Joyce’s vertex algebras fit into this, giving new interpretations for old results [FJW1, FJW2]

as well as many new examples.
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Summary of contents

Chapter 2 introduces the main background concepts for readers who are unfamiliar with them.

To begin with we introduce vertex algebras through the lens of chiral algebras, which is more or

less the same as a vertex algebra but much closer to the relevant physics (which we also briefly

sketch). Then, we explain how to build a vertex algebra structure on the homology H rpM,Qq

of moduli spaces of abelian or triangulated categories A. Our approach is a little different from

[Jo2]. Finally, since many of our results will be insensitive to whether our spaces are for instance

topological spaces or Artin stacks, it makes sense to introduce the minimal structure (a sheaf

theory with the six functors) needed to define notions like “(co)homology” and “Borel Moore

homology” with the correct functoriality properties.

Chapter 3 builds up the tools to prove our main Theorem in which A is coherent sheaves on

a smooth proper curve or representations of a finite quiver. In the symmetric case when A is

representations of a finite symmetric quiver it states that

Theorem (Theorem 3.10.1). In the symmetric case, the cohomology of its moduli stack of objects

H
r
pMAq is a vertex bialgebra under Joyce’s vertex coalgebra Y _p�, zq and the cohomological Hall

algebra � structures, i.e.

Y _pα, zq � Y _pβ, zq � Y _pα � β, zq.

To start Chapter 3 we introduce the different types of cohomological Hall algebra that exist in the

wild. We then define the bivariant Euler class, which is the “correct” extension of the Euler class

to singular analogues of vector bundles. To justify this assertion we prove a number of properties:

a singular Whitney sum formula, compatibility with the fundamental class and compatibility with

deformation to the normal cone.

We then we turn to abelian localisation. After giving the proof for schemes in terms of the

bivariant Euler class, we explain how to think about abelian localisation for Artin stacks (Theorem

3.5.16). The statement is more subtle than for schemes because Artin stacks can have cohomology

in infinitely many degrees, and so it is no longer enough to just invert equivariant cohomology

classes on the point H
r
T pptq: we need to invert equivariant classes on the whole space which satisfy

conditions called concentration and specialisation.

Then we explain a method to compute CoHA products using abelian localisation. This recovers

and explains the explicit combinatorial formulas for CoHAs in the literature, e.g. [Da, KS]. As an

example, towards the end of the chapter we use it to give a new formula for the CoHA of a curve
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(Theorem 3.13.16).

We then check that the spaces appearing in our CoHAs satisfy the conditions which allow us to use

abelian localisation. We do this by proving a general result: for any space with a Bia lynicki-Birula

type stratification, if these conditions hold stratawise then they hold on the whole space.

The general case of Theorem 3.10.1 is more complicated when A is coherent sheaves on an arbitrary

curve or representations of an arbitrary quiver. It says we get a vertex bialgebra twisted by an

element Spzq:

Y _pα, zq �Spzq Y _pβ, zq � Y _pα � β, zq.

This can be viewed as defining an alternative vertex coalgebra structure on H
r
pMAq b H

r
pMAq.

We then build the categorical theory to show this is the same as a vertex bialgebra in a twist of

the underlying vertex symmetric monoidal category. This is analogous to the story for twists of

ordinary graded bialgebras.

The proof of Theorem 3.10.1 then proceeds by giving explicit formulas for both structures. Joyce’s

vertex coalgebra can be written in terms of Euler classes essentially by definition, which can be

compared to the Euler classes in our explicit formula for the CoHA which appear because the

formulas come from applying abelian localisation. Briefly, we pull back to the locus where the

middle term of the short exact sequence splits as a direct sum

ExtA ExtA �MA
pMA �MAq

ù

M2
A MA M2

A MA �MA

then notice a torus action on ExtA �MA
pMA �MAq coming from scaling the factors of the direct

sum. We prove in section 3.7 that the conditions of abelian localisation are met, then we use

our method of computing CoHAs by abelian localisation to give a formula for push-pull along the

above diagram on the right.

Finally, we use our technique to recover formulas of Kontsevich and Soibelman for the CoHA of a

quiver and give new formulas for the CoHA of a curve.

Chapter 4 is an account on the progress of a project to q deform constructions of vertex algebra

structures on the homology of moduli stacks, with a view to relating them to quantum groups in

the future. After some introductory remarks about quantum groups and quantum affine algebras,

in section 4.4 we explain the main crutch we will use to connect homology of moduli spaces and

(quantum) affine algebras: the FKS isomorphism. More precisely, taking the category A � RepQ
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of representations of an ADE quiver, in section 4.5 and Theorem 4.5.21 we express the FKS

isomorphism explicitly in terms of simple operations on homology, and in sections 4.6 and 4.7

we q deform these calculations. Then, in section 4.8 we give a definition of a q deformation of

the vertex algebra structure on H
r
pMAq (see Theorem 4.8.10). Finally, in 4.9 we discuss future

directions, in particular how we expect to be able to axiomatise this q deformed structure to a q

deformed vertex algebra such that the FKS isomorphism is a map of such structures.

Note for examiners : Chapter 3 is largely based on the paper [La], chapter 4 will soon be turned

into a paper, and the collaboration in [AKLPR] is related to the work of this Thesis but does not

appear here.
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Chapter 2

General background

2.1 Definitions: vertex and factorisation algebras

One can understand or motivate vertex algebras through

1. the corresponding notion in physics of the holomorphic part of a 2d conformal field theory

(section 2.1.25),

2. Beilinson and Drinfeld’s factorisation (or chiral) algebras (section 2.1.1), which more closely

resemble the physics but require more machinery, or

3. just reading the definition (Definition 2.1.9).

2.1.1. Factorisation algebras (sketch). Loosely speaking, a factorisation algebra over an alge-

braic curve X is a vector spaces Vx1 , ..., Vxn living above finitely many points of X, which we are

entitled to parallel transport. The interesting part of the structure is what happens when parallel

transporting Vx1 and Vx2 if we collide the points x1 and x2.

X
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Before giving the definition we work through an example.

2.1.2. Let X{k be a smooth algebraic curve over a field of characteristic zero. Line bundles L on

X can be expressed in terms of a divisor

L � Opn1x1 � � � � � nkxkq for x P X, ni P Z. (2.1)

This divisor is unique after choosing a meromorphic section φ, which gives a trivialisation

φ : L|Xztx1,...,xku � triv. (2.2)

L can be recovered from this trivial line bundle by gluing trivial line bundles on Dxi , along

transition functions zni on D�
xi
� Dxiztxiu. Here Dxi � Speckrrzss is the formal disk at xi.

X

xi

Dxi

Thus the data of pL, φq canonically “factors” onto finitely many points of X. Indeed, the above

gives a functor

tLine bundles on X with meromorphic sectionu

Ñ tfinite subset tx1, ..., xnu � X with line bundles on Dxi and trivialisations on D�
xi
u

which by the Beauville Laszlo theorem is an equivalence of categories.

2.1.3. The data at each point is then a line bundle on Dxi with a trivialisation along D�
xi

. This

arranges into a space (prestack) Grxi called the affine Grassmannian, whose functor of points is

MapspS,Grxiq � tLi P PicpSp�Dxiq, φi : L|S p�D�
xi

�
Ñ trivu{ � .

By [BD1, Thm 4.5.1] it is an ind scheme over k, with a group structure given by tensor product

of line bundles. Its k points are

Grxipkq � O�pD�
xi
q{O�pDxiq � kpptqq�{krrtss� � Z

which corresponds to the integers ni P Z appearing in the divisor above, and one can show that

Grxi � Z� exppkpptqq{krrtssq as ind schemes.1

1Here the ind vector space kpptqq{krrtss � colimt�nkrrtss{krrtss is viewed as an ind scheme, by viewing the finite

dimensional vector spaces t�nkrrtss{krrtss as schemes.
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2.1.4. The global data also arranges into a space: the Beilinson Drinfeld Grassmannian GrX

MapspS,GrXq � tL P PicpS �Xq, tx1, ..., xnu � XpSq, φ : LS�Xztx1,...,xnu
�
Ñ trivu{ �

parametrising a line bundle and a trivialisation away from a finite subset. Forgetting the line

bundle gives a flat map to the space (prestack) of nonempty finite subsets of X

GrX ↠ RanX

and its fibre above tx1, ..., xnu is the product of the Grxi . The Ran space RanX is defined as the

colimit of Xn for n ¥ 0 over all diagonal embeddings (corresponding to surjective maps of finite

sets).

X

xi

Grxi

For general reasons (see section 2.4.7) it follows from the above that GrX Ñ RanX admits a flat

connection. See [BD1, MV] for more on GrX .

2.1.5. To get a factorisation algebra, we take the distributions supported on

0 ãÑ Grxi � Z� exp pkpptqq{krrtssq

which is a vector space Vxi with basis the delta function at the origin and its derivatives

Vxi � k
 
Bn1
�1 � � � B

nr
�rδ

(
in the various normal directions N0{Grxi

� ktt�1, t�2, . . . u. Here ni and r vary over all nonnegative

integers.

2.1.6. This is the vector space, what is the structure on it? The above construction globalises, by

taking distributions supported on

RanX
triv
ãÑ GrX

7



to give a quasicoherent sheaf V on RanX. Precisely, we take D module pushforward triv�O then

take its O module sections along GrX ↠ RanX. The connection on GrX endows V with a D

module structure, and the factorisation structure implies

Grtx1,...,xnu � Grx1 � � � � �Grxn ñ Vtx1,...,xnu � Vx1 b � � � b Vxn

if the xi are distinct.

2.1.7. To translate this into a structure on Vx, we restrict to the case of two points. Writing

Vn � V |Xn , we get a D module X2 whose fibres (as an O module) above the diagonal and its

complement are

V1 V2 V1 b V1

X X2 X2zX∆ j

If X is a curve, we have the Mayer Vietoris sequence

V2 Ñ j�j
V2
B
Ñ ∆�∆
V2

where f 
 denotes the O module pullback.2 Thus we get

j�pV1 b V1q
B
Ñ ∆�V1. (2.3)

When X � A1, taking global sections gives a map

V0 b V0 b krx, y, px� yq�1s
B
Ñ V0 b krx, y, px� yq�1s{xx� yy.

If the D module is weakly Ga equivariant, one can show (e.g. [Bu]) that the restriction of B to

V0 b V0 b krx, ys is uniquely determined by a map

Y : V0 b V0 Ñ V0 b kppx� yqq

which endows V0 with the structure of a vertex algebra.

2.1.8. Vertex algebras. We say what a vertex algebra is then describe the one (called the level

zero Heisenberg) corresponding to the above factorisation algebra. The comparative advantages of

vertex algebras over factorisation algebras are that examples are much easier to construct (indeed,

most known examples do not arise “naturally” as factorisation algebras) and it is easier to make

explicit computations.

2This follows since f ! � f
rds for any f : X Ñ Y , where d � dimX � dimY is the dimension of f .
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Definition 2.1.9. A vertex algebra is a vector space V with a distiguished vector |0y, a map

Y p�, zqp�q : V b V Ñ V ppzqq,

such that the Y pα, zq for α P V weakly commute (Definition 2.1.13) and

Y p|0y, zq � id, Y pα, zq|0y � α mod zV rrzss,

as well as an endomorphism T satisfying T |0y � 0 and Y pTα, zq � BzY pα, zq.

Elements of V are called states, |0y the vacuum, T translation and Y pα, zq the field of α.

2.1.10. The fibre of a Ga equivariant factorisation algebra on X � A1 is a vertex algebra. The

translation operator T comes from the Ga equivariance, and weak commutativity comes from the

S2 equivariance of the factorisation algebra.3

2.1.11. The vertex algebra corresponding to the above factorisation algebra should have underlying

vector space as in section 2.1.5

V � ktbn1
�1 � � � b

nr
�r|0y : r, ni ¥ 0u.

We can identify this with functions on the jet space of A1, the space of maps from the formal disk

D Ñ A1, see section 2.3.4. As we discuss there, infinitesimal translation in D endows V with a

vector field T given by T pb�rq � b�r�1 and the Liebniz rule

T pbn1
�1 � � � b

nr
�r|0yq �

¸
nib

n1
�1 � � � b

ni�1�1
�i�1 bni�1

�i � � � bnr
�r|0y.

We then define

Y pb�1|0y, zq �
¸
n¥0

b�n�1z
n,

and it follows from the axioms that its derivatives give Y pb�n|0y, zq. Similarly, we define

Y pbn1
�1 � � � b

nr
�r|0y, zq �

¹
Y pb�i|0yqni .

This is a particularly simple example of a vertex algebra because the fields literally commute, not

just weakly. To get a more representative example of what a vertex algebra looks like we need to

introduce twists (see section 2.5.4).

3Note that if V is any sheaf over RanX then its restriction to Xn is automatically Sn equivariant. This is

because to map Xn Ñ RanX lifts to Xn{Sn � colimσPSn
pXn Ñ Xnq ãÑ RanX.

9



2.1.12. Let V be any vector space and αpzq, βpzq : V Ñ V ppzqq linear maps. The compositions

αpzqβpwq and αpwqβpzq may be viewed as elements of a common vector space

pEndV qppzqqppwqq ãÑ pEndV qrrz�1, w�1ss Ðâ pEndV qppwqqppzqq.

These inclusions are krrz, wss linear so may be viewed as maps of quasicoherent sheaves over the

product of two formal disks Dz�Dw. Weak commutativity says that the commutator rαpzq, βpwqs

is only supported on the diagonal.

Definition 2.1.13. Linear maps αpzq, βpzq : V Ñ V ppzqq weakly commute if

pz � wqN rαpzq, βpwqs � 0

for some N " 0.

2.1.14. Factorisation algebras. Currently, chiral and factorisation (co)algebras (Definitions

2.1.24 and 2.1.22) are perhaps the most successful and conceptual attempt at mathematically

defining aspects of two dimensional conformal field theory.

Whereas other attempts start with a vector space and introduce extra structures by hand to

mimic those in the physics literature, often leaving it unclear why the definitions are one way and

not another, the definition of factorisation coalgebras is remarkably simple: they are factorisable

coalgebras in a certain symmetric monoidal category. This captures the idea of states “living on

a curve”, which can move around and collide to form new states.

2.1.15. We first define an algebraic geometric analogue of the collection of finite subsets of X,

which are allowed to “collide”. Let X be any prestack, and take the functor defined on the category

FSetsurj of nonempty finite sets with surjections

Xp�q : FSetsurj Ñ PreStk

sending I to XI , and a surjection I Ñ J to the associated diagonal map ∆I{J : XJ Ñ XI . The

Ran space of X is the colimit of this diagram

RanX � colimIPFSetsurj,opX
I .

Thus MapspS,RanXq is the set of nonempty finite subsets of MapspS,Xq, see e.g. [CF, §10].
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2.1.16. The Ran space is a (nonunital) commutative monoid in PreStkcorr in two different ways,

meaning that it admits correspondences as below satisfying an associativity condition. The first

comes from taking union of finite sets

RanX � RanX

RanX � RanX RanX

π (2.4)

and the second from taking unions on the locus of disjoint finite subsets

pRanX � RanXqdisj

RanX � RanX RanX

πjj (2.5)

The fibre of π over a nonempty finite subset I � X are the pairs of nonempty finite subsets I1, I2

with I � I1 Y I2. Likewise for πj, except the subsets Ii are disjoint.

2.1.17. One can also define a unital Ran space RanunX (see [Ga4]), a lax prestack which should

be thought of as parametrising all finite subsets of X (including the empty one).

2.1.18. From now on, assume that X is a seperated scheme of finite type over a field k. It follows

from the definition of the Ran space as a colimit that its category of D modules (see section 2.7.6)

is

DpRanXq � limIPFSetsurjDpX
Iq,

meaning a V P DpRanXq corresponds to a collection of VI P DpXIq with compatible isomorphisms

VJ � ∆!
I{JVI for all surjections of (nonempty) finite sets I ↠ J . To give a D module on the unital

Ran space is to in addition supply compatible maps ∆!
I{JFI Ñ FJ for all maps of finite sets I Ñ J .

For instance, this gives a map VH b ωXI Ñ VI for all I.

2.1.19. By smooth base change, each (nonunital) commutative monoid structure on RanX as an

object in PreStkcorr where the rightwards map to RanX is an open immersion induces a (nonunital)

symmetric monoidal structure on ShpRanXq. Applying this to the above monoidal structures, we

get the � and chiral tensor products

Ab� B � π�pAbBq, Abch B � π�j�j!pAbBq.
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2.1.20. It is easy to describe these tensor products explicitly [FG, §2.3], first

pAb� BqI �
à

I�I1YI2
∆!
I1>I2{IpAI1 bBI2q,

where direct sum is over all two nonempty subsets I1, I2 with I � I1Y I2, not necessarily disjoint.

To describe the chiral tensor product, we write j : pXI1 �XI2qdisj ãÑ XI for the open locus where

the first I1 and last I2 points are disjoint. Since j! � j�, we have

pAbch BqI � pπ�j�j�AbBqI �
à

I�I1>I2
jI�j�I pAI1 bBI2q,

where direct sum is over partitions I � I1 > I2 into disjoint nonempty subsets.

2.1.21. We now define a factorisation algebra over a scheme X of finite type over a field of

characteristic 0.

Definition 2.1.22. [BD2, FG] A factorisation algebra is a (chiral) cocommutative coalgebra

B P commCoAlg
�
DpRanXq,bch

�
which factorises : considering the coproduct BÑ Bbch B, each component

BI Ñ jI�j�IBI1 bBI2 I � I1 > I2

becomes an equivalence when restricted to the open locus (i.e. after applying j�I ).

2.1.23. We can apply the construction of (2.1.7) to a general factorisation algebra. What is the

structure that we get?

Definition 2.1.24. [BD2, FG] A chiral algebra is a (chiral) Lie algebra

A P Lie
�
DpRanXq,bch

�
lying in the image of ∆� : DpXq Ñ DpRanXq.

Francis and Gaitsgory [FG, Thm. 1.2.4] have constructed an equivalence between the categories

of chiral and factorisation algebras by interpreting the construction as in (2.1.7) as an instance of

Koszul duality.

2.1.25. Physics motivations. Factorisation algebras on curves and vertex algebras both attempt

to formalise what physicists mean by holomorphic part of a two dimensional conformal field theory.

Generally speaking, trying to put aspects of quantum field theory (QFT) on a mathematical footing

has been a very fruitful source of new mathematics over the past few decades.
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2.1.26. Most of this section will not be rigorous mathematics. Rather, the point is to sketch some

aspects of physicists’ points of view on vertex algebras.

2.1.27. First following [Ta], we sketch part of what physicists expect to attach to a quantum field

theory. A quantum field theory Q is defined on a class of manifolds with extra structure S, for

instance a Riemannian manifold or conformal manifold, and dimension d. At minimum it should

assign:

1. an element ZQpNq P k for every d dimension S-manifold,

2. a vector space HQpMq of states to any d� 1 dimensional S-manifold M .

Moreover, it should interact interestingly with manifolds with boundary, assigning

1’. a map

ZQpBq : HQpM1q Ñ HQpM2q

to any d dimensional S-manifold with corners B with boundary M1 >M2.

This data should give a symmetric monoidal functor from some sort of cobordism category

CobdS Ñ Vectk (2.6)

which should satisfy the Atiyah-Segal axioms [At2, Se3], with both the category and axioms

suitably modified according to S. In particular, HpHq � k so the two notions of ZQ both give a

number for manifolds without boundary.

Q should also attach data to manifolds of dimensions d � 2 and lower (this is called an extended

QFT), lifting the above functor (2.6) to a map of the associated d-categories. Thus it assigns

3. a k linear category to any d� 2 dimensional manifold,

4. a k linear pn� 1q-category to any d� n dimensional manifold, for n ¥ 1.

It should also assign data to extended cobordisms, similarly to the unextended situation (1’).

Separate from this, Q should come with

A. a vector space V0
Q of point operators,

B. a tensor category V1
Q of line operators,

C. a certain n-category VnQ for every 0 ¤ n ¤ d.

13



This data should interact with the extended structure above, e.g. given point operators φ1, ..., φn P

V0
Q and distinct points x1, ..., xn in a d dimensional S manifold N , we get a number denoted

ZQpN,φ1px1q � � �φnpxnqq P k

called a correlation function in the x1, ..., xn. There are two more relevant expectations about

point operators: VQ should carry a kind of algebra structure, and in the example of conformal

field theories, V0
Q � HQpS

d�1q. Thus for d � 2 dimensional CFTs we expect an algebra structure

on HQpS
1q, and its “holomorphic” subspace is expected to carry a vertex algebra structure.

2.1.28. QFTs often (but not always) come up in the physics literature through path integrals. First

one defines an auxiliary vector space HQpBq of fields and an action function S : HQpBq Ñ C for

every d-dimensional S-manifold B. It is claimed that this vector space carries a measure, denoted

dψ, and if B has no boundary one can symbolically write

ZQpBq �

»
HQpBq

e�Spψqdψ.

If B has a boundary it is expected that there should be a restriction map on fields |BB : HQpBq Ñ

HQpBBq. Then if B is a bordism from M1 to M2, one can symbolically write

ZQpBq : HQpM1q Ñ HQpM2q, φ ÞÑ

»
ψ|M1

�φ
e�Spψqψ|M2dψ.

2.1.29. To be more explicit, we sketch the best understood example to illustrate some of the

above data: topological field theories (TQFTs). Loosely, TQFTs are QFTs which only depend

on the topological structure of the manifold. To be precise, a TQFT is defined to be a symmetric

monoidal functor

Cobd Ñ Vect

from the category of closed oriented d � 1 dimensional manifolds with morphisms cobordisms,

satisfying the Atiyah-Segal axioms (see [Koc, 1.2.23]).

Let us now take the example of 2d TQFTs, which might help us understand 2d CFTs and so

vertex algebras. It assigns:

� a vector space A � HQpS
1q to the only connected one manifold S1,

� a map Abn Ñ Abm for every oriented 2-manifold giving a bordism from >nS1 to >mS1 (so

it has boundary >nS1
²
>mS1).

14



In particular we get maps

Ab A
µ
Ñ A

k
η
Ñ A

A
ε
Ñ k

A
δ
Ñ Ab A

One can then show that these maps arrange into a Frobenius algebra, and that the categories of

Frobenius algebras and 2d TQFTs are equivalent [Koc, 2.3.24].

2.1.30. Thus vertex algebras should be thought of as the analogue of this Frobenius algebra

structure in the case of d � 2 dimensional conformal field theories Q. Note that 2 dimensional

conformal manifolds are the same thing as Riemann surfaces, which is why there is a hope of

linking the subject with algebraic geometry.

Take as the underlying vector space

V � limHQpS
1
r q

where S1
r � C is the circle of radius r ¡ 0 centred at the origin. Now take three points t0, z,8u �

P1 along with three families of circles with origins t0, z,8u and radii tending to zero. This data is

conformally invariant. In particular, we should get maps depending nontrivially on z P P1zt0,8u:

0

z

8

P1

Similarly, we get the vacuum |0y Ñ V just as we got the unit in the 2d TQFT case.

We reiterate that it is expected that HQpS
1
r q should agree with the vector space of point operators:

this is called the state-operator correspondence. In particular, given any Riemann surface X and
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elements α1, ..., αn P V we should expect correlation functions, in this context usually denoted as

xα1p�q � � �αnp�qy : Xn Ñ C.

2.1.31. A common class of examples of QFTs are σ models. Loosely speaking, fixing a target

manifold T , a σ model is a d dimensional QFT acting on d manifolds by

M ÞÑ MapspM,T q.

Strictly speaking the right hand side is not a vector space, so it is necessary to suitably linearise

it, e.g. by taking the vector space of functions. Thus we should expect to get examples of vertex

algebras from something like functions on loop spaces

LT � MapspS1, T q.

Something like this works for any scheme T (section 2.3.4) producing a vertex algebra structure

on OpJ8T ), but it is fairly uninteresting. To get more interesting examples, we need to quantise

the σ model, which on the mathematics side corresponds to producing a filtered vertex algebra

whose associated graded is OpJ8T q.

2.1.32. Remarks. There is a closely related notion of topological factorisation algebra due to

Lurie and developed among others by Costello and Gwilliam, see [Lur1, CG1, CG2]. This point

of view is sometimes taken in the algebraic geometry literature, e.g. [KV2]. In another direction,

Segal [Se2] has a different formalisation of 2d CFTs. On the physics side, 2d CFT is a very large

subject, see e.g. [FMS] for an introduction.

2.2 Properties of vertex algebras

In a vertex algebra, its fields Y pα, zq �
°
nPZ αnz

�n�1 behave quite similarly to elements in a

commutative algebra. To justify this claim, see the following properties of vertex algebras.

2.2.1. Normally ordered product of fields. It is not possible to compose two linear maps

αpzq, βpzq : V Ñ V ppzqq, since the z coefficients of

“αpzqβpzq” �
¸

n,mPZ
αnβmz

�n�m�2
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are infinite sums and do not define endomorphisms of V . However, since αnγ � βnγ � 0 for n " 0,

as an ad hoc fix we may salvage this by defining their normally ordered product to be

: αpzqβpzq : �
¸

n,mPZ
: αnβm : z�n�m�2 : αnβm : �

$'&'%αnβm if n   0

βmαn if n ¥ 0.

This product is neither commutative nor associative. The reason this product is worth considering

is Dong’s lemma [FBZ, 2.3.4], which says that : αpzqβpzq : weakly commute with any field which

αpzq and βpzq both weakly commute with.

If V is a vertex algebra then one can show that

: Y pα, zqY pβ, zq : � Y pα�1β�1|0y, zq

for any α, β P V .

Note that α � α�1|0y, so compare this to Y pα, zq � Y pα�1|0y, zq.

2.2.2. Note that αpzqβpwq �
°
αnβmz

�n�1w�m�1 gives a well defined map V Ñ V ppwqqppzqq, and

also we can define their normally ordered product V Ñ V rrz, wssrz�1, w�1s given by

: αpzqβpwq : �
¸

n,mPZ
: αnβm : z�n�1w�m�1.

2.2.3. Reconstruction. Vertex algebras can be described in terms of generators, just like alge-

bras. Notice that the algebra structure on a commutative algebra A is uniquely determined by

the multiplication maps

ai : A Ñ A

for taiuiPI a generating set. Conversely, to give a commutative algebra structure on the vector

space A, it is enough to give a nonzero element 1 P A and commuting linear maps ai : A Ñ A so

that ai1 are distinct and

A � spantai1 � � � air1urPN,ikPI .

The analogue for vertex algebras is the reconstruction theorem. Let V be a vector space with

endomorphism T and nonzero element |0y P V .

Proposition 2.2.4. (Reconstruction theorem [FBZ, Thm. 4.4.1]) A vertex algebra structure on

V is specified by weakly commuting maps αipzq �
°
nPZ αi,nz

�n�1 : V Ñ V ppzqq for i P I so that

αipzq|0y P V rrzss and their constant terms are distinct, rT, αipzqs � Bzαipzq, and

V � spantαi1,n1 � � �αir,nr |0yurPN,ikPI,niPZ.
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The vertex algebra structure is

Y pαi1,n1 � � �αir,nr |0y, zq �
1

p�n1 � 1q! � � � p�nr � 1q!
: B�n1�1

z αi1pzq � � � B
�nr�1
z αirpzq : .

Taking a vertex algebra given by commutative algebra gives back the statement for commutative

algebras.

2.2.5. Operator product expansion. We have explained generators, we now explain what are

the analogues of relations between generating fields in a vertex algebra.

Let V be a vector space and αpzq, βpzq : V Ñ V ppzqq two linear maps. An equivalent formulation

of weak commutativity (Definition 2.1.13) is that their commutator is a finite sum of the delta

function δpz � wq :�
°
nPZ z

nw�n�1 and its derivatives:

rαpzq, βpwqs �
Ņ

k�0

1

k!
γkpwqB

k
wδpz � wq (2.7)

for some γkpwq : V Ñ V ppwqq. Alternatively, their composition is a finite sum

αpzqβpwq �
Ņ

k�0

γkpwq

pz � wqk�1
� : αpzqβpwq : (2.8)

where 1{pz � wq is expanded in positive powers of w{z,4 and βpwqαpzq is equal to the same

expression with 1{pz � wq expanded in negative powers of w{z.

For vertex algebras the coefficients in (2.7) and (2.8) have an explicit description

Proposition 2.2.6. (Operator product expansion, e.g. [FBZ, §3]) If V is a vertex algebra

Y pα, zqY pβ, wq � Y pY pα, z � wqβ, wq �
¸
kPZ

Y pαkβ, wq

pz � wqk�1
.

2.2.7. Thus if αpzq, βpzq weakly commute, we get maps

αpzqβpwq : V Ñ V rrz, wssrz�1, pz � wq�1, w�1s

: αpzqβpwq : : V Ñ V rrz, wssrz�1, w�1s.

We write � for the equivalence relation on V rrz, wssrz�1, pz�wq�1, w�1s given by quotienting out

by V rrz, wssrz�1, w�1s, so e.g.

αpzqβpwq �
Ņ

k�0

γkpwq

pz � wqk
.

4Here,

: αpzqβpwq : � αpzq�βpwq � βpwqαpzq�

denotes the normally ordered product, where if αpzq �
°

nPZ αnz
n we have written α�pzq �

°
n¥0 αnz

n and

α�pzq �
°

n 0 αnz
n.
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2.2.8. Modules over vertex algebras. A module over vertex algebra V is a vector space M

with a map

YMp�, zqp�q : V bM Ñ Mppzqq

satisfying properties analogous to vertex algebra, see [FBZ, §5.1.1]. It should correspond to the

notion of factorisation comodule of a factorisation coalgebra.

In [Y.Zh], Y. Zhu defined an associative algebra ZhupV q attached to any graded vertex algebra V ,

which controls the representations of V :

Definition 2.2.9. The Zhu algebra of a graded vertex algebra V is the quotient space

ZhupV q � V {OpV q

where OpV q is spanned by elements of the form

α � β � Resz

�
p1� zqdegα

z2
Y pα, zqβ



where α is homogeneous.

Proposition 2.2.10 ([Y.Zh]). ZhupV q is an associative algebra, with unit |0y and product

α � β � Resz

�
p1� zqdegα

z
Y pα, zqβ



.

Moreover, there is an equivalence of categories

V -ModN
�
Ñ ZhupV q-Mod M �

8à
n�0

Mn ÞÑ M0

between the category of N-graded V modules and of ZhupV q modules. A homogeneous representa-

tive α of an element in ZhupV q acts on M0 by αdegα�1.

For instance, Frenkel and Zhu [FZ, §3] computed the Zhu algebra of the affine vertex algebra

attached to any finite dimensional simple Lie algebra g and any level k:

ZhupVkpgqq � Upgq,

and if k is a positive integer then ZhupLkpgqq � Upgq{xek�1
θ y, where eθ generates the root space of

the highest root θ.
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2.3 Examples of vertex algebras

2.3.1. Algebras. Every commutative algebra A is a vertex algebra, with field map given by the

algebra product

Y : Ab A
�
Ñ A ãÑ Appzqq

so it is independent of z, translation operator T � 0 and vacuum |0y � 1.

2.3.2. Differential algebras. Every commutative algebra with derivation pA, Bq is a vertex al-

gebra with field map

Y pα, zqβ :� pezBαq � β, (2.9)

translation operator T � B and vacuum |0y � 1.

Definition 2.3.3. A vertex algebra is called holomorphic if the negative modes of the fields vanish,

i.e. the field map factors as Y : V b V Ñ V rrzss, as is the case above.

In a holomorphic vertex algebra the fields Y pα, zq commute, since pz �wq is not a zero divisor in

V rrz, wss. We can define a product on V by setting

α � β � constant coefficient of Y pα, zqY pβ, zq|0y

and show that T defines a derivation, showing that the category of holomorphic vertex algebras

and commutative algebras with derivation are equivalent [FBZ, 1.4].

In a holomorphic vertex algebra, Y pα, zqY pβ, wq � 0, i.e. product and normally ordered product

of fields coincide. Thus one should think about the singular terms in the OPE as being the most

interesting part of the vertex algebra structure.

2.3.4. Jet spaces. Recall from section 2.1.31 the physics heuristic that vertex algebras are meant

to have something to do with loop spaces LT .

To make this precise, let T be a scheme of finite type over a field k and D � Speckrrtss the formal

disk. Instead of loops into T , we should actually consider the arc (or jet) space of T , which is the

(completed) mapping space J8T � MapspD,T q,5 which one can show is a scheme. It is usually of

infinite type.

Note that D carries two vector fields: the Euler vector field coming from scaling

t
B

Bt
:
¸

ant
n ÞÑ

¸
nant

n

5Its S-valued points are MapspS p�D,T q, where p� is the completion of S �D along S � 0.
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and the translation vector field

B

Bt
:
¸

ant
n ÞÑ

¸
nant

n�1.

This induces two vector fields on J8T , also denoted by t BBt and B
Bt ; we consider the latter. It follows

that
�
OpJ8T q, BBt

�
is a commutative vertex algebra. If T is in addition Poisson, then OpJ8T q is a

Poisson vertex algebra.

Jet spaces can be described explicitly, for instance

J8A1 � SpecCrx�1, x�2, . . . s

a point of which should be thought of as a power series

t ÞÑ
¸
n¥0

ant
n an P A1.

Then taking a generator x of OpA1q, the value of x�n at this point is xpanq, so that the derivation

acts as B
Btx�n � pn � 1qx�n�1. Likewise we have that for any finitely presented algebra A with

generators xi and relations fj, the holomorphic vertex algebra OpJ8SpecAq is

Crxi,�nsiPI,n¥0{pfj,�mqjPJ,m¥0.

Here, we identify xi,�n�1 � T nxi,�1 to compute fj,�m�1 � Tmfj,�1. See [AMo] for more.

2.3.5. Aside: quantisation. What is the correct notion of quantisation of a holomorphic vertex

algebra?

In [Li1], Li constructed a canonical decreasing filtration on the underlying vector space of any

vertex algebra V , given by

Vk � spantα1,�n1�1 � � �αr,�nr�1|0yuni¥0,n1�����nr¥k

so that V0 � V . This filtration satisfies

TVk � Vk�1aaaaaaaaaapVkqnVℓ �

$'&'%Vk�ℓ�n�1 if n   0

Vk�ℓ�n if n ¥ 0

and so we get a holomorphic vertex algebra structure on grV . V is called a chiral quantisation of

scheme T if grV � OpJ8T q as vertex algebras.
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2.3.6. However, this associated graded actually carries more structure, a Poisson vertex algebra

structure (see [AMo, §4]). This should be thought of as analogous to the fact that being Poisson is

a smoking gun that a variety or algebra might be quantisable (e.g. deformation quantised). To be

precise, if the scheme T has a Poisson structure then this endows OpJ8T q with a Poisson vertex

algebra structure.

2.3.7. Affine vertex algebras. Let g be a finite dimensional Lie algebra and κ : g � g Ñ k be

an ad-invariant bilinear form. The affine vertex algebra Vkpgq which we will define shortly will be

generated in the sense of the Reconstruction Theorem by fields αpzq depending linearly on α P g,

subject to the OPEs

αpzqβpwq �
κpα, βq

pz � wq2
id �

rα, βspwq

z � w
.

These OPEs imply that the coefficients αn of αpzq �
°
αnz

�n�1 satisfy the commutation relations

of the affine Lie algebra pg, and the vertex algebra is a highest weight representation of pg of level

κ (see Appendix B) and highest weight vector |0y.

We now define the affine vertex algebra (or current algebra) to be the maximal highest weight

representation of level κ: the Verma module of level κ

Vκpgq � Indpggrts`kck

which admits a PBW basis in terms of a basis α1, ..., αr of g:

Vκpgq � krα1,�n, ..., αr,�nsn¥1.

The field of αi,�1|0y is the power series valued endomorphism αipzq �
°
αnz

�n�1, which together

generate the vertex algebra; thus the field map is determined by the Reconstruction Theorem.

Moreover, T is uniquely determined by the axiom rT, αipzqs � Bzαipzq. It is a chiral quantisation

of the Poisson space g�:

grVκpgq � OpJ8g�q.

To contrast jet space examples, we emphasise that for positive n the operators αk,n will not all

act trivially so long as κ is not zero. This is true even when g is abelian.

2.3.8. By the reconstruction theorem, any highest weight representation of pg carries a vertex

algebra structure. An important example is the maximal quotient Lκpgq of Vκpgq, called the

simple affine vertex algebra.
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2.3.9. If κ � k � κ0{2h
_ is a multiple of the normalised Killing form κ0{2h

_ (with κ0 the Killing

form and h_ is the dual Coxeter number), then we often write Vkpgq, Lkpgq in place of Vκpgq, Lκpgq.

2.3.10. Lattice vertex algebras. Let Λ � Cn be a lattice and κ be a 2Z valued bilinear form.

The lattice vertex algebra, first defined by Borcherds [Bo1], has associated graded

OpJ8Cnq bCrΛs.

One should think of this as being functions on space of formal loops D� Ñ Cn{Λ. Indeed, there

are Λ many homotopy classes of loops, and the space of contractible maps form the jet space

J8Cn � MapspD,Cnq.

As a vector space, the lattice vertex algebra is

VΛ � V1pC
nq bCrΛs

where t � Cn is viewed as an abelian Lie algebra. To make it into a vertex algebra, we first put

on V1pC
nq b eλ the structure of Verma module of pt of level one and weight κpλ,�q P t�.

This uniquely determines the rest of the fields. For any x P t and λ P Λ, writing xpzq and eλpzq

for the fields of x�1|0y b 1 and 1b eλ, the OPE formula gives

xpzqeλpwq � κpλ, xq
eλpwq

z � w

or equivalently, rxn, e
λpwqs � κpλ, xqwneλpwq, which forces

eλpzq � �eλ � zλ0e
°

k 0
z�k

k
λke�

°
k¡0

z�k

k
λk .

Here we have written eλ for the group algebra action and λpzq �
°
λnz

�n�1 as the field given by

viewing Λ � t. Finally, the sign on Vκpgq b eµ is given by the component cλ,µ of any two cocycle

c : Λ� Λ Ñ t�1u, i.e.

cλ,0 � c0,µ � 1, cλ,µcλ�µ,ν � cλ,µ�νcµ,ν ,

which satisfies in addition

cλ,µcµ,λ � p�1qκpλ,λqκpµ,µq�κpλ,µq.

2.3.11. To put these formulae into context, consider the logarithmic power series»
λpzq �

¸
n�0

1

n
λnz

�n � log zλ�1 � λ.

Then up to signs, we have that λpzq � Bp
³
λpzqq and eλpzq � expp

³
λpzqq. One might expect that

this can be make precise using the framework of logarithmic vertex algebras, see [BVi].
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2.3.12. Borcherds’ bicharacter construction. We have seen that differential algebras A give

holomorphic vertex algebras. Borcherds noticed that if there is additionally a cocommutative

coproduct ∆, this construction can be twisted. By what? A bicharacter of a commutative,

cocommutative bialgebra A is a linear map r : Ab AÑ kppz�1qq with

rpab 1q � rp1b aq � 1,

rpabb cq � rpab cqrpbb cq, rpab bcq � rpab bqrpab cq,

rpBab cq � Bzrpab bq, rpab Bcq � �Bzrpab bq

and the symmetry axiom rpab b, zq � rpbb a,�zq.

Theorem 2.3.13. [Bo2] Let A be a cocommutative, commutative bialgebra with a symmetric

bicharacter r. The formula

Y pα, zqβ � m
�
pezB b idq � r24 �∆α b∆β

�
�

¸
pezBαp1qqβp1qrpαp2q b βp2qq (2.10)

defines a vertex algebra structure on A.

The proof proceeds very similarly to the proof of Theorem 2.6.21 about the vertex algebra structure

on the homology of moduli spaces. In that case, the bialgebra A is the homology of moduli space

with product `� given by the direct sum map and coproduct the dual of the cup product. The

bicharacter is cap product (see below) with a cohomology valued power series Ψ P A_bA_ppz�1qq.

2.3.14. This formula (2.10) involves what should be called the cap product action of r on Ab2:

r� : Ab A
∆b∆
Ñ Ab Ab Ab A

r24Ñ Ab Appz�1qq.

Recall that for any cocommutative coalgebra C, the cap product action of C_ is

C_ b C
idb∆
Ñ C_ b C b C

evbid
Ñ C,

which agrees with the usual definition in topology when C is the homology of some space.

2.3.15. Aside: graded, super, . . . vertex algebras. One can define a vertex algebra in any

k linear symmetric monoidal category C (see Appendix A), and taking C � Vect gives back the

usual definition. Some other variants:

1. Z graded vertex algebras are vertex algebras in the category of Z graded vector spaces

C � VectZ, where we grade V ppzqq by setting |z| � �2.
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2. Vertex superalgebras are vertex algebras in the category of super vector spaces C � VectZ{2,

as before setting |z| � 0 mod 2.

In either case, whenever α is homogeneous of degree |α|, since Y is grading preserving, its modes

have degree

|αn| � |α| � 2n� 1.

It follows that |0y has degree zero and T has degree one. Finally, weak commutativity translates

in this case

pz � wqn
�
Y pα, zqY pβ, wq � p�1q|α|�|β|Y pβ, wqY pα, zq

�
� 0

for homogeneous elements α, β and n " 0.

2.3.16. We can define graded and super analogues of the examples in this section, for instance

affine Lie superalgebras attached to a finite dimensional super Lie algebra with an ad-invariant

bilinear form, super lattice vertex algebras attached to a super lattice with bilinear form, etc.

2.3.17. Other examples. There are other examples which we will not touch in this Thesis. Some

of the most important examples are:

� Virasoro. The Virasoro Virc attached to c P k is generated by a single field T pzq satisfying

OPE

T pzqT pwq �
c{2

pz � wq4
�

2T pwq

pz � wq2
�

BwT pwq

z � w

which implies that the coefficients of T pzq define a representation of the Virasoro algebra

of charge c. In particular, any highest weight reprentation gives a vertex algebra, like the

Verma module Virc and its irreducible quotient Lpcq. See [DR, Wil] for more.

� W algebras. The Heisenberg and Virasoro are the g � gl1, sl2 examples of a general con-

struction of the W vertex algebra

Wκpg, fq

attached to a finite dimensional Lie algebra g and nilpotent element f P g. It admits a

grading such that as a vertex algebra grWκpg, fq � OpJ8Sf q is functions on the jet space

of the Slodowy slice Sf � g� associated to f . When f � 0 it reduces to the affine vertex

algebra Vκpgq. It is meant to be a vertex analogue of the “quantum Hamiltonian reduction”

definition of finite W algebras. See [Ar1, Ar2] for more.

� Vertex algebras from 2d SCFTs. New vertex algebras are constantly coming out of the

physics literature. One of the most interesting in recent years are the vertex algebras arising
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from 2d SCFTs studied by Beem, Rastelli and others (see for instance [BLL]). Another

interesting example is the triplet W algebra, studied by Adamović and Milas in [AMi].

2.4 Properties of factorisation algebras

Continuing section 2.1.1, we give more information about factorisation algebras. This helps mo-

tivate the vertex algebraic constructions in this Thesis, but the vertex algebras we cover in this

Thesis have not (yet) been found naturally as factorisation algebras, so the reader may skip this

section if they want.

2.4.1. Unital versions. One disadvantage of the usual Ran space is that the chiral monoidal

structure on ShpRanXq is not unital. Note that for any non-unital algebra A we only have maps

biPIA Ñ bjPJA

for any surjection I ↠ J , whereas if it is unital, by inserting the unit we also get maps

biPI1A Ñ biPI2A

for any subset I1 � I2. In this way we get a map biPIAÑ bjPJA for any map I Ñ J .

We define the unital Ran space as the lax colimit

RanunX � colimFSetop,FSetsurj,opX
p�q

where FSet is the category of all finite sets (not necessarily empty) and all maps. Its S points

are the category with objects finite subsets of MapspS,Xq and morphisms inclusions of sets. See

[Ras, §4.9] or [CF, Def. 10.3.3]. The objects in the category

ShpRanunXq � limFSet,FSetsurjShpXIq

consist of a sheaf VI P ShpXIq for every nonempty set I and compatible maps ∆!
I{JVI Ñ VJ for

every map I Ñ J (which induces ∆I{J : XJ Ñ XI), such that they are isomorphisms ∆!
I{JVJ

�
Ñ VI

for surjections I ↠ J .

2.4.2. We can define unital analogues of the � and chiral correspondences (2.4) and (2.5), and

hence define unital factorisation and chiral algebras. Explicitly, a unital factorisation algebra is a

factorisation algebra V P ShpRanXq along with compatible maps ∆!
I1{I2VI1 Ñ VI2 for all inclusions

I1 � I2 of finite subsets. Thus for instance if VH � k P Shpptq we get a map

ωXI � ∆!
XI{ptk Ñ VI .
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2.4.3. Factorisation spaces. We similarly get notions of a prestack or quasicoherent sheaf over

RanX and RanunX. For instance,

QCohpRanXq � limIPFSetsurjQCohpXIq PreStk{RanX � limIPFSetsurjPreStk{XI

the limit taken over the pullback maps ∆�
I{J . Thus, by base change π�j�j� endows these cate-

gories with the chiral symmetric monoidal product, denoted bch and �ch respectively.6 As before,

(co)commutative (co)algebras with respect to these symmetric monoidal structures whose struc-

ture maps are isomorphisms when restricted to pXI1 � XI2qdisj ãÑ XI are called factorisation

(co)algebras. See [CP, Ras].

2.4.4. Factorisation algebras in PreStk{RanX are called factorisation spaces. For instance, RanX

is itself a unital factorisation space. For an algebra Y P pPreStk{RanX ,�
chq, the factorisation

condition is equivalent to

j�pY � Y q Ñ j�π�π�j�j�pY � Y q � j�π�pY �ch Y q Ñ j�π�Y

being an equivalence, where the first map comes from applying the unit of the adjunction. In

particular, for any factorisation space Y this means that we get a pullback

pY � Y qdisj

Y � Y pRanX � RanXqdisj Y

RanX � RanX RanX

πȷȷ
f̊

f�f πjj
f

(2.11)

Using this correspondence we can thus repeat all the above with Y in place of RanX, giving

definitions of factorisation algebras, spaces, etc. over Y .

2.4.5. For instance, assume the map f is ind-schematic on reduced prestacks, so that f� is defined

on Shp�q. Then given factorisation coalgebra B P ShpY q, by applying f� to the structure map

B Ñ π�ȷ�ȷ
!pBbBq

and applying base change, we see that we get a factorisation algebra f�B. Similarly, in the

quasicoherent case for any f , if we have a factorisation coalgebra E P QCohpY q, then base change

we get a factorisation algebra structure on f�E.

6For a map f : S Ñ T we write f� : PreStk{T Ñ PreStk{S for the pullback map on stacks, which has left adjoint

the forgetful functor f�.
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2.4.6. All of this can be more conceptually described in the language of factorisation categories,

see [Ras].

2.4.7. Flat connection. We notice the following remark made by Lurie. A unital factorisation

space whose structure map Y Ñ RanunX is flat admits a flat connection, i.e. is the pullback

of a map to RanunXdR. It is enough to give compatible isomorphisms between fibres of Y over

infinitesimally close points RanunX. Given two tuples of points x, y : S Ñ XI inducing the space

Sred tuple, the map of spaces over S given by the unit

Yx Ñ Ypx,yq Ð Yy

are isomorphisms. Here YS denotes the fibre of Y above finite subset S � X. Indeed, they are

maps of flat spaces which become isomorphisms after reducing the base, so are isomorphisms.

2.4.8. Factorisation homology. One advantage of factorisation algebras is that it gives a more

conceptual definition of conformal block. The factorisation (or chiral) homology of A P ShpRanXq

is

Hchr pX,Aq � p!A � H
r
cpRanX,Aq

where p : RanX Ñ pt. If X is proper, then so is RanX, i.e. p! � p� preserves colimits and

factorisation homology can be computed as colimIPFSetsurjpXI�AI .

2.4.9. Hch
0 pX,Bq is usually what is called the space of conformal blocks, see [BD2].

2.4.10. In the classical definition [FBZ, Def. 9.2.7], the space of conformal blocks of a vertex

algebra V at a point of a curve x P X is the dual to a space of coinvariants

CpX, x, V q � pV {UXzxV q_

and so admits a map CpX, x, V q Ñ V _. If the vertex algebra V � Ax is the fibre of a factorisation

algebra A on a smooth curve X, applying adjunction to the proper map i : x ãÑ RanX gives

Axr�2s � i!A � p!i!i
!A Ñ p!A � Hchr pX,Aq.

Thus for each x P X we get a map Ax Ñ Hchr�2pX,Aq, which one expects to factor through taking

coinvariants. Likewise, taking a collection of n distinct points i : px1, ..., xnq ãÑ RanX gives a map

Hchr�2npX,Aq
_ Ñ pAx1 b � � � bAxnq

_

which one expects might factor through a map to conformal blocks Hchr�2npX,Aq Ñ CpX, x1, ..., xn, V, ..., V q.
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2.5 Examples of factorisation algebras

2.5.1. Affine factorisation algebras. Let X be a curve and G a reductive group over k. The

Beilinson Drinfeld Grassmannian GrG,X is the prestack given by functor of points

GrG,XpSq �
 
px1, ..., xn, P, φq : n ¥ 0, xi P XpSq, P P BunGpXSq, φ : P |XSztx1,...,xnu � triv

(
where XS is the base change to S and BunGpXSq is the groupoid of G torsors on XS. It admits

a map to RanunX by forgetting everything but the subset of X. Then GrG,X is a factorisation

space with factorisation structure7

j�j�pGrG,XI1 �GrG,XI2 q Ñ GrG,XI

taking two G bundles with trivialisations along Xztxi1ui1PI1 and Xztxi2ui2PI2 respectively and using

the trivialisations to glue them along XztxiuiPI , where I � I1 Y I2.
8

2.5.2. This factorisation space structure is unital, with unit

triv : RanX Ñ GrG,X

given by the trivial G bundle. Write π : GrG,X Ñ RanX for the retraction.

2.5.3. One can show that the map GrG,X Ñ RanunX is ind-schematic [BD1], so the fibres

GrG,x1,...,xn above a finite subset of Xpkq form an ind-scheme.

2.5.4. To form the affine factorisation algebra, take as category of sheaves Shp�q the category of

holonomic D modules. In particular, it admits a forgetful functor to QCohp�q, and so we can take

ShpRanXq
triv�Ñ ShpGrG,Xq Ñ QCohpGrG,Xq

bL
Ñ QCohpGrG,Xq

π�Ñ QCohpRanXq (2.12)

where L P QCohpGrG,Xq. If L is factorisable, meaning we have compatible isomorphisms j�pLb

Lq � j�π�L, or equivalently j�pLI1 b LI2q � j�LI , then for any factorisation coalgebra A P

QCohpGrG,Xq we get a map

j�π�pAb Lq � j�π�Ab j�π�L Ñ j�pAbAq b j�pLb Lq � j�pAb Lqb2

which by adjunction is the same as

Ab L Ñ π�j�j�pAb Lqb2.

Thus: if A is a factorisation coalgebra, so too is Ab L.

7A factorisation structure is an algebra map π�j�j
�pGrG,X�GrG,Xq Ñ GrG,X , which by adjunction is the same

as a map j�j
�pGrG,X �GrG,Xq Ñ π�GrG,X .

8To be precise, we take these two G bundles P1, P2 to P � P1 >triv|XztxiuiPI
P2.
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2.5.5. We finally note that GrG,X is unital so the projection π comes from a pullback of a fac-

torisation space Gr∇G,X Ñ RanXdR. Thus if L is also unital then by section (2.4.7) we can lift the

above to a sequence

ShpRanXdRq
triv�Ñ ShpGr∇G,Xq Ñ QCohpGr∇G,Xq

bL
Ñ QCohpGr∇G,Xq

π�Ñ QCohpRanXdRq. (2.13)

2.5.6. There is a distinguished factorisable line bundle LG P PicpGrG,Xq called the determinant

bundle, see [FBZ]. Taking the constant holonomic D module k P ShpRanXdRq and pushing it

forward to give δ � triv�k, we get the affine factorisation algebra of level k P Z:

AG � π�pδ b Lbk
G q.

Since δ is supported on RanXdR � Gr∇G,X , as an element of D-ModpRanXq this does not depend

on k: only its factorisation algebra structure is affected by the twist by LG.

2.6 Homology of moduli spaces

2.6.1. In this Thesis we will focus on a new class of vertex algebras discovered by Joyce [Jo2].

The idea is that if A is a (abelian, triangulated or dg) category, the extra structure this imposes

on its moduli stack of objects corresponds (after taking homology) to a vertex algebra structure.

For instance, the singularities in the operator product expansions and correlation functions are

controlled by extensions in A.

Instead of worrying about what it means for a space to be a “moduli spaces of objects” in an

(abelian, triangulated or dg) category, we will instead just say what sort of space admits a vertex

algebra structure on its homology, this includes all standard examples of such moduli spaces. For

more detail on the first question, see [TV].

2.6.2. We will build up the vertex algebra structure piece by piece: by adding more structure each

step, we will build

1. A commutative algebra (Proposition 2.6.4).

2. A commutative algebra with derivation (Definition 2.6.13).

3. A vertex algebra (Theorem 2.6.17).

Note that, by section 2.3, these are all examples of vertex algebras.
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2.6.3. Algebra. What should taking direct sums of objects correspond to on the level of spaces?

Let M be a space with marked point 0 : pt ÑM and a map

` : M�M Ñ M

making it into a commutative monoid in the category of pointed spaces. We will sometimes call

` the direct sum map. It is easy to see that

Proposition 2.6.4. If pM, 0q is a commutative monoid, its cohomology H
r
pMq is a supercommu-

tative, cocommutative graded Hopf algebra. Its algebra and coalgebra structure are given by cup

product and `�, its unit and counit are 1 and 0�, and its antipode is S � p�1qdeg.

Corollary 2.6.5. If pM, 0q is a commutative monoid, its homology H rpMq � H
r
pMq_ is a com-

mutative, supercocommutative graded Hopf algebra.

In particular, H rpMq (and H
r
pMq) are trivial examples of vertex (co)algebras.

2.6.6. If pM, 0q is a commutative monoid, write MRep for the symmetric monoidal category of left

modules over H
r
pMq, similarly RepM and MRepM. Their symmetric monoidal structures are given

by the cocommutative coproduct.

2.6.7. An example of a commutative monoid in the category of pointed Artin stacks is BGm �

pBGm, trivq, the classifying space of line bundles with marked point the trivial line bundle. Its

monoid structure is given by tensor product of line bundles

b : BGm � BGm Ñ BGm pL,L1q ÞÑ Lb L1

so BGm is even an abelian group object. As a Hopf algebra its cohomology is the universal

enveloping algebra of a one dimensional Lie algebra t � k � τ in degree two:

H
r
pBGmq � Uptq � krτ s.

The generator τ is the first chern class of the tautological line bundle γ on BGm.9 Dually,

H rpBGmq � Upt_q � krτ̌ s

where t_ � k � τ̌ has τ̌pτq � 1.

9A map into BGm is defined by what the pullback of γ is, so we can define b by

b�γ � γ b γ.

It follows that b�τ � τ b 1� 1b τ , and multiples of τ are the only primitive elements.
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2.6.8. Algebra with derivation. What should the categories being k linear over some field k

correspond to on the level of spaces? It should give the commutative monoid pM, 0q an action by

the group object BGm

act : BGm �M Ñ M.

This action then defines for us a derivation

Proposition 2.6.9. Let pM, 0q be a commutative monoid with an action of BGm. Then

t � act�pτ b idq

defines a derivation on H rpMq. Dually,

t � pτ b idqact�

defines a coderivation on H
r
pMq.

This follows from the following Lemma about Hopf algebras, because the element t is primitive.

Notice that H
r
pMq is a Hopf algebra internal to H

r
pBGmq-coMod. Likewise, H rpMq is a Hopf

algebra internal to H rpBGmq-Mod.

Lemma 2.6.10. Let A be a graded Hopf algebra with finite dimensional graded pieces, so that its

contragredient dual A_ is also a Hopf algebra. We have a functor

A-coMod Ñ Mod-A_ M ÞÑ M

acting trivially on the underlying vector space. If M is an algebra internal to A-coMod, the

primitive elements of A_ act on M as derivations.

Proof. If M is a left A comodule, we get a right A_ module structure by

A_ bM
idb∆
Ñ A_ b AbM

evbid
Ñ k bM � M.

For the second part, we claim that if f P A_ and m,m1 PM , then

fpm �m1q �
¸

fp1qpmqfp2qpm1q

using Sweedler notation.10 This implies that f acts as a derivation if and only if it is primitive.

To show the claim, we follow Grinberg and Reiner [GrR], and write

fpm �m1q � pf b idq∆pm �m1q � pf b idq
¸

ap1qa1p1q bmp2qm1
p2q �

¸
fpap1qa1p1qq bmp2qm1

p2q.

10That is, we write ∆f �
°

fp1q b fp2q and ∆m �
°

ap1q bmp2q.
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The right hand side is¸
p∆fqpap1q b a1p1qq bmp2qm1

p2q �
¸

fp1qpap1qqfp2qpa1p1qq bmp2qm1
p2q �

¸
fp1qpmqfp2qpm1q.

Note that in our case A � H
r
pBGmq is cocommutative, so the distinction between left and right

(co)modules in the above disappears.

2.6.11. It follows that H rpMq (and H
r
pMq) are commutative (co)algebras with derivation, so define

holomorphic vertex (co)algebras. We will now give a more explicit formula.

Lemma 2.6.12. We have act� � exppτ̌ b tq as maps H
r
pMq Ñ H

r
pBGmq b H

r
pMq.

Proof. Note that τ̌npτnq � n!, where the product on cohomology and homology comes from cup

product and tensor product, respectively. To prove this, writing

bn : BGn
m Ñ BGm

for the n fold tensor product, we have `�
nγ � γ1b � � � b γn where γi is the pullback of γ along the

ith projection BGn
m Ñ BGm. Thus,

τ̌npτnq � bn,�pτ b � � � b τqpc1pγq
nq � pτ b � � � b τqpc1pγ b � � �b γqnq

� pτ b � � � b τqpc1pγ1q � � � � � c1pγnqq
n � n!

since τpc1pγqq � τpτ̌q � 1. We now prove the Lemma. We have

exppτ̌ b tqα �
¸
n¥0

τ̌n b
tn

n!
α

so all that we need to show is that the τ̌n coefficient of act�α is tnα{n!, or equivalently

pτn b idqact� � tn.

That the dual endomorphisms on homology are equal is clear: the dual of the right side is action

by t applied n times, and the dual of the left side side is multiplication by τn, thus they are equal

because act : BGm �MÑM is a group action.

Thus if we identify

H
r
pBGmq

�
Ñ krzs τ̌ ÞÑ z

we get that act� � ezt. Repeating section 2.3.2,
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Definition 2.6.13. Let pM, 0q be a commutative monoid with an action of BGm. Joyce’s holo-

morphic vertex coalgebra structure on cohomology is

∆pz�1q : H
r
pMq Ñ H

r
pMq b H

r
pMqrzs α ÞÑ act�1 `

� α

where act1 : BGm �M2 ÑM2 is induced by BGm acting on the first copy of M.

Thus the vertex coalgebra formula simplifies in a way that the dual vertex algebra formula

Y pσ, zq � `�peztσ b idq on H rpMq does not.

2.6.14. Vertex algebra. Finally, consider the (derived) hom space HomApa, a
1q, which is com-

patible with direct sum like

HomApa1 ` a2, a
1q � HomApa1, a

1q ` HomApa2, a
1q (2.14)

HomApa, a
1
1 ` a12q � HomApa, a

1
1q ` HomApa, a

1
2q, (2.15)

and compatible k linearity in that the left and right action of k� on HomApa, a
1q induced by its

action on a and a1 is a representation of weight 1 and �1, respectively. What should this structure

correspond to on the level of moduli spaces?

It corresponds to a perfect complex

θ P PerfpM�Mq

(whose fibre above pa, a1q should be thought of as being HomApa, a
1q), which is compatible with

respect to monoidal structure, meaning

p` � idq�θ � θ13 ` θ23 (2.16)

pid�`q�θ � θ12 ` θ13, (2.17)

and compatible with the BGm action in that it has weight 1 and �1 the left and right BGm action

on M�M, respectively, meaning

act�1θ � γ b θ, act�2θ � γ�1
b θ. (2.18)

Here, θij � π�ijθ is the pullback by the projection πij : M3 Ñ M2 to the ith and jth factors, and

acti is the map BGm �M2 ÑM2 given by acting on the ith factor.
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2.6.15. We can combine all this structure using the bicharacter

Ψpθ, zq :�
¸
k¥0

zrkθ�kckpθq. (2.19)

To understand this better, consider for the moment the case when θ is a vector bundle. Writing

x1, ..., xn for its chern roots, the above is pz � x1q � � � pz � xnq. Identifying H
r
pBGmq � krzs, we

have

Ψpθq � epγ b θq � epact�1θq.

This clearly remains true for any weight one vector bundle (over a base with a BGm action so

that the notion of weight makes sense).

One can show that Ψpθq defines a bicharacter on H rpMq, which is a commutative vertex algebra

by Definition 2.6.13, so can be Borcherds twisted by Ψpθq. If θ is symmetric:

ckpσ
�θq � ckpθ

_q

where σ : M2 Ñ M2 is the swap map, and the rank of θ is everywhere even, this bicharacter is

symmetric,

σ�Ψpθ, zq � Ψpσ�θ, zq � Ψpθ_, zq � Ψpθ,�zq

and so the Borcherds twist by a symmetric bicharacter and so defines a genuine vertex algebra.

This is the starting observation of [Jo2].

2.6.16. We collect everything that we have discussed so far.

Theorem 2.6.17 (Joyce). Let pM, 0q be a pointed space with a commutative monoid structure

` : M � M Ñ M, and a compatible action act : BGm � M Ñ M. Let θ P PerfpM � Mq be

symmetric (ckpθq � ckpσ
�θ_q), compatible with ` and have weights 1 and �1 with respect to the

left and right BGm actions on M�M.

If rkθ is everywhere even, then

Y pα, zqβ � `�
�
ezt b id �Ψpθqα b β

�
(2.20)

defines a vertex algebra structure on H rpMq.

A small modification of the proof of Theorem 2.6.17 below gives

Theorem 2.6.18. (Joyce) Keep the notation of Theorem 2.6.17. If we drop the condition that θ

is symmetric and rkθ even, then the same formula (2.20) gives a defines a nonlocal vertex algebra

structure on H rpMq (see Definition A.2.2).
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Proof of Theorem 2.6.17. The nontrivial part of the Theorem is weak commutativity. So we begin

by noting

Y pα, zqY pβ, wqγ

� `�
�
pezt b idb idq �Ψppid�`q�θ, zq � pidb ewt b idq �Ψpθ23, wq � α b β b γ

�
� `�

�
pezt b idb idq �Ψpθ12, zq � pidb ewt b idq �Ψpθ13, zq �Ψpθ23, wq � α b β b γ

�
where we have written ` : M �M �M Ñ M for the three way direct sum map. Thus to finish

this computation we will need to understand how to commute the middle ewt and Ψpθ, zq terms

past each other.

Lemma 2.6.19 (Commutation Lemma). Let X be any space with an action of BGm and θ be a

perfect complex on X weight n with respect to the BGm action. Then

Ψpθ, zqewt � ewtΨpθ, z � nwq. (2.21)

Here Ψpθ, zq is as in (2.19) and t the derivation defined in Proposition 2.6.9.

Proof. To begin, we claim that

rt, chkpθqs � nchk�1pθq (2.22)

for k ¥ 1. Indeed, we have

act�chkpθq � chkpγ
n
b θq � 1b chkpθq � nτ b chk�1pθq � � � �

so tchkpθq � nchk�1pθq. Thus since t is a derivation on cohomology, tpchkpθqαq � chkpθqtα �

nchk�1pθqα, which proves the claim.

Before continuing, we note that

Ψpθq �
¸
n¥0

zrkθ�kckpθq � zrkθ exp

�
�
¸
k¥1

p�zq�kpk � 1q!chkpθq

�
,

which follows from the definition of chern classes and characters of a perfect complexes as pullbacks

of certain classes in H
r
pPerfq.

Writing B � �
°
k¥1p�zq

�kpk� 1q!chkpθq, we have by the Baker Campbell Hausdorff formula and
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(2.22) that

ewteBe�wt � exp

�¸
k¥0

padwtqk

k!
B

�

� exp

�¸
r¥1

¸
k¥0

pnwqk

k!
p�zq�rpr � 1q!chr�kpθq

�

� exp

�¸
r¥1

¸
k¥0

p�zq�pr�kqp�nw{zqk

k!
pr � 1q!chr�kpθq

�

� exp

�
�
¸
l¥0

¸
k¥0

p�zq�lp�nw{zqk
pl � k � 1q!

k!
chlpθq

�

� exp

�
�
¸
k¥1

p�nw{zqk

k
ch0pθq

�
exp

�
�
¸
l¥1

¸
k¥0

p�zq�lpnw{zqk
pl � k � 1q!

k!
chlpθq

�

� exp

�
�rkθ

¸
k¥1

p�nw{zqk

k

�
exp

�
�
¸
l¥1

¸
k¥0

p�zq�lpnw{zqk
�
�l

k



pl � 1q!chlpθq

�

� p1� nw{zqrkθ exp

�
�
¸
l¥1

p�z � nwq�lpl � 1q!chlpθq

�
,

where we have set p�1q! � 0 for ease of notation. Multiplying both sides by zrkθ then gives the

Commutation Lemma.

Compare this Lemma with [FBZ, Lem. 3.2.3]. Now we can continue our computation: because

θ12 has weight �1 in the second factor,

Y pα, zqY pβ, wqγ � `�
�
ezt b ewt b id �Ψpθ12, z � wq �Ψpθ13, zq �Ψpθ23, wq � α b β b γ

�
(2.23)

which we can compare to

Y pβ, wqY pα, zqγ

� `�
�
ewt b ezt b id �Ψpθ12, w � zq �Ψpθ13, wq �Ψpθ23, zq � β b α b γ

�
� `�

�
ezt b ewt b id �Ψpθ21, w � zq �Ψpθ23, wq �Ψpθ13, zq � α b β b γ

� (2.24)

As Ψpθ, zq defines a symmetric bicharacter (as θ is symmetric with rkθ even) we have

Ψpθ21, w � zq � σ�12Ψpθ12, w � zq � Ψpθ12, z � wq,

hence (2.23) and (2.24) are equal, proving weak commutativity. It is then easy to show that

letting T � t and |0y be the image of 1 under H rpptq Ñ H rpMq, the homology is endowed with

the structure of a vertex algebra, proving Theorem 2.6.17.
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2.6.20. Orientations. For those who do not like the fact in 2.6.18 that the resulting structure

is a nonlocal vertex algebra, we give an alternative way to remove the condition that rkθ be even

from Theorem 2.6.17 whilst still remaining a vertex algebra. This requires the introduction of sign

corrections similar to those in the definition of a lattice vertex algebra, which were not unique but

depended on a choice of two cocycle (section 2.3.10).

In our situation these functions are called orientations in [Jo2]. Note that the commutative monoid

structure on pM, 0q makes π0pMq into a commutative monoid with unit 0 given by the image of

π0p0q Ñ π0pMq. An orientation is then a biadditive function

ε : π0pMq � π0pMq � π0pM�Mq Ñ t�1u

which satisfies

ε0,a � εa,0 � 1 εa,bεb,a � p�1qrkθa,b�rkθa,a�rkθb,b

εa,bεa�b,c � εa,b�c � εb,c

where θa,b � θ|Ma�Mb
. If π0pMq is in fact a group (as in most examples when M is the moduli

space of objects in a derived category), this defines a two cocycle, i.e. a central extension

0 Ñ Z{2 Ñ {π0pM2q Ñ π0pM
2q Ñ 0.

In particular, there are potentially many choices of orientation, and when the rank of θ is every-

where even ε � 1 is one such choice. Joyce notes in [Jo2] that geometrically ε often comes from a

trivialisation of an orientation bundle, a principal Z{2 bundle OÑM.

Given an orientation ε, we define the operator ε̌ on H rpM�Mq, which acts on HdpMaq bH rpMbq

with eigenvalue

ε̌a,b � p�1qdrkθb,bεa,b. (2.25)

Theorem 2.6.21 (Joyce). With notation as in Theorem 2.6.17, without the condition that rkθ be

everywhere even. If ε is an orientation (section 2.6.20), then

Y pα, zqβ � ε̌`�
�
ezt b id �Ψpθqα b β

�
(2.26)

defines a vertex algebra structure on H rpMq. If we also drop the condition that θ be symmetric

(ckpθq � ckpσ
�θ_q) then this defines a nonlocal vertex algebra (Definition A.2.2).
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2.6.22. If the assignment pa, bq ÞÑ rkθa,b is symmetric then the above admits a Z grading by

deg HdpMaq � d � rkθa,a.

Indeed, if α P HdpMaq and β P HepMbq, then

`�pα b βq P Hd�epMa�bq

has degree d� e� rkθa�b,a�b � d� e� rkθa,a � 2rkθa,b � rkθb,b and so

| `� pα b βq| � |a| � |b| � 2rkθa,b.

The vertex algebra is then degree preserving if we set |z| � �2 because pezt b idq has degree zero

and Ψpθ, zq � zrkθa,b
°
z�kckpθa,bq has degree �2rkθa,b.

2.6.23. Note that for any θ as in section 2.6.14, the perfect complex θ` σ�θ_ is symmetric. Note

however that its rank is not necessarily even.

2.6.24. Examples. The typical example is

M � moduli stack of objects in A

where A is an abelian, triangulated or dg category, and θ � Extp , q the vector bundle or perfect

complex whose fibre above the pair of objects pa, a1q is Ext
r
pa, a1q.

When the category is 2n Calabi Yau, we have

Ext
r
pa, a1q � Ext

r
pa1, aq_r2ns

and so we have ckpθq � ckpσ
�θ_q, thus θ is symmetric. Whe

2.6.25. Example. As the simplest example, take the category A0 � DbpCohpptqq0 of bounded

rank zero complexes of vector spaces up to quasiisomorphism

� � � Ñ E�1 Ñ E0 Ñ E1 Ñ � � �
°
p�1qirkEi � 0.

Its moduli stack of objects MA0 � Perf0 parametrises families of such structures. Maps into it

correspond to rank zero complexes of vector bundles up to quasiisomorphism. Its cohomology is

thus generated by chern characters:

H
r
pMA0q � krch1, ch2, . . . s.
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Readers might have noticed that as a vector space this is just (dual to) the Heisenberg vertex

algebra. In this case Joyce’s construction gives a geometric construction of the Heisenberg algebra

structure on homology11

H rpMA0q � krch_1 , ch_2 , . . . s.

2.6.26. Indeed, consider the field of the vector ch_1 . Writing θ � γ_bγ where γ is the (rank zero)

tautological perfect complex over M, we get for n ¡ 0 that

chnpθq � pch_1 b βq � �1b chn�1pγq � β.

All higher degree polynomials in the chern characters act by zero, so separating Ψpθq � 1�pΨpθq�

1q gives

Y pch_1 , zqβ � `�
�
eztc_1 b β

�
�

�¸
k¥1

p�zq�k

k
k!chk�1pγq

�
� β.

Finally, we can rewrite the first term as (and this is where it is important that we are using chern

characters rather than classes)

Y pch_1 , zqβ �
¸
k¥0

znch_nβ �

�¸
k¥1

p�zq�k�1pk � 1q!chk�1pγq

�
� β.

Thus as operators, we set

bn ÞÑ

$'&'%ch_�n if n ¥ 0

p�1qn�1pn� 1q!chn�1 if n ¡ 0

which one can show satisfy the Heisenberg algebra relations at level zero. This means the isomor-

phism of vector spaces to the Heisenberg vertex algebra preserves the field Y pch_1 , zq. Because

this is a generating field of the Heisenberg vertex algebra, by the reconstruction Theorem 2.2.4

this map of vector spaces is actually a vertex algebra isomorphism.

2.6.27. Vector spaces. Moving in the lattice direction, let A � Vectf.d.K be the abelian category

of finite dimensional vector spaces over K. This is a zero dimensional Calabi Yau category, and

its moduli space of objects is

X �
²

n¥0BGLn.

11Here we have taken duals with respect to the monomial basis in the chn, and the algebra structure is the one

given by `�.
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A map into X is uniquely specified by what the pullback is of the tautological vector bundle γ.

Therefore the structure maps ` and act are defined by requiring

`�γ � γ ` γ, and act�γ � γ1 b γ,

where γ1 is the tautological line bundle on BGm. The perfect complex here is simply θ � γ_ b γ.

2.6.28. To describe the action of ` and act on cohomology, pick a maximal torus Tn � GLn, so

that the map BTn Ñ BGLn identifies

H
r
pBGLnq � krt1, ..., tns

Sn Ñ krt1, ..., tns � H
r
pBTnq.

The maps ` and act can be lifted to BTn in a manner similar to the above, and they induce maps

on cohomology

`� : krs1, ..., sn, t1, ..., tms
�
Ñ krs1, ..., sns b krt1, ..., tms,

and

act� : krt1, ..., tns Ñ krts b krt1, ..., tns

which sends ti ÞÑ tb ti. Taking symmetric group invariants then recovers these maps for X.

2.6.29. To explicitly describe the vertex algebra we get, it is easier instead to work with the

derived category C of finite dimensional vector spaces, which has C♡ � A. In this case,

M �
²

nPZPerfn

where Perfn classifies perfect complexes of rank n. Again we have θ � γ_ b γ where γ is the

tautological perfect complex on M. It is not hard to show that H
r
pMq � VZ is the one dimensional

lattice vertex algebra. Thus the vertex subalgebra corresponding to the abelian category has basis

tban�n � � � b
a1
�1|ny : n ¥ 0, an ¥ 0u.

2.6.30. At the moment there is no satisfying explanation of Joyce’s constructions at the level of

chiral algebras. It would be interesting to relate these constructions to [KV2].

2.6.31. Variants. Note that we may replace

θ ù θn ` pσ�θ_q`m n,m ¥ 0
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and still get a (nonlocal) vertex algebra. The holomorphic case corresponds to setting both integers

to zero. More generally, for any λ P k we may replace Ψpθq with

Ψpθ`λq :� zλrkθ
¸
r¥0

λcrpθqz
�r.

As before, if k has characteristic zero we have

Ψpθ`λq � zλrkθ exp

�
�λ

¸
r¥1

p�zq�rpr � 1q!chrpθq

�
.

Indeed, this is true for all nonnegative integral λ, and as on each cohomologically graded piece

both sides are polynomials in λ agreeing on the positive integers, they are equal. We can repeat

the proof of the Commutation Lemma 2.6.19 to give

Lemma 2.6.32. Let X be a space with a BGm action. If θ is a perfect complex on X with weight

n with respect to the BGm action, then

ewtΨpθλ, zq � Ψpθλ, z � nwqewt. (2.27)

It follows that in Theorems 2.6.17 and 2.6.21 if chark � 0 and we replace

Ψpθ, zq ù Ψpθ`λq λ P k

we get a (nonlocal) vertex algebra structure.

2.6.33. Moreover, we may let λ be a variable, and replacing Ψpθq with Ψpθ`λq gives a vertex

algebra over the ring krλs. In particular, if θ1 and θ2 are any two such perfect complexes then

Ψpθ1�λ1 ` θλ2 q interpolates between one vertex algebra structure at λ � 0 and the other at λ � 1.

2.7 Review of the six functors

In this section we will review what we mean by space and sheaf in this thesis.

2.7.1. Grothendieck’s six functor formalism is an extremely useful enhancement of the notion of

cohomology. Standard properties of cohomology are lifted to the category ShpXq of sheaves on

the space X. There are many examples of cohomology, likewise, there are many examples of sheaf

theories with the six functors:

1. Topological spaces with ShpXq the bounded below derived category of sheaves of abelian

groups on X, see [Iv]. Recovers singular cohomology.
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2. Schemes (or more generally, higher Artin stacks [LZ1, LZ2]) X over a field of characteris-

tic prime to ℓ, with ShpXq the bounded derived category of constructible ℓ adic sheaves.

Recovers ℓ adic cohomology.

3. Schemes X over a field of characteristic 0 with ShpXq the derived category of holonomic D

modules, see [Ber, HTT]. Recovers de Rham cohomology.

4. Complex varieties X (separated and reduced) with ShpXq the bounded derived category of

mixed Hodge modules, see [Sa]. Recovers polarisable Q mixed Hodge cohomology.

5. Schemes X over k and ShpXq the category of Beilinson motives, see [CD].

This list is far from exhaustive. In the below we will assume that ShpXq is a triangulated cat-

egory since this is all we will need in the Thesis, however most six functor formalisms do admit

enhancements to stable 8 categories. Finally, we warn that one needs to impose additional finite-

ness assumptions in the above examples to define the ! pullback and pushforward functors. For a

general account, see [CD].

2.7.2. What we mean by space and sheaf. We fix a (8-)category Sp of spaces. A sheaf theory

with the six functors means an assignment to every space of a triangulated (stable 8-)category

X P Sp ù ShpXq P Triang

and to every map of spaces two adjoint pairs of triangulated functors pf�, f�q and pf!, f
!q:

X
f
Ñ Y ù ShpXq ShpY q

f�,f!

f�,f !

We require that ShpXq comes equipped with a closed symmetric monoidal structure pb,Homq,12

and each of the four functors attached to f induce 2-functors Sppopq Ñ Triang, such that

1. f� is monoidal.

2. Given a pullback in Sp

X 1 Y 1

X Y

f

g g

f

there are natural base change isomorphisms

g�f!
�
ñ f !g

�, g�f
! �
ñ f !g�.

12Recall that this means a symmetric monoidal structure b and an internal Hom functor Hom, satisfying tensor-

Hom adjunction.
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3. There are natural projection formula isomorphisms

pf!Fq bY G
�
ñ f!pF bX f

�Gq, HomY pf!F,Gq
�
ñ f�HomXpF, f

!Gq,

f !HomY pG,G
1q

�
ñ HomXpf

�G, f !G1q.

We also require that the structure interact well with maps which are open, closed, proper,

smooth, . . .. Rather than axiomatise the meaning of these adjectives in Sp, we simply give an

example:

Theorem 2.7.3. [LZ1, LZ2] Let Sp be the category of dg higher Artin stacks locally of finite type

over a field whose characteristic is prime to ℓ. Then the triangulated (stable 8-)category ShpXq

of constructible ℓ adic sheaves satisfies the above, and also satisfies

4. For any schematic map f we have a natural transformation f! ñ f�, which is an equivalence

if f is proper.

5. If i and j are complementary closed and open embeddings, there are distinguished triangles

(fibre sequences)

i�i! ñ id ñ j�j!
�1
ñ

j�j! ñ id ñ i�i!
�1
ñ

called the Mayer Vietoris sequence.

6. If i is a closed embedding, the counit i�i�
�
ñ id is an equivalence.

7. Shpptq � DbpVectQℓ
q.

8. If f is smooth of dimension d then there is an equivalence f ! �
ñ f�x2dy.

Here x2dy � r2dspdq where pdq denotes the dth Tate twist. The adjunction pf�, f�q can be extended

to arbitrary maps of dg higher Artin stacks.

2.7.4. Conventions. We will use ShpXq to denote the triangulated stable 8 category of a sheaf

theory with the six functors. In particular, its homotopy category is a triangulated category; we

will often abuse notation by also denoting it by ShpXq. This will not cause confusion because

invariants like cohomology of a space (see below) are built from ShpXq or from its homotopy

category in identical ways.

We will use as our category Sp of spaces the category of derived Artin stacks over a field of char-

acteristic zero. This will include all moduli stacks we will be covering. The reason for considering
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derived Artin stacks is that this is the correct framework when talking about fundamental classes

(see e.g. [?] or Appendix C).

2.7.5. Consequent notions. From a sheaf theory with the six functors, a number of different

notions can be defined.

1. Cohomology. Writing pX : X Ñ pt for the projection to a point, the cohomology (with

compact support) of a sheaf F P ShpXq is

H
r
pX,Fq � pX,�F, H

r
cpX,Fq � pX,!F.

By adjunction cohomology is equivalently HomShpXqpkX ,Fq. The constant sheaf with value

A P Shpptq � DbpVectkq is AX � p�XA, and the cohomology (with compact support) of X is

the cohomology (with compact support) of the constant sheaf kX .

2. Homology. The dualising sheaf of a space X is ωX � p!Xk. The (Borel Moore) homology of

a space X is13

H rpXq � pX!ωX , HBMr pXq � pX�ωX .

3. Gysin sequence. If i and j are complementary closed and open embeddings, the Gysin

sequence is the distinguished triangle

i! ñ i� ñ i�j�j�
�1
ñ

formed by applying i� to the Mayer Vietoris sequence.

4. Cup product. Because f� is a monoidal functor, its right adjoint f� is lax monoidal and its

lax monoidal structure

f�F b f�G Ñ f�f�pf�F b f�Gq � f�f�pf�F b f�Gq Ñ f�pF b Gq

takes commutative monoids to commutative monoids, see [GL, Prop. 3.2.3.1]. In particular,

applying this to the commutative monoid kX (which is the unit in ShpXq), we get an algebra

map

H
r
pXq b H

r
pXq Ñ H

r
pXq

called the cup product.

13Sometimes we also denote Borel Moore homology by H
r
BM.
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5. Pullback. By applying the unit id ñ f�f� and counit f!f
! ñ id we get a map

f� : H
r
pY,Gq Ñ H

r
pX, f�Gq, f� : H

r
cpX, f

!Gq Ñ H
r
cpY,Gq

and if G is an commutative monoid f� is a map of algebras. This shows that (co)homology

of spaces is (contravariantly) functorial.

6. Poincaré duality. The Verdier dual endofunctor is

DX � HomXp�, ωXq.

When f is a finite type map of schemes, the natural transformation id
�
ñ D2

X is an equiva-

lence, exchanging

f!DX
�
ñ DY f� f !DY

�
ñ DXf

�

see [SGA5, Ex. I]. Thus the two Mayer Vietoris sequences above are Verdier dual. Noting

that Dpt is nothing but taking the dual vector space, we get the Poincaré duality isomorphism

for X a smooth scheme of finite type

H
r
pX,Fq � H

r
cpX,DXFq

_.

7. Cohomology of classifying spaces. Let G be a smooth connected algebraic group. To describe

the category of sheaves on the classifying space BG, we use the fact that π! is conservative

and apply Lurie Barr Beck as in [DGai, §7.2]. Consider the pullback

G pt

pt BG

σ

σ

π

π

so that by smooth base change, π!π!k � σ!σ
!k � H

r
pGq_. Thus by Lurie Barr Beck,

ShpBGq � H
r
pGq_-ModpShpptqq � H

r
pGq_-Mod

is the category of modules over the dg algebra B � H
r
pGq_. For instance, since kBG

corresponds to the trivial B module, taking cohomology corresponds to

H
r
pBG,�q � HomShpBGqpkBG,�q � HomBpk,�q.

In particular, the cohomology H
r
pBGq � HomBpk, kq is the Koszul dual of B. By taking

an explicit projective resolution, we see that if H
r
pGq is freely generated in degrees 2di � 1,

then the cohomology H
r
pBGq is freely generated in degrees 2di.
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8. Bivariant homology. The bivariant homology (sometimes also called relative Borel Moore

homology) of the map f is

H
r
pX{Y q � H

r
pX, f !kY q.

Moreover H
r
pX{Y q is a bivariant theory in the sense of Fulton and MacPherson [FM, §7.4],

i.e.

(a) there is a product map

H
r
pX{Y q b H

r
pY {Zq

�
Ñ H

r
pX{Zq for X

f
Ñ Y

g
Ñ Z,

(b) if f is proper there is a pushforward map f� : H
r
pX{Zq Ñ H

r
pY {Zq,

(c) and there is a pullback map

X 1 Y 1

g� : H
r
pX{Y q Ñ H

r
pX 1{Y 1q for

X Y

f

g g

f

The product takes two bivariant classes kX Ñ f !kY and kY Ñ g!kZ to their composition

kX Ñ f !kY Ñ f !g!kZ , proper pushforward is given by f�f ! � f!f
! ñ id, and pullback is

given by base change f ! ñ f !g�g� � g�f
!
g�.

These three structures together satisfy:

A1) The product is associative: pα � βq � γ � α � pβ � γq.

A2) Pushforward is functorial: if f1, f2 are composable proper maps, f1�pf2�pαqq � pf1f2q�pαq.

A3) Pullback is functorial: if g1, g2 are composable maps, g�1 pg
�
2 pαqq � pg1g2q

�pαq.

A13) Product and pullback commute: g�pα � βq � g�pαq � g�pβq.

A23) Pushforward and pullback commute: g�f�α � f 1�g
�α for any Cartesian diagrams

Z 1 Y 1 X 1

Z Y X

f 1

g

f

where f is proper, and any class α P H�pZ{Xq.

A123) The projection formula for any Cartesian diagram: β � f�α � f 1�pg
1�β � αq
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Z 1 Y 1

Z Y X

f 1

g1

f

where f is proper, and classes α P H�pZ{Xq and β P H�pY 1{Y q.

C) Skew-commutativity: g�α � β � p�1qdegpαq�degpβqf�pβq � α for any Cartesian diagram

Y 1 X 1

Y X

f 1

g1 g

f

and classes α P H�pY {Xq and β P H�pX 1{Xq.

There is also a notion of virtual fundamental class attached to any quasismooth map between

derived Artin stacks, see section C.4.

2.7.6. Extending sheaf theories. We can define sheaves on more general categories of spaces,

at the cost of losing the six functors, see e.g. [Ga3]. Consider just the f ! functor

Sh!p�q : Schop Ñ Triang.

Then if f ! preserves limits (as is the case when it has a left adjoint f!), we can extend this functor

to prestacks Y by continuity:

Sh!pY q � lim
SÑY
SPSch

Sh!pSq

and similarly for lax prestacks, see [Ga3, §1,§2]. Moreover,

1. In many cases, e.g. D modules, then by [GaR, Thm 2.1.2] for any ind schematic map of

prestacks f : X Ñ Y we get two functors

f� : ShpXq Ñ ShpY q f ! : ShpY q Ñ ShpXq

satisfying base change. Moreover, pf�, f !q are adjoint if f is proper and pf !, f�q are adjoint

if f is an open embedding.

2. In the case of constructible sheaves over topological spaces, ℓ adic sheaves over a base of

characteristic prime to ℓ or holonomic D modules over a base of characteristic 0, then if

f : X Ñ Y is any map of prestacks then we get functors

f! : ShpXq Ñ ShpY q f ! : ShpY q Ñ ShpXq

such that pf!, f
!q is an adjunction, see [Ga3, Cor. 1.4.2] for details.
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Chapter 3

Cohomological Hall algebras

3.1 Cohomological Hall algebras

3.1.1. Cohomological Hall algebra is the catch-all name for some algebras associated to the moduli

space of objects in abelian categories A, formed by turning the abelian category structure into an

algebra structure, e.g. by taking cohomology.

The modern definition was discovered by Kontsevich and Soibelman in [KS] for A � ReppQ,W q

the representations of a quiver with potential, drawing on analogies with the string theory notion

of algebra of BPS states due to Harvey and Moore [HM], and the earlier notion of Hall algebra of

a finitary category due to Ringel and Hall, see [Sc].

3.1.2. Hall algebras. If A is an abelian category with a finiteness condition, Ringel and Hall

gave

HA � Crπ0pAqs

the structure of an associative algebra, by using extensions in the category A. The condition

is finitary, meaning Hompa, a1q and Ext1pa, a1q are finite for all objects a, a1. Examples include

representations of a quiver over Fq, or coherent sheaves on a scheme defined over Fq.

Theorem 3.1.3 (Ringel [Rin]). If A is a finitary abelian category, and a, a1 P A,

a � a1 � xa, a1y
¸

aÑeÑa1

e (3.1)

defines an algebra structure on HA, where we sum over all short exact sequences, and

xa, a1y �
1

|Auta| � |Auta1|

b¹
|Extipa, a1q|p�1qi .
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The term χpa, a1q �
±
|Extipa, a1q|p�1qi is called the multiplicative Euler form, and defines a homo-

morphism KpAq � KpAq Ñ Q�. Similarly, χpa, a1q �
a
χpa, a1qχpa1, aq is called the symmetrised

multiplicative Euler form.

3.1.4. Green discovered that this can be extended to a bialgebra structure. Note that HA is

graded by KpAq, allowing us to take the completed tensor product with itself. Green defined the

map

∆ : HA Ñ HApbHA e ÞÑ
1

|Aute|

¸
aÑeÑa1

a
χpa, a1qab a1 (3.2)

where we sum over all short exact sequences, and showed that it is a topological1 coalgebra.

However, even ignoring convergence issues, we do not literally have a bialgebra structure. The

coproduct will only be compatible with the twisted product

∆pfgq � ∆pfq �χ ∆pgq

defined on homogenous elements by

pab bq �χ pcb dq � χpb, cqpacb bdq.

Note that both product (3.1) and coproduct (3.2) preserve the grading by KpAq, and twisted

bialgebras are just bialgebras for a certain symmetric monoidal structure τS on the category

VectKpAq of KpAq-graded vector spaces (see 3.1.6 below).

Theorem 3.1.5 ([Gre]). Let dimA ¤ 1. Then HA is a topological bialgebra in pVectKpAq, τSq, with

product (3.1), coproduct (3.2), and (co)unit (evaluation at) the zero object 0 P ObjA.

3.1.6. The isomorphisms

Sλ,µ : Cλ bCµ
χpλ,µq�
Ñ Cλ bCµ

�
Ñ Cµ bCλ

can be extended by cocontinuity to KpAq-graded isomorphisms

τS,V,W : V bW
�
Ñ W b V

for all graded vector spaces V,W . Here λ, µ P KpAq and Cλ is the one dimensional vector space

with grading λ. Then τS defines a symmetric monoidal structure (see section A.1.3) on VectKpAq,

as the conditions are implied by χ being a homomorphism and symmetric in both factors.

1i.e. not only are all the coalgebra axioms satisfied, but all terms are well defined, which is not a priori clear

due to convergence issues (see the discussion after [Sc, Prop 1.4]).
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3.1.7. The Hall algebra has an interpretation in terms of the moduli stack MA parametrising

objects in A: in all the relevant examples, it exists as an algebraic stack over a field k with points

MApkq � π0pAq. There is also a stack ExtA parametrising short exact sequences in A. Thus we

have maps

ExtA

MA �MA MA

pq (3.3)

which on k points sends

r0 Ñ aÑ eÑ a1 Ñ 0s

pa, a1q e

q p (3.4)

The Hall algebra HA can then be interpreted as constructible functions on the Artin stack MA,

see [Jo1]. Informally, one interprets the Hall algebra as pulling back constructible functions by q

then pushing forward by p.

3.1.8. Cohomological Hall algebras. Cohomological Hall algebras take the correspondence

(3.3), but instead of applying constructible functions to get the Hall algebra, apply cohomology

or similar invariant like Borel Moore homology. For a review of cohomology, see section 2.7.

3.1.9. Let X P AlgpArtcorrq be an Artin stack which is an associative algebra in the category of

Artin stacks with morphisms correspondences. This means that there is a map

1 : pt Ñ X

and a correspondence

C

X �X X

pq (3.5)

satisfying an associativity condition, and 1 is a unit.2

2This means that the two pullbacks

Cp12q3 C1p23q

X � C C C �X C

pX �Xq �X X �X X X � pX �Xq X �X X

(3.6)

are isomorphic correspondences, and that X � C �X�X ppt�Xq � C �X�X pX � ptq.
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Definition 3.1.10. Let X be an Artin stack as in 3.1.9. Assume p is proper. The following

structures are all called cohomological Hall algebras (or CoHAs):

1. If p quasismooth, pH
r
pXq, p�q�q.

2. If q is quasismooth, pHBMr pXq, p�q�q.

3. If p is quasismooth, pH
r
pX,Fq, p�q�q for any sheaf F P ShpXq with a map q�pF b Fq Ñ p�F

satisfying an associativity condition.

Recall that in cohomology, there are all pullbacks and quasismooth proper pushforwards. In Borel

Moore homology, there are quasismooth pullbacks and proper pushforwards. The reason is that

all these maps are constructed using fundamental classes and proper pushforwards in bivariant

homology, see Appendix C.5. The third map is constructed by

H
r
pX,Fq b H

r
pX,Fq � H

r
pX �X,F b Fq

q�
Ñ H

r
pC, q�pF b Fqq Ñ H

r
pC, p�Fq

rC{Xs
Ñ H

r�2dpC, p!Fq
p�Ñ H

r�2dpX,Fq

where rC{Xs is the fundamental class and p� is the (bivariant) pushforward by p.

3.1.11. We list some examples. Let A be an abelian category. In all relevant cases there is a

moduli stack of objects MA which fits into a correspondence (3.3), and a quasicoherent sheaf

ExtAp�,�q defined on A�A whose fibre above pa, a1q is the dg vector space ExtApa, a
1q, such that

q�ExtAp�,�q � Tp.

Thus we should expect Tp to Tor amplitude in p�8, dimAs, in particular p should be quasismooth

when A has dimension at most one: in examples this is clear since MA and ExtA are smooth.

1. dimA ¤ 1. H
r
pMAq is a cohomological Hall algebra when

A � RepQ, CohC

is the category of representations of a quiver Q or coherent sheaves on a smooth proper curve

C. See [KS].

Moreover, in [PS, Prop. 3.10] Porta and Sala show that for A � CohpXq coherent sheaves on a

smooth proper scheme over C, then q has Tor amplitude in p�8, dimA� 1s, so it is quasismooth

when A has dimension two and below.
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2. dimA ¤ 2. HBMr pMAq is a cohomological Hall algebra when

A � RepPQ, HiggsC, CohS

is the category of representations of the preprojective algebra of a quiver Q, Higgs sheaves

on a smooth proper curve C, or coherent sheaves on a smooth proper surface S. The first

two are just the cotangent categories of RepQ and CohC, meaning that their moduli stacks

are just T�
MRepQ

and T�
MCohC

. See [YZ1, YZ2, KV2].

3. The third example is related to the 3 Calabi Yau category

A � ReppQ,W q

the representations of a quiver with potential. In [KS, §7], Kontsevich and Soibelman in [KS]

consider the “critical cohomology”, a certain dual of the compactly supported cohomology

of a sheaf of vanishing cycles. Note that

H
r
cpX,φq

_ � H
r
pX,Dφq,

so this really is analogous to Theorem 3.1.10,3 see [KS].

3.1.12. History. Cohomological Hall algebras in the modern form of Theorem 3.1.10 were first

introduced by Kontsevich and Soibelman in [KS], which was preceded by other attempts to define

CoHAs for quivers. They defined the CoHA of a quiver with potential and showed that its Poincare

polynomial is given in terms of DT invariants.

In certain cases the category CohpY q0 of zero dimensional torsion sheaves on a 3 Calabi Yau

variety can be realised as representations of a certain quiver with potential. When Y � C3,

Rapčák, Soibelman, Yang and Zhao [RSYZ1] showed that the double of the equivariant spherical

CoHA is the affine Yangian of glp1q, and showed that there is an action on the cohomology of the

moduli space of spiked instantons in P2, and generalise this to 3 Calabi Yau toric threefolds in

[RSYZ2]. This allowed them to make progress on the conjecture that assigns to any toric Calabi

Yau n-fold X a certain vertex algebra WX,r1,...,rn .

We now turn to dimension two categories.

The construction of CoHAs is very similar to the construction by Grojnowski and Nakajima [Groj,

Na] of an action of the Heisenberg algebra (W algebra of glp1q) on the cohomology H
r
pHilbpSqq

3In [KS] they work with a variant of the category of mixed Hodge modules.

53



of the Hilbert scheme of points on a smooth surface S, which is an example of the AGT corre-

spondence for glp1q. The relation to three dimensional CoHAs is by “dimensional reduction”, as

proposed in [KS], see also work of Davison [Da], which relates the dimensional reduction of the

CoHA attached to a quiver with potential with Yangians.

Moreover, Yang and Zhao [YZ1, YZ2] have related the Drinfeld double of HBMr pMRepPQ
q to affine

Yangians, Kapranov and Vasserot [KV2] have related the CoHA of a surface to factorisation

algebras. Sala and Schiffmann [SS] have given a description of the CoHA of Higgs bundles on

a curve. Working in the analytic category, Kapranov and Vasserot [KV2] have shown that the

CoHA of dimension zero torsion sheaves on a smooth proper surface CohpSq0 carries a (topological)

factorisation algebra structure.

3.1.13. What we prove. How is this relevant to the current work? Some common features of

CoHAs as above are:

1. the (often mysterious) relation to “affine” objects: Yangians and vertex algebras,

2. the existence of a (localised) coproduct on the CoHA.4

In the setting of dimension one abelian categories, we combine the two: the CoHA is a vertex

coalgebra (not just has an action of one), and this vertex coalgebra structure is a (vertex analogue

of) a coproduct on the CoHA. Moreover, we explain the singularities occuring in the localised

coproducts and formulas for CoHAs: they are the Euler classes turning up when one computes

the CoHA using torus localisation.

3.2 The bivariant Euler class

3.2.1. Euler classes in topology. Let X be a topological space and E Ñ X a complex vector

bundle over it. Associated to this a long exact sequence on cohomology called the Thom-Gysin

sequence:

� � � Ñ H
r�2rkEpXq Ñ H

r
pXq Ñ H

r
pEzXq Ñ � � � (3.7)

Since these are all maps of H
r
pXq modules, the first map is multiplication by an element epEq P

H2rkEpXq, defined to be the Euler class of E.

4We did not state it explicitly, but every time in the literature a CoHA is compared to a Yangian, one needs to

Drinfeld double the CoHA, for which one needs a coproduct compatible with the algebra structure.
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3.2.2. The Thom-Gysin sequence (3.7) can lifted to a distinguished triangle of sheaves on X,

meaning that taking derived global sections gives (3.7).

Here and in the following, we use the language of the six functors, see section 2.7 for a review.

Write ShpXq for the derived category of sheaves of k vector spaces on X. The Gysin sequence is

the distinguished triangle in ShpXq

i!kE Ñ i�kE Ñ i�j�j�kE
�1
Ñ (3.8)

where i : X Ñ E denotes the zero section, j : EzX Ñ E is its open complement and kE is the

constant sheaf with fibre k.5 Thus i!kE Ñ i�kE is a sheaf level description of multiplication by the

Euler class.

3.2.3. Euler classes in geometry. We now consider any category of spaces X admitting a

category of sheaves ShpXq with the six functor formalism (see section 2.7 ).

If i : X Ñ Y is any closed embedding, we still have a Gysin sequence

i!kY Ñ i�kY Ñ i�j�j�kY
�1
Ñ (3.9)

taking cohomology of which gives the Thom Gysin sequence

� � � Ñ H
r
pX{Y q Ñ H

r
pXq Ñ H

r
pX, i�j�j�kY q Ñ � � � (3.10)

whose first term is the bivariant homology of X Ñ Y , and the third should be thought of as

the cohomology of a small neighbourhood of X in Y , with X removed. As before, j is the open

complement of i.

Definition 3.2.4. Let i : X Ñ Y be a closed embedding admitting a retraction Y ↠ X. Its

bivariant Euler class epY {Xq is the element of the bivariant homology H
r
pY {Xq,

epY {Xq � i�1,

where i� : H
r
pXq Ñ H

r
pY {Xq.

Here, i� denotes the proper pushforward map on bivariant homology H
r
pXq � H

r
pX{Xq Ñ

H
r
pY {Xq. It is easy to show that the first map in the Thom Gysin sequence (3.10) is cup product

on the right with epY {Xq, via

H
r
pX{Y q b H

r
pY {Xq Ñ H

r
pX{Xq � H

r
pXq.

This prompts the following definition.

5Traditionally i!kE is called the local cohomology sheaf of the closed embedding i.
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Definition 3.2.5. For any closed embedding i : X Ñ Y , (right) multiplication by its bivariant

Euler class is

�epY {Xq : H
r
pX{Y q Ñ H

r
pXq,

the first term in the Thom Gysin sequence, induced by the natural transformation i! ñ i�.

3.2.6. Relation to ordinary Euler classes. The bivariant Euler class of a vector bundle should

give an actual cohomology class on the base, the usual notion of Euler class. This holds more

generally in the smooth setting:

Definition 3.2.7. Let i : X Ñ Y be a closed embedding admitting a smooth retraction p : Y Ñ X

of dimension d. Its Euler class epY q is the element of H2dpXq defined by

H
r
pX{Y q H

r�2dpXq

H
r
pXq

�rY {Xs

�epY {Xq

�

�epY q
(3.11)

This indeed defines an element because all maps in (3.11) are graded H
r
pXq module morphisms.

Here rY {Xs is the fundamental class (section C.4), which is an isomorphism by smoothness, since

then by purity the fundamental class gives an isomorphism kY
�
Ñ p!kXr2ds. A consequence of the

definition is

epY {Xq � rY {Xs � epY q � p�epY q � rY {Xs. (3.12)

3.2.8. Functoriality. Take a map between two closed embeddings: a pullback square

X Y

X Y

ι

f f

i

It is then easy to show that

Lemma 3.2.9. For any class α P H
r
pX{Y q,

f�pα � epY {Xqq � pf�αq � epY {Xq.

Next take two closed embeddings admitting a retraction, and a map between them, meaning two

pullback squares

X Y X

X Y X

ι

f

π

f f

i π
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Then we have

Proposition 3.2.10. As classes in H
r
pY {Xq,

f�epY {Xq � epY {Xq.

Proof. Because pullback and pushforward commute,

f�epY {Xq � f�i�1X � ι�f�1X � ι�1X � epY {Xq.

3.2.11. Whitney sum, smooth case. The classical Whitney sum formula says that given a

short exact sequence of vector bundles

0 Ñ E1 Ñ E Ñ E2 Ñ 0 (3.13)

we have epEq � epE1q � epE2q, so the Euler class is multiplicative. In particular, it descends to

a map on K theory. To rephrase this in terms of bivariant Euler classes, note that there is a

(homotopy) pullback diagram

E1 E

X E2
ψ

(3.14)

and ψ induces an isomorphism

ψ� : H
r
pE{E2q

�
Ñ H

r
pE1{Xq.

In particular, even though E Ñ E2 does not in general admit a section, we can define

epE{E2q :� pψ�q�1epE1{Xq.

We then get

Proposition 3.2.12 (Whitney sum). Under a short exact sequence of vector bundles (3.13),

epE{Xq � epE{E2q � epE2{Xq.

Then applying (3.11) gives epEq � epE1qepE2q as elements of H rpXq.
Proof. Apply the projection formula (section 2.7.5) to the diagram
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E1 E

X E2 X

ψ

ψ

we get that

ψ�pψ
�epE{E2q � 1q � epE{E2q � ψ�1

as elements of H
r
pE{Xq. The left hand side is ψ�epE1{Xq � epE{Xq, and the right hand side is

epE{E2q � epE2{Xq.

3.2.13. Example. For an example we compute the universal Euler class of vector bundles. Recall

that every line bundle is the pullback by a map into BGm of the tautological line bundle γ �

A1{Gm. The Thom Gysin sequence then involves multiplication by the Euler class epγq:

� � � Ñ H
r�2pBGmq

�epγq
Ñ H

r
pBGmq Ñ H

r
pptq Ñ � � �

since pA1z0q{Gm � pt. We can identify all the cohomology groups,

� � � Ñ krts
�epγq
Ñ krts Ñ k Ñ � � �

and so epγq � t, rescaling t if necessary. A more delicate analysis, e.g. using integral ℓ-adic

cohomology, will show that epγbnq � n � epγq.

3.2.14. We can repeat this analysis for the vector bundle

γ � V {G Ñ BG

where G is any complex reductive group and V is any finite dimensional representation. Taking

V � Cn the standard representation of G � GLn gives the universal rank n vector bundle.

Choosing a maximal torus T and taking the pullback

V {T BT

V {G BG

we get that the image of epγq under

H
r
pBGq � H

r
pBT qW ãÑ H

r
pBT q

is

epγq �
¹
λPΛ

λdimVλ .
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Here we have identified H
r
pBT q � CrΛs as a polynomial algebra generated by the character lattice

Λ � HomGrppT,Gmq in degree two, and Vλ is the summand of V on which T acts by λ. For the

standard representation of GLn, the Euler class epCn{GLnq is the element

t1 � � � tn P H
r
pBT q � Crt1, ..., tns.

3.3 Localisation

Inverting equivariant cohomology classes is a powerful tool because two conflicting effects are often

simultaneously true:

1. inverting does not lose much information (none if inverting non zero divisors), yet

2. dissimilar spaces can have the same cohomologies after inversion: abelian localisation (section

3.5) covers the case of a closed subspace, and we will see that the localised cohomology of

singular spaces behaves like for smooth spaces (see section 3.4).

In this section we set up the notation.

3.3.1. Fix a base Artin stack B, and let S � H
r
pBq be a multiplicative subset. We call

Mloc :� M rS�1s

the localisation of a H
r
pBq module M .

3.3.2. Specialisation and concentration.

Definition 3.3.3 (Concentration). An Artin stack Y over B is (S-)concentrated if

H
r
pY qloc � 0.

We say a closed embedding i : X Ñ Y over B is (S -)concentrated if Y zX is concentrated.

Definition 3.3.4 (Specialisation). A closed embedding i : X Ñ Y over B is (S -)specialised if

�epY {Xq : H
r
pX{Y qloc Ñ H

r
pXqloc

is an isomorphism.
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It may be useful to see the following commuting diagram of H
r
pXq modules, whose rows are long

exact sequences

� � � H
r
pX{Y q H

r
pY q H

r
pY zXq � � �

� � � H
r
pX{Y q H

r
pXq H

r
pX, i�j�kq � � �

i�

i�

�epY {Xq
(3.15)

where j is the open complement of i. So concentration/specialisation just says that, upon local-

ising, the right term in the top/bottom row of (3.15) vanishes, or equivalently the left map is an

isomorphism. It also follows that

Lemma 3.3.5. If i� is an isomorphism then concentration and specialisation are equivalent

For example, this is the case when the fibres of Y over X are cohomologically trivial, like when Y

is a vector bundle, cone bundle or perfect complex over X.

3.3.6. Pullbacks.

Lemma 3.3.7. Let i : X Ñ Y be a concentrated and specialised closed embedding, and consider

the Cartesian square

ΩY X

X Y

ι

Then the pullback map i� : H
r
pX{Y q Ñ H

r
pΩY {Xq is an isomorphism after localisation.

Proof. We have a commuting diagram

H
r
pX{Y q H

r
pY q

H
r
pΩY {Xq H

r
pXq

i�

i� i�

ι�

Note that ι� is an isomorphism on the nose since pΩY qcl � X. Both i� and i� : H
r
pY q Ñ H

r
pXq

are isomorphisms after localisation by the hypothesis, proving the claim.

Lemma 3.3.8. Let i : X Ñ Y be a concentrated closed embedding, and W Ñ X be any map.

Then the cup product

H
r
pW {Xq bH

rpXq H
r
pX{Y q Ñ H

r
pW {Y q
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is an isomorphism after localisation, i.e. we have

H
r
pW {Xqloc bH

rpXqloc H
r
pX{Y qloc

�
Ñ H

r
pW {Y qloc

Proof. After stratifying Y , we get a commuting diagram of long exact sequences

H
r
pW0{Y q H

r
pW {Y q H

r
pW1{Y q

H
r
pW0{Xq bH

rpXq H
r
pX{Y q H

r
pW {Xq bH

rpXq H
r
pX{Y q H

r
pW1{Xq bH

rpXq H
r
pX{Y q

�1

Y Y
�1

Y

where W0 � W�Y X and W1 � W�Y pY zXq. The right two vector spaces vanish after localisation

because W1 is concentrated. Thus it suffices to prove the Lemma after replacing W with W0, which

follows immediately since pW0qcl � X.

Proposition 3.3.9. Let X Ñ Yk be maps admitting restrictions (k � 1, 2, 3), fitting into the

Cartesian square

Y1 X

Y2 Y3

(3.16)

Assume that the map i3 : X Ñ Y3 is a concentrated and specialised closed embedding. Then the

pullback map on bivariant homology

i�3 : H
r
pY2{Y3qloc

�
Ñ H

r
pY1{Xqloc

is an isomorphism.

Proof. Noting that (3.17) is a diagram over Y3; we now stratify Y3 by

X Ñ Y3 Ð Y3zX

and the pullbacks of (3.17) are

Y1zỸ1 X Ỹ1 ∅

Y2zỸ2 X Ỹ2 Y3zX

(3.17)

where Ỹi � Yi �Y3 pY3zXq, is contained in YizX. This gives a commuting diagram

61



H
r
pY1zỸ1{Xq H

r
pY1{Xq H

r
pỸ1{Xq

H
r
pY2zỸ2{Y3q H

r
pY2{Y3q H

r
pỸ2{Y3q

�1

i�3 i�3

�1

Both spaces on the right vanish after localisation, the top because Ỹ1 � ∅, and the bottom by

concentration, as H
r
pY3zXqloc � 0 implies that H

r
pỸ2qloc � 0.

It remains to show the left vertical arrow is an isomorphism after localisation. This follows because

it fits as the bottom arrow into the following commuting diagram

H
r
pY2zỸ2{Xq bH

rpXq H
r
pX{Y3q H

r
pY1zỸ1{ΩY3q bH

rpXq H
r
pΩY3{Xq

H
r
pY2zỸ2{Y3q H

r
pY1zỸ1{Xq

ι�3bi�3

Y Y
i�3

(3.18)

where ΩY3 � X �Y3 X, coming from the pair of pullback squares

Y1zỸ1 ΩY3 X

Y2zỸ2 X Y3

The top rightwards arrow in (3.18) is an is an isomorphism after localisation because ι3 : ΩY3 Ñ X

is an isomorphism on classical parts and by Lemma 3.3.7. The vertical arrows are isomorphisms

after localisation by Lemma 3.3.8 applied to the concentrated closed embedding X Ñ Y3, finishing

the proof.

Corollary 3.3.10. In the setting of Proposition 3.3.9, if Y2 Ñ Y3 is quasismooth and

rY2{Y3s� : H
r
pY3q Ñ H

r
pY2{Y3q

is an isomorphism after localisation, the same is true for

rY1{Xs� : H
r
pXq Ñ H

r
pY1{Xq.

Proof. Follows from the commuting diagram

H
r
pY3q H

r
pY3{Y2q

H
r
pXq H

r
pY1{Xq

[Y2{Y3]

i�3

[Y2{Y3]
i�3
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The most basic example of this is

Corollary 3.3.11. Let E be a strict Gm equivariant perfect complex in tor amplitude ¤ 1 and

nonzero Gm weights. In particular it is a bounded complex of vector bundles Ei. Then after

inverting S � pepE1q, epE2q, . . . q,

rE{Xs� : H
r
pXqloc

�
Ñ H

r
pE{Xqloc

is an isomorphism.

Proof. Begin by writing E¤0 and E¥1 for the perfect complexes formed by discarding all vector

bundles in the complex except in degrees ¤ 0 and ¥ 1, respectively. Then E is the fibre

E X

E¤0 E¥1r1s

Note that X Ñ E¥1r1s is a concentrated and specialised closed embedding with respect to S �

pepE1q, epE2q, . . . q, by Lemma 3.3.30. Moreover, since E¤0 and E¥1r1s are smooth over X, it

follows that multiplication by the fundamental class of E¤0 Ñ E¤1r1s is an isomorphism on the

nose. Applying Corollary 3.3.11, we get that multiplication by rE{Xs is an isomorphism after

localisation.

3.3.12. Functoriality. We now turn to the functoriality properties of concentration and special-

isation.

Lemma 3.3.13. Let Y Ñ Y 1 be a surjective map of spaces over X whose fibres have trivial

cohomology. Then Y is concentrated if and only if Y 1 is.

Proof. Applying the Leray sequence to this map gives that H
r
pY2q � H

r
pY q as H

r
pXq-modules.

Proposition 3.3.14. Let Y Ñ Y 1 be a map of spaces over X. Then if Y 1 is concentrated, so is

Y .

Proof. There is a map of algebras H
r
pXq Ñ H

r
pY 1q Ñ H

r
pY q, and so

H
r
pY q � Res

H
rpY 1q

H
rpXq H

r
pY q
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is the restriction of H
r
pY q viewed as a H

r
pY 1q-module to a H

r
pXq-module. In particular, since

H
r
pY 1qloc � 0 we have

H
r
pY qloc � H

r
pY q bH

rpXq H
r
pXqloc � H

r
pY q bH

rpY 1q H
r
pY 1qloc � 0.

The above proof can be summarised as

Lemma 3.3.15. Let φ : AÑ B be a map of commutative rings and S � A a multiplicative subset

such that BrφpSq�1s � 0. If M is an A module arising from restriction of a B module, then

M rS�1s � 0.

We now turn to sheafifying this.

3.3.16. Sheaves of algebras. Let A be a commutative monoid in ShpXq. This means that it

admits product and unit maps

e : kX Ñ A m : AbA Ñ A

satisfying the axioms of a commutative monoid. Call such A a sheaf of algebras over X.

3.3.17. For instance, kX is a sheaf of algebras.

3.3.18. This structure is preserved by:

1. �-pullbacks. Given a map f : Y Ñ X, the functor f� : ShpXq Ñ ShpY q is monoidal, so f�A

is naturally a sheaf of algebras.

2. �-pushforwards. Given a map g : X Ñ Z, the sheaf g�A is a sheaf of algebras with product

g�Ab g�A Ñ g�g�pg�Ab g�Aq � g�pg�g�Ab g�g�Aq Ñ g�pAbAq
g�mÑ g�A,

and unit

kZ Ñ g�g�kZ � g�kX
g�eÑ g�A.

These two structures are compatible as follows:

Lemma 3.3.19. The maps AÑ f�f�A and g�g�AÑ A, induced by the (co)units of the adjunc-

tions pf�, f�q and pg�, g�q, are maps of sheaves of algebras over X.

As a basic example of the this, the cohomology H
r
pX,Aq is an algebra and there is a map

H
r
pX,AqX Ñ A from the constant sheaf of algebras with value H

r
pX,Aq.
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3.3.20. Sheaves of modules. Let M P ShpXq be an A-module, i.e. it comes with a map

a : AbM Ñ M

compatible with the commutative monoid structure on A. We sometimes call this a sheaf of A

modules over X.

3.3.21. This structure is preserved by:

1. �-pullbacks. Given a map f : Y Ñ X, then f�M is a f�A module.

2. �-pushforwards. Given a map g : X Ñ Z, then g�M is a g�A module.

3. !-pullbacks. Given a map f : Y Ñ X, then f !M is a f�A module, via the projection formula

f!pf
�Ab f !Mq � Ab f!f

!M Ñ AbM
a
Ñ M

which corresponds by adjunction to a map

f�Ab f !M Ñ f !M.

4. !-pushforwards. Given a map g : X Ñ Z, then g!M is a g�A module, with action given by

the projection formula:

g�Ab g!M � g!pg
�g�AbMq Ñ g!pAbMq

g!aÑ g!M.

Moreover, the (co)units of the pf�, f�q and pf!, f
!q adjunctions applied to M are maps of modules

over the appropriate sheaves of algebras.

3.3.22. For instance, considering A � kX , we get that the cohomology and compactly supported

cohomology of any sheaf M

p!M � H
r
cpX,Mq p�M � H

r
pX,Mq

is a module over H
r
pXq, where p : X Ñ pt. The same statement applied to a map f : X Ñ Z

gives that the cohomology of the fibres f�kX acts on the relative cohomology f�M and compactly

supported cohomology f!M.
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3.3.23. We have the following useful proposition:

Proposition 3.3.24. Let A be a sheaf of algebras over X and M P ShpXq. If F is an A module,

then the action of kX on F factors through the map

kX Ñ A.

In particular, the action of H
r
pXq on H

r
pX,Fq factors through H

r
pXq Ñ H

r
pX,Aq.

Proof. By tensor Hom adjunction we have a map of sheaves of algebras in ShpXq

A Ñ EndpMq.

In particular, because kX is initial in the category of sheaves of algebras over X, its action on M

will factor

kX

A EndpMq

This leads easily to many corollaries. Let F P ShpXq.

Corollary 3.3.25. For any map g : X Ñ Z, the action of H
r
pZq on H

r
pZ, g!Fq factors through

H
r
pZq Ñ H

r
pXq.

Corollary 3.3.26. For any two maps

X
g
Ñ Z

h
Ð W

the action of H
r
pZq on H

r
pW,hah

bgcFq, where a, b, c P t�, !u, factors through each of the maps

H
r
pZq H

r
pXq

H
r
pW q H

r
pW,h�g�kXq

Proof. There is a map from the diagram of sheaves of algebras

g�kX

h�h�kZ h�h�g�kX

(3.19)

66



into Endphah
bgcFq. Indeed, this follows for the horizontal arrow in (3.19) by using Proposition

3.3.24 on g�F and then applying h�h�. For the vertical arrow of (3.19), it follows by the definition

of the action of g�kX on h�h�g�kX .

When j : X Ñ Z is an open embedding and i : W Ñ Z is its complementary closed embedding,

this says that the action of H
r
pZq on the cohomology of ibjcF factors through the cohomology

H
r
pW, i�j�kq, which may be thought of as the cohomology of a punctured neighbourhood of the

closed subspace. This in particular admits a map from the cohomology of both the open and the

closed subspaces.

3.3.27. We can build more interesting example as follows, where the modules themselves are

commutative monoids. Let fi : Yi Ñ X be any maps and A a commutative monoid in ShpXq.

Then we have a sequence of maps of commutative monoids in ShpXq

kX Ñ A Ñ f1�f�1A Ñ f2�f�2 f1�f
�
1A Ñ � � �

and taking cohomologies gives a sequence of maps of algebras

H
r
pXq Ñ H

r
pX,Aq Ñ H

r
pY1, f

�
1Aq Ñ H

r
pY2, f

�
2 f1�f

�
1Aq Ñ � � � (3.20)

It follows from Proposition 3.3.24 that

Corollary 3.3.28. If S � H
r
pXq is a multiplicative subset and one algebra in (3.20) localises to

zero, so does every algebra to its right.

3.3.29. Example: cohomology sheaves. Let E P PerfpXq be a strict Gm equivariant perfect

complex over Artin stack X with nonnegative weights, i.e. quasiisomorphic to a bounded complex

of vector bundles over X

E � p � � � Ñ E�1
d�1
Ñ E0

d0Ñ E1 Ñ � � � q.

Then

Lemma 3.3.30. Assume in addition all the Ei are concentrated. If we set Si � pepEiqq, the total

space (see [To, §3.3]) of HipEq is Si-concentrated and Si-specialised.

Proof. Because HipEq Ñ X has contractible fibres, concentration and specialisation are equiva-

lent. Then we apply Proposition 3.3.14 to ker di Ñ Ei to give that Ei being concentrated implies

that ker di is concentrated, then Lemma 3.3.13 to ker di Ñ HipEq, whose fibres are contractible,

to give that HipEq is concentrated too.
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For instance, let Gm act on Y trivially, and E P PerfpY {Gmq be a strict perfect complex with

nonzero BGm weights. Then E is a direct sum of strict perfect complexes Epnq on X with weight

n P Zz0, and so each term Epnqi in the bounded complex of vector bundles quasiisomorphic to

Epnq is concentrated, and so each Ei �
À

Epnqi is concentrated and the conditions of the Lemma

are satisfied.

3.4 Application to stacks and singular spaces

3.4.1. The reason Fulton and MacPherson [FM] invented bivariant homology was to study singular

spaces. So it is not surprising that the bivariant Euler class will be well-suited to singular spaces.

3.4.2. The general picture is that the cohomology of sheaves on singular spaces is much more

complicated than for smooth spaces. However, if all maps are T -equivariant for the action of a

torus T , the free part of cohomology often behaves exactly as in the smooth case!

3.4.3. Instead of requiring that we localise H
r
T pptq modules by tensoring with the fraction field,

we localise with respect to an arbitrary multiplicative subset in H
r
pXq. This is necessary when

dealing with Artin stacks, see Example 3.5.27.

3.4.4. Relation to inverted Euler classes. When the morphism is concentrated, the bivariant

Euler class defines a honest localised cohomology class on X:

Definition 3.4.5. Let i : X Ñ Y be a closed embedding admitting a quasismooth retraction

Y ↠ X of dimension d. If i is specialised, its (inverse) localised Euler class is the element epY q�1

of H�2dpXq defined by

H
r
pX{Y q H

r�2dpXq

H
r
pXq

�rY {Xs

�
�epY {Xq �epY q�1

(3.21)

If S � H
r
pXq be a multiplicative subset such that upon localising �rY {Xs is an isomorphism, then

the localised Euler class is its inverse epY q P H2dpXq.

Note that since (3.21) is a diagram of H
r
pXqloc modules, the dotted map is multiplication by

an element of H�2dpXqloc. In the smooth setting, epY q�1 is inverse to the Euler class epY q of

Definition 3.2.7, i.e. we can take S � p1q in the above.
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3.4.6. Singular Whitney sum formula. The bivariant Euler class can do more for us. Consider

a homotopy fiber in the category of spaces (which we recall for us means derived Artin stacks)

over X admitting a section which is a closed embedding

Y1
α
Ñ Y

β
Ñ Y2 (3.22)

3.4.7. Note that (3.22) being a homotopy fiber product means that those maps fit into a pullback

square

Y1 Y

X Y2
i2

(3.23)

Let S � H
r
pXq be a multiplicative subset.

Lemma 3.4.8. If X Ñ Y2 is S-concentrated, pullback by i2 induces an isomorphism upon locali-

sation

i�2 : H
r
pY {Y2qloc

�
Ñ H

r
pY1{Xqloc.

Proof. Expand the diagram (3.23) to a diagram of pullback squares whose rows are complementary

closed and open embeddings

Y1 Y Y zY1

X Y2 Y2zX

α

β0 β β

ȷ2

i2 j2

Then we have distinguished triangle

β!j2!j
!
2k Ñ β!k Ñ β!i2�i�2k

�1
Ñ

whose long exact sequence on cohomology is

� � � Ñ H
r
pY, β!j2!kq Ñ H

r
pY {Y2q

i�2Ñ H
r
pY1{Xq Ñ � � �

Note that the action of H
r
pXq on H

r
pY, β!j2!kq factors through the pullback H

r
pXq Ñ H

r
pY2zXq.

Thus since H
r
pY2zXqloc � 0 by concentration, the localisation of this module H

r
pY, β!j2!kqloc also

vanishes, proving the Lemma.

It follows from Lemma 3.4.8 that we can define an element

epY {Y2q P H
r
pY {Y2qloc

by setting i�2epY {Y2q � epY1{Xq.
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Proposition 3.4.9 (Singular Whitney sum). If X Ñ Y2 is S-concentrated, then as elements of

H
r
pY {Xqloc,

epY {Xq � epY {Y2q � epY2{Xq.

Proof. Exactly the same as the proof of 3.2.12, using Lemma 3.4.8.

3.4.10. Example: distinguished triangle of perfect complexes. A large class of examples

of homotopy fibres (3.22) come from distinguished triangles of perfect complexes in nonnegative

degree (as otherwise the zero section may no longer be a closed embedding, e.g. as for vector

bundle stacks)

E Ñ E 1 Ñ E2 �1
Ñ

since the map on total spaces (see [To]) is a homotopy fibre (and cofiber)

E Ñ E 1 Ñ E2 (3.24)

If E 1 is S-concentrated (equivalently, S-specialised) then the singular Whitney sum gives

epE 1{Xq � epE 1{E2qepE2{Xq. (3.25)

If all three zero sections are concentrated then we also get the singular Whitney sum for the left

rotated distinguished triangle

E 1 Ñ E2 Ñ Er1s
�1
Ñ

but not necessarily the right rotated unless E is concentrated in degrees ¥ 1.

3.4.11. With the right quasismoothness assumptions we can use fundamental classes to turn (3.25)

into a statement in the honest localised cohomology H
r
pXqloc.

Assume that each term in (3.24) is quasismooth (so the perfect complexes have tor amplitude in

r0, 1s), and the map E 1 Ñ E2 is also quasismooth. Then we have the commuting diagram

H
r
pXq b H

r
pXq H

r
pXq

H
r
pE2q b H

r
pE2{Xq

H
r
pE 1{E2q b H

r
pE2{Xq H

r
pE 1{Xq

�

�π�
E2

bid

rE1{Xs�

rE1{E2sbrE2{Xs�
�
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In particular, if the fundamental classes over X of each term in (3.24) give isomorphisms on

localised cohomologies, we get an equality in H
r
pXqloc

epE 1q � epEq � epE2q

where the above elements of H
r
pXqloc are defined as

rE 1{Xs � epE 1q � epE 1{Xq rE2{Xs � epE2q � epE2{Xq,

as well as rE 1{E2s � π�E2epEq � epE 1{E2q, which is equivalent to

rE{Xs � epEq � i�E2prE
1{E2s � π�E2epEqq � epE{Xq.

3.4.12. To be extremely explicit, we consider the homotopy fibre E � pE0
φ
Ñ E1q of a map of

vector bundles:

E Ñ E0 Ñ E1

Note that each perfect complex has tor amplitude in r0, 1s and so its total space is quasismooth.

Because E0 and E1 are smooth over X, the map E0 Ñ E1 is quasismooth and the above assumption

on fundamental classes being isomorphisms holds.

We make Gm act trivially on X, which lifts to an action on each of the above by scaling the fibres,

giving a homotopy fibre

E{Gm Ñ E0{Gm Ñ E1{Gm

over X{Gm � X � BGm. Noting that the zero section X{Gm Ñ E1{Gm is concentrated if we

invert the equivariant Euler class S � peGmpE1qq, the singular Whitney sum formula gives

eGmpE0{Xq � eGmpE0{E1qeGmpE1{Xq (3.26)

as elements of H
r
Gm
pE0{Xqloc. Using section 3.4.11 we get the usual sorts of expressions one

encounters when dealing with virtual abelian localisation (e.g. [GP])

eGmpEq � eGmpE0q{eGmpE1q.

3.5 Abelian localisation

3.5.1. Background. Take an action of a torus T on X (a manifold, scheme, stack, . . . ). Abelian

localisation says that under suitable conditions the equivariant cohomology of X and its fixed

locus XT are almost equal

H
r
T pXq “ � ” H

r
T pX

T q. (3.27)
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This can really simplify computations with cohomology, e.g. giving integration formulae for equiv-

ariant classes on X.

3.5.2. What (3.27) means more precisely is their localisations agreee after localising with respect

to some multiplicative subset of H
r
T pXq (see section 3.3.1). For instance, when X is a scheme or

manifold the classical Theorem 3.5.7 due to Atiyah and Bott says that as H
r
T pptq modules their

free parts agree:

H
r
T pXq bH

r
T pptq FracH

r
T pptq � H

r
T pX

T q bH
r
T pptq FracH

r
T pptq. (3.28)

Note that H
r
T pptq, the equivariant cohomology of a point, is a polynomial algebra in rkT variables.

So when T � Gm has rank one this simply says

H
r
Gm
pXqrt�1s � H

r
Gm
pXGmqrt�1s.

3.5.3. Abelian localisation is one of the main techniques in enumerative geometry, e.g. to compute

Gromov Witten [Beh, MNOP] or Donaldson Thomas [Th, MNOP] invariants. These are defined

as integrals of certain “tautological” cohomology classes on moduli stacks, and when these moduli

stacks have a torus action we can use abelian localisation computations onto the fixed locus.

Sometimes the fixed locus is even a disjoint union of points, reducing us to a weighted point count

(i.e. combinatorics).

3.5.4. Abelian localisation was first proven by Atiyah and Bott [AB], and Berline and Vergne

[BVe]. In algebraic geometry, abelian localisation for Chow homology was proven for schemes

by Edidin and Graham [EG], Delgine Mumford stacks by Kresch, and generalised to the singular

Deligne Mumford setting the setting by Graber and Panharipande [GP]. Aranha, Khan, Latyntsev,

Park and Ravi [AKLPR] generalise this to general reductive groups instead of just tori, in arbitrary

characteristic, general Borel-Moore homology theories, and for Artin stacks whose stabilisers are

small enough (e.g. Deligne Mumford).

3.5.5. Remark. An equivariant map between stacks with G actions is a map fG between their

quotient stacks

X Y

X{G Y {G

f

fG
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When the context is clear we will often drop the subscript G from fG, e.g. pullback on equivariant

cohomology will be denoted f� not f�G. Note that f does not determine fG uniquely, for instance

each homomorphism GÑ G determines a map BGÑ BG which lifts to the trivial map pt Ñ pt.

3.5.6. Localisation for smooth schemes. We begin by translating Atiyah and Bott’s [AB]

proof of abelian localisation (for manifolds) into algebraic geometry (smooth schemes). This will

also explain what we need to generalise in order to prove abelian localisation for more complicated

spaces.

Theorem 3.5.7 (Abelian localisation for smooth schemes). Fix T a torus acting on smooth

schemes of finite type Z,X, on Z trivially. Suppose i : Z Ñ X is a T -equivariant closed embedding

and on all points on the complement the stabiliser is a proper subgroup of T . Then the localised

pullback and pushfoward maps are isomorphisms -

i� : H
r
T pZqloc

�
Ñ H

r�2d
T pXqloc i� : H

r
T pXqloc

�
Ñ H

r
T pZqloc

where d is the codimension of i. We have written loc for localisation of a H
r
T pptq module with

respect to all nonzero elements:

Mloc � M bH
r
T pptq FracH

r
T pptq.

Why does the fixed locus XT not appear in the statement? Consider that abelian localisation is

certainly true for Z � X. Thus, it is not important whether Z is a fixed locus or not, only that

the torus action on its complement is close to being free (has low dimensional stabilisers).

Corollary 3.5.8. The Euler class epNiq P H2dpZqloc of the normal bundle is invertible, and

id � i�
i�p�q
epNiq

(3.29)

as endomorphisms of H
r
T pXqloc.

Proof. Both claims follow since the map i�i� is multiplication by epNiq.

Corollary 3.5.9 (Integration Formula). If Z and X are proper,»
X

�

»
Z

i�p�q
epNiq

as maps H
r
T pXqloc Ñ H

r
T pptqloc.

Proof. (Equivariant) integration
³
Z

means proper pushforward along Z{T Ñ BT . Because this

map factors as Z{T Ñ X{T Ñ BT , we have
³
Z
�

³
X
i�, so we are done by applying

³
Z

to

(3.29).
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3.5.10. Proof of Theorem 3.5.7. We proceed in two steps:

1. Concentration. Show H
r
T pXzZqloc � 0 by Thomason’s generic slice Theorem.

2. Specialisation. Show the Euler class is unit in localised cohomology, by reducing to the case

that X is a vector bundle over Z using “the exponential map”.

Recall from section 3.3.2 the commuting diagram of H
r
T pptq modules whose rows are long exact

sequences

� � � H
r�2d
T pZq H

r
T pXq H

r
T pXzZq � � �

� � � H
r�2d
T pZq H

r
T pZq H

r
T pZ, i

�j�kq � � �

i�

i�

�epX{Zq

(3.30)

Thus concentration will give that i� is an isomorphism after localisation. Specialisation gives that

�epX{Zq is an isomorphism after localisation, hence i� is too.

3.5.11. Proving concentration is simple in the rank one case T � Gm. The quotient stack pXzZq{T

is Deligne Mumford since all its stabilisers are étale [Ol, Cor. 8.4.2]. As it is in addition of finite

type, its cohomology H
r
T pXzZq is finite dimensional by [Ed, Prop. 4.39]. In particular, the degree

two generator of H
r
T pptq � krts acts nilpotently, and so its localisation is zero.

3.5.12. Note that we did not use the smoothness assumption at all. We will now prove concentra-

tion in the higher rank case for Z,X as in the Theorem but without the smoothness assumption,

proceeding by induction on the dimension of XzZ. Finally, note that if the action on XzZ were

free or had étale stabilisers the above proof would apply.

3.5.13. To prove concentration in general we as in [AKLPR] we use Thomason’s generic slice

Theorem [Th’n, Thm. 4.10], which says that any scheme with a T action admits a T invariant

nonempty affine open U and as stacks over BT ,

U{T � V � BT 1

for some subgroup T 1 � T and some affine scheme V . In particular, the action of H
r
T pptq on any

sheaf cohomology H
r
T pU,Fq factors through

H
r
T pptq ↠ H

r
T 1pptq.

Applying this to XzZ, by assumption on the stabilisers this map has nonzero kernel because

T 1 � T is a proper subgroup and so H
r
T pU,Fqloc � 0. By iterating this, we may assume that the
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complement of U has dimension strictly less than U . Then if F is any T equivariant sheaf on XzZ

we take the Mayer Vietoris sequence

� � � Ñ H
r
T ppXzZqzU, i

!Fqloc Ñ H
r
T pXzZ,Fqloc Ñ H

r
T pU, j

�Fqloc Ñ � � �

We have shown that the term on the right vanishes, and the left term vanishes by induction on

dimension. Thus H
r
T pXzZ,Fqloc � 0 for any sheaf F, in particular H

r
T pXzZqloc � 0.

3.5.14. Having proven concentration, abelian localisation follows for the zero section of the nor-

mal bundle Z ãÑ Ni, and for any closed embedding whose pullback on cohomology gives an

isomorphism. In the differential geometric setting we would now consider the exponential map

Ni

Z

X

exp

to relate the Euler classes of X and Ni. This does not exist in algebraic geometry, but we have

its cohomological shadow, the exponential map on bivariant cohomology (section C.2) which is

compatible with bivariant Euler classes via

H
r
T pZ{Niq

H
r
T pZq

H
r
T pZ{Xq

�epNi{Xq

H
rpexpiq�

�epX{Zq

Because these spaces are smooth we can identify the bivariant cohomologies with the cohomology

of Z using fundamental classes, giving

H
r
T pZ{Niq

H
r
T pZq H

r�2d
T pZq

H
r
T pZ{Xq

�epNi{Xq �rZ{Nis

�rZ{Xs

�

�
H
rpexpiq�

�epX{Zq

and so since epNi{Zq is a unit in localised cohomology, so is epX{Zq. This proves specialisation,

and so completes the proof of Theorem 3.5.7.

3.5.15. General abelian localisation. We summarise the above proof in a theorem, which

tautological but useful to have. As usual we work with a sheaf theory admitting the six functors

(see section 2.7).
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Theorem 3.5.16 (Abelian localisation). Let i : Z Ñ X be a closed embedding of spaces and

S � H
r
pXq a multiplicative subset. If i is S-concentrated (3.3.3) and S-specialised (3.3.4) then

i� : H
r
pZ{Xqloc

�
Ñ H

r
pXqloc i� : H

r
pXqloc

�
Ñ H

r
pZqloc

are isomorphisms.

Proof. Follows from the definitions of concentration and specialisation by localising the diagram

(3.15) of H
r
pXq modules.

Informally, this theorem says that for abelian localisation to be true it is enough that the Euler

class is a unit and the cohomology of the open complement is torsion.

3.5.17. By Example 3.5.27, even in the T equivariant case inverting a subset S � H
r
T pptq is

often not enough to ensure concentration and specialisation. This is why in the above we invert

S � H
r
T pXq.

3.5.18. Integration formulae. Let i : Z Ñ X be a closed embedding which is concentrated and

specialised with respect to multiplicative subset S � H
r
pXq, as in Theorem 3.5.16. As for any

closed embedding, Ti is concentrated in degrees r1,8q.

In particular, if Ti is concentrated in degrees ¤ 2 (as is the case if Z and X are quasismooth over

a common base) then the normal complex Ni � Tir1s is concentrated in degrees r0, 1s and so its

total space

Ni Ñ Z

is quasismooth. Moreover, note that because it is an isomorphism on the level of cohomology,

Z Ñ Ni is S specialised if and only if it is S concentrated. As a consequence of abelian localisation,

we get

Corollary 3.5.19 (Integration formula). Assume Ni is concentrated in degrees ¤ 1 and its zero

section is S-specialised, so that by section 3.3.6 we have an isomorphism

�rNi{Zs : H
r
pZ{Niqloc

�
Ñ H

r
pZqloc.

Then identifying H
r
pZ{Xqloc � H

r
pZqloc by α ÞÑ pexpαq � rNi{Zs, we have

id � i�
i�p�q
epNiq

(3.31)

as endomorphisms of H
r
pXqloc, where epNiq P H

r
pZq is the localised Euler class of Ni.
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Proof. Follows from the commuting diagram of isomorphisms

H
r
pZ{Xqloc H

r
pZ{Niqloc H

r�2dpZqloc

H
r
pXqloc

H
r
pZqloc

H
rpexpq
�

i�
�

�epX{Zq�

�rNi{Zs
�

�epNi{Zq
�

epNiq
�

i�
�

by section C.2, where the bottom right arrow is the definition of epNiq and d is the rank of Ni.

Note that H
r
pexpq is an isomorphism because the middle triangle commutes and its vertical edges

are isomorphisms since both i and the zero section of Ni are S-specialised (see section C.2).

Corollary 3.5.20 (Sheaf cohomology abelian localisation). With notation as in Theorem 3.5.16,

for any F P ShpXq, the maps

i� : H
r
pZ, i!Fqloc

�
Ñ H

r
pX,Fqloc i� : H

r
pX,Fqloc

�
Ñ H

r
pZ, i�Fqloc

are isomorphisms.

Proof. Consider the diagram of H
r
pXq modules

� � � H
r
pZ, i!Fq H

r
pX,Fq H

r
pXzZ, j�Fq � � �

� � � H
r
pZ, i!Fq H

r
pZ, i�Fq H

r
pZ, i�j�Fq � � �

i�

i�

�epX{Zq
(3.32)

Note that the action of H
r
pXq on the module H

r
pXzZ, j�Fq factors though the map of algebras

H
r
pXq Ñ H

r
pXzZ, j�kq

and the action on the module H
r
pZ, i�j�Fq factors through the map of algebras6

H
r
pXq Ñ H

r
pZ, i�j�kq.

Thus both H
r
pXq-modules localise to zero, because the action factors through rings whose locali-

sations vanish by Theorem 3.5.16.

Applying this to the dualising sheaf F � ωX , we get the statement for Borel Moore homology

6Recall that if A is a associative algebra in ShpXq, then so is f�f
�A for any map f : Y Ñ X, and AÑ f�f

�A

is a map of algebra objects. In particular, applying this to A � kX and applying this twice we get that i�i
�j�j

�kX

is an algebra object in ShpXq, and hence its cohomology is an algebra.
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Corollary 3.5.21 (Borel Moore abelian localisation). With notation as in Theorem 3.5.16, the

maps

i� : H
r
BMpZqloc

�
Ñ H

r
BMpXqloc i� : H

r
BMpXqloc

�
Ñ H

r
BMpZ{Xqloc

are isomorphisms, where H
r
BMpZ{Xq is bivariant Borel Moore homology (section 2.7.5).

3.5.22. We make a note about how the localised Euler class relates with proper pushforwards,

keeping the notation of Corollary 3.5.19. Consider a commuting diagram

Z

X

Y

i
p

p

(3.33)

where p and p are proper quasismooth maps. Then we have the following commuting diagram

H
r
pZ{Y qloc H

r
pZ{Y qloc

H
r
pX{Y qloc

H
r
pZ{Xqloc H

r
pZ{Niqloc H

r
pZqloc

H
r
pXqloc

H
r
pZqloc

i�

H
rpexpq
�

i�
�

�epX{Zq�

�[X{Y ]

�rNi{Zs
�

�epNi{Zq
�

�[Ni{Y ]

epNiq
�

�[Z{Y ]

i�

�[X{Y ]

�

(3.34)

The middle square commutes by section C.2. Then if S comes from the pullback of a multi-

plicative subset of H
r
pY q, we can apply proper pushforward on localised bivariant cohomology

H
r
pX{Y qloc Ñ H

r
pY qloc to get that

p� � p�
i�p�q
epNiq

(3.35)

as maps H
r
pXqloc Ñ H

r
pY qloc. This is classically written as»

X

�

»
X

i�p�q
epNiq

.

3.5.23. Example: vector spaces. Let us consider the simplest case where the multiplicative

group T � Gm acts vector space X � V by scaling, and taking Z � t0u the fixed locus. The

Thom Gysin sequence is

� � � Ñ H
r�2n
Gm

pt0uq
i�Ñ H

r
Gm
pV q Ñ H

r
pPV q Ñ � � �
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Here PV � pV z0q{Gm. As a sequence of H
r
pBT q � krts modules, this is

0 Ñ krts
i�Ñ krts Ñ krts{tn Ñ 0

where n is the rank of V . Then since H
r
pPV q is finite dimensional, it is a torsion module and so

H
r
pPV qloc � 0.

3.5.24. Example: flag varieties. Let G be a complex reductive group, T a maximal torus B

a Borel subgroup. The flag variety G{B admits an action by T and a Bruhat stratification into

affine spaces, labelled by elements of the Weyl group

G{B �
º
wPW

BwB{B �
º
wPW

Aℓpwq. (3.36)

It follows from the Mayer Vietoris sequence that H
r
pG{Bq as a vector space is CrW s (as an algebra

it is W coinvariants H
r
T pptq bH

r
T pptqW bk) where w has degree 2ℓpwq.

Alternatively, the action of T has one fixed point per stratum, so by Theorem 3.5.7 the localised

equivariant cohomology is free with dimension |W | over the fraction field:

i� : H
r
T pG{Bqloc

�
Ñ

à
wPW

FracH
r
T pptq � CrW s b FracH

r
T pptq

as algebras.

3.5.25. Other natural examples include partial flag varieties or smooth toric varieties. More

generally for any smooth projective variety with torus action we can apply the Bia lynicki-Birula

theorem to get a stratification into generalising (3.39) using attracting sets of the fixed points.

See section 3.7.

3.5.26. Example: stacks. We thank Hyeonjun Park for pointing the following example out to

us. Take the zero section of the tautological line bundle on BGm

i : BGm Ñ A1{Gm

with T � Gm acting on the fibres by scaling. Its quotient by T is

iT : BpGm � T q Ñ A1{pGm � T q.

The pushforward iT� fails to be an isomorphism, even after inverting any multiplicative subset of

nonzero divisors in krts � H
r
T pptq. Indeed, it fits into the Mayer Vietoris sequence

� � � Ñ H
r�2
Gm�T pptq

iT�Ñ H
r
Gm�T pA

1q Ñ H
r
pGm{pGm � T qq Ñ � � � (3.37)
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and the last term H
r
pGm{pGm�T qq � krts is a torsion free H

r
T pptq module. To fix this, note that

(3.40) is identified with the Gysin sequence

� � � Ñ krx, ts
x�t
Ñ krx, ts Ñ krts Ñ � � �

where the first term is multiplication by the Euler class of iT . It follows that if we take

S � px� tq � H
r
T pBGmq

then abelian localisation as in Theorem 3.5.7 holds. Moreover, because x� t is not a zero divisor,

abelian localisation does not just hold for the “stupid” reason that a zero divisor was inverted so

all vector spaces are zero.

Proposition 3.5.27. Let Z be an Artin stack over a field of characteristic zero and E a vector

bundle. Assume T is a torus acting on the fibres of E. Then the T equivariant zero section

iT : Z{T Ñ E{T

is S-concentrated and S-specialised for S � peT pEqq.
7 Moreover, if T acts with nonzero weights

then S consists of non zero divisors.

Proof. Specialisation and concentration are equivalent since i�T is an isomorphism. Specialisation

follows by definition, since multiplication by the Euler class is clearly an isomorphism if we invert

it. To show the second claim, writing H
r
T pptq � krt1, ..., tns, we note that

eT pEq � pw1 � x1q � � � pwr � xrq P H
r
T pZq � H

r
pZqrt1, ..., tns

where wi �
°
Wijtj are the weights of the action (with Wij locally constant functions on Z) and

xi are the chern roots. Recall that these are defined by pulling back the map to BGLn given by

E{T :

FlE{T pZ{T q BGn
m

Z{T BGLn

p

Here Fl denotes the flag bundle. Note that p�pE{T q splits as a direct sum of line bundles, the

first chern class of the ith is denoted wi � xi. Since the weights wi are nonzero, w1 � � �wr is not a

zero divisor and hence eT pEq is also not a zero divisor.

7Here eT pEq denotes equivariant Euler class of E, defined as the Euler class of E{T .
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3.5.28. Remark. Take a cartesian square of smooth schemes

Z X

Z X

ι

f f

i

Assume this diagram is equivariant for the action of a torus T , that the horizontal maps are closed

embeddings which are specialised and concentrated, and the vertical maps are proper. Then

applying the integration formula (3.29) twice gives

i�f�p�q
epNiq

� i�i�
i�f�p�q
epNiq

� i�f�p�q � f�ι
�p�q � f�

�
ι�p�q
epNιq



(3.38)

as maps on localised cohomology. Equation (3.41) is sometimes called the functorial integration

formula.

3.5.29. There is a folk conjecture that the Grothendieck Riemann Roch Theorem can be formu-

lated as being a special case of abelian localisation. Let p : X Ñ Y be a smooth and proper map

of schemes, and consider the cartesian square of formal schemes

X LX

Y LY

s

p Lp

s

where LX is the free loop space of X, see [KV1, §3]. Then the idea is that the Grothendieck

Riemann Roch formula

chpp�FqtdpTY q � p�pchpFqtdpTXqq,

as elements of Chow homology and for F P K0pXq, closely resembles the functorial integration

formula (3.41), with the Todd class tdpTY q taking the role of the inverse of the undefined Euler

class “epNsq”. This is of course not defined using the above framework because LY Ñ Y is not

locally of finite type, so we do not have access to the usual six functor formalism to study it. See

[Liu] or [At1] for more details.

3.6 CoHA products by abelian localisation

We can use the integration formula to compute CoHA products on non-equivariant cohomology,

like so.
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3.6.1. Linear algebra. So as to make the proceeding clearer, we record an easy fact. Consider

maps of vector spaces

V1 V2

W1 W2

α1

φV

α2

φW

(3.39)

Then if α1 has a section, the following also commutes

V1 V2

W1 W2

φV

α2

φW

In particular,

Lemma 3.6.2. If α1 has a section, φV uniquely determines φW .

3.6.3. The examples we will care about will come from equivariant cohomology:

H
r
GpY1q H

r
GpY2q

H
r
pY1q H

r
pY2q

Here G acts on Artin stacks Yi. If both the G actions are trivial then the section comes from the

identity k Ñ H
r
Gpptq, giving

H
r
pYiq Ñ H

r
GpYiq � H

r
pYiq b H

r
pBGq.

Thus if we want to prove results in the nonequivariant setting about maps H
r
pY1q Ñ H

r
pY2q,

Lemma 3.6.2 allows us to instead prove results in the equivariant setting. We will sometimes

abuse notation, when given a map φ : H
r
GpY1q Ñ H

r
GpY2q, by also denoting by φ the induced map

H
r
pY1q Ñ H

r
pY2q.

3.6.4. CoHA products. Fix base Artin stacks Y1 and Y2, and consider a correspondence

X

Y1 Y2

pq (3.40)
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3.6.5. Now we explain how to use abelian localisation to compute CoHA products. Let i : Z Ñ X

be a closed embedding

Z

X

Y1 Y2

i
pq

pq

(3.41)

Note that if p and p (or q and q) are quasismooth then the conormal complex N�
i � T�

i r�1s is

contained in Tor amplitude ¤ 1, where Ti denotes the tangent complex of the morphism i, so that

the total space

Ni Ñ Z

is quasismooth over Z.

Theorem 3.6.6. Assume Z Ñ X is a closed embedding which is S-concentrated (3.3.3) and S-

specialised (3.3.4) over Y2 with respect to a multiplicative subset S � H
r
pY2q of nonzero divisors.

Assume that p is proper and quasismooth, then as maps H
r
pY1q Ñ H

r
pY2q,

p�q� � p�
q�p�q
epNiq

. (3.42)

Proof. We have the maps

H
r
pY1q

q�
Ñ H

r
pXq ãÑ H

r
pXqloc

p�Ñ H
r
pY2qloc

and the first claim follows by decomposing idH
rpXqloc according to the integration formula (3.31).

Consider the commuting diagram

H
r
pXqloc H

r�2dpY2qloc

H
r
pY1q H

r
pXq H

r�2dpY2q

p�

q� p�

(3.43)

By applying p�qq� to the relative integration formula (3.35), the upper row of (3.46) is

p�q� � p�
q�p�q
epNiq

,

viewed as maps H
r
pY1q Ñ H

r
pY2qloc whose image lies in H

r
pY2q � H

r
pY2qloc.
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3.6.7. In line with our trichotomous Definition 3.1.10 of CoHAs, it is natural to expect a second

Borel Moore and third sheaf theory version of the above Theorem 3.6.6. For instance, if p is qua-

sismooth and we have Fi P ShpYiq with a map q�F1 Ñ p�F2 satisfying an associativity condition,

then as maps H
r
pY1,F1q Ñ H

r
pY2,F2q, we expect that

p�q� � p�
q�p�q
epNiq

. (3.44)

To verify this would require developing the exponential map for general sheaf cohomology, which

we have not done but is probably not hard, after which the proof of this expectation is likely to

proceed as above.

3.6.8. CoHAs via equivariant cohomology. In practice, we will usually consider the case

where (3.44) consist of T -equivariant maps, where T is a torus, and the action on the Yi are

trivial. Then we apply Theorem 3.6.6 to the quotient diagram (3.44){T , to get that

pT�q�T � pT�
q�T p�q
epNiT q

.

In particular, composing with the pullback φ2 : H
r
T pY2q Ñ H

r
pY2q and the section φ1 : H

r
pY1q Ñ

H
r
T pY1q, we have

p�q� � φ2ppT�q�T qφ1 � φ2pT�
q�Tφ1p�q

epNiT q

as maps H
r
pY1q Ñ H

r
pY2q. In the following we will abuse notation by suppressing φi from the

notation, e.g. writing

p�q� � pT�q�T � pT�
q�T p�q
epNiT q

.

The reason this situation is useful to consider in the first place is that if the T action on the Yi

will be trivial, it is often easy to see when a multiplicative subset S � H
r
T pYiq � H

r
pYiqrt1, ..., tns

of a polynomial ring consists of nonzero divisors, e.g. see the proof of Proposition 3.5.28 for an

example.

3.6.9. Limit CoHA products. When applying the above, in many examples it is hard to directly

verify that Z Ñ X is concentrated and specialised because its normal complex Ni P PerfpZq is

not strict (representable as a bounded complex of vector bundles). However, it is often easy to

find an increasing open cover on which it is strict.
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Thus, consider for each n ¥ 0 a diagram

Zn

Jn � Xn

Y1,n Y2,n

in pnqn

pnqn

(3.45)

with maps of diagrams J0 Ñ J1 Ñ � � � Ñ J which are open embeddings on each object. Here

we have written J for the diagram (3.44). Finally, let Sn � H
r
pY2,nq be a compatible system of

multiplicative subset of nonzero divisors, and write S � limSn.

Theorem 3.6.10. Assume Zn Ñ Xn is a closed embedding which is Sn-concentrated and Sn-

specialised over Y2,n with respect to a multiplicative subset Sn � H
r
pY2,nq of nonzero divisors, for

each n ¥ 0. Assume that pn is proper, quasismooth and

H
r
pYiq � lim H

r
pYi,nq,

Finally, assume in the sequence J0 Ñ J1 Ñ � � � Ñ J that all squares with vertical arrows in, pn or

pn (or in the Borel Moore case, in, qn or qn) are cartesian. Then the first result of Theorem 3.6.6

holds, i.e.

p�q� � p�
q�p�q
epNiq

as maps H
r
pY1q Ñ H

r
pY2q. On the right hand side, we pass via S localised cohomology to divide

by epNiq.

Proof. By Theorem 3.6.6, we have for each finite n ¥ 0 that

pn�q�n � pn,�
q�np�q
epNinq

.

Thus the limit of both sides, which define maps H
r
pY1q Ñ H

r
pY2q, are the same. The limit of the

left side is p�q�, and the limit of the right side is p�
q�p�q
epNiq .

Likewise, we expect that there to be Borel Moore and sheaf versions of this Theorem.

3.6.11. In practice when computing (non Borel Moore) CoHAs we take the constant family Y1,n �

Y1, a family of open embeddings Y2,n whose closed complement has increasing codimension, and

form Zn, Xn by pullback. Moreover, the multiplicative subset pepNinqq is contained in a pullback

of a multiplicative subset in H
r
pY1q, see section 3.8.13.
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3.6.12. Heuristic to compute CoHAs. Consider a space X as in section 3.1.9, for instance

admitting a correspondence

C

X �X X

rpq (3.46)

and define cohomological Hall algebra by Definition 3.1.10. We will now explain how to compute

explicit formulas for it using the previous sections

3.6.13. The idea is to use a split locus, which is any function

` : Xs Ñ X

whose pullback gives an injection on cohomology. The simpler the cohomology of Xs, the more

useful this heuristic will be.

We then form a diagram by taking the pullback

C �X X
s

C Xs

aX �Xa X

p`

q p `
(3.47)

and we have

`�pCoHAq � `�p�q
� � p� `� q�.

We then assume there is an action of a torus T on C�XX
s such that p and q` are torus equivariant

for the trivial actions on the target spaces (see sections 3.11, 3.13 and 3.13 for examples), and

let Cs Ñ C �X X
s be an equivariant closed embedding from a space with trivial T action. Then

consider
Cs

C �X X
s

C Xs

aX �Xa X

i p`

p`

q p `

(3.48)

and applying Theorem 3.6.6, we get
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Proposition 3.6.14. Assume that p (and therefore p and p) is proper, and that

1. p is quasismooth, or

2. q and ` are quasismooth, or

3. p is quasismooth and F P ShpXq admits a map q�pF b Fq Ñ p�F satisfying an associativity

condition.

Assume that i is concentrated and specialised, as is the zero section of its normal complex, then

for the three above CoHAs coming from Definition 3.1.10 we have the following formulas:

`�pCoHAq � `�p�q
� � p�

`�p�q
epNiq

. (3.49)

3.6.15. Note that for that for equation (3.52) to be useful in the third case, we should also require

that the pullback `� : H
r
pX,Fq Ñ H

r
pXs,`�Fq be injective.

3.6.16. It is sometimes useful to know a more explicit form of Ni. As K-theory classes we have,

by repeatedly applying the distinguished triangle the tangent complex of a composition,

rNis � ri� `� TC{Xs � rTCs{Xss. (3.50)

3.6.17. Examples. We will use this heuristic in two different ways when X �MA is the moduli

space of objects in abelian category A.

� To prove our main Theorem 3.10.1, we will use Xs � X2 the space classifying pairs of objects

in A.

� To give explicit formulas for CoHAs in sections 3.12 and 3.13, we will take Xs to be something

like tuples of rank one” objects in A.

In both cases, ` is the direct sum map.

3.6.18. In both applications, the space C �X X
s � ExtA �MA

Ms
A classifies short exact sequences

0 Ñ E1 Ñ E Ñ E2 Ñ 0 (3.51)

with a splitting of the middle term φ : E �
À

Ei, either into two objects or multiple rank one

objects, depending on the application.
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The rank of the torus T will be the number of these summand, with a torus element τ P T acting

on the above by

0 Ñ E1
τα
Ñ

À
Ei

βτ�1

Ñ E2 Ñ 0.

Then (3.54) splits as a direct sum of exact sequences if and only if it is fixed under the T action.

We write Cs � Exts for the space parametrising direct sums of two short exact sequences, or

direct sums of many short exact sequences whose middle term has rank one, depending on the

application.

Thus we have

ExtsA

ExtA �MA
Ms

A

MA �MA Ms
A

i p`

pq`

If we write

0 Ñ
À

E1,i
`αiÑ

À
Ei

`βiÑ
À

E2,i Ñ 0

for a point of ExtsA, the map p sends it to `Ei, and the map ` sends it to p`E1,i,`E2,iq.

3.6.19. In particular, in these cases the map ` lifts to

Ms
A �Ms

A ExtsA

ExtA �MA
Ms

A

MA �MA Ms
A

`�`

i p`

r̀

pq`

The lift however is not unique, e.g. we can postcompose r̀ with any automorphism of Ms
A over

MA.
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3.6.20. Localised CoHA products. Assume that the map ` can be a lifted to a map to the

split locus:

Cs

C �X X
s

Xs �Xs C Xs

aX �Xa X

i p

r̀

p`

`�` q p `

(3.52)

In this case by the integration formula (3.31) we can lift the CoHA map p�q
� to a map

H
r
pXsq b H

r
pXsq H

r
pXsqloc

H
r
pXq b H

r
pXq H

r
pXq

p�
r`
�
p�q

epNiq

p
�
q�

p`�`q� `�

The top horizontal map we call a localised CoHA product. It does not give an algebra structure on

H
r
pXsqloc because of the noncanonicity of the lift r̀ . However, it restricts to the CoHA product

on H
r
pXq, and so is often useful in giving explicit formulas for it, e.g. [KS]. Compare the notion

of localised coproduct in [Da].

3.7 Concentration for Bia lynicki-Birula style stratified spaces

To simplify the spaces we will be interested in, we will cut them up into strata whose behaviour

is much simpler. For our purposes, a stratification of an Artin stack X is an increasing union of

closed Artin substacks

H � X�1 � X0 � � � � � Xn�1 � Xn � X

whose strata are Xi � X izX i�1. This allows us to use Mayer Vietoris and Gysin sequences to

inductively prove statements about X by working stratawise.

3.7.1. For “Bia lynicki-Birula” type stratifications (see [JS, Bi] for a classical account), we now

show that concentration and specialisation for the strata implies concentration for the whole space.

Let S � H
r
pXq be a multiplicative subset and s : Z Ñ X be a closed embedding.
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3.7.2. Assume Xi is a stratification of X such that the induced closed embeddings

si : Zi � Z XXi ãÑ Xi

are isomorphisms on cohomology, and admit retractionsXi ↠ Zi. In particular, si is S-concentrated

if and only if it is S-specialised.

Lemma 3.7.3. If each si is S-specialised, then so is s.

Proof. We want to show

H
r
pZ, s�t�kqloc � 0.

Assume that X has two strata, an open stratum X1 and its complement X0, the general case

proceeding similarly using induction. Let t : U Ñ X be the open complement of Z, and form the

pullback squares

U0 U U1

X0 X X1

Z0 Z Z1

t0

pι

t t1

pȷ

i j

s0

ι

s s1

ȷ

(3.53)

We will now consider some commuting diagrams of long exact sequences, first coming from the

horizontal direciton in (3.56), then secondly coming from the vertical direction.

First, we have a long exact sequence

� � � H
r
pZ, ȷ!s

�
1t1�kq H

r
pZ, s�t�kq H

r
pZ0, s

�
0t0�kq � � �i� (3.54)

The localisation of the right term vanishes because s0 is S-specialised. So it is enough to show

that H
r
pZ, ȷ!s

�
1t1�kqloc � 0.

Second, we fit it into a long exact sequence

� � � H
r
pZ, ȷ!s

�
1t1�kq H

r
pZ1, s

�
1t1�kq H

r
pZ0, ι

�ȷ�s
�
1t1�kq � � � (3.55)

so it is enough to show that localising the middle and right terms kills them. The localisation of

the middle term vanishes because s1 is S-specialised.

The localisation of the right term actually vanishes for the same reason, using ideas in section

3.3.16. Note that A � j�s1�s�1t1�t
�
1k is a commutative monoid in ShpXq (see section 3.3.18).

Moreover,

H
r
pX,Aqloc � 0
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because s1 is S-specialised. It follows from Corollary 3.3.28 that

H
r
pX, i�i�j�j�Aqloc � 0.

However, this is nothing but

H
r
pZ0, ι

�ȷ�s
�
1t1�kq � H

r
pZ, s0�ι�ȷ�s

�
1t1�t

�
1kq � H

r
pZ, i�j�s1�s�1t1�t

�
1kq � H

r
pX, i�i�j�j�Aq.

Thus the right term of (3.58) vanishes too, proving our claim and the proposition.

Proposition 3.7.4. If each si is S-concentrated, then so is s.

Proof. We want to show

H
r
pXzZqloc � 0.

Proceed as in Lemma 3.7.3, assuming that there is an open stratum X1 and a closed stratum X0,

the general case proceeding similarly using induction, giving the diagram 3.56.

First, we have a commuting diagram of long exact sequences

� � � H
r
pX, j!kq H

r
pXq H

r
pX0q � � �

� � � H
r
pZ, ȷ!kq H

r
pZq H

r
pZ0q � � �

s�

i�

�
ι�

(3.56)

The right vertical map is an isomorphism because pullback by s0 gives an isomorphism on coho-

mology. We then consider another commuting diagram of long exact sequences

� � � H
r
pX, j!kq H

r
pX1q H

r
pX0, i

�j�kq � � �

� � � H
r
pZ, ȷ!kq H

r
pZ1q H

r
pZ0, ι

�ȷ�kq � � �

� (3.57)

The middle vertical map is an isomorphism because pullback by s1 gives an isomorphism. The

cone of the right vertical map is

H
r
pX0, i

�j�t1!kq.

To show that its localisation vanishes, we again use the using ideas in section 3.3.16. Writing

A � j�t1�t�1k, we have that

H
r
pX,Aqloc � H

r
pU1qloc � 0

because s1 is concentrated. It follows from Corollary 3.3.28 that the localised cohomology of

A1 � i�i�j�j�A
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also vanishes. Note that by section 3.3.21, the cohomology of A1 acts on H
r
pX0, i

�j�t1!kq �

H
r
pX, i�i�j�j�j�t1!t�1kq, and the action of H

r
pXq factors through H

r
pXq Ñ H

r
pX,A1q. Thus it

follows that

H
r
pX0, i

�j�t1!kqloc � 0.

We have shown that all maps in (3.60), and hence (3.59), are isomorphisms after localisation. In

particular, s� : H
r
pXqloc

�
Ñ H

r
pZqloc.

To finish, we consider the commuting diagram of long exact sequences

� � � H
r
pX, t!kq H

r
pXq H

r
pZq � � �

� � � H
r
pX, t!kq H

r
pXzZq H

r
pZ, s�t�kq � � �

t�

s�

(3.58)

so we have

H
r
pXzZqloc � H

r
pZ, s�t�kqloc.

The right side fits into a long exact sequence

� � � H
r
pZ0, s

�
0t0�pι!kq H

r
pZ, s�t�kq H

r
pZ, s�j�t1�t�1kq � � �i� (3.59)

Now, the action of H
r
pXq on the left term factors through H

r
pXq Ñ H

r
pX0, t0�t�0kq � H

r
pX0zZ0q

(see section 3.3.23), whose localisation is zero because s0 is concentrated. Similarly, the action on

the right term factors through H
r
pXq Ñ H

r
pX1, t1�t�1kq � H

r
pX1zZ1q, whose localisation vanishes

for the same reason. Thus localisation kills all terms in (3.62), and so H
r
pXzZqloc � 0.

3.7.5. Fundamental classes. Note that we also have the following result

Proposition 3.7.6. Given a quasismooth map π : X Ñ Z over a base B, the fundamental class

rX{Zs : H
r
pZ{Bqloc Ñ H

r
pX{Bqloc

is an isomorphism if any only if they are stratawise, i.e. writing Xi � X �Zi
Z,

rXi{Zis : H
r
pZi{Bqloc Ñ H

r
pXi{Bqloc

are isomorphisms.

Proof. For simplicity assume that Z � Z0YZ1 has two strata, one closed and one open. Dropping

loc subscripts, in this case the Proposition follows from the five lemma applied to the following

commuting diagram
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H
r
pX0{Bq H

r
pX{Bq H

r
pX1{Bq

H
r
pZ0{Bq H

r
pZ{Bq H

r
pZ1{Bq

�1

[X0{Z0] � [X{Z]
�1

[X1{Z1] �

The general case proceeds by induction on the number of strata.

Proposition 3.7.7. Given a quasismooth map π : X Ñ Z, the fundamental class

rX{Zs : H
r
pZqloc Ñ H

r
pX{Zqloc

is an isomorphism if any only if they are stratawise, i.e.

rXi{Zis : H
r
pZiqloc Ñ H

r
pXi{Ziqloc

are isomorphisms.

Proof. By the previous Proposition applied to B � Z we just need to show that

rXi{Zis : H
r
pZi{Zqloc Ñ H

r
pXi{Zqloc

are isomorphisms. Dropping the loc subscripts, consider

H
r
pZiq bH

rpZiq H
r
pZi{Zq H

r
pXi{Ziq bH

rpZiq H
r
pZi{Zq

H
r
pZi{Zq H

r
pXi{Zq

�
[Xi{Zi]bid

Y� Y�
[Xi{Zi]

The right vertical arrow is an isomorphism because the following is an isomorphism the diagram

is an isomorphism

H
r
pZiq bH

rpZiq H
r
pZiq H

r
pXi{Ziq bH

rpZiq H
r
pZiq

H
r
pZiq H

r
pXi{Ziq

�
[Xi{Zi]�bid

Y� Y
[Xi{Zi]�

�

finishing the proof.

3.8 Application: moduli stacks

In this section we apply the results of section 3.7 to the moduli stacks we are interested in.
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3.8.1. Let X be a moduli stack parametrising objects in an abelian category, i.e. either a stack

as in section 3.11.2, or just the moduli of vector bundles, representations of a quiver or coherent

sheaves on a curve. Also consider

N � Ext, M � Ext�X X
2

the moduli stacks parametrising an object with a subobject, and two objects with a subobject of

their direct sum, respectively.

3.8.2. Write γ1 � γ2 and γ1 � γ�2 `γ
�
2 for the tautological vector bundles or quiver representation

bundles on N �N, or coherent sheaves on C �N �N.

3.8.3. There is a map (which in the three main examples is a closed embedding)

i : N �N Ñ M pF� � E�,F� � E�q ÞÑ pF� ` F� � E� ` E�q.

Now, this map usually does not admit a retraction. However, using the obvious Gm action

Gm �M Ñ M t � pF � E� ` E�q � pp t 1 q � F � E� ` E�q,

one might have expected that taking the tÑ 0 limit could give a retraction to i:

M “ Ñ ” N �N pF � E� ` E�q ÞÑ pkerF � E�, imF � E�q

given by taking the kernel and image of the map F ãÑ E�`E� ↠ E�. The reason this is does not

define a map is that whilst one can take image and kernels in abelian categories, this is not true in

families. For instance, when X is the moduli stack of vector spaces, a map to N �N is uniquely

determined by the pullbacks of the tautological vector bundles γ�1 � γ�2 on N � N, however we

cannot set the pullbacks of γ�1 and γ�1 to be ker γ1 and imγ1, since kernels and images of vector

bundles are not themselves vector bundles.

3.8.4. However, we can define a stratified retraction to the map i. Write M̌ for the moduli stack

parametrising two objects with a subobject

F � E� ` E�

such that the image and kernel of F under the map F Ñ E� ` E� ↠ E� are also objects of the

category familywise. We get a commuting diagram of exact sequences

0 kerF F imF 0

0 E� E� ` E� E� 0

(3.60)
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which thus defines a map

lim : M̌ Ñ N �N pF � E� ` E�q ÞÑ pkerF � E�, imF � E�q

which is a retraction of i : N �N Ñ M̌. One can show that M̌ is a disjoint union of the strata in

a stratification of M.

3.8.5. We spell out how to define i and lim very explicitly. As noted, N�N carries four tautological

vector bundles, γ�1 � γ�2 and γ�1 � γ�2 , and the space M̌ carries γ1 � γ�2 ` γ�2 as well as ker γ1

and imγ1. We thus define lim : M̌Ñ N �N by lim�γ�2 � γ�2 and

lim�γ�1 � ker γ1, lim�γ�1 � imγ1.

Similarly, i : N �N Ñ M̌ is defined by i�γ�2 � γ�2 and i�γ1 � γ�1 ` γ�1 .

3.8.6. The fibres of lim above pF� � E�,F� � E�q consist of maps of extensions

0 F� F F� 0

0 E� E� ` E� E� 0

α (3.61)

We can now compute the fibre of lim using

Lemma 3.8.7. Let A be an abelian category with objects F� � E�. Then the choices of diagram

of extensions (3.64) biject with HompF�,E�{F�q.

Proof. Given a map of extensions (3.64), we get a map

F� � F{F� α
Ñ pE� ` E�q{F� ↠ E�{F�.

Conversely, given a map A : F� Ñ E�{F�, we can form

F� E� �E�{F� F� F�

E� E�{F�

It is easy to check that the top row is an exact sequence, that the induced diagram

0 F� E� �E�{F� F� F� 0

0 E� E� ` E� E� 0
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commutes, and that this gives a bijection.

When A is semisimple, we can choose a splitting F � F� ` F� and having made this choice

the diagrams (3.64) biject with HompF�,E�q. Since the choices of splitting are parametrised by

HompF�,F�q, and HompF�,E�q{HompF�,F�q � HompF�,E�{F�q, we again recover the above

result in the semisimple case.

It follows from Lemma 3.8.7 that

Corollary 3.8.8. M̌ is the total space of Hompγ�1 , γ
�
2 {γ

�
1 q, where:

1. When A is the category of representations of a finite quiver Q, γ�i means the tautological Q

representation bundles on N�N, and Hompγ�1 , γ
�
2 {γ

�
1 q means the coherent sheaf on N�N

given by Q representation coherent sheaf morphisms (as in section 3.12.3).

2. In particular, when A is the category of finite dimensional vector spaces, γ�i are the tauto-

logical vector bundles on N � N and Hompγ�1 , γ
�
2 {γ

�
1 q � Hompγ�1 , γ

�
2 {γ

�
1 q is the ordinary

internal vector bundle Hom.

3. When A is the category of coherent sheaves on a curve C, γ�i are the tautological coherent

sheaves on C�N�N and Hompγ�1 , γ
�
2 {γ

�
1 q � HomCpγ

�
1 , γ

�
2 {γ

�
1 q denotes the relative sections

Hompγ�1 , γ
�
2 {γ

�
1 q along C.

3.8.9. The Gm action on the fibres of lim sends

0 F� F F� 0

0 E� E� ` E� E� 0

α

β

to

0 F� F F� 0

0 E� E� ` E� E� 0

p t 1 q
�1
α

βp t 1 q

and all other maps in the diagram are unchanged. In particular, the induced Gm action on the

vector space HompF�,E�{F�q has weight one. This all upgrades to a Gm action on M̌, by acting

on Hompγ�1 , γ
�
2 {γ

�
1 q with weight one.

3.8.10. Specialisation. In this section, we show that the total space of the normal complex to

i : pN � Nq{Gm Ñ M̌{Gm is specialised (or equivalently, concentrated) over N � N{Gm. More
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than this, we have a Gm equivariant diagram

N �N

M̌

X �X

i
p

p

(3.62)

and we will show that Ni{Gm is specialised with respect to a multiplicative subset for S of

H
r
Gm
pX �Xq.

3.8.11. Moduli of vector spaces. In this case M̌ is a vector bundle of Gm weight one over N�N,

hence M̌ � Ni. By Proposition (3.5.28), Ni{Gm is specialised after inverting the equivariant Euler

class

epNiq � eGmpHompγ�1 , γ
�
2 {γ

�
1 qq �

¹
pxi � tq P H

r
Gm
pN �Nq,

where xi are the chern roots of Ni. Next, because Hompγ�1 , γ
�
2 {γ

�
1 q is the subbundle of a quotient

of Hompγ�2 , γ
�
2 q,

eGmpHompγ�1 , γ
�
2 {γ

�
1 qq | eGmpHompγ�2 , γ

�
2 qq

and so i is S �
�
eGmpHompγ�2 , γ

�
2 q
�

concentrated.

3.8.12. Moduli of quiver representations. For notation on quiver representation and their

moduli, see section 3.12. As before,

M̌ � HomQpγ
�
1 , γ

�
2 {γ

�
1 q

and HomQpγ
�
1 , γ

�
2 {γ

�
1 q is a sub of a quotient of the vector bundle HomQpγ

�
2 , γ

�
2 q in the category

of coherent sheaves on N � N. In particular, applying Lemma 3.3.30 we get that i is specialised

with respect to S �
�
eGmpHomQpγ

�
2 , γ

�
2 qq

�
.

3.8.13. Moduli of coherent sheaves on a curve. As in the above two cases, i is specialised

with respect to any multiplicative subset for which the total space of HomCpγ
�
2 , γ

�
2 q. However,

we need to be careful because in this case HomCpγ
�
2 , γ

�
2 q is not a vector bundle, nor does it have

a global resolution by vector bundles.

Note that HomCpγ
�
2 , γ

�
2 q is the zeroeth cohomology sheaf of the perfect complex ExtCpγ

�
2 , γ

�
2 q,

which as for any perfect complex is strict (is quasiisomorphic to a bounded complex of vector

bundles) when restricted to any quasi-compact open.
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Pick an ample line bundle on our curve C. The moduli stack X of coherent sheaves is an increasing

union of the moduli stack Xm of m regular sheaves for m P Z, which are quasicompact, see [Hu,

§1.7]. We thus get a Gm equivariant commuting diagram

Nm �Nm

M̌m

Xm �Xm

im
pm

pm

(3.63)

the pullback via the open embedding Xm�Xm Ñ X�X of (3.65). Note that since p, pm are proper

they are in particular quasicompact, hence Nm � Nm is quasicompact. Thus the Ext complex is

quasiisomorphic to a bounded complex of vector bundles

ExtCpγ
�
2 , γ

�
2 q|Nm�Nm � p � � � Ñ E�1

m

d�1
Ñ E0

m
d0Ñ E1

m Ñ � � � q.

Thus, by Lemma 3.3.30 the total space of HomCpγ
�
2 , γ

�
2 q|Nm�Nm is specialised with respect to the

multiplciative subset Sm � peGmpE
0
mqq of H

r
Gm
pNm � Nmq. Now, since X is smooth and on each

connected component the codimension of Xm � Xm in X � X tends to infinity as m Ñ 8,8 we

have that H
r
pXq � lim H

r
pXmq.

Thus, enlarging Sm if necessary, we have a compatible system pSmqmPZ of multiplicative subsets of

H
r
Gm
pNm�Nmq with respect to which pNi{Gmq|Nm�Nm is specialised. Then since H

r
Gm
pX �Xq �

lim H
r
Gm
pXm � Xmq, we may use the process in 3.6.9, applying Theorem 3.6.10 to compute the

CoHA products of the moduli of coherent sheaves on a curve.

3.9 Cup product compatibility

3.9.1. Let pM, 0q be a commutative monoid in pointed spaces as in section 2.6.3. Then by (2.6.4)

its cohomology H � H
r
pMq is a cocommutative Hopf algebra, under cup product and coproduct

the pullback by the monoid structure map M�MÑM.

3.9.2. CoHA compatibility. Assume that moreover that M P AlgpArtcorrq, i.e. it is an algebra

in the category of correspondences, giving

Ext

M2 M

pq (3.64)

8Indeed, note that X � YmPZXm and XmzXm is closed.
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and moreover that p is proper and quasismooth, so that by Definition 3.1.10 its cohomology is

given the cohomological algebra structure.

Proposition 3.9.3. If p� � q�`� as maps H
r
pMq Ñ H

r
pExtq, then the cohomological Hall algebra

makes H
r
pMq into an algebra internal to H

r
pMq-Mod.

Proof. We need to show that CoHA multiplication is a map in RepM, i.e. that for every α P H
r
pMq,

H
r
pMq b H

r
pMq H

r
pMq

H
r
pMq b H

r
pMq H

r
pMq

p�q�

`�α� α�
p�q�

(3.65)

Since the cup product is induced by pullback along the diagonal, (3.68) commutes because the

following diagram of spaces commutes and its right square is a pullback

Ext

M2 M� Ext M

M�M2 M�M

p�id
q p

p`�idq�∆ id�pid�q
∆

(3.66)

It is unclear whether this generalises to cohomological Hall algebras on Borel Moore homology or

sheaf cohomology (CoHAs 2. and 3. in Definition 3.1.10).

3.9.4. Vertex algebra compatibility. The compatibility with the (nonlocal) vertex algebra

structure is more subtle. It is not true that H
r
pMq is a (nonlocal) vertex coalgebra in the symmetric

monoidal category H-Mod: it interacts nontrivially with the derivation on H.

Let M be a space as in section 2.6. Then

Proposition 3.9.5. The nonlocal Joyce vertex coalgebra structure (see Theorem 2.6.18) makes

H
r
pMq into a nonlocal vertex coalgebra in the spectral symmetric monoidal category H-ModB (see

Definitions A.4.2 and A.4.12) of the category of H modules with a compatible derivation.

Proof. We want to show that for every α P H
r
pMq, the cofield map is compatible with the action
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of H:

H
r
pMq H

r
pMq b H

r
pMqppz�1qq

H
r
pMq H

r
pMq b H

r
pMqppz�1qq

∆pzq

α� act�1`�α�
∆pzq

(3.67)

This follows directly from the definition ∆pα, zq � Ψpθqact�1p`
�αq.

3.9.6. The same is true if we consider the (nonlocal) Joyce vertex coalgebra structure with deriva-

tion attached to an orientation ε, of Theorem 2.6.21.

3.10 Main result

In this section we state the main Theorem 3.10.1 and give the proof (section 3.10.4).

Let MA be the moduli stack of representations of a quiver Q, or coherent sheaves on a smooth

proper curve C. Its cohomology H
r
pMAq has the following structures:

1. A cocommutative Hopf algebra structure with derivation, which we denote by H � H
r
pMAq.

2. A cohomological Hall algebra (Definition 3.1.10).

3. The Joyce nonlocal vertex coalgebra structure (Theorem 2.6.18).

Moreover, as we have seen in section (3.9), the CoHA and vertex coalgebra structures are com-

patible with the Hopf algebra structure, i.e. are internal to the category H-ModB of H modules

with compatible derivation.

Theorem 3.10.1. The cohomology H
r
pMAq forms a vertex bialgebra in the vertex symmetric

monoidal category H-ModB induced by Yang Baxter matrix (see section A.5)

Spzq � Ψpθ, zq{Ψpσ�θ_, zq.

To be very explicit, this means that the following diagram of vector spaces commutes

H
r
pMAq

b2 H
r
pMAq

b4ppzqq

H
r
pMAq

b4ppzqq

H
r
pMAq H

r
pMAq

b2ppzqq

∆pzqb∆pzq

m

idbσSpzqbid

mbm
∆pzq

(3.68)
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where ∆pzq is Joyce’s vertex coalgebra structure, m is the cohomological Hall algebra structure,

and σ is the spectral symmetric monoidal structure (see section A.4). Equivalently, σ is the

ordinary symmetric monoidal structure swapping the factors, and Spzq � Ψpθ, zq{Ψpσ�θ, zq; we

will use this notation for the rest of the proof.

The proof rests on a method which computes CoHA-style products using abelian localisation. An

application of them will later allow us to give explicit formulas for CoHA products (sections 2.3,

3.12 and 3.13).

3.10.2. Example. We will first demonstrate this method in the zero dimensional case, where we

use it to compute the CoHA product for A � Vectf.d.K the category of finite dimensional vector

spaces.

We give a detailed description of the moduli stacks in section 3.11, but recall that MA is the union

of BGLn over nonnegative n, and the CoHA correspondence is a disjoint union of

BPn,m

aBGLn � BGLma BGLn�m

where Pn,m � GLn�m is the stabiliser of a fixed dimension n subspace.

The first step in the method is to consider a split locus of the target: any map ` pullback along

which gives an injection on cohomology. To compute the CoHA product we will choose

BPn,m BTn�m

aBGLn � BGLma BGLn�m

`

where Tn�m � GLn�m are the diagonal matrices. Thus BTn�m classifies n � m tuples of line

bundles, and the map ` sends

` : pL1, ...,Ln�mq ÞÑ L1 ` � � � ` Ln�m

and identifies H
r
pBGLn�mq with Sn�m invariants inside H

r
pBTn�mq � krt1, ..., tn�ms.
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Second, we take the cartesian product

Pn,mzGLn�m{Tn�m

BPn,m BTn�m

aBGLn � BGLma BGLn�m

`

(3.69)

The cartesian product classifies short exact sequence of vector bundles with a splitting of the

middle term

0 Ñ En
α
Ñ En�m

β
Ñ Em Ñ 0 φ : En�m � L1 ` � � � ` Ln�m. (3.70)

Third, note that this stack admits an action of a torus Tn�m, coming from its action on BTn�m.

Explicitly, this sends

t : pα, β, φq ÞÑ pφ�1tφα, βφ�1t�1φ, tφq

As the closed substack playing the role of the fixed locus, we consider the stack classifying

0 Ñ Li1 ` � � � ` Lin Ñ L1 ` � � � ` Ln�m Ñ Lj1 ` � � � ` Ljm Ñ 0 (3.71)

where the Li,Lj are line bundles, which is labelled by the partitions of t1, ..., n�mu into two sets

of sizes n and m. Write Σ for the set of these. ²
σPΣ BTn�m

Pn,mzGLn�m{Tn�m

Ext BTn�m

aBGLn � BGLm a

i
p

q

p

q

We can now compute the CoHA product. The point is that the map p is extremely simple, it is

just the identity on each component. Thus the hardest part of the CoHA product (integration) is

replaced by a triviality. Moreover, the map q on each component is the composite

qσ : BTn�m
πσÑ BTn � BTm Ñ BGLn � BGLm

where πσ is the projection corresponding to the partition σ.
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Thus by the integration formula (3.29), we get that

p�q� � pT�
q�T p�q
epNiq

�
¸
σPΣ

q�σ,T p�q

epNσ,iq
.

To be extremely explicit, we have

epNσ,iq �
n¹
i�1

m¹
j�1

ptσi � tσjq

where we have made a choice of lift the partition σ to a pair of jointly surjective maps σ :

t1, ..., nu, t1, ...,mu Ñ t1, ..., n�mu. Thus the CoHA map sends

fpt1, ..., tnq � gpt1, ..., tmq �
¸
σPΣ

1

epNσ,iq
fptσ1, ..., tσnqgptσ1, ..., tσmq. (3.72)

This recovers the formula in [KS, Thm. 2].

3.10.3. Notice that the right side of (3.75) is a priori valued in the localised cohomology H
r
pBTn�mqloc,

i.e. the Euler class in the denominator may not be cancelled. However, when the inputs are

symmetric group invariant, the denominator cancels and the right side is also symmetric group

invariant: we have a commuting diagram

H
r
pBTnqloc b H

r
pBTmqloc H

r
pBTn�mqloc

H
r
pBGLnq b H

r
pBGLmq H

r
pBGLn�mq

(3.73)

We stress that to define the top arrow in (3.76), we need to choose of lift of every partition σ P Σ

to a jointly surjective pair of functions rσ : t1, ..., nu, t1, ...,mu Ñ t1, ..., n � mu. In particular,

there is no reason to expect it to define an algebra structure.

3.10.4. Proof of Theorem 3.10.1. We use the split locus consisting of objects which are a direct

sum of two subobjects:

` : M2
A Ñ MA,
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and apply the method of section 3.10.2. Note that since ` admits a section it is injective on

cohomology. We have a commuting diagram

Ext2A

ExtA �MA
M2

A

ExtA M2
A

aMA �MAa MA

i p`

p`

q p `

(3.74)

The following subdiagram of (3.77) is equivariant for both the action T

Ext2A

ExtA �MA
M2

A

MA �MA M2
A

i p`

pq`

(3.75)

and we can use abelian localisation (Theorem 3.5.16) to compute9

`�pCoHA productq � `�p�q
� � pT�

`�
T p�q

epNiq
. (3.76)

See section 3.6.8 for the relation to the T equivariant structure. Note also that ` and p are

equivariant for the BGm action on the spaces scaling the left factors; we write act for the corre-

sponding pullback map on cohomology after identifying H
r
pBGmq � krzs. Finally, ` factors T -

and BGm-equivariantly as

Ext2A

M2
A �M2

A ExtA �MA
M2

A

MA �MA M2
A

i p

r̀

`�` pq`

(3.77)

9Note that i is of finite presentation and its normal complex is perfect because the same is true for p and p, so

the conditions of Theorem 3.6.6 are met.
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We now turn to proving the theorem. To do this, we first write out in detail the diagram (3.71)

relating the vertex algebra and cohomological Hall algebra structures:

H
r
pMA �MAq H

r
pM2

A �M2
Aq H

r
pM2

A �M2
Aqppzqq H

r
pM2

A �M2
Aqppzqq

H
r
pM2

A �M2
Aqppzqq

H
r
pMAq H

r
pM2

Aq H
r
pM2

Aqppzqq H
r
pM2

Aqppzqq

p`�`q�

p
�
q�

act�p�q

α

Ψpθ`θq�

β

σ23�S23pzq

pp�pq�pq�qq�

`� act�p�q Ψpθq�

(3.78)

Firstly, by the integration formula (3.79), the left square commutes if we pick

α � pT�
r̀�
T p�q

epNiq
.

Second, by BGm equivariance of the maps, the middle square commutes if we take

β � pT�
r̀�
T p�q

ΨpNiq
.

Thirdly and finally, we need the right square to commute, that is

ΨpθqpT�
`�
T p�q

ΨpNiq
� pp

T
� p

T
q�pqT � qT q

�σ�23 pS23pzqΨpθ ` θqp�qq . (3.79)

The rest of the proof then consists of showing (3.82).

To begin with, since p � p� p equation (3.82) would be implied by the equality in H
r
pExt2Aqppzqq

Ψpp�T θq
1

ΨpNiq
� pqT � qT q

�σ�23 pS23pzqΨpθ ` θqq .

We can further reduce since since p� � q�`� and q� is an isomorphism, to the equality in H
r
pM2

A�

M2
Aqppzqq

Ψpp`T �`T q
�θq

1

ppqT � qT q�q�1ΨpNiq
� σ�23S23pzqσ

�
23Ψpθ ` θq. (3.80)

To understand the pieces of (3.82), we first compute the ΨpNiq term. Note that as Ψp�q defines

a map on K theory, so we will proceed by simplifying rNis.

Lemma 3.10.5. We have ppq � qq�q�1rNis � rσ�23p` � `q�θs � rθ ` θs.

Proof. By repeatedly applying the distinguished triangle for the tangent complex of a composition

we get that

rNis � ri� `� TExtA{MA
s � rTExt2A{M2

A
s � r`�

θs � rq�θ ` q�θs.
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Then since r̀ � σ23pq � qq, this is

rNis � rpq � qq�σ�23p` � `q�θs � rpq � qq�pθ ` θqs.

We next simplify all the terms in (3.83). Label the connected components of M2
A � M2

A by

quadruples of connected components of M �MA:

M2
A �M2

A �
º
pMα1 �Mβ1q � pMα2 �Mβ2q.

As usual, denote by θα1,β2 for the pullback of θ under the projection

pMα1 �Mβ1q � pMα2 �Mβ2q Ñ Mα1 �Mβ2 ,

and similarly for other indices. Then writing s for the section of q � q given by taking trivial

extensions, and so s� � ppq � qq�q�1, we have the following T equivariantly

1. ps is the direct sum map

ps : pMα1 �Mβ1q � pMα2 �Mβ2q Ñ Mα1�β1 �Mα2�β2

and so we have

p` � `q�θ � s�p�θ � θα1,α2 ` θα1,β2 ` θβ1,α2 ` θβ1,β2 .

2. Likewise, θ ` θ � θα1,β1 ` θα2,β2 .

3. Together with Lemma 3.10.5 this implies that ppq � qq�q�1rNis � rθα1,β2s � rθα2,β1s.

Thus equation (3.83) is equivalent to

Ψpθα1,α2qΨpθα1,β2qΨpθβ1,α2qΨpθβ1,β2q

Ψpθα1,β2qΨpθα2,β1q
� σ�23S23pzqΨpθα1,α2qΨpθβ1,β2q.

Simplifying further, this is

S23pzq �
Ψpθα2,β1q

Ψpθβ1,α2q
(3.81)

which thus completes the proof of Theorem 3.10.1.
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3.11 Example: Vector spaces

3.11.1. The most basic example is when

A � Vectf.d.K

is finite dimensional vector spaces over a field K. It is a zero dimensional Calabi Yau category.

Its moduli stack of objects is

MA �
º
n¥0

BGLn.

Giving a map into MA is equivalent to giving a vector bundle on the source. Writing Tn � GLn

for the diagonal matrices, we have an identification

H
r
pBGLnq � H

r
pBTnq

Sn � krt1, ..., tns
Sn .

Writing γn for the universal rank n vector bundle over BGLn, this is freely generated by the chern

classes cipγnq, which are identified with the elementary symmetric polynomials in the ti. It follows

that the cohomology of the moduli stack is

H
r
pMAq �

à
n¥0

krt1,n, ..., tn,ns
Sn .

3.11.2. Cohomological Hall algebra. The moduli stack of extensions is

ExtA �
º
n,m¥0

BPn,m

where Pn,m � GLn�m is the stabiliser of a fixed dimension n subspace. Thus to map into BPn,m

is to give a rank n � m vector bundle with a rank n subbundle. Note that Pn,m is a parabolic

subgroup, so GLn�m{Pn,m is smooth and proper, and the quotient by its unipotent radical gives a

short exact sequence

1 Ñ Un,m Ñ Pn,m Ñ GLn �GLm Ñ 1.

Thus the connected components of the CoHA extension correspondence (3.3) are

BPn,m

BGLn � BGLm BGLn�m

pq

The map p, whose fibres are GLn�m{Pn,m, is representable, smooth and proper. Pullback by the

map q, whose fibres BUn,m are cohomologically trivial, gives an isomorphism on cohomology. In

any case, both p and q must be quasismooth because all involved stacks are smooth.
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3.11.3. Computation. In section 3.10.2, we used abelian localisation to compute the CoHA

product for A, recovering the formula of [KS, Thm. 2]. So the reader can appreciate that method

more, we will now demonstrate how one might compute the CoHA product in a “brute force”

way. It is much harder to repeat for higher dimensional categories, and the answer it gives is less

explicit.

3.11.4. Note that BPn,m carries a tautological short exact sequence of vector bundles

0 Ñ γn Ñ γn�m Ñ γm Ñ 0.

This is a slight abuse of notation: these are the pullbacks by q and p of γn, γm and γn�m. The

CoHA product on cohomology is then

H
r
pBGLnq b H

r
pBGLmq

q�
Ñ H

r
pBPn,mq

p�Ñ H
r�2dpBGLn�mq

where d � dim GLn�m{Pn,m. There is a general formula for the cohomology of fibre bundles whose

fibres are partial flag varieties (see e.g. [And, Prop. 5.1]), giving us that H
r
pBPn,mq is generated

by the chern classes of γn and γm subject to the single relation

cpγn�mq � cpγnqcpγmq,

which can be rewritten as

H
r
pBPn,mq � H

r
pBGLn�mq rcipγnqsi{

�
cpγn�mq{cpγnqpkq : k ¡ m

�
and has a basis over H

r
pBGLn�mq given by¹

cipγnq
ki for

°
i ki ¤ m.

It follows that for some constant κ P k,

p� � κ � coeffcnpγnqmp�q. (3.82)

3.11.5. Over a point, GLn�m{Pn,m carries a tautological rank n vector bundle En � On�m, and by

the above

H
r
pGLn�m{Pn,mq � k rcipEnqsi{

�
cpγnq

�1
p1�mq, ..., cpγnq

�1
pn�mq

	
.

It follows that the top dimensional cohomology is generated by

cnpEnq
m P HtoppGLn�m{Pn,mq.

We can thus compute the coefficient in (3.85) as

κ �

»
GLn�m{Pn,m

cnpEnq
m.
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3.12 Example: Representations of a quiver

3.12.1. We now consider the example where

A � RepkQ

is the category of representations of a finite quiver Q (meaning finitely many vertices).

3.12.2. A quiver is a set |Q| of vertices and a set of arrows e : p Ñ q between pairs of vertices.

A representation of Q is a vector space attached to each vertex and a linear map between the

relevant vector spaces attached to each arrow. The dimension of a representation is the element

γ P N|Q| representing the dimension of these vector spaces.

3.12.3. Let Q be a quiver. A Q representation bundle V is a vector bundle Vq attached to each

vertex q P |Q| and a map of vector bundles ρe : Vp Ñ Vq for every edge e : p Ñ q of Q. When

Q � 
 is the one vertex no loops quiver this is just a vector bundle. If V,W are Q representation

bundles, then their tensor product V bW another Q representation bundle, defined by

pV bW qq � Vq bWq, ρVbW,q � ρV,q b ρW,q.

Likewise, the hom space HomQpV,W q is the vector subbundle

HomQpV,W q �
±

qHompVq,Wqq

of maps φq : Vq Ñ Wq intertwining the tρV,pu and tρW,pu. See also equation (3.86).

3.12.4. Similarly, we can define Q representation coherent sheaves, and likewise for any other

notion of sheaf. We can define b and HomQ exactly as above.

3.12.5. Moduli spaces. The moduli stack of quiver representations

MA �
º

γPN|Q|

MA,γ

has connected components labelled by the dimension of the representation

MA,γ �
±

e:pÑqHompkγp , kγqq{
±

qP|Q|GLpkγqq.

Thus a map into MA is precisely a Q representation bundle. In particular, the cohomology of

MA,γ is symmetric group invariants inside a polynomial algebra:

H
r
pMA,γq �

Â
qP|Q|krxq,1, ..., xq,γq s

Sγq .
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3.12.6. Another way to view the construction is this. We have the vector bundles Eq, the pullbacks

of the tautological vector bundle via

±
qP|Q|BGLpkγqq Ñ BGLpkγqq,

then the moduli space is the total space of a hom space:

MA,γ �
±

e:pÑqHompEp,Eqq.

Note that MA carries a tautological vector bundle Ěq for each vertex q and a map of vector bundles

ě : Ěq Ñ Ěp for every edge e in the quiver.10 Use the subscript i to denote pullback of a vector

bundle, map etc. by the ith projection MA �MA ÑMA.

It is now also easy to describe the Ext complex Ext P PerfpMA �MAq: it has a global resolution

by a two term complex of vector bundles in degrees r0, 1s corresponding to the usual complex used

to compute Ext groups of quiver representations:

Ext �
�±

qHompĚq,1, Ěq,2q Ñ
±

e:pÑqHompĚp,1, Ěq,2q
	

(3.83)

sending

pφqqq ÞÑ pě2φp,1 � φq,2ě1qe:pÑq .

3.12.7. In particular, there is a clear analogue for the derived category of representations of Q.

We set pMA �
º
γPZ|Q|

pMA,γ

whose components are now labelled by the entire Grothendieck group Z|Q| and not just the positive

cone N|Q|, where pMA,γ �
¹
e:pÑq

HompEp,Eqq

where Eq is the (total space of) the perfect complex induced by the pullback of the tautological

perfect complex via ±
qP|Q|Perfγq Ñ Perfγq .

Thus points of pMA correspond to a perfect complex for each vertex of Q, and a map (not just a

map up to quasi-isomorphism) between appropriate perfect complexes for each edge. This is not

quite the same thing as an object

10Ěq is the pullback of Eq under the projection MA ↠
²

γPN|Q|

±
qP|Q|BGLpkγq q.
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3.12.8. Vertex algebra structure. See section 4.3 and in particular Proposition 4.3.8, which

says that the homology of the moduli stack of derived category of quiver representations equipped

with the symmetrised Ext complex is a lattice vertex algebra. In particular the homology of the

moduli stack of quiver representations is a vertex subalgebra - note that the inclusion MA Ñ

MDbpAq pulls back tautological perfect complexes to tautological vector bundles and so gives a

surjection on cohomology and injection on homology.

3.12.9. Cohomological Hall algebra. Drop all A’s from the subscript from now on. To demon-

strate our method (section 3.6.12) we will compute the formula for the quiver CoHA in [KS, Thm.

2].

Take as the split locus the moduli space parametrising tuples of rank one representations

Ms �
º
J

�±
jPJM1

	
which admits a direct sum map ` : Ms Ñ M. The connected components are labelled by finite

sets J .

Given a short exact sequence

0 Ñ E1 Ñ E Ñ E2 Ñ 0

and a splitting of the middle term as a sum of rank one representations (say summands labelled

by J), if the whole exact sequence splits as a direct sum over J we can write it as a sum using

rank one representations

0 Ñ Lj1 Ñ Lj1 Ñ 0 Ñ 0

0 Ñ 0 Ñ Lj2 Ñ Lj2 Ñ 0

as j1 and j2 vary over disjoint subsets J1 and J2 with J � J1 > J2.

3.12.10. Thus, the connected components of

Exts �
º

J�J1YJ2

�±
j1PJ1Ext1,0 �

±
j2PJ2Ext0,1

	
are labelled by pairs of finite sets J1, J2, where Ext1,0 parametrises extensions of a rank zero object

by a rank one object and vice-versa for Ext0,1. Since there are no nontrivial such extensions, we

have

Ext1,0 � Ext0,1 � M1

and we have

Exts �
º

J�J1YJ2

�±
j1PJ1M1 �

±
j2PJ2M1

	
.
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3.12.11. The localised CoHA correspondence (see section 3.6.20) is

²
J�J1>J2

�±
j1PJ1M1 �

±
j2PJ2M1

	
²

J1

�±
j1PJ1M1

	
�
²

J2

�±
j2PJ2M1

	 ²
J

�±
jPJM1

	pr̀ (3.84)

where r̀ is the identity, and p is the identity on each connected component. Moreover, by equation

(3.53) we have

rNis � ri� `� TExt{Ms � rTExts{Mss � r r̀�p` � `q�Exts � 0

where Ext is the Ext complex in (3.86).

3.12.12. It is possible to give an explicit formula for epNiq P H
r
pExtsqloc. Writing Lj for the

pullback of the tautological line bundle under

Ms �Ms �
º
J1

�±
j1PJ1M1

	
�
º
J2

�±
j2PJ2M1

	
Ñ Mj

we have that `�Ěq �
±

jPJLj, and so

p` � `q�Ext �
±

j1,j2

�±
qHompLq,j1 ,Lq,j2q Ñ

±
e:pÑqHompLp,j1 ,Lq,j2q

	
as perfect complexes on the J1, J2th component of Ms �Ms. It follows that

epNiq �
±

p,q

±
j1,j2

pxp,j1 � xq,j2q
χpp,qq (3.85)

where χpp, qq � δp,q � ap,q is the Euler form, and ap,q is the number of edges from p to q.

3.12.13. Putting all this together, the integration formula 3.29 recovers the explicit formula for

the (localised) CoHA product [KS, Thm. 2]: the localised CoHA map

H
r
pMsq b H

r
pMsq Ñ H

r
pMsqloc

on the connected component of Ms �Ms labelled by finite sets J1 and J2, is given by

f1pxq,j1q � f2pxq,j2q �
¸

J�J1>J2

f1pxq,j1qf2pxq,j2q

epNiq
(3.86)

with epNiq as in (3.88). Here fi is a polynomial in variables xq,ji labelled by elements of |Q| and

Ji, and the sum is taken over all the ways

J1 > J2
�
Ñ J
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of writing a fixed finite set J as a disjoint of J1 and J2. Given any such partition, we identity

elements of J1 and J2 with the corresponding element of J . Now, in particular, restricting to

symmetric group invariant polynomials, the same formula gives the genuine CoHA product

H
r
pMq b H

r
pMq Ñ H

r
pMq.

3.13 Example: Coherent sheaves on a curve

Let C be a smooth projective curve over an algebraically closed field, and

A � CohpCq

the category of coherent sheaves over it. Applying our heuristic is trickier than in the quiver case

because there are nontrivial rank zero objects.

3.13.1. The moduli stack of objects in A is defined by functor of points

MapspS,MAq � tF P CohpS � Cq, F is flat over Cu.

One can show that this is an Artin stack locally of finite type, which we will denote by Coh �MA.

Its connected components are labelled by the rank r and degree d of the coherent sheaf:

Coh �
º

rPN,dPZ
Cohdr .

3.13.2. Cohomology. The cohomology of these moduli stacks is fairly simple, just polynomial

algebra on a super vector space. However, there is a slight subtlety coming from the fact that

there are nontrivial rank zero objects. To begin, consider the tautological coherent sheaf E on

C �M. If we pick a basis of the cohomology of C

H0pCq � kt1u, H1pCq � ktb1, ..., b2gu, H2pCq � ktσu

we may decompose the chern classes of E in H
r
pC �Mq as

cipEq � 1b αi �
¸

bk,i b βk,i � σ b γi.

Fixing the following graded vector space

WC � ktai�1, b1,i, ..., b2g,i, ciui¥1 (3.87)

where |ai| � 2i, |bk,i| � 2i� 1 and |ci| � 2i� 2, we have
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Proposition 3.13.3 ([He]). For positive rank r ¡ 0, there is an isomorphism of graded supercom-

mutative algebras

SympWCq
�
Ñ H

r
pMd

rq

sending pai, bk,i, ciq ÞÑ pαi, βk,i, γiq.

The rank zero case is different because the support of the tautological coherent sheaf gives more

cohomology classes. To begin,

Lemma 3.13.4. The degree one rank zero moduli space is M1
0 � C � BGm.

Proof. Given a coherent sheaf F on C � S which is flat over C, we may take its support to give

an S-valued point of C, SuppF : S Ñ C. Moreover, we get a line bundle p�F on S by projection

along S�C Ñ S. This defines a map M1
0 Ñ C�BGm. The inverse map is by taking an S-valued

point c : S Ñ C and a line bundle L on S, and sending it to p�L b Opcq, which defines a degree

one rank zero coherent sheaf on S.

We consider the graded vector space

VC � H
r
pC � BGmq. (3.88)

Heinloth then shows

Proposition 3.13.5 ([He]). The cohomology of the rank zero degree d moduli stack is

H
r
pM0

dq � SymdpVCq.

Note that M0
d � ∅ if d   0.

3.13.6. Vertex algebra structure. By work of Gross, the vertex algebra structure on the mod-

uli stack of the derived category of coherent sheaves is a lattice vertex superalgebra attached to

the superlattice pK

toppCohCq, χq, where K


top is the higher topological K-theory and χ is the sym-

metrised Euler form (see [Gro2]). In particular, for the same reason as in section 3.12.8 the moduli

stack of coherent sheaves will be a vertex subalgebra.

3.13.7. Extensions. The moduli space of extensions has connected components

Extd,d
1

r,r1
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labelled by the rank and degree pr, dq, pr1, d1q of the subobject and quotient: these are the ranks

and degrees of the terms of the tautological short exact sequence of coherent sheaves on C�Extd,d
1

r,r1 :

0 Ñ Edr Ñ Ed�d
1

r�r1 Ñ Ed
1

r1 Ñ 0.

3.13.8. Cohomological Hall algebra. Take as split locus the moduli space parametrising finite

direct sums of rank zero and one coherent sheaves. Its connected components are

pCohe10 � � � � � Cohen0 q � pCohd11 � � � � � Cohdm1 q

for integers di and positive integers ei. In other words,

Cohs �
º
IÑN

p
±

iPICohei0 q �
º
JÑZ

�±
jPJCoh

dj
1

	
where the union is over all finite sets I, J and functions e : I Ñ N and d : J Ñ Z.

3.13.9. The split locus map ` : Cohs Ñ Coh takes the direct sum. It gives an injection on

cohomology. In fact, just the map

` : Cohd11 � � � � � Cohdr1 Ñ Cohdr

gives an injection on cohomology, where r ¥ 1 and di are any integers with d �
°
di. Indeed, the

pullback of the tautological coherent sheaf E on C � Cohdr is
À

j Ej, where Ej is the tautological

coherent sheaf on C � Coh
dj
1 . Then for any homology class α P H rpCq, we have

pid�`q� pα � chkpEqq � α � pid�`q�chkpEq �
¸

α � chkpEjq.

Thus, the composition H
r
pCohdrq

`�
Ñ H

r
p
±

Coh
dj
1 q Ñ H

r
pCoh

dj
1 q sends is an isomorphism and so

`� is an injection on cohomology.

3.13.10. Likewise, for Exts take the stack classifying tuples of short exact sequences of coherent

sheaves whose middle term has rank zero or one. Its connected components are products of three

types of extension moduli spaces

Cohe,e
1

0,0 , Cohd,e1,0, Cohe,d0,1.

In formulae this reads

Exts �
º
KÑN

�±
kPKCohe1k,e2k0,0

�
�

º
J�J1>J2ÑZ�N

�±
j1PJ1Coh

dj1 ,ej1
1,0 �

±
j2PJ2Coh

ej2 ,dj2
0,1

	
.

The first union is over all finite sets K and pairs of functions e1, e2 : K Ñ N. The second is

over all finite sets J with a partition into two subsets J � J1 > J2, and functions d : J Ñ Z and

e : J Ñ N.
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3.13.11. We proceed with computing the localised CoHA product. The top row

Exts

Cohs � Cohs Cohs

p

r̀

of the diagram (3.55) can be understood in terms of the following three simple correspondences

Cohe1,e20,0 Cohe,d0,1 Cohd,e1,0

Cohe10 � Cohe20 Cohe1�e20 Cohe0 � Cohd1 Cohe�d1 Cohd1 � Cohe0 Cohd�e1

αqα βqβ γqγ

(3.89)

More precisely, on each connected component of Exts, it is

p
±

kPKCohe1k,e2k0,0 q � p
±

j1PJ1Coh
dj1 ,ej1
1,0 �

±
j2PJ2Coh

ej2 ,dj2
0,1 q

p
±

kPKCohe1k�e2k0 q � p
±

j1PJ1Coh
dj1�ej1
1 �

±
j2PJ2Coh

dj2�ej2
1 q

p
±

kPKCohe1k0 q � p
±

j1PJ1Coh
dj1
1 �

±
j2PJ2Coh

ej2
0 q

�p
±

kPKCohe2k0 q � p
±

j1PJ1Coh
ej1
0 �

±
j2PJ2Coh

dj2
1 q

p

r̀

(3.90)

which is simply a product of the correspondences (3.92). The associated maps on connected

components send

pK, J1, J2q

ppK > J2, J1q, pK > J1, J2qq pK, J1 > J2q

pr̀

In particular, given a connected component of Cohs�Cohs labelled by finite sets ppI1, J1q, pI2, J2qq,

to define a lift r̀ requires a (non-canonical) choice of partitions

K > J2
�
Ñ I1 K > J1

�
Ñ I2. (3.91)

3.13.12. We fix some notation. Fix a connected component c of Exts, i.e. fix background finite

sets K, J1, J2, functions e1, e2 : K Ñ N on K, and d : J Ñ Z and e : J Ñ N on J � J1 > J2.

� For any k P K, write Tα,k for the pullback of Tα via the kth projection

Extsc Ñ Cohe1k,e2k0,0 .
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� Similarly for Tβ,j1 and Tγ,j2 .

Similarly, fix a connected component c1 of Cohs�Cohs, i.e. fix background finite sets pI1, J1q, pI2, J2q

and functions e : I1 Ñ N, d : J1 Ñ Z and e1 : I2 Ñ N, d1 : J2 Ñ Z.

� For any a1, a2 P K, write θa1,a2 for the pullback of the Ext complex by the a, bth projetion

pCohs � Cohsqc1 Ñ Coh
ea1
0 � Coh

e1a2
0 .

� Similarly define θa1,a2 for any a1, a2 P K > J1 > J2.

Having chosen a partition (3.94), we can define r̀ and the above perfect complexes are related by

r̀� : pθk,k, θj1,j1 , θj2,j2q ÞÑ pTα,k,Tβ,j1 ,Tγ,j2q.

3.13.13. We now compute the Euler class of the normal complex of the closed embedding i :

Exts Ñ Ext�Coh Cohs, using (3.53), which says that

rNis � ri� `� TExt{Cohs � rTExts{Cohss � r r̀�p` � `q�θs � rTps

where θ � Ext is the Ext complex. The second summand is easy to compute because p is just a

product of the maps α, β and γ, so the tangent complex is just a direct sum

Tp �
±

kPKTα,k `
±

j1PJ1Tβ,j1 `
±

j2PJ2Tγ,j2 .

The first summand is

p` � `q�θ �
À

aiPIi>Jiθa1,a2 .

Thus given a choice of identifications (3.94), we can write this as

p` � `q�θ �
À

aiPK>J1>J2θa1,a2 .

It follows that

Lemma 3.13.14. rNis is the sum of r r̀�θa1,a2s over ai P K > J1 > J2 with a1 � a2.

3.13.15. We can now use the integration formula to compute the localised CoHA product for the

moduli stack of coherent sheaves on C. It is defined on the vector space

H
r
pCohsq �

à
IÑN
JÑZ

Â
iPIV

i
C b

Â
jPJW

j
C

where V i
C and W j

C are just copies of the vector spaces (3.91) for d � di and (3.90). Applying the

integration formula then gives that
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Theorem 3.13.16. Fix two connected components of Cohs, labelled by finite sets pI1, J1q, pI2, J2q

and functions on them as in section 3.13.8. The localised CoHA product

H
r
pCohsq b H

r
pCohsq Ñ H

r
pCohsqloc

on each summand�Â
i1PI1V

i1
C b

Â
j1PJ1W

j1
C

	
b
�Â

i2PI2V
i2
C b

Â
j2PJ2W

j2
C

	
Ñ

�Â
kPKV

k
C b

Â
jPJ1>J2W

j
C

	
loc

is given by

f1 b f2 ÞÑ
¸

I1�K>J2
I2�K>J1

� â
k,j1,j2

αk� b βj1� b γj2�

��
f1 b f2
epNiq



. (3.92)

Here K is a finite set of size |I1| � |J2| � |I2| � |J1|, the product being zero if these two quantities

are not equal, and the sum is over identifications of I1, I2 with the marked sets as in (3.94). The

Euler class epNiq is given as in (3.13.14).

In the above we have used the pushforwards by α, β, γ to define maps

αk� : V k
C b V k

C Ñ V k
C βj1� : V j1

C bW j1
C Ñ W j1

C γj2� : W j2
C b V j2

C Ñ W j2
C .

Thus their tensor product in (3.95) along with the identifications I1 � K > J2 and I2 � K > J1 as

in (3.94) define a map�Â
i1PI1V

i1
C b

Â
j1PJ1W

j1
C

	
b
�Â

i2PI2V
i2
C b

Â
j2PJ2W

j2
C

	
�
Ñ

�Â
kPkV

k
C b

Â
j2PJ2V

j2
C b

Â
j1PJ1W

j1
C

	
b
�Â

kPkV
k
C b

Â
j1PJ1V

j1
C b

Â
j2PJ2W

j2
C

	
Ñ

�Â
kPKV

k
C b

Â
jPJ1>J2W

j
C

	
loc
.

This gives a fairly explicit description of the CoHA product, modulo computing the pushforwards

α�, β�, γ�.

3.13.17. The CoHA α. First consider the rank zero correspondence

Cohe1,e20,0

Cohe10 � Cohe20 Cohe1�e20

αqα

The work [He] of Heinloth can be easily adapted to show that the CoHA product α�q� is thus the

usual algebra structure on

SympVCq �
à
e¥0

H
r
pCohe0q.

Since α is generically finite, Tα generically vanishes.
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3.13.18. Stratification. To continue, it is useful to consider the stratification on Coh given by

the length ℓ of torsion subsheaf:

Cohdr �
º
ℓ¥0

Cohd,ℓr .

The closure relations of this stratification is Cohd,ℓr �
²

ℓ1¥ℓ Cohd,ℓ
1

r . All strata are smooth.

Sending a coherent sheaf to its torsion subsheaf and torsion-free quotient gives

Cohd,ℓr Ñ Cohℓ0 � Bund�ℓr .

This is a vector bundle of rank rℓ, the zero section being the direct sum map. It follows that the

ℓth stratum has codimension rℓ inside Cohdr .

3.13.19. The CoHA β. Turn secondly to

Cohe,d0,1

Cohe0 � Cohd1 Cohe�d1

βq

Whilst β� is complicated to work out, its stratified pieces with respect to the stratification

Cohd�e,ℓ1 � Cohd�e1 by length ℓ of torsion subsheaf are easy to compute. Setting f � d� e� ℓ, we

have

Cohe0 � pCohℓ�e0 � Picf q Cohe,ℓ�e0,0 � Picf Cohℓ0 � Picf

Cohe0 � Cohd,ℓ�e1 Cohe,d,ℓ0,1 Cohd�e,ℓ1

Cohe0 � Cohd1 Cohe,d0,1 Cohd�e1

βℓqℓ

βq

We have defined Cohd,e,ℓ0,1 so the lower right square is Cartesian. The upper right square is Cartesian

because there are no nonzero maps from a torsion sheaf into a line bundle. The top row of vertical

arrows are all vector bundles, so that

βℓ,�q�ℓ � rank zero CoHA product b idH
rpPicf q.

Now, one can show that q� and β� are uniquely determined by their restriction to the strata, and

so the above uniquely determines the first postive rank CoHA product β�q�. Moreover, by the

above Tβℓ are given in terms of Tα.
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3.13.20. The CoHA γ. Finally we consider the last positive rank case

Cohd,e1,0

Cohd1 � Cohe0 Cohd�e1

γq

Partial information about the CoHA product can be computed by stratifying the base of γ:

Cohd,e,ℓ1,0 Cohd�e,ℓ1

Cohd1 � Cohe0 Cohd,e1,0 Cohd�e1

γℓ

γq

However, in contrast to last section, Cohd,e,ℓ1,0 is more complicated because there exist nonzero

maps from line bundles into torsion sheaves. To proceed in computing γℓ� we apply an argument

suggested to us by Kevin Lin. First fix some notation:

1) Cohd�e,ℓ1 classifies rank one degree d� e coherent sheaves E whose torsion part T has length

ℓ. That is to say, it classifies short exact sequences

T Ñ E Ñ Q

of a degree ℓ torsion sheaf T by a degree f � d� e� ℓ line bundle Q.

2) Cohd,e1,0 classifies extensions

0 Ñ E1 Ñ E Ñ E2 Ñ 0

where E1 has rank one and degree d, and E2 has rank zero and degree e.

3) The pullback Cohd,e,ℓ1,0 classifies

T1 E1 Q1 ? d ?

T E Q ℓ d� e f

T2 E2 Q2 ? e ?

where all rows and columns are exact sequences, the left horizontal arrows are maximal

torsion subsheaves, and the degrees are indicated on the right.

Note that fixing one of the ?’s determines the rest. Thus there is a stratification Cohd,e,ℓ,ℓ
1

1,0 � Cohd,e,ℓ1,0

given by bounding the length of T1, classifying the same data as above, except that the degrees

are fixed:
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T1 E1 Q1 ¤ ℓ1 d ¥ f 1

T E Q ℓ d� e f

T2 E2 Q2 ¥ ℓ2 e ¤ f2

Notice that the strata are labelled by 0 ¤ ℓ1 ¤ ℓ, so in particular there are finitely many strata.

3) Write M for the space classifying

T1 Q1 ℓ1 f 1

T E Q ℓ d� e f

T2 Q2 ℓ2 f2

with notation as in (3)) above. Similarly, write rM for the space classifying

T1 T1 ` Q1 Q1 ℓ1 d f 1

T E Q ℓ d� e f

T2 T2 ` Q2 Q2 ℓ2 e f2

The point of considering M is that we have the pullback

Cohℓ
2,ℓ2

0,0 � Picf
1,f2

1,0 M

Cohℓ0 � Picf Cohd�e,ℓ1

π

and the horizontal arrows give isomorphisms on cohomology, so π� is easy to compute. This can

be used to gain information about γℓ�, using the diagram
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rM
M Cohd,e,ℓ,ℓ

1

1,0

Cohd,e,ℓ1,0

Cohd�e,ℓ1

rπ

π

jℓ1

γℓ

The bottom two maps are proper, and the top two are affine space fibrations. Applying cohomology

to rπ!rπ!k Ñ k thus gives

H
r
prπ!kq

H
r
pMq H

r
pCohd,e,ℓ,ℓ

1

1,0 , jℓ1!kq

H
r
pCohd,e,ℓ,ℓ

1

1,0 q

H
r
pCohd�e,ℓ1 q

��

π�

γℓ�

where we have omitted grading shifts from the notation. This determines what γℓ� is on the image

of H
r
pCohd,e,ℓ,ℓ

1

1,0 , jℓ1!kq.

3.13.21. Finally, we make the obvious comment that although the above does give a partial

description of γ�, one hopes that there exists a more explicit one.

122



Chapter 4

Quantum groups and vertex algebras

4.1 Drinfeld Jimbo quantum groups

4.1.1. Quantisation of algebras. Given a k algebra A, one can ask what deformations it admits,

i.e. a flat algebra pA over a base augmented algebra B, whose fibre over k is A: there is a pushout

in the category of k algebras

A pA
k B

(4.1)

For instance, the algebra A � Crx, ps from classical mechanics admits a quantisation

pA � Crrhssxx, py where rx, ps � ℏ

over the base B � Crrℏss. There is a large body of work about quantising (functions on) spaces

with Poisson structure, for instance see [Kon]. However, we will be interested in deforming non-

commutative algebras. For more on deformation theory, see [Ge, Ha].

4.1.2. One of the most interesting algebras to consider is the universal enveloping algebra Upgq

of a finite dimensional Lie algebra. This may be thought of as a sort of noncommutative space of

functions on the Poisson space g�, so one might expect it to have interesting deformation theoretic

properties. However,

Proposition 4.1.3 (e.g. [BMP]). Every deformation of the algebra Upgq over krrℏss is equivalent

to the trivial deformation.
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Proof sketch. Let pA be any such deformation. As a vector space, pA � Upgqrrℏss, with the multi-

plication map given by

m pAp , q � mUpgqp , q � ℏµ1p , q � ℏ2µ2p , q � � � �

where µn : Upgqb2 Ñ Upgq. However, one can show that the first nonzero µn defines an element

of HH2pUpgq, Upgqq. One can show that this vanishes, hence so too do all of the µn.

So at first glance it might seem like the deformation theory of Upgq is uninteresting. The funda-

mental insight of Drinfeld [Dr] was that to properly study the deformations of Upgq, one needs to

remember its coalgebra structure.

4.1.4. By a deformation of an algebra A with extra structure (bialgebra, Hopf algebra,. . .) over

a base augmented algebra B, we mean an algebra pA, flat over B, with the same structure and

a map A Ñ pA preserving that structure, fitting into a pushout of algebras (4.1). A deformation

over krrℏss is called a one parameter deformation.

4.1.5. Drinfeld Jimbo quantum groups. The universal enveloping algebra of any Lie algebra

Upgq carries a cocommutative coalgebra structure, given by

∆x � 1b x � xb 1

which makes Upgq into Hopf algebra with antipode S � p�1qdeg given by the degree function on

Upgq.

Drinfeld discovered that

Proposition 4.1.6. [Dr, Ex. 6.2] Let g be any simple Kac Moody Lie algebra (see Appendix B)

over C, e.g. a finite dimensional semisimple Lie algebra. There is a nontrivial one parameter

deformation Uℏpgq of the Hopf algebra Upgq, such that

1) It admits an involution θ which is an (co)algebra (anti)automorphism, such that θ mod ℏ
is the Cartan involution.

2) The is a cocommutative Hopf subalgebra C (here C � Uℏptq) stable under θ such that the

map C{ℏÑ Upgq is injective with image Uptq.

Moreover, any other such one parameter deformation is isomorphic to Uℏpgq as algebras over

Crrℏss{ℏ2.
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We will now give an explicit description of this deformation.

Definition 4.1.7. Let g be a simple Kac Moody Lie algebra over C. The Drinfeld Jimbo quantum

group Uℏpgq is the Hopf algebra over Crrℏss defined as follows. It is generated as a topological

algebra by tx�i , hi, x
�
i u where i varies over the simple roots of g, with algebra relations

rhi, hjs � 0 rhi, x
�
j s � �Aijx

�
j (4.2)

rx�i , x
�
j s � δi,j

qhii � q�hii

qi � q�1
i

(4.3)

and the quantum Serre relations, labelled by pairs of different simple roots i � j:

1�Aij¸
k�0

p�1qk
�

1� Aij
k



qi

px	i q
kx�j px

�
j q

1�Aij�k � 0, (4.4)

where A is the Cartan matrix of g, qi � exppdiℏq for di P N the exponents,1 and
� �

q
are the

quantum binomial coefficients. Its coproduct is defined by

∆hi � 1b hi � hi b 1 (4.5)

∆x�i � 1b x�i � x�i b qi ∆x�i � q�1
i b x�i � x�i b 1 (4.6)

its counit by εphiq � εpx�i q � 0, and its antipode by

Sphiq � �hi Spx�i q � �q	hix�i . (4.7)

One can check by hand that this defines a Hopf algebra structure on Uℏpgq.

4.1.8. Drinfeld double. We now explain in a more conceptual way why Uℏpgq is a quasitriangular

Hopf algebra, and where its definition 4.1.7 came from.

4.1.9. Recall that the opposite of a coalgebra A with extra structure (bialgebra, Hopf algebra,. . .)

is the same vector space Aop with the opposite coproduct ∆op � σ∆, and the other structure

unchanged.

1These are defined as the unique set of coprime positive integers such that the matrix pdiAijq is symmetric, see

[CP, § A.1]. In the ADE cases we will be considering, all di � 1.
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4.1.10. Any Hopf algebra A is the “positive part” of a larger Hopf algebra DpAq called its Drinfeld

double:

Proposition 4.1.11 ([Dr]). Let A be a Hopf algebra. There is a unique quasitriangular Hopf

algebra structure on

DpAq � Ab A_,op

such that the natural inclusions of A and A_,op are Hopf algebra maps, with R matrix the image

of the canonical element under the embedding Ab pA_qop ãÑ DpAq bDpAq.

Also see [Maj, EGNO]. The Drinfeld double can be viewed as taking the E3 centre, see [Lur2].

4.1.12. To apply this to give another construction of Drinfeld Jimbo quantum groups, pick com-

plementary Borel subalgebras b� � g and endow the algebra Uℏpb�q with a cocommutative Hopf

algebra structure

∆hi � 1b hi � hi b 1 ∆x�i � 1b x�i � x�i b 1. (4.8)

4.1.13. To relate its Drinfeld double to quantum groups, we then consider the Drinfeld pairing

(see [ES, §12.3])

x , y : Uℏpb�qpbUℏpb�qop Ñ Cppℏqq.

This is perfect pairing of bialgebras, meaning that the induced maps

Uℏpb�q Ñ Uℏpb�q_,op Uℏpb�qop Ñ Uℏpb�q_ (4.9)

are algebra isomorphisms. The Drinfeld pairing is defined by its values on the generators 1, hi, x
�
i ,

which are all zero except

x1, 1y � 1 xhi, hjy �
1

ℏ
κphi, hjq xx�i , x

�
j y �

δi,j

qi � q�1
i

. (4.10)

where κ : tb tÑ C is the Killing form.

4.1.14. Because the Drinfeld pairing is perfect, the Drinfeld double is identified with Uℏpb�qpbUℏpb�q.

We recover the Drinfeld Jimbo quantum groups after quotienting by the diagonal copy of Uℏptq

0 Ñ Uℏptq Ñ DpUℏpb�qq Ñ Uℏpgq Ñ 0.

Because these are maps of Hopf algebras, the R matrix of Uℏpgq can be recovered by taking the

image of the R matrix of the Drinfeld double. Letting aα be a basis of Uℏpn�q and aα the dual

basis of Uℏpn�q with respect to the Drinfeld pairing, it follows that the R matrix is

R � eℏ
°
hibhi

¸
aα b aα,
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see [ES, §12.13]. For instance, when g � sl2,

R � q
1
2
hbh ¸

n¥0

q
npn�1q

2
pq � q�1qn

rnsq!
en b fn.

4.1.15. Rational and integral forms. A rational form of the Drinfeld Jimbo quantum group

is a Qpqq algebra whose base change to Crrℏss is Uℏpgq.

Definition 4.1.16. [CP, §9.1] Let g be a simple Kac Moody Lie algebra over C. The (adjoint)

rational form Uqpgq of the Drinfeld Jimbo quantum group is the Hopf algebra over Qpqq generated

as a Qpqq-subalgebra of Uℏpgq by tx�i , ki, x
�
i u where ki � qhii and i varies over simple roots of g.

An integral form of the Drinfeld Jimbo quantum group is a Zrq, q�1s algebra whose base change

to Qpqq is Uqpgq, see [CP, §9.2]. Thus, given any integral form we may specialise it to any nonzero

value of q. There are three main integral forms, whose specialisations agree unless q is a root of

unity. As a Zrq, q�1s subalgebra of the rational form, they are

1. The Lusztig quantum group ULuspgq introduced by Lusztig [Lus, Thm. 6.7], is generated by

the divided powers x�i {rnsqi ! and�
ki; 0

n



�

n¹
m�1

kiq
1�m
i � k�1

i qm�1
i

qi � q�1
i

for n ¥ 0.

2. The Kac-DeConcini quantum group UKC
q pgq introduced by Kac and De Concini [DK], is

generated by x�i , ki and
ki�k�1

i

qi�q�1
i

.

3. The small quantum group uqpgq is defined as the image of the map UKC
q pgq Ñ ULuspgq, which

is not injective.

4.1.17. An interesting question following this chapter is the relation between integral forms of

quantum groups and integral (e.g. integral singular or ℓ-adic) cohomology of moduli stacks.

4.1.18. Kazhdan Lusztig equivalence. We very briefly note that quantum groups are inti-

mately related with the other material in this thesis, i.e. two dimensional conformal field theories.

On the physics side this comes from the work of Reshetikhin and Turaev [RT] relating 3d TQFTs

and 2d CFTs. The main mathematical incarnation is the Kazhdan Lusztig equivalence [KL] be-

tween something close to Uqpgq-Mod where g is a simple finite dimensional complex Lie algebra and

q is a root of unity, and the category ppg-Modq
GpOq
k of integrable modules over pg at a certain level.

See work of Chen and Fu [CF] for a conceptual explanation involving factorisation machinery.
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4.2 Quantum affine algebras

There are two different realisations of the universal enveloping algebra Uppgq of an affine Lie algebra,

which are best understood in terms of the double loop space, or the associated toroidal algebra

ˆ̂g. Both notions admit q deformations, which are called quantum affine and quantum toroidal

algebras.

4.2.1. Let g be a finite dimensional Lie algebra of rank r, with simple roots α1, ..., αr. We can

form the affine Lie algebra pg, but there are two different ways of realising it:

1. View pg as a central extension of the loop algebra of g. Thus Uppgq is generated by

x�α,n, hα,n, x
�
α,n, α � α1, ..., αr, n P Z,

subject to the relations

rhαi
pzq, x�αj

pwqs � Aijx
�
αj
pzqδpz � wq, rhαi

pzq, hαj
pwqs � 0,

rx�αi
pzq, x�αj

pwqs � δi,jhαi
pzqδpz � wq � κpαi, αjqBzδpz � wq,

and the power series analogues of the Serre relations, where for an element a P g we have set

apzq �
¸
nPZ

anz
�n�1.

2. View pg as a Kac Moody Lie algebra in its own right, so that Uppgq is generated by r�1 many

sl2 triples of Chevalley generators

x�α , hα, x
�
α , α � α0, α1, ..., αr,

satisfying the relations set out by the affine Cartan matrix pA,

rhαi
, x�αj

s � pAijx�αj
, rhαi

, hαj
s � 0,

rx�αi
, x�αj

s � δi,jhαi
,

and the Serre relations, where we emphasise that here i, j vary among 0, 1, ..., r.

4.2.2. Toroidal algebras. Both of these realisations naturally live inside the toroidal (Lie) al-

gebra ˆ̂g, see e.g. [MRY].
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4.2.3. Let g be a finite dimensional simple Lie algebra with its normalised invariant form κ and

A any commutative algebra, over C. Then Kassel [Kas] showed that

u � Ab g ` Ω1
A{dΩ0

A

is the universal central extension of the Lie algebra Abg which is perfect (Lie bracket is surjective).

The Ω1
A{dΩ0

A is central and the rest of the Lie bracket is given by

rab x, bb ys � abb rx, ys � pa � dbqκpx, yq.

4.2.4. In particular, if we apply this to the algebra of functions on the n torus

A � Crt�1
1 , . . . , t�1

n s

then the universal central extension we get is denoted u � grns, or for small values of n, g,pg, ˆ̂g, . . . .

It should be thought of as (a central extension of) the Lie algebra to the higher loop space

MapsppC�qn, Gq.

We will call gr2s � ˆ̂g the toroidal Lie algebra.

4.2.5. A map of commutative algebras A1 Ñ A2 induces a map on the associated central extensions

u1 Ñ u2. In particular, the two different maps

Crt�1s Ñ Crt�1
1 , t�1

2 s t ÞÑ ti

induces two different maps pg ãÑ ˆ̂g

which are exchanged by the involution on ˆ̂g induced by swapping t1 and t2. The point is then that

these correspond to the two realisations of pg. Indeed, the algebra ˆ̂g is generated by

x�α,n, hα,n, x
�
α,n, α � α0, α1, ..., αr, n P Z

with relations similar to the above (see [MRY, §3]). Ignoring α0, or ignoring all nonzero n, gives

the two copies of pg inside ˆ̂g, whose intersection in g.

4.2.6. Quantum analogues. The whole above story can be q-deformed. There are two subalge-

bras whose intersection is the Drinfeld Jimbo quantum group

Uqpgq Uqppgq
Uqppgq Uqpˆ̂gq

(4.11)

See [FJW2, GKV, He].
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4.2.7. We will instead describe the formal case, where we have an intersection of topological

algebras over Crrℏss

Uℏpgq Uℏppgq
Uℏppgq Uℏpˆ̂gq

which contains (4.11). Let g be a finite dimensional complex Lie algebra. The quantum toroidal

algebra Uℏpˆ̂gq is the topological algebra over Crrℏss generated by

c�1, hi,n, x
�
i,n i � 0, 1, ..., r, n P Z,

with c�1 central, subject to

rhi,n, hj,ms � δn,�m
1

n
rnAijsqi

c2n � c�2n

qj � q�1
j

rhi,0, x
�
j,ms � �Aijx

�
j,m

rhi,n, x
�
j,ms �

1

n
rnAijsqic

	|n|x�j,n�m

x�i,n�1x
�
j,m � q

�Aij

i x�j,mx
�
i,n�1 � q�Aijx�i,nx

�
j,m�1 � x�j,m�1x

�
i,n

rx�i,n, x
�
j,ms � δi,j

cpn�mqϕ�i,n�m � c�pn�mqϕ�i,n�m
qi � q�1

i

along with the quantum Serre relations¸
πPΣm

m̧

k�0

p�1qk
�
m

k



qi

x�i,rπpiq � � � x
�
k,rπpkq

x	j,mx
�
k,rπpk�1q

� � � x�m,rπpmq

where m � 1� Aij and r1, ..., rm is any sequence of integers. Here,

ϕ�i pzq �
¸
k¥0

ϕ�i,�kz
�k � exp

�
ℏhi � pqi � q�1

i q
¸
ℓ¥0

hi,�ℓz�ℓ
�
.

As before, qi � exppdiℏq. In the notation of [CP], we have replaced c by 2c. See also [He] for a

discussion of the rational form.

4.3 Moduli stack of derived quiver representations

4.3.1. Recall from section 3.12 that for any finite quiver Q, the moduli stack of finite dimensional

representations of Q can be written as a total space

M♡
Q �

º
dPN|Q|

±
e:pÑqHompγ

♡,bdp
p , γ

♡,bdq
q qapq ↠

±
qBGLdq (4.12)
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where γ♡q is the tautological rank dq vector bundle over BGLdq , which we have identified with its

pullback along
±

q BGLdq Ñ BGLdq . Here apq is the number of edges e : pÑ q in Q.

4.3.2. We now turn to what should be the moduli stack of the derived category DbpRepQq of

quiver representations. To begin with, attached to each element of the category is a virtual

multidimension vector d P Z|Q|. To form the moduli stack, the correct analogue of BGLdq is

Perfdq , the higher stack parametrising perfect complexes, see [To]. It carries a universal perfect

complex γdq of rank dq, and so we define the moduli stack of objects in the derived category

DbpRepQq to be the total space

MQ �
º
dPZ|Q|

±
e:pÑqHompγ

bdp
p , γ

bdq
q qapq ↠

±
qPerfdq . (4.13)

4.3.3. One can show that for each n P Z the cohomology2

H
r
pPerfnq � krc1, c2, . . . s

is generated by the chern classes ci � cipγq of the tautological Perfect complex γ on the higher

Artin stack Perfn, see e.g. [To]. Moreover, because the fibres of the map (4.13) are contractible,

we have that

H
r
pMQq �

à
dPZ|Q|

bqP|Q|krc1,q, c2,q, . . . s,

is freely generated by chern classes of pullbacks of tautological perfect complexes on
±

qPerfdq .

4.3.4. Note that these constructions are functorial in the quiver: if Q Ñ Q1 is a map of quivers,

we can restrict (derived) representations of Q1 to Q and so getting maps of moduli stacks

M♡
Q1 Ñ M♡

Q MQ1 Ñ MQ.

The maps (4.12) and (4.13) come from taking the inclusion |Q| Ñ Q of the quiver with the same

vertices as Q and no edges.

4.3.5. Maps into MQ classify a perfect complex for each vertex of Q, and a map between the

associated perfect complexes for each edge of Q. This is a perfect complex analogue of Q rep-

resentation bundle. Thus MQ carries tautological perfect complexes, also denoted γq, and maps

between them φp,q : γp Ñ γq for each edge.

2Remember that cohomology H
r
p�q is defined for any higher Artin stack, see section 2.7.
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4.3.6. Vertex algebra structure. Both the spaces M♡
Q and MQ carry the structures in section

2.6, so making their homologies into vertex algebras. We spell this out for MQ. The point

0 : pt Ñ MQ

is given by the zero perfect complex, i.e. defined by the pullbacks of all tautological perfect

complexes being zero. The commutative monoid structure

` : MQ �MQ Ñ MQ

is defined by `�γq � γq ` γq and `�φp,q � φp,q ` φp,q. The BGm action

act : BGm �MQ ÑMQ

is defined by act�γq � γ b γq and act�φp,q � idbφp,q, where γ is the tautological line bundle over

BGm. Thus the tautological perfect complexes on MQ all have weight one with respect to the

BGm action. The perfect complex

θ P PerfpMQ �MQq

is defined as in section 3.8.12 as the symmetrisation θ � θ ` σ�θ
_

of the Ext complex θ, which is

a cone

θ Ñ
±

qHompγq,1, γq,2q Ñ
±

e:pÑqHompγp,1, γq,2q
�1
Ñ

of the map sending pfqqq ÞÑ
�
ργq ,qfp � fqρV,e

�
e:pÑq

. Here the subscript i refers to pullback with

respect to the ith projection MQ �MQ ↠ MQ. In particular, as a K theory class

rθs �
à
p,qP|Q|

pδp,q � ap,qqrγ
_
p,1 b γq,2s

as an element of KpMQ �MQq, as well as

rθs �
à
p,qP|Q|

p2δp,q � ap,q � aq,pqrγ
_
p,1 b γq,2s.

4.3.7. The connected components of MQ are labelled by the lattice ∆̌ � Z|Q|, and the symmetrised

Euler form defines on it a bilinear form

κ : ∆̌� ∆̌ Ñ C κpα, βq � rkpθ|Mα�Mβ
q.

When Q is a Dynkin quiver these are the coroot lattice and normalised Killing form, and its values

on simple roots give the Cartan matrix: κpαi, αjq � Aij. Finally, as noted in [FK] there is a unique

two cocycle coming from the central extension

0 Ñ t�1u Ñ ř∆ Ñ ∆̌ Ñ 0
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such that the commutator of α, β P ∆̌ is

αβα�1β�1 � p�1qκpα,βq.

Note that this defines an orientation as in section 2.6.20 because κpα, αq is even for all α P ∆̌.

Thus, we fix the choice of this orientation for the rest of the chapter.

Proposition 4.3.8. Joyce’s vertex algebra structure on H rpMQq attached to the above data is the

lattice vertex algebra attached to the lattice p∆̌, κq.

Proof. Arguing just as in section 2.6.25 we can compute the vertex algebra structure on the

homology of the zero connected component to be the vertex algebra

H rpMQ,0q � V1pptq t � ∆̌bZ C.

The same computation shows that the pt action on H rpMQ,λq gives it the structure of a level one

weight λ representation of pt. In the rank one case this follows because in the notation of section

2.6.25, Y pch_1 , zq1MQ,n
� zxλ,λych1pγ|MQ,n

q_ � � � � , and the higher rank cases follow similarly. As

discussed in section 2.3.10 uniquely determines H rpMQq to be the lattice vertex algebra attached

to p∆̌, κq.

4.4 Free field realisations

4.4.1. One useful way to work with (vertex) algebras is using generators and relations, realising

them as a quotient of something simpler. Free field realisations are in a sense dual to this: to

work with a (vertex) algebra, realise it as a subalgebra of something simpler. This simpler vertex

algebra is often a lattice vertex algebra, which are sometimes referred to in the physics literature

as free fields.

4.4.2. The prototypical “geometric” example of free field realisations is when one has a sheaf of

algebras A over X, then the restriction to an open

ApXq Ñ ApUq

is often often injective, and if the geometry of U much simpler than X then ApUq itself tends to

also be simpler.
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For instance, let G be a complex algebraic group with Borel subgroup B, and g its Lie algebra.

Then Upgq acts as differential operators on the flag variety G{B, and Beilinson and Bernstein

localisation [BB] says that restricting to the big cell U � An gives an injection

Upgq0 � DpG{Bq ãÑ DpAnq � Cxx1, ..., xn, Bx1 , ..., Bxny

from (a central quotient of) the universal envloping algebra, realised as differential operators on

the flag variety, into the Weyl algebra.

4.4.3. This can be generalised to the Wakimoto free field realisation due to Wakimoto, B. Feigin

and E. Frenkel [Wa, FF]. Replacing differential operators with chiral differential operators, they

obtain at critical level maps of vertex algebras

Vκcritpgq ↠ DchpG{Bq ãÑ DchpUq � DchpA
nq

and the kernel of the first map is also given by a central character, see [AMa], giving as image

Lκcritpgq. They also deform this map to non-critical level.

4.4.4. FKS isomorphism. The Frenkel-Kac-Segal [FK, Se1] free field realisations of affine vertex

algebras we will be considering in this section are different. Firstly, they are defined at level one

rather than at critical level, second, they are only defined for ADE type Lie algebras, and third, the

free field vertex algebra in question is a lattice vertex algebra rather than the Wakimoto module.

The simplest version gives an isomorphism

L1psl2q
�
Ñ V?2Z

expressing the lattice vertex algebra V?2Z as the simple affine vertex algebra L1psl2q.

4.4.5. Let g denote a finite dimensional Lie algebra of ADE type, ∆̌ its root lattice, h � g be

a Cartan subalgebra and tαiu � ∆̌ a basis of simple roots. Let κ be the normalised invariant

bilinear form on g, giving the basis thiu � h of the coroot lattice ∆ dual to the simple roots.

We can make the above choices so that this forms a part of a Chevalley basis tx�i , hiu � g of the

algebra Upgq, which we assume from now on.

4.4.6. Denote by V∆̌,κ the resulting lattice vertex algebra. As a pt module,

V∆̌,κ � Vt,κ bCr∆̌s

where the pt action on the second component is trivial. There are three families of endomorphisms

acting on this vector space:
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� hn for h P t and n P Z, defined by the pt action.

� eα for α P ∆̌, defined by the group algebra structure on Cr∆̌s.

� Bα for for α P ∆̌, defined on Cr∆̌s by Bαe
β � κpα, βqeβ and extended trivially to V∆̌,κ.

4.4.7. The main result of [FJW1] was an explicit description of this vertex algebra.

Theorem 4.4.8. [FJW1, 7.3] There is a surjection of vertex algebras

π : V1pgq Ñ V∆̌,κ.

inducing an isomorphism L1pgq
�
Ñ V∆̌,κ.

Proof. For any element of α P ∆̌ � t, we get an endomorphism valued power series by

Y �
α pzq :� ε̌α,� exp

�¸
n¥1

1

n
α�nzn

�
exp

�
�
¸
n¥1

1

n
αnz

�n
�
eαzBα . (4.14)

To define the map π, it is enough to dictate where the generating fields attached to the Chevalley

basis are sent to:

x�i pzq ÞÑ Y �
αi
pzq, hipzq ÞÑ hipzq,

where hpzq �
°
nPZ hnz

�n�1. To show that this is a map of vertex algebras, it is enough to show

that these fields also generate V∆̌,κ and that π preserves the operator product expansions: this is

done in [FJW1] where they compute the operator product expansions of these fields explicitly. It

is then clear that π is surjective, and comparing characters (e.g. using the Weyl-Kac character

formula) gives the isomorphism to L1pgq.

Thus the action of Upptq on Vp∆̌,κq extends to an action of Uppgq.
4.4.9. Note that in [FJW1] the signs ε̌ are incorporated into their definition [FJW1, (7.1)] of the

toroidal Lie algebra ˆ̂g, whereas we incorporate them into the fields (4.14). Our above definition of

ˆ̂g has grt�1
1 , t�1

2 s as a quotient, which would not be the case for the definition in [FJW1].

4.4.10. Geometric interpretation. The geometric origin of the FKS isomorphism was discov-

ered by Zhu in [X.Zh]. Let G be a simply connected algebraic group of ADE type and T a maximal

torus. This gives a closed embedding on the associated Beilinson Drinfeld Grassmannians

GrT,X GrG,X

RanX

i

pT pG
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where as usual X is a smooth curve over a field of characteristic zero. By [X.Zh, 3.3.1] their

determinant bundles are related by

i�LG � LT , i�LT � LG b OGrT,X
.

The FKS isomorphism will then be induced by the unit of the adjunction

LG Ñ i�i�LG � LG b OGrT,X
. (4.15)

Indeed, proceeding similarly to in section 2.5, it is noted in [X.Zh] that the simple affine vertex

algebra attached of level k attached to G and the lattice vertex algebra attached to ∆̌ is

AG � ppG�Lbk
G q_, A∆̌ � ppT�LT q

_ � ppG�pLG b OGrT,X
qq_.

Thus the unit adjunction (4.15) gives a map of factorisation algebras

A∆̌ Ñ AG, (4.16)

and so a map of vertex algebras V∆̌,κ Ñ L1pgq. Notice that this is in the other direction that

might be expected. This map is the FKS isomorphism:

Theorem 4.4.11. [X.Zh, 3.3.2] The map (4.16) is an isomorphism of factorisation algebras.

4.5 Moduli interpretation

In this section we begin by giving a moduli space interpretation of the FKS isomorphism (Theorem

4.4.8), as a warm up to the q-deformed case in what follows. Let Q be an ADE quiver attached

to Lie algebra g, with Cartan matrix Aij. Reserve the letter d for a virtual multidimension vector

d P Z|Q|.

4.5.1. As an algebra under cup product, the cohomology of Md � MQ,d is freely generated by

chern characters

H
r
pMdq � krtchℓpγi|Md

qus

where ℓ ranges over positive integers and i the simple roots.

4.5.2. Turning to homology, consider the dual classes σdℓ,i P H rpMdq � H
r
pMdq

_ defined by

sending chℓpγi|Md
q ÞÑ 1 and all other monomials in chern characters to zero. The direct sum map

` : M2 ÑM includes an algebra structure on homology H rpMq, which we denote by �.
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Lemma 4.5.3. The product
±

ℓ,ipσ
0
ℓ,iq

nℓ,i sends±
chℓpγi|M0q

nℓ,i ÞÑ
±
nℓ,i!

and kills all other monomials in chern characters.

Proof. The product of σ0
ℓ1,i1

, ..., σ0
ℓn,in

is the element of H
r
pM0q

_ given by

H
r
pM0q

`�
Ñ H

r
pM0q

bn bσ0
ℓk,ikÑ kbn � k.

Thus the lemma follows by additivity of chern characters under direct sum.

Corollary 4.5.4. The subalgebra H rpM0q � H rpMq is freely generated by the σ0
ℓ,i, where ℓ ranges

over positive integers and i the simple roots.

4.5.5. The cup product and direct sum map combine to give a bialgebra structure on H
r
pMq, as

in section 2.6. Together with the antipode given by taking monomial degree, we get that H
r
pMq

is a Hopf algebra, and if we write pt� ãÑ H
r
pMq

for the vector subspace generated by chern characters chℓpγiq, the above results then imply

Proposition 4.5.6. H
r
pM0q � Uppt�q as graded Hopf algebras.

Dually, writing pt� ãÑ H rpM0q

for the vector subspace generated by the dual chern characters σ0
ℓ,i, we have that that H rpM0q �

Uppt�q as Hopf algebras. It follows from this, or from an explicit computation, that

Corollary 4.5.7. The subspace pt� � H
r
pM0q (likewise pt� � H rpM0q) consists of primitive ele-

ments.

4.5.8. Heisenberg algebra action. As for any Hopf algebra, any element ρ P H rpM0q of its dual

defines an endomorphism

ρ_ : H
r
pM0q

`�
Ñ H

r
pM0q b H

r
pM0q

ρbid
Ñ k b H

r
pM0q � H

r
pM0q.

This makes H
r
pM0q, actually all of H

r
pMq, into a module for H rpM0q. Since the Hopf algebra is

cocommutative it does not matter whether we acted by ρ on the right or left. Moreover, from

Lemma 2.6.10, if ρ P H rpM0q is a primitive element ρ_ is a derivation.
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4.5.9. Similarly, ρ defines an endomorphism of any Hopf module, for instance H
r
pMq, and we

also denote this by ρ_. If the Hopf module is a Hopf algebra as in the case H
r
pMq, ρ_ is again a

derivation.

4.5.10. We can use this to get an action of the Heisenberg algebra on H
r
pM0q, identifying it with

the Heisenberg Lie algebra by

Crt, t�1s � Crts ` t�1Crt�1s � pt� `pt� � pt.
Note that pt� are abelian Lie subalgebras of pt. Now,

Proposition 4.5.11. H
r
pMq is a representation of the Heisenberg algebra pt of level one, under

the identifications

hi,�n�1 �
1

n!
σ0
n�1,i

_
, hi,n �

¸
j

Aijn!chnpγjq (4.17)

for n ¥ 0.

Proof. We need to show that the generators (4.17) satisfy the commutation relations of the Heisen-

berg algebra

rhi,n, hj,ms � nδn,�mAijid

where n,m P Z. This is implied by the Weyl relations rσ0,_
k,i , chℓpγjqs � δi,jδk,ℓid. The Weyl

relations themselves follow because

σ0
k,ipchℓpγjqq � δi,jδk,ℓ

and because as the σ0
k,i are primitive, they define derivations on H

r
pMq.

Moreover, H
r
pMdq � Vλ is the Verma module of weight λ � 2

°
diαi.

4.5.12. We make a note of what structures the BGm action gives rise to. Begin by noting that

as a Hopf algebra H rpBGmq � UpCτq is the symmetric algebra on one generator. Moreover, the

Hopf algebra H
r
pMq is a Hopf module for H rpBGmq, so in particular τ_ : H

r
pMq Ñ H

r
pMq is a

derivation. Moreover,

Lemma 4.5.13. τ_chℓpγiq � chℓ�1pγiq and τσ0
k,i � σ0

ℓ�1,i when ℓ ¡ 0.

Proof. The definition of τ_ is

H
r
pMq

act�
Ñ H

r
pBGmq b H

r
pMq

rc1pγ1qsbid
Ñ k b H

r
pMq � H

r
pMq
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where γ1 is the tautological line bundle on BGm and rc1pγ1qs P H
r
pBGmq

_ takes the c1pγ1q

coefficient of a cohomology class. Thus the first claim holds since act�γi � γ1 b γi, which then

implies the second by duality.

4.5.14. Free field realisation. There is an isomorphism

t
�
Ñ H2pM0q

sending hi to σ0
1,i.

Lemma 4.5.15. For any β P H rpMq

chkpθq � pσ
0
1,i b βq �

¸
j

Aij � p10 b chk�1pγjqβq

whenever k ¡ 0.

Proof. Recall that as a K theory class on M2,

rθs �
¸
i,j

AijrHompγi, γjqs.

The result now follows from additivity of chern characters under direct sums, after noting that

ch0pγi|M0q � 0 implies

chkpHompγi|M0 , γjqqσ
0
1,i b β � chkpγ

_
i |M0 b γjqσ

0
1,i b β � 10 b chk�1pγjqβ.

We can now compute the field in Joyce’s vertex algebra structure on H rpMq

Ypσ0
1,i, zqβ � `�

¸
k¥0

zktk

k!
exp

�
�
¸
k¥1

p�zq�k

k
k!chkθ

�
σ0
1,i b β

� `�
¸
k¥0

zktk

k!

�
σ0
1,i b β � 10 b

� ¸
k¥1,j

Aij
p�zq�k

k
k!chk�1pγj|Meq

�
β

�

�
¸
k¥0

zkσ0
k�1,i

k!
� β �

¸
k¥1,j

Aij
p�zq�k

k
k!chk�1pγj|Meqβ.

4.5.16. Next, writing δi P ZQ0 for the dimension vector pδiqj :� δi,j, we identify

H0pM�δiq � g�αi
ãÑ g

under which the Chevalley generators x�i P g�αi
are identified with 1�i, the homology class dual

to the identity cohomology class.

139



4.5.17. There is an isomorphism

eα :� 1α� : H rpMdq
�
Ñ H rpMd�αq

and its dual map on cohomology, which is also denoted eα.

Lemma 4.5.18. For any finite set of vertices in and positive integers ℓn ¡ 0,

eα
¹

σdnℓn,in �
¹

σdn�αℓn,in
.

Proof. By additivity of chern characters under direct sum, the dual map on cohomology acts as

eα
±

chℓnpγin |Mdn�α
q �

±
chℓnpγin |Mdn

q, from which the lemma follows.

It follows from this that

reα, chℓpγiqs �

$'&'%xδi, αy if ℓ � 0

0 if ℓ ¡ 0

where x�,�y is the bilinear form on Z|Q| with orthonormal basis δi. Moreover, by the associativity

of `, peαAq �B � eαpA �Bq � A � peαBq. Finally, we have

Proposition 4.5.19. As H rpM0q valued power series,

exp

�¸
k¡0

�σ0
k,i

k!
zk

�
� e	αi exp pztq e�αi10.

Proof. We first expand the left hand side. Its znth coefficient is the sum of

1

m1! � � �mr!

�
σ0
k1,i

k1!


m1

� � �

�
σ0
kr,i

kr!


mr

summed over all finite sets of positive integers mj, and pairwise Fdistinct positive integers kj with°
mjkj � n. Thus combining this with lemma 4.5.3, we have

exp

�¸
k¡0

σ0
k,i

k!
zk

�±
chkjpγi|M0q

mj �
�

1
k1!

	m1

� � �
�

1
kr!

	mr

zk1m1�����krmr .

For the right side, we prepare by noticing that e�αt_eα is a derivation of H
r
pMq sending

e�αt_eαchℓpγi|Md
q �

$'&'%ch0pγi|Md�α
q if ℓ � 0

chℓ�1pγi|Md
q if ℓ ¡ 0

Thus writing n �
°
mjkj, this observation allows us to compute

e�αi exp pztq eαi10 � chkjpγi|M0q
mj � 10 � e

�αi exp pzt_q e�αichkjpγi|M0q
mj

� 10 �
1

n!
pe�αizt_e�αiqnchkjpγi|M0q

mj ;
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since ch0pγi|Mδi
q � 1, it follows that this is also equal to

�
1
k1!

	m1

� � �
�

1
kr!

	mr

zk1m1�����krmr .

We can now compute the field of 1�i as

�
ε̌�αi,bz

�κpαi,bq��1
� Yp1�i, zqβ � `�

¸
k¥0

zktk

k!
exp

�¸
k¥1

z�k

k
k!chkθ

�
p1�i b βq

� 1�i � exp

� ¸
k¥1,j

Aij
z�k

k
k!chkγj

�
β

� e�αie	αiezte�αi10 � exp

� ¸
k¥1,j

Aij
z�k

k
k!chkγj

�
β

� exp
�
e	αizte�αi

�
10 � exp

� ¸
k¥1,j

Aij
z�k

k
k!chkγj

�
e�αiβ

� exp

�¸
k¡0

σ0
i,k

k!
zk

�
exp

� ¸
k¡1,j

Aij
z�k

k
k!chkγj

�
e�αiβ

where we have used the fact that peαAq �B � A � peαBq. Here ε̌ P t�1u are the orientations, as in

section 2.6.20, and β P H rpMbq.

4.5.20. We summarise what we have shown in a Theorem. Take the identification V∆̌,κ
�
Ñ H rpMQq

sending

|αy ÞÑ 1α, αi,�1|0y ÞÑ σ0
1,i (4.18)

where i varies over the simple roots of g. As before,

Theorem 4.5.21. Compose the identification (4.18) with the FKS isomorphism. The resulting

isomorphism of vertex algebras L1pgq
�
Ñ H rpMQq has an explicit description on the level of fields

as

x�i pzq ÞÑ ε̌�αi,� exp

�¸
k¡0

σ0
i,k

k!
zk

�
exp

� ¸
k¡1,j

Aij
z�k

k
k!chkγj

�
e�αizκp�αi,�q,

hipzq ÞÑ
¸
k¥0

zkσ0
k�1,i

k!
�

¸
k¥1,j

Aij
p�zq�k

k
k!chk�1pγjq.

4.5.22. The Cartan involution. Any automorphism of a lattice Λ induces an automorphism of

the vertex algebra VΛ. In particular, the involution �id : ∆̌ Ñ ∆̌ induces the Cartan involution τ

on V∆̌, sending

τ : Y peα, zq ÞÑ Y pe�α, zq, τ : αpzq ÞÑ �αpzq

for α P ∆̌ � t.
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4.5.23. Let g be a semisimple Lie algebra. Then the Cartan involution τ : gÑ g induces a vertex

algebra involution τ : Vkpgq Ñ Vkpgq of the affine vertex algebra, and of its simple quotient Lkpgq.

It sends

τ : x�i pzq ÞÑ x	i pzq, τ : hipzq ÞÑ �hipzq.

Then if g is of ADE type the maps in the FKS theorem 4.4.8

Vkpgq Ñ Lkpgq
�
Ñ V∆̌

are equivariant for the actions of these involutions.

4.5.24. The moduli stack interpretation of this is the following. The shift operator r1s : DbpRepQq Ñ

DbpRepQq induces a map τ : MÑM preserving the commutative monoid and BGm action struc-

tures and θ, since Ext
r
pEr1s,Fr1sq � Ext

r
pE,Fq. Note that τ is not an involution, but τ 2 is A1

homotopic to the identity, so τ induces an involution on (co)homology, see [Jo2]. Thus it induces

an involution of the vertex algebra H rpMq, and upon identifying H rpMq � V∆̌ it corresponds to

the Cartan involution.

4.6 Quantum FKS isomorphism

4.6.1. We now review the matter of q-deforming the FKS isomorphism.

The first problem we encounter is what sort of objects a “quantum FKS isomorphism” should be

a map between. One would hope that it should be a map between some notion of quantum vertex

algebras. In the first work on the subject by Frenkel, Jing and Wang in [FJW2], they essentially

only considered it as a map of Uqppgq modules given by certain power series which they called q

vertex operators.

In future work, we plan to interpret these power series as fields in a quantum vertex algebra, using

the moduli stack interpretation of the quantum FKS isomorphism which we will explore below.

4.6.2. To begin with, one deforms the Upptq module structure to a Uqpptq module structure

V∆̌,κ,q � Vt,κ,q bCr∆̌s

where Vt,κ,q is the Verma representation of Uqpptq of level one. Define the endomorphisms hn, e
α

and Bα as before in 4.4.6.
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Theorem 4.6.3. [FJW2, 8.7] There is a map of Uqppgq modules

πq : V1,qpgq Ñ V∆̌,κ,q (4.19)

inducing an isomorphism L1,qpgq
�
Ñ V∆̌,κ,q and specialising at q � 1 to the FKS map π1 � π.

Proof. For any element of α P ∆̌ � t and integer k P Z we define an endomorphism valued power

series by

Y �
α,kpzq :� ε̌α,� exp

�¸
n¥1

1

rns
α�npqpk	kq{2zqn

�
exp

�
�
¸
n¥1

1

rns
αnpq

pk�kq{2zq�n
�
eαzBα .

To define the map πq, it is enough to say where the generating fields attached to the Chevalley

basis are sent to:

πq : x�i pzq ÞÑ Y �
αi,�1pzq, πq : hi,n ÞÑ hi,n.

The proof proceeds as in the classical case, and is outlined in [FJW2].

4.6.4. To be explicit, we send

x�i pzq
πq
ÞÑ ε̌αi,� exp

�¸
n¥1

1

rns
αi,�nzn

�
exp

�
�
¸
n¥1

1

rns
αi,npq

�1zq�n
�
eαizBαi ,

x�i pzq
πq
ÞÑ ε̌�αi,� exp

�
�
¸
n¥1

1

rns
αi,�npq�1zqn

�
exp

�¸
n¥1

1

rns
αi,nz

�n
�
e�αizB�αi .

Or to be more symmetric (and removing q factors from the first exponential), we have

q�
1
2
Bαix�i pzq

πq
ÞÑ ε̌αi,� exp

�¸
n¥1

1

rns
αi,�nzn

�
exp

�
�
¸
n¥1

1

rns
αi,npq

�1zq�n
�
eαizBαiq�

1
2
Bαi , (4.20)

q�
1
2
B�αix�i pqzq

πq
ÞÑ ε̌�αi,� exp

�
�
¸
n¥1

1

rns
αi,�nzn

�
exp

�¸
n¥1

1

rns
αi,npqzq

�n
�
e�αizB�αiq�

1
2
B�αi .

(4.21)

4.6.5. Variant. We make a note that may be safely skipped. As remarked in [FJW2], note that

there is another map which works, defined by

x�i pzq
ωπq
ÞÑ Y 	

�αi,1
pzq, hi,n

ωπq
ÞÑ hi,n.

To be explicit, this sends

x�i pzq
ωπq
ÞÑ ε̌�αi,� exp

�
�
¸
n¥1

1

rns
αi,�npqzqn

�
exp

�¸
n¥1

1

rns
αi,nz

�n
�
e�αizB�αi ,

x�i pzq
ωπq
ÞÑ ε̌αi,� exp

�¸
n¥1

1

rns
αi,�nzn

�
exp

�
�
¸
n¥1

1

rns
αi,npqzq

�n
�
eαizBαi .
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Written more symmetrically,

q�
1
2
B�αix�i pq

�1zq
ωπq
ÞÑ ε̌�αi,� exp

�
�
¸
n¥1

1

rns
αi,�nzn

�
exp

�¸
n¥1

1

rns
αi,npq

�1zq�n
�
e�αizB�αiq�

1
2
B�αi ,

(4.22)

q�
1
2
Bαix�i pzq

ωπq
ÞÑ ε̌αi,� exp

�¸
n¥1

1

rns
αi,�nzn

�
exp

�
�
¸
n¥1

1

rns
αi,npqzq

�n
�
eαizBαiq�

1
2
Bαi .

(4.23)

Note that ωπq and πq are not dual by the quantum Cartan involution (see below). Rather, they

differ by the deformation of the identity ω � id b q̌, where q̌ is the endomorphism of Crq, q�1s

induced by sending qn to q�n. We will not consider this variant in the following.

4.6.6. Quantum Cartan involution. We expect the quantum Cartan involution should ex-

change

p4.20q Ø p4.21q.

This is achieved sending αi,n ÞÑ �αi,n, eαi ÞÑ e�αi and q ÞÑ q�1. Let us make this more precise.

4.6.7. For a lattice Λ we will define the quantum Cartan involution τq � τ b q̌ on the vector

space VΛ,q � VΛbC Crq, q�1s, where τ is the usual Cartan involution of section 4.5.22 and q̌ is the

involution of Crq, q�1s sending qn ÞÑ q�n. Thus it sends

τq : λpzq ÞÑ �λpzq, τq : eλpzq ÞÑ e�λpzq , τq : qn ÞÑ qn

where λ P Λ � Λ bZ C. Note that τq fixes the quantum integers rns, and does indeed swap

p4.20q, p4.21q when applied to the lattice Λ � ∆̌.

4.6.8. Let g be a finite dimensional semisimple Lie algebra. So as for the quantum FKS map of

Theorem 4.6.3 to be involution equivariant when g is of ADE type, the quantum Cartan involution

τq on the vector space Vk,qpgq we define so that it swaps the right sides of p4.20q, p4.21q if we work

in Vk,q1{2pgq. We send

τq : x�i pzq ÞÑ qBαix�i pqzq, τq : x�i pzq ÞÑ qB�αix�i pq
�1zq,

τq : hipzq ÞÑ �hipzq, τq : qn ÞÑ q�n.

Here for α a root we write Bα for the endomorphism of Vkpgq (and Vk,qpgq when extended q linearly)

which multiplies an eigenvector of rhα,0,�s by its eigenvalue. By considering a PBW basis, under
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the quantum FKS isomorphism of Theorem 4.6.3 this corresponds to Bα as in the usual notation

for lattice vertex algebras (see section 4.4.6). We expect that the above induces an involution on

Lk,qpgq. One also expects that it should define a map of q-deformed vertex algebras.

4.7 Moduli interpretation, quantum case

4.7.1. To begin with, recall that we have an isomorphism of Upptq modules

V∆̌ � H rpMq

where the Upptq module structure on the right is defined using the commutative monoid structure

on M and the cap product action of cohomology on homology.

We want to deform this to an identification of Crq, q�1s modules

V∆̌,q � H rpMqq (4.24)

restricting to isomorphisms V α
∆̌,q

� H rpMαqq for each α P ∆̌. Such an identification is equivalent

to the choice of a deformation of the Upptq action on H rpMq to a Uqpptq action on H rpMqq, such that

each H rpMαq is a level one highest weight Verma module of the appropriate weight.

4.7.2. Thus, to construct an identification (4.24) we make the following construction

Proposition 4.7.3. H
r
pMqq is a representation of the quantum Heisenberg algebra Uqpptq of level

one, under the identifications

αi,�n�1 �
rn� 1s

n� 1

1

n!
σ0
n�1,i

_
, αi,n �

rns

n

¸
j

rAijns

rns
n!chnpγjq �

¸
j

rAijnspn�1q!chnpγjq (4.25)

for n ¥ 0.

Proof. We need to show that the generators (4.25) satisfy the commutation relations of the Heisen-

berg algebra

rhi,n, hj,ms � δn,�m
rAijns

n
rnsid

where n,m P Z. As in the classical case, this is implied by the Weyl relations.

To be explicit, the induced identification (4.24) sends

eα ÞÑ 1α

and acts on the other modes as (4.25).
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4.7.4. We note again the fact that there is an identification ∆̌bZC � t, so we freely view elements

of ∆̌ like αi as elements of t.

4.7.5. Quantum Cartan involution. Having fixed an identification (4.24), what is the induced

involution on H rpMqq � H rpMq bC Crq, q�1s? It follows from equations (4.25) and that eα and

1α are interchanged that it is simply τq � τ b q̌, where τ is as in section 4.5.22 induced by

r1s : DbpRepQq Ñ DbpRepQq.

4.7.6. To summarise the last two sections: if g is of ADE type, then we get a map of Uqpptq modules

V1,qpgq ↠ V∆̌,q
�
Ñ H rpMqq

which is equivariant for the quantum Cartan involution defined on all three vector spaces.

4.8 q-deformed Joyce vertex algebra

4.8.1. In this section we are going to define a q-deformation of the Joyce vertex algebra structure

of Theorem 2.6.21. It will be defined on the vector space H rpMqq � H rpMq bC Crq, q�1s.

4.8.2. The main question is in this q deformed Joyce vertex algebra structure what should be the

fields Y p1�αi
, zq. It follows from Proposition 4.7.3 and Theorem 4.6.3 that

Proposition 4.8.3. The composite map

V1,qpgq ↠ V∆̌,q
�
Ñ H rpMqq

acts on the level of fields as

x�i pzq ÞÑ ε̌�αi,�pq
�1zqκpαi,�q exp

�¸
k¡0

σ0
i,k

k!
zk

�
exp

� ¸
k¥1,j

rAijks

rks

z�k

k
k!chkγj

�
e�αi , (4.26)

hipzq ÞÑ
¸
k¥0

zkσ0
k�1,i

k!
�

¸
k¥1,j

rAijks

rks

p�zq�k

k
k!chk�1pγjq. (4.27)

Moreover, since the quantum Cartan involution τq on H rpMqq exchanges 1α and 1�α, we require

that it interchange Y p1α, zq and Y p1�α, zq.

In particular, we should not set Y p1�αi
, zq to be x�i pzq since these are not swapped under the

quantum Cartan involution, but rather

Y p1�αi
, zq � q�

1
2
B�αix�i pq

	1{2zq (4.28)
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since it is (4.20) and (4.21) that are swapped by the quantum Cartan involution.3

4.8.4. Deformed bicharacter. If we want to make (4.28) true, we need to interpret the q�1

factors. We do so by choosing a linear functional

ψ : π0pMq � ∆̌ Ñ C

defined uniquely by ψpαiq � 1. Then we set

Ψqpθq � pq
1
2
ψ1zqrkθ exp

�¸
k¥1

p�qψ1zq�k

k
k!chkp`i,j

rAijks

rks
γ_i b γjq

�
(4.29)

where ψ1 is the locally constant function taking value ψpaq on Ma �M. Here, we have extended

the chern character Crq1{2, q�1{2s linearly to KpM �Mqq1{2 , so that the above defines an element

of H
r
pM�Mqq1{2ppz

�1qq. Its specialisation

Ψ1pθq � Ψpθq

recovers the usual bicharacter (2.19) inducing Joyce’s vertex algebra structure on H rpMq.

4.8.5. By q linearity we extend the maps on homology arising from the geometry of M (see section

2.6) to

`� : H rpMqq1{2 bH rpMqq1{2 Ñ H rpMqq1{2 , act� : H rpBGmq bH rpMqq1{2 Ñ H rpMqq1{2 .

Definition 4.8.6. In the above setting, the q-deformed Joyce vertex algebra structure on H rpMqq1{2

is the map

Y : H rpMqq1{2 b H rpMqq1{2 Ñ H rpMqq1{2ppzqq

sending

Y pα, zqβ � ε̌`�
�
ezt b id �Ψqpθqα b β

�
.

3To make the formula more symmetric we have made the variable change z ÞÑ q�1{2z.
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4.8.7. Fields. We now compare Proposition 4.7.3 to the fields in the q-deformed Joyce vertex

algebra structure. We compute

Ypσ0
1,i, zqβ � `�

¸
k¥0

zktk

k!
Ψqpθqσ

0
1,i b β

� `�
¸
k¥0

zktk

k!
exp

�¸
k¥1

p�zq�k

k
k!chkp`i,j

rAijks

rks
γ_i b γjq

�
σ0
1,i b β

� `�
¸
k¥0

zktk

k!

�
σ0
1,i b β � 10 b

� ¸
k¥1,j

rAijks

rks

p�zq�k

k
k!chk�1pγjq

�
β

�

� `�
¸
k¥0

zktk

k!

�
σ0
1,i b β � 10 b

� ¸
k¥1,j

rAijks

rks

p�zq�k

k
k!chk�1pγjq

�
β

�

�
¸
k¥0

zkσ0
k�1,i

k!
� β �

¸
k¥1,j

rAijks

rks

p�zq�k

k
k!chk�1pγjqβ.

We have used that ψp0q � 0. Under the identifications (4.25) in Proposition 4.7.3,

Y pσ0
1,i, zq �

¸
k¥0

n

rns
hi,nz

�n�1.

4.8.8. Similarly, using Lemma 4.5.19 we can compute�
ε̌�αi,bpq

�1zqκpαi,bq��1
� Y p1�i, zqβ

� `�
¸
k¥0

zktk

k!
Ψqpθqp1�i b βq

� `�
¸
k¥0

zktk

k!

�¸
k¥1

p�zq�k

k
k!chkp`i,j

rAijks

rks
γ_i b γjq

�
p1�i b βq

� ezt1�i � exp

� ¸
k¥1,j

rAijks

rks

z�k

k
k!chkγj

�
β

� e�αie	αiezte�αi10 � exp

� ¸
k¥1,j

rAijks

rks

z�k

k
k!chkγj

�
β

� exp
�
e	αizte�αi

�
10 � exp

� ¸
k¥1,j

rAijks

rks

z�k

k
k!chkγj

�
e�αiβ

� exp

�¸
k¡0

σ0
i,k

k!
zk

�
exp

� ¸
k¥1,j

rAijks

rks

z�k

k
k!chkγj

�
e�αiβ

where β P H
r
pMbq.
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4.8.9. We summarise the above in a Theorem.

Theorem 4.8.10. The quantum FKS isomorphism and the q deformed Joyce structure are com-

patible in the sense that the FKS map V1,q1{2pgq Ñ V∆̌,κ,q1{2
�
Ñ H rpMqq1{2 sends

q�
1
2
B�αix�i pq

	1{2zq ÞÑ Y p1�αi
, zq, hipzq ÞÑ Y pσ0

1,i, zq.

4.9 Axiomatics

4.9.1. In this section we ask the open question of how to interpret Definition 4.8.6 as an example

of a sort of q-deformed vertex algebra. We also recall the notion of Joyce of deformed vertex

algebra, which should be closely related into any answer that is given to this question.

4.9.2. History. Over the years there have been many attempts to find a q-analogue of vertex

algebras, e.g. due to Borcherds, Etingof and Kac, Frenkel and Reshitikin and Li [Bo2, EK, FR, Li2].

However, many of the basic questions about them have yet to be answered, for instance whether

there is a q-analogue notion of factorisation algebra. Many structures appearing in algebra like

quantum affine algebras, quantum Yangians and quantum W algebras may have attached q-vertex

algebras, which would be a powerful new (geometric) lens to understand these structures.

4.9.3. Open question. We are left with the question: is there a definition of q-deformed vertex

algebra which includes the structure on H rpMqq introduced in Definition 4.8.6? Moreover, is there

a definition of q-deformed affine vertex algebra such that the quantum FKS map in Theorem 4.6.3

comes from a map of q-deformed vertex algebras?

4.9.4. q-deformed vertex algebras. We recall what [Jo2] calls q-deformed vertex algebra. The

definition is inspired by an equivalent definition of vertex algebras, which in terms of factorisation

algebras on a curve X takes account of the sheaves living over Xn for all n ¥ 0 and not just

n � 0, 1, 2. One considers the maps

V bn Ñ V rrz1, ..., znssrpzi � zjq
�1sni,j�1

which in terms of the usual vertex algebra definition are just α1b� � �bαn ÞÑ Y pα1, z1q � � �Y pαn, znq|0y.

Thus the vertex algebra structure is encoded in maps as above, together with compatibility con-

ditions between them.
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Definition 4.9.5. [Jo2] Let q P C�. A q-deformed nonlocal vertex algebra is a vector space V

and maps

Yn � Ynpz1, ..., znq : V bn Ñ V rrz1, ..., znssrpzi � qkzjq
�1 : k P Zsni,j�1

for all n � 0, 1 . . . satisfying:

1. Identity. Y0 � idk.

2. Exponential. Y1pz1qY1pw1q � Y1pz1 � w1q and Y1p0q � idV .

3. Associativity. Given elements α1, ..., αn P V (though of as being at points z1, ..., zn) and

β1, ..., βm P V (at w1, ..., wm), we have

Ynpz1, ..., zi�1, 0, zi�1, ..., znq pα1 b � � � b αi�1 b rYmpw1, ..., wmqβ1 b � � � b βms b αi�1 b � � � b αnq

for any i is equal to

Yn�m�1pz1, ..., zi�1, w1, ..., wm, zi�1, ..., znqpα1 b � � � b αi�1 b β1 b � � � b βm b αi�1 b � � � b αnq.

If in addition the Yn are Sn invariant, it is called a q-deformed vertex algebra.

4.9.6. By the associativity axiom, the Yn for n ¥ 3 may be defined in terms of Y2, in which case

the associativity axiom becomes a set of compatibility relations between the Y1 and Y2. By the

exponential axiom, we may write Y1pzq � ezT for some operator T .

4.9.7. Definition 4.9.5 should be viewed as a working definition, to be updated as the theory is

worked out more, e.g. the notion of q-factorisation algebra discovered. It is also pleasant that it

is very close to the definitions of [EK, Li2], and admits certain vertex algebraic properties lie the

Zhu algebra.

4.9.8. How is thus structure related to the structure in Definition 4.8.6?

To begin with, let M, θ, pεq be as in 2.6.17 (or 2.6.21), so that the homology H rpMq is canonically

a (nonlocal) vertex algebra.

In addition to this, we then let Gm act on the fibres of θ. As for all actions of tori on Artin stacks,

we have

DqcpM�M� BGmq �
¹
kPZ

DqcpM�Mq,
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see [AKLPR]. In particular, any perfect complex θ on M�M� BGm splits as a direct sum

θ �
À

kPZθpkq b γbk.

Now, we can extend the chern character to a map

KpM�M� BGmq Ñ H
r
pM�Mqrq, q�1s

sending
°
kPZ Vpkq b γ

bk ÞÑ
°
kPZ chpVpkqqqk where Vpkq P KpM�Mq. The proof of the following

proposition is essentially the same as the proof of Theorems 2.6.17 or 2.6.21.

Proposition 4.9.9. Keeping the the above notation,

Yn � `�

�
ez1t b � � � b eznt

¹
i�j

ε̌i,jΨqpθi,j; zi, zjqp�q

�
is a q-deformed nonlocal vertex algebra as in Definition 4.9.5. Here θij is the pullback of θ via the

ijth projection Mn ÑM2 and for V P PerfpM�M� BGmq we set

ΨqpV; z, wq �
¸
kPZ

¸
r,s¥0

pz � q�nwq
1
2
rkVpkq�rpqnz � wq

1
2
rkVpkq�scr,spVq P H

r
pM�Mqrq, q�1s

where cr,spVq is the H2rpMq bH2spMq summand of cr�spVq P H2r�2spM�Mq. Finally, ε̌i,j is ε̌ as

in section 2.6.20 acting on the ijth component of H
r
pMqbn.

4.9.10. In particular, setting n � 2 and w � 0,

Y2pα, β; z, 0q

gives back the Definition 4.8.6, but with the ψ term absent. Thus, the problem becomes how to

alter Definition 4.9.5 so as to incorporate the ψ shift.

4.9.11. Affine q-deformed vertex algebras. Let g be a simple finite dimensional Lie algebra.

Given the (so far unmade) definition of q deformed vertex algebra, we would like to endow the

Verma module Vk,qpgq with such a structure, in a way that the FKS map 4.19 is a map of q

deformed vertex algebras.

4.9.12. Attached to each generator hi, x
�
i in a Chevalley basis, it is reasonable to guess that the

following might define a q deformed vertex algebra:

hipzq :� h�1z
�1 �

¸
nPZz0

n

rns
hi,nz

�n�1, x�i pzq :�
¸
nPZ

x�i,nz
�n�1.

For instance, we have the following Proposition (and notice that the power series
°
hi,nz

�n�1 do

not admit similar operator product expansions):
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Proposition 4.9.13. The fields hipzq have operator product expansions

hipzqhjpwq �
kid

pz � qr�1wq2
�

kid

pz � qr�3wq2
� � � � �

kid

pz � q�pr�1qwq2
mod V rrz, wss

where r � κphi, hjq and q � qi.

Proof. We compute

rhipzq, hjpwqs �
¸
n,m

nm

rnsrms
rhi,n, hj,msz

�n�1w�m�1

�
¸
n,m

n2

rns2
δn�m,0

rκphi, hjqns

n
rnscz�n�1w�m�1

�
¸
n

rκphi, hjqns

rns
cz�n�1nwn�1

� Bw
¸
n

qnκphi,hjq � q�nκphi,hjq

qn � q�n
cz�n�1wn

� Bw
¸
n

pqnpκphi,hjq�1q � qnpκphi,hjq�3q � � � � � q�npκphi,hjq�1qqcz�n�1wn

� Bwδpz � qr�1wqc� � � � � Bwδpz � q�pr�1qwqc.

Finally, note that the central element c acts as multiplication by k on Vkpgq.

Similarly, we have

Proposition 4.9.14. The fields hipzq, x
�
i pzq have operator product expansions

x�i pzqhjpwq �
x�j pwq

z � qr�1w
�

x�j pwq

z � qr�3w
� � � � �

x�j pwq

z � q�pr�1qw
mod V rrz, wss

where r � κphi, hjq and q � qi.

Proof. We compute

rhipzq, x
�
j pwqs �

¸
n,m

n

rns
rhi,n, x

�
j,msz

�n�1w�m�1

�
¸
n,m

rnAijs

rns
x�j,n�mz

�n�1w�m�1

�
¸
n,m

pqnpr�1q � qnpr�3q � � � � � q�npr�1qqx�j,n�mz
�n�1w�m�1

�
¸
n,m

pqnpr�1q � qnpr�3q � � � � � q�npr�1qqznw�n�1 �
¸
kPZ

x�j,kw
�k�1

�
�
δpz � qr�1wq � � � � � δpz � q�pr�1qwq

�
x�i pwq.
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Arguing similarly, we get

Proposition 4.9.15. The fields x�i pzq have operator product expansions

x�i pzqx
�
j pwq � δi,j

1

pz � wq
�
ϕ�i pwq � ϕ�pwq

q � q�1
mod V rrz, wss

where r � κphi, hjq and q � qi.

Since rx�i,n, x
�
j,ms does not admit a simple closed form expression in quantum toroidal or affine

algebras, it is less clear what the operator product expansion of x�i pzq with itself will be. We leave

this to future work.
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Appendix A

Variant notions

A.1 Varying the background category

A.1.1. Ordinarily one defines vertex algebras inside the category Vect � Vectk of vector spaces

over a field k. We recall how to replace Vect with a more general background category (Definition

A.1.14). Applying this to the categories VectZ{2 and VectZ of vector superspaces and graded vector

spaces will recover the notion of vertex superalgebra and graded vertex algebra. Taking VectA,

vector spaces graded by an abelian group A, recovers the definition of Dong and Lepowsky [DL].

A.1.2. For completeness we first write down some category theory definitions, see e.g. [Ric, §8]

or [EGNO].

A.1.3. Structures on monoidal categories.

Definition A.1.4. A monoidal category is a category C with a functor

b : C� C Ñ C

an object e and natural isomorphisms

αc1,c2,c3 : pc1 b c2q b c3
�
Ñ c1 b pc2 b c3q λc : eb c

�
Ñ c ρc : cb e

�
Ñ c

for all c, c1, c2, c3, satisfying the pentagon identity
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pc1 b c2q b pc3 b c4q ppc1 b c2q b c3q b c4q

c1 b pc2 b pc3 b c4qqq pc1 b pc2 b c3qq b c4

c1 b ppc2 b c3q b c4q

αc1bc2,c3,c4

αc1,c2,c3bidαc1,c2,c3bc4

idbαc2,c3,c4
αc1,c2bc3,c4

and the triangle identity

c1 b peb c2q pc1 b eq b c2

c1 b c2

αc1,e,c2

idbλc2 ρc1bid

That is, these diagrams commute for all c1, c2, c3, c4.

Definition A.1.5. Monoidal category C is called symmetric monoidal if in addition there are

binatural isomorphisms

τc1,c2 : c1 b c2
�
Ñ c2 b c1

with symmetry condition τc1,c2τc2,c1 � id, and satisfying the hexagon identity

pc1 b c2q b c3 c3 b pc1 b c2q

c1 b pc2 b c3q pc3 b c1q b c2

c1 b pc3 b c2q pc1 b c3q b c2

τc1bc2,c3

αc3,c1,c2αc1,c2,c3

idbτc2,c3
αc1,c3,c2

τc1,c3bid

(A.1)

and ρc � λcτc,e.

Often the symbol σ instead of τ is used to denote the symmetric braiding in Definition A.1.5. We

now weaken this notion by discarding the symmetry condition:

Definition A.1.6. Monoidal category C is called braided monoidal if in addition there are binat-

ural isomorphisms

βc1,c2 : c1 b c2
�
Ñ c2 b c1

155



satisfying the two hexagon identities, (A.1) and

c1 b pc2 b c3q pc2 b c3q b c1

pc1 b c2q b c3 c2 b pc3 b c1q

pc2 b c1q b c3 c2 b pc1 b c3q

βc1,c2bc3

α�1
c2,c3,c1

α�1
c1,c2,c3

βc1,c2bid
α�1
c2,c1,c3

idbβc1,c3

(A.2)

and ρc � λcβc,e and βe,cρc � λc.

These structures A.1.4, A.1.5 and A.1.6 are are called strict if all the α’s are identities.

A.1.7. These definitions are more natural in the language of 8-categories, see [Lur2, Ex. 1.2.4].

One can define monoidal, braided monoidal and symmetric monoidal structures on 8-categories,

and show they the same thing as E1, E2 and E8 monoidal structures. Thus monoidal categories

are associative algebras, and symmetric monoidal categories are commutative algebras, in the

category of 8-categories.

A.1.8. Tensor categories. Let C be a k linear abelian monoidal category, such that the tensor

product b : C � C Ñ C is cocontinuous (in particular additive), and bilinear on morphisms, and

the structure maps αc1,c2,c3 , ρc, λc are additive in each variable and multilinear on morphisms. We

call such a category k linear monoidal.

A k linear symmetric (braided) monoidal structure on C is a symmetric (braided) monoidal struc-

ture on the underlying category such that τc1,c2 (βc1,c2) are additive in each variable and multilinear

on morphisms.

Again, these structures are called strict if the α’s are identities.

A.1.9. Power series. Let C be a k linear symmetric monoidal category. We define

Crrzss � CbVectk krrzss-Mod :� krrzss-ModpCq.

Thus, an object of Crrzss is an object c of C together with a map mc : krrzss bC c Ñ c respecting

the algebra structure on krrzss P ObC. Since krrzss is a cocommutative bialgebra, Crrzss inherits

a symmetric monoidal structure from C and krrzss-Mod, i.e. c bCrrzss c1 � c bC c
1 as objects of C,

with the krrzss action induced by the coproduct krrzss Ñ krrzss bC krrzss.
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A.1.10. For instance, writing k P C for the unit object, krrzss is an object in Crrzss. It is a

commutative monoid in fact, and Crrzss is its category of algebras in C.

A.1.11. As with all module categories, the “tensor by krrzss” functor is left adjoint to the forgetful

functor,

bkrrzss : C Ñ Crrzss, For : Crrzss Ñ C.

Note that For is conservative. There is also the trivial module functor

triv : C Ñ Crrzss

which together with For allows us identify with of C as elements of Crrzss and vice versa.

A.1.12. Similarly, we can define modifications of C for other power series rings, e.g. Cppz, wqq,

Cppzqq, . . . and the above remarks in section A.1.11 will also apply. However, these categories will

not necessarily be symmetric monoidal so much of the material in section A.4 will not apply if we

replace Crrzss with them.

A.1.13. Vertex algebras in a general symmetric monoidal category. Let C be a symmetric

monoidal k linear category, with unit denoted k.

Definition A.1.14. A vertex algebra in C is an object c with a map

Y pzq : cb c Ñ cppzqq

and maps |0y : k Ñ c, T : cÑ c, satisfying the axioms in Definition 2.1.9.

A.1.15. For instance, let us show how to define the notion of weak commutativity in this setting.

Take the map

cb cb c
idbY pwq
Ñ pcb cqppwqq

Y pzqbid
Ñ cppwqqppzqq Ñ crrz�1, w�1ss

and the map

cb cb c
τbid
Ñ cb cb c

idbY pzq
Ñ pcb cqppzqq

Y pwqbid
Ñ cppzqqppwqq Ñ crrz�1, w�1ss.

Thus for any elements α, β : k Ñ c we get two maps

c Ñ crrz�1, w�1ss.

which are the analogues of Y pα, zqY pβ, wq and Y pβ, wqY pα, zq. Weak commutativity says that

their difference composed with idb pz � wqn vanishes when n is high enough.
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A.2 Varying the algebraic structure

There are some variants of the notion of vertex algebra, which we briefly discuss in this section.

Vertex algebras are like commutative algebras in two ways: a commutative algebra with derivation

is a vertex algebra by section 2.3.2, and factorisation algebras (which are commutative algebras

in some category) give rise to vertex algebras.

The variants we will discuss, and their unaffinised analogues, are

(Co)commutative (co)algebra ù Vertex (co)algebra

(Co)algebra ù Nonlocal vertex (co)algebra

Bialgebra ù Vertex bialgebra

Quasitriangular bialgebra ù Quasitriangular vertex bialgebra

Given a structure on the left, if we equip it with a compatible derivation, we get the structure on

the right, see e.g. [Gro2]. We leave the question of interpreting these structures in terms of the

chiral and � symmetric monoidal structures on ShpRanXq.

A.2.1. Nonlocal vertex algebras. First we recall the vertex analogue of associative algebra due

to Bakalov, Kac and Li in [BK, Li1, Li2].

Definition A.2.2. A nonlocal vertex algebra is a vertex algebra as in Definition A.1.14, but with

the weak commutativity condition replaced with weak associativity: for all α, β P V ,

pz � wqnY pY pα, zqβ,�wqγ � pz � wqnY pα, z � wqY pβ,�wqγ (A.3)

for n " 0.

A.2.3. The reader is warned that in the literature the word (non)commutative vertex algebra

means (non)holomorphic, not (non)local.

A.2.4. Vertex coalgebras. We now give the dual notion of a vertex algebra.

Definition A.2.5. A vertex coalgebra is a vector space V with a linear functional x0| : V Ñ k,

an endomorphism T satisfying x0|T � 0, and a map

∆pzq : V Ñ V b V ppz�1qq

which weakly cocommutes, pT b 1q∆pα, zq � Bz∆pα, zq and

px0| b idq∆ � id, pidb x0|q∆ � id mod zV b V rzs.
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A slightly modified version of this definition appears in [Hu]. In the case where V is a graded

vertex coalgebra with finite dimensional weight spaces however, both definitions are equivalent,

see section A.2.7 below.

A.2.6. The definition of weak cocommutativity is the dual notion of weak commutativity. ∆pzq

is said to weakly cocommute if for every φ P pV b3q_,

pz � wqnφ ppidb∆pzqq∆pwq � pσ b idqpidb∆pwqq∆pzqq � 0

for n " 0.

A.2.7. If V is a vertex algebra, then its dual V � is a vertex coalgebra, and vice versa. Indeed,

note that weak commutativity can be written as: for all v P V b3,

pz � wqnpY pzqpY pwq b idq � Y pwqpidb Y pzqqpσ b idqqv � 0

for n " 0, where we have written Y pzq : V bV Ñ V ppzqq for the vertex algebra field map. Likewise,

if V is a graded vertex algebra then its contragredient dual V _ is a graded vertex coalgebra, and

vice versa. Since V __ � V canonically if the weight spaces are finite dimensional, this sets up an

equivalence of categories between graded vertex algebras and coalgebras whose graded pieces are

finite dimensional.

Likewise, the dual analogue of nonlocal vertex algebra is

Definition A.2.8. A nonlocal vertex coalgebra is a vertex coalgebra as in A.2.5, but with weak

cocommutativity replaced with weak coassociativity: for all γ P V and φ P pV b3q_,

pz � wqnφ pp∆pzq b idq∆p�wqγ � pidb∆pzqq∆pz � wqγqq � 0

for n " 0.

As before, there is an equivalence between graded nonlocal vertex algebras and graded nonlocal

vertex coalgebras whose graded pieces are finite dimensional.

A.2.9. Skew symmetry. Let A be a coalgebra in a symmetric monoidal category C. Its opposite

is the coalgebra with the same counit, and coproduct

∆op � σ∆.

It is cocommuative if and only if ∆op � ∆.
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A.2.10. Let V be a nonlocal vertex coalgebra. Its opposite is the nonlocal vertex coalgebra with

the same covacuum, and cofield map

∆oppzq � σ∆p�zqezT .

It is local (i.e. defines a vertex coalgebra) if and only if ∆oppzq � ∆pzq, see [Hu, Prop. 2.3].

A.2.11. Dually, one can define the opposite algebra product a �op b � b � a, which is equal to the

original if and only if it is commutative, and the opposite nonlocal vertex algebra Y oppα, zqβ �

ezTY pβ,�zqα, with Y op � Y if and only if the vertex algebra is local, see [BK, Rem. 4.8]

A.2.12. For instance, consider Joyce’s nonlocal vertex algebra (see Theorem 2.6.18). We have

∆pα, zq � Ψpθ, zqact�1,z `
� α

and so, since ezT � act�z by Lemma 2.6.12,

∆oppα, zq � Ψpσ�θ,�zqact�2,�z `
� act�zα � Ψpσ�θ_, zqact�1,z `

� α.

That is, the opposite of the Joyce nonlocal vertex (co)algebra attached to θ is the Joyce nonlocal

vertex (co)algebra attached to σ�θ_.

Similarly, if we want to include orientations, the opposite of the Joyce nonlocal vertex (co)algebra

of Theorem 2.6.21 attached to θ, ε̌ is the Joyce nonlocal vertex (co)algebra attached to σ�θ_, σ�ε̌.

A.2.13. (Quasitriangular) vertex bialgebras. We first recall some standard definitions from

algebra, see e.g. [Dr, ES, EGNO].

Definition A.2.14. A bialgebra is an associative algebra A with a compatible coalgebra structure

pA,∆, εq, meaning

∆pa � bq � ∆paq �∆pbq, (A.4)

for all a, b P A, and εb εpab bq � εpa � bq, εp1q � 1 and ∆p1q � 1b 1.

A bialgebra A is cocommutative if σ∆ � ∆ where σ : A b A Ñ A b A is the map swapping the

factors, and almost cocommutative if there is an invertible element R P Ab A with

σ∆paq � R∆paqR�1 (A.5)

if all a P A. It is called a quasitriangular bialgebra if in addition the hexagon identities hold:

p∆b idqpRq � R13R23, pidb∆qpRq � R13R12. (A.6)

Here e.g. R23 denotes the element 1bR P Ab3.

160



Lemma A.2.15. If A is a quasitriangular bialgebra, R sastisfies the Yang Baxter equation

R12R13R23 � R23R13R12.

Proof. We have R12R13R23 � R12p∆b idqpRq � pσ∆b idqpRqR12 � R23R13R12.

A.2.16. To organise these definitions, recall from [Lur2] the sequence of operads

E0 Ñ E1 Ñ E2 Ñ � � � Ñ E8.

Their algebras inside the category Cat of categories are (see [Lur2, §1.2])

Pointed categories Ð Monoidal categories Ð Braided monoidal categories Ð � � �

� � � Ð Symmetric monoidal categories.

Now let A be an associative algebra in Vect, and consider its category A-Mod of left modules.

A priori, it carries no extra structure other than having a distinguished object A, i.e. it is an E0

category. If we want it to be a monoidal category, i.e. the tensor product M bkN of every module

to carry a A module structure, then the action of A on Abk A would give a map

A Ñ EndA-ModpAbk Aq � Abk A,

which defines a coproduct, and makes A into a bialgebra. This is symmetric monoidal if A is

cocommutative, and braided monoidal if A is quasitriangular, with with braiding given by

M bN
R�
Ñ M bN

σ
Ñ N bM,

which is A linear by almost commutativity, see [ES, Prop. 14.2]. Thus the corresponding algebraic

structures to the above are

Algebra Ð Bialgebra Ð Quasitriangular bialgebra Ð � � � Ð Cocommutative biaglebra.

More precisely, there is an equivalence of categories between lifts of the associative algebra struc-

ture on A to a bialgebra, quasitriangular bialgebra and cocommutative bialgebra structure, and

lifts of the E1, E2 and E8 structures along A-Mod Ñ Vect, respectively.
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A.2.17. We now turn to the vertex analogue of the above, loosely following [Jo2].

Definition A.2.18. A vertex bialgebra is a nonlocal vertex coalgebra V with a compatible asso-

ciative algebra structure, meaning

∆pα � β, zq � ∆pα, zq �∆pβ, zq (A.7)

for all α, β P V , and x0| b x0|pab bq � x0|pabq, x0|p1q � 1 and ∆p1, zq � 1b 1.

A vertex bialgebra V is almost local if there is an invertible Rpzq P V b V ppz�1qq such that

∆oppα, zq � Rpzq∆pα, zqRpzq�1 (A.8)

for all α P V , as well as compatibility with T

pewT b idqRpzq � Rpz � wqpewT b idq, pidb ewT qRpzq � Rpz � wqpidb ewT q. (A.9)

It is a quasitriangular vertex bialgebra if in addition the hexagon identities hold

p∆pzqbidqpRpwqq � R13pz�wqR23pwq, pidb∆pzqqpRpwqq � R13pwqR12pw�zq. (A.10)

A.2.19. Almost locality. There is another possible generalisation that does not require the

algebra structure on V . A vertex coalgebra V is called weakly almost local if there is an invertible

kppz�1qq linear endomorphism Spzq P EndV b V ppz�1qq such that

∆oppα, zq � Spzq �∆pα, zq

for all α P V , as well as as well as compatibility with T

pewT b idqSpzq � Spz � wqpewT b idq, pidb ewT qSpzq � Spz � wqpidb ewT q. (A.11)

It is a weak quasitriangular vertex coalgebra if in addition the hexagon identities hold

p∆pzq b idqSpwq � S13pz � wqS23pwq, pidb∆pzqqSpwq � S13pwqS12pw � zq. (A.12)

Our computations in section A.2.12 show that

Proposition A.2.20. Consider Joyce’s nonlocal vertex coalgebra structure on H
r
pMq of Theorem

2.6.18. It is weakly almost local, for

Spzq � Ψpσ�θ_, zq{Ψpθ, zq.

Proof. Compatibility with T and the hexagon identities follow from the Commutation Lemma

2.6.19. That ∆oppα, zq � Spzq �∆pα, zq holds follows from section A.2.12.
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A.3 Representations of a holomorphic vertex bialgebra

Before discussing spectral monoidal categories in the next section, we write down the motivating

case, with the main example being the Hopf algebra structure on H
r
pMq given by `� and cup

product (see section 2.6).

A.3.1. Let H be a holomorphic vertex bialgebra (in any background k linear symmetric monoidal

category V), or equivalently a cocommutative bialgebra H along with a derivation B. Write

C � H-ModB for the category of modules with derivation over the underlying associative algebra.

This is symmetric monoidal.

The motivating question is: what extra structure does the holomorphic vertex coalgebra structure

endow to C?

A.3.2. The product bz. To begin with, for any H modules M,N , the vertex coalgebra map

∆pz�1q : H Ñ H bHrrzss

gives a map

H b pM bNq Ñ pM bNqrrzss

or equivalently, a krrzss linear map

H b pM bNqrrzss Ñ pM bNqrrzss

compatible with the algebra structure of H. Thus, we get

pM bNqrrzss P H-Modpkrrzss-Modq

where H is endowed with a trivial krrzss module action. In particular, endowing krrzss with a

trivial H module structure,

H-Modpkrrzss-Modq � H b krrzss-Mod � krrzss-ModpH-Modq � krrzss-ModpCq,

which we have previously denoted Crrzss. Thus, we get a binatural functor

Definition A.3.3. If H is a holomorphic vertex bialgebra and C the category of modules over the

underlying associative algebra, we set

bz � pp�q b p�qq rrzss : C� C Ñ Crrzss.
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We then see that

Lemma A.3.4. bz is a lax monoidal functor.

Proof. Given modules M1,M2 and M 1
1,M

1
2, we have a natural map

pM1 bM2qrrzss b pM 1
1 bM 1

2qrrzss Ñ ppM1 bM 1
1q b pM2 bM 1

2qqrrzss

and 1Crrzss � k Ñ 1C bz 1C � krrzss. It is easy to check associativity and unitality.

In particular, this allows us to compose the functors bz and bw:

C� C� C
bzÑ Crrzss � C

� pkrrzss, kq-ModpC� Cq

bwÑ pkrrzss bw kq-ModpCrrwssq

� krrz, wss-ModpCrrwssq

� krrzss-ModpCrrwssq

� Crrz, wss.

We have used that bw is lax monoidal hence induces a map on module categories. The result of

the above will be denoted bwpbz, idq, and similarly for other compositions. To be very explicit,

this functor is induced by the map

H
∆pw�1q
Ñ pH bHqrrwss

∆pz�1qbid
Ñ ppH bHqrrzss bHqrrwss ãÑ pH bH bHqrrz, wss. (A.13)

A.3.5. Note that strictly speaking bwpbz, idq is an abuse of notation, since the functors bw and

pbz, idq are not composable: instead of bw we more precisely mean the map induced by bw on

module categories. Note that we have

Crrzss � C Crrz, wss

C� C� C C

Crrzss � C C� C Crrwss

bw

oblv
pbz ,idq

pbz ,idq poblv,idq bw
oblv

so that the upper composition (which we are referring to as oblv composed with bwpbz, idq) is

computed by applying pbz, idq then forgetting the krrzss module structure, then applying bw and

forgetting the krrwss module structure.
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A.3.6. Associativity. We may consider bwpid,bzq and bzpbw, idq. These give two different H

module structures on pL bM bNqrrz, wss P krrz, wss-Mod, one induced by (A.13) and the other

by

H
∆pw�1q
Ñ pH bHqrrwss

idb∆pz�1q
Ñ pH b pH bHqrrzssqrrwss ãÑ pH bH bHqrrz, wss. (A.14)

where oblv is the forgetful functor. In our notation above, these module structures are denoted

pL bz Mq bw N and L bw pM bz Nq. Notice that the two variables have swapped. Thus, we get

two different functors which we denote

C� C� C Ñ Crrz, wss. (A.15)

A.3.7. To understand (A.15), it says that there are two actions of h P H on the vector space

LbM bN . Firstly, the H module structure on ppLbMq bNqrrz, wss is as multiplication by

pewB b idb idqp∆b idqpezB b idq∆h � pepz�wqB b ezB b idqp∆b idq∆h, (A.16)

where we have used ∆ezB � pezB b ezBq∆, and secondly the H module L b pM b Nqrrz, wss is as

multiplication by

pidb ewB b idqpidb∆qpezB b idq∆h � pezB b ewB b idqpidb∆q∆h. (A.17)

These differ by an (invertible) factor of pewB b epz�wqB b idq.

A.3.8. Before we define the analogue of an associator α, we first need a commutation Lemma

Lemma A.3.9. Let pA, Bq be an associative algebra with derivation and pM, BMq an A module

with derivation. Then as elements of EndpM rrzssq, for each a P A we have

pezBaq � ezBM � a � e�zBM .

Proof. Follows from the definition BMph �mq � Bphq �m� h � BMpmq of compatible derivation.

Comparing equations (A.16) and (A.17) and applying Lemma A.3.9, it then follows that

Corollary A.3.10. If L,M,N are H modules with compatible derivations, then there is an

krrz, wss linear isomorphism

αL,M,Npz, wq : ppLbMq bNqrrz, wss
�
Ñ pLb pM bNqqrrz, wss
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sending

pl bmb nq ÞÑ pewBL b epz�wqBM b idqpl bmb nq,

moreover it is an isomorphism of H modules

αL,M,Npz, wq : pLbz Mq bw N
�
Ñ Lbw pM bz Nq.

Again, notice that the variables z, w have swapped. Here we have suppressed the identifications

pL bMq b N � L b pM b Nq coming from the background symmetric monoidal category from

the notation.

Note that the above does not mean that H-Mod is a symmetric monoidal category, since we had

to adjoin the formal variables z, w. In that case, how do we think about this structure? Answering

this question is the point of the next section A.4.

A.3.11. Failure of the naive pentagon identity. For any objects c1, c2, c3, c4 of C, we would

like the following to commute

pc1 bw c2q bz pc3 bu c4q ppc1 bw c2q bu c3q bz c4q

c1 bz pc2 bw pc3 bu c4qq pc1 bu pc2 bw c3qq bz c4

c1 bz ppc2 bu c3q bw c4q

αc1bwc2,c3,c4 pz,uq

αc1,c2,c3 pw,uqbz idαc1,c2,c3buc4 pz,wq

idbzαc2,c3,c4 pw,uq αc1,c2buc3,c4 pz,wq
?

However, the dotted arrow is not defined, since its codomain should be pc1 bw pc2 bu c3qq bz c4.

To resolve this, we thus need a way by which we can switch the variable order.

A.3.12. Variable commutativity. Let L,M,N be H modules with a compatible derivation.

Then h P H acts on Lbz pM bw Nq as multiplication by

pidb ewB b idqpidb∆qpezB b idq∆h � pezB b ewB b idqpidb∆q∆h.

and acts on Lbw pM bz Nq as multiplication by

pidb ezB b idqpidb∆qpewB b idq∆h � pewB b ezB b idqpidb∆q∆h.

Thus we have another Corollary of Lemma A.3.9

Corollary A.3.13. If L,M,N are H modules with compatible derivations, then there is an

krrz, wss linear isomorphism

γL,M,Npz, wq : pLb pM bNqqrrz, wss
�
Ñ pLb pM bNqqrrz, wss
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sending

pl bmb nq ÞÑ pepw�zqBL b epz�wqBM b idqpl bmb nq,

moreover it is an isomorphism of H modules

γL,M,Npz, wq : Lbz pM bw Nq
�
Ñ Lbw pM bz Nq.

It is then straightforward to check

Proposition A.3.14. For any c1, c2, c3, c4 P C, the modified pentagon identity

pc1 bw c2q bz pc3 bu c4q ppc1 bw c2q bu c3q bz c4q

pc1 bu pc2 bw c3qq bz c4

c1 bz pc2 bw pc3 bu c4qq

pc1 bw pc2 bu c3qq bz c4

c1 bz ppc2 bu c3q bw c4q

αc1bwc2,c3,c4 pz,uq

αc1,c2,c3 pw,uqbz id
αc1,c2,c3buc4 pz,wq

idbzαc2,c3,c4 pw,uq

γc1,c2,c3 pu,wqbz id

αc1,c2buc3,c4 pz,wq

(A.18)

commutes.

Note that if we ignore the explicit forms for γ and α, the content of this Proposition is that

the modification needed to make the pentagon identity commute only depends on the first three

factors and on u,w. We do not preclude the fact that there may be further compatibilities between

γ and α.

A.3.15. Similarly, conjugating γ by α gives an isomorphism of H modules

γL,M,Npz, wq : pLbzqM bw N
�
Ñ pLbw Mq bz N.

A.3.16. Units. Note that there is no obvious analogue of a right unit. However, there is a quotient

map

M bz 1C � M rrzss Ñ M

where h P H acts on M rrzss as multiplication by pezBhq and krrzss as multiplication by z, and

krrzss acts trivially on M . Similarly, there is no left unit but an isomorphism

k bz M � M rrtss

where the right hand side is trivpoblvM rrzssq, i.e. equal to M rrzss as an element of C but with

the trivial krrzss action.
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A.3.17. Symmetric structure. There is also an analogue of a symmetric monoidal structure.

Proposition A.3.18. If M,N are H modules with compatible derivations, then there is an iso-

morphism of krrzss modules

τM,Npzq : pM bNqrrzss
�
Ñ pN bMqrrzss

sending

pmb nq ÞÑ pe�zBN b ezBM qpnbmq,

moreover it is an isomorphism of H modules

τM,Npzq : M bz N
�
Ñ N bz M.

It is easy to check that

Proposition A.3.19. For any c1, c2, c3 P C, the modified hexagon identity

pc1 bw c2q bz c3 c3 bw pc1 bz c2q

pc3 bz c1q bw c2

c1 bz pc2 bw c3q

pc3 bz c1q bw c2

c1 bz pc3 bw c2q pc1 bw c3q bz c2

τc1bzc2,c3 pwq

αc3,c1,c2 pw,zq
αc1,c2,c3 pz,wq

idbzτc2,c3 pwq

γc3,c1,c2 pz,wq

αc1,c3,c2 pz,wq
τc1,c3 pzqbz id

(A.19)

commutes.

A.3.20. We remark that it is clearly an interesting question to ask what analogous structure the

category of modules of a non holomorphic vertex bialgebra has, with the expectation that it is

likely to be easier to work over the Ran space instead of piecemeal definitions involving power

series. Also note that the above does not trivially generalise upon replacing Crrzss with Cppzqq,

since Cppzqq does not inherit a symmetric monoidal structure from C as kppzqq does not have a

natural coproduct and hence is not naturally a cocommutative bialgebra.

A.4 Spectral symmetric monoidal categories

Our definition of spectral symmetric monoidal categories is set up to describe the naturally arising

examples we consider in section 2.6. One hopes that it is related to a (unmade as far the author
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knows) definition of a symmetric or braided monoidal category “over the Ran space of a curve,

factorisably”.

Spectral R matrices and spectral Yang Baxter equations were first discovered by Cherednik [Che].

Our definition is potentially related is Soibelman’s [So] definition of a meromorphic tensor category.

We recommend reading section A.3 first, since that section contains the main example; this section

is just an axiomatisation of that one.

A.4.1. Spectral monoidal category.

Definition A.4.2. A spectral monoidal category is a k linear symmetric monoidal category C with

a lax monoidal functor

bz : C� C Ñ Crrzss

together with natural isomorphisms1

αc1,c2,c3pz, wq : c1 bz pc2 bw c3q
�
Ñ pc1 bw c2q bz c3

γc1,c2,c3pz, wq : c1 bz pc2 bw c3q
�
Ñ c1 bw pc2 bz c3q

for all c, c1, c2, c3 P C, where α, γ are isomorphisms in the category Crrz, wss, satisfying the spectral

pentagon identity (A.18) for all c1, c2, c3, c4 P C. It is called unital if there are natural maps

λcpzq : 1C bz c Ñ c ρcpzq : cbz 1C Ñ trivc

satisfying the spectral triangle identity

c1 bz p1C bw c2q pc1 bw 1Cq bz c2

c1 bz c2

αc1,1C,c2 pz,wq

idbλc2 pwq ρc1 pwqbid

for all c1, c2 P C.

A.4.3. Via the functor triv : C Ñ Crrzss, we may identify monoidal categories as (fairly trivial)

examples of spectral monoidal categories, whose tensor product does not depend on z.

A.4.4. Let H be a holomorphic vertex bialgebra. Then the purpose of section A.3 was to show

that the category H-ModB of H modules with compatible derivation is a unital spectral monoidal

category, with

M bz N � pM bNqrrzss h � pmb nq :�
�
pezB b idq∆h

�
� pmb nq.

1As before we have written crrtss � trivpoblvcrrzssq.
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A.4.5. However, we note that H-ModB is also a (nonunital) spectral monoidal category for the

product

M bz N � pM bNqppzqq h � pmb nq :�
�
pezB b idq∆h

�
� pmb nq.

A.4.6. More generally, if A is any krrzss algebra then

M bz N � pM bNq b A h � pmb nq :�
�
pezB b idqp∆hb 1Aq

�
� pmb nq b 1A

defines a spectral monoidal structure, where zB � zbB is an endomorphism of H bA. It is unital

if there is a map of krrzss algebras AÑ k.

A.4.7.

Definition A.4.8. Let C be a spectral k linear monoidal category. A spectral symmetric monoidal

structure on C is a kppzqq linear binatural isomorphism

τc1,c2pzq : c1 bz c2
�
Ñ c2 bz c1

with symmetry condition τc1,c2pzqτc2,c1p�zq � id, satisfying the spectral hexagon identity (A.19)

and the following commutes

1C bz c 1C bz c

c

τ1C,cpzq

λcpzq ρcpzq

for all c P C, which we write as ρcpzqτ1C,cpzq � λcpzq.

A.4.9.

Definition A.4.10. Let C be a k linear spectral monoidal category. A spectral braided monoidal

structure on C is a binatural isomorphism

βc1,c2pzq : c1 bz c2 Ñ c2 bz c1

and satisfying the spectral hexagon identities : (A.19) and
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c1 bw pc2 bz c3q pc2 bz c3q bw c1

c2 bw pc1 bz c3q

pc1 bz c2q bw c3

c2 bz pc3 bw c1q

pc2 bz c1q bw c3 c2 bw pc1 bw c3q

βc1,c2bzc3 pwq

αc2,c3,c1 pw,zq�1

αc1,c2,c3 pw,zq�1

βc1,c2 pzqbwid

γc3,c1,c2 pz,wq

αc2,c1,c3 pw,zq�1
idbzβc1,c3 pwq

(A.20)

and finally ρcpzq � λcpzqβc,epzq and βe,cp�zqρcpzq � λcpzq.

A.4.11. Vertex coalgebras in a general spectral symmetric monoidal category. Let C be

a spectral symmetric monoidal k linear category, and denote 1C � k.

Definition A.4.12. A (nonlocal) vertex coalgebra in C is an object c with a map in C

∆pzq : c Ñ cbz c

as well as maps x0| : c Ñ k and T : c Ñ c, satisfying the analogous axioms to those in Definition

A.2.5 (A.2.8). Here we have written cbz c for oblvpcbz cq.

A.4.13. Taking C � Vectk recovers the usual definition of coalgebra, holomorphic vertex coalgebra

and vertex coalgebra, by taking

bz � b, pp�q b p�qqrrzss, pp�q b p�qqppzqq.

A.4.14. Let C � H-ModB be as in section A.3 and τ is the spectral symmetric braiding as in

section A.3.17. If we are in Joyce’s example where H � pH
r
pMq, �,`�q and V � H

r
pMq is as in

Theorem 2.6.18 then the commutation relation

pe�zt b eztqΨpθ, zq � Ψpθ,�zqpe�zt b eztq

implies that

σ∆p�zqezT � τV,V pzq∆pzq.

In particular, this suggests that the opposite of a vertex coalgebra as in Definition A.4.12 should

be defined as τV,V pzq∆pzq .
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A.5 Yang Baxter matrices

A.5.1. Let V be a symmetric monoidal category, with symmetric braiding σ.

A.5.2. Let H � pH, �,`�q be a cocommutative bialgebra in V, and R P H b H an invertible

element with:

1. σ `� phq � R `� phqR�1, e.g. R is central (since `� cocommutative).

2. R satisfies the hexagon identities

p`� b idqpRq � R13R23 pidb`�qpRq � R13R12, (A.21)

where for instance R12 means R b 1.

It follows that

Lemma A.5.3. R satisfies the Yang Baxter equation

R12R13R23 � R23R13R12. (A.22)

Proof. We have

R12R13R23 � R12p`
� b idqpSq � pσ `� bidqpSqR12

� R23R13R12.

Definition A.5.4. Such an R P H bH is called a Yang Baxter matrix.

Lemma A.5.5. There is an equivalence of categories between symmetric monoidal structures on

C � H-Mod and invertible elements R satisfying 1. and 2.

Proof sketch. Any such R induces the braiding, denoted βR,

βR,M,N : M bN
R�
Ñ M bN

σ
Ñ N bM.

Conversely, if β is a braiding, we can take R � σβH,Hp1q.
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A.5.6. Let A be a cocommutative coalgebra in pH-Mod, βRq. Equivalently, this means it is a

coalgebra with

1. βR∆paq � ∆paq for all a P A.

2. σ∆paq � R�1∆paq for all a P A.

Lemma A.5.7. If A is in addition a cocommutative bialgebra, R satisfies the ∆ hexagon identities

p∆b idq � S � R13R23 � p∆b idq pidb∆q � S � R13R12 � p∆b idq

as morphisms Ab2 Ñ Ab3.

Proof. By H linearity we have ∆pahq � `�paq �∆paq, then the Lemma follows by the `� hexagon

identities (A.21).

A.5.8. Spectral Yang Baxter matrices. Let V be a background k linear symmetric monoidal

category with symmetric braiding σ.

A.5.9. Let H � pH, �,`�, T q be a cocommutative bialgebra with derivation in V. Equivalently, H

is a holomorphic vertex bialgebra with

`�pzq � pezT b idq � `� : H Ñ H bHrrzss.

A.5.10. We endow the category C � H-ModB of H modules with a compatible derivation with

the spectral monoidal structure M bz N � pM bNqrrz�1ss. Thus `�pzq can be viewed as a map

`�pzq : H Ñ H bz H.

Since bz is lax monoidal, there is an algebra structure on H bz H, and for any modules M,N P

H-ModB, M bz N is a module for this algebra.

Definition A.5.11. A spectral Yang Baxter matrix is an invertible element Rpzq P H bz H or

invertible map Rpzq : H bz H Ñ H bz H in Crrzss, with:

1. `�,opph, zq � Rpzq `� ph, zqRpzq�1, e.g. Rpzq is central.2

2. Rpzq satisfies the spectral hexagon identities

p`�pwq bz idqpRpzqq � R13pz � wqR23pzq pidbz `
�pwqqpRpzqq � R13pzqR12pz � wq.

(A.23)

2Since `�pzq is a (local) vertex coalgebra and so `�pzq � `�,oppzq.
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Here we have denoted R13pz � wq and R23pzq for the images of Rpwq bz id and id b Rpwq

under

pH bw Hq bz H
�
Ñ H bz pH bw Hq

idbτH,Hpwq
Ñ H bz pH bw Hq

�
Ñ pH bw Hq bz H

H bz pH bw Hq
�
Ñ pH bw Hq bz H

respectively, and likewise for R13pzq and R12pz � wq.3

A.5.12. In our running moduli stack example H � pH
r
pMq,`�, �q, the hexagon relations are

satisfied by Rpzq � ΨpV, zq or Rpzq � ΨpW, zq�1 for any V,W P PerfpM�Mq with BGm weights

p�1, 1q and p1,�1q respectively. In this case, we can understand the above notation in the hexagon

identities more easily: as an element of H bH bH we have

Rijptq � π�ijRptq

for any variable t, where πij : M3 ÑM2 is the ijth projection.

A.5.13. When Rpzq is an endomorphism that is not simply multiplication by an element in the

algebra structure of H bz H, we sometimes also denote it by Spzq.

Lemma A.5.14. Rpzq satisfies the spectral Yang Baxter equation

R12pzqR13pz � wqR23pwq � R23pwqR13pz � wqR12pzq. (A.24)

Lemma A.5.15. Invertible elements (or endomorhisms) Rpzq satisfying 1. and 2. induce a

spectral symmetric monoidal structure on the category H-ModB of H modules with compatible

derivation.

Proof sketch. Any such Rpzq induces the braiding, denoted βRpzq,

βR,M,Npzq : M bz N
Rpzq�
Ñ M bz N

τM,N pzq
Ñ N bz M.

We expect that the converse to this Lemma is also true.

3These definitions are made precisely so that if we take the spectral hexagon identities (A.19), (A.20) and replace

τpzq with Rpzqτpzq, then the diagrams still commute.
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A.5.16. Let V be a local vertex coalgebra in pH-Mod, βRpzqq, see Appendix A. Equivalently, this

means it is a nonlocal vertex coalgebra with

1. βRpzq∆pe
zTα,�zq � ∆pα, zq for all α P V .

2. ∆oppα, zq � σ∆pezTα,�zq � Rpzq�1∆pα, zq for all α P V .

Lemma A.5.17. If V is in addition a local vertex bialgebra, Rpzq satisfies the ∆pzq hexagon

identities

p∆pzq b idq �Rpwq � R13pz � wqR23pwq � p∆pzq b idq, (A.25)

pidb∆pzqq �Rpwq � R13pwqR12pw � zq � pidb∆pzqq. (A.26)

A.5.18. We note that there is a discrepancy with section A.2.19. Indeed, one would hope that

Joyce’s nonlocal vertex coalgebra structure on H
r
pMq is almost local, for the same

Spzq � Ψpθ, zq{Ψpσ�θ, zq

as appearing in Theorem 3.10.1, which defines a spectral symmetric monoidal structure on C.

However, Joyce’s nonlocal vertex coalgebra structure is actually almost nonlocal in the sense of

section A.2.19 for

Spzq � Ψpθ, zq{Ψpσ�θ_, zq.

Note that θ, σ�θ_ both have weights p�1, 1q, so this second expression for Spzq cannot be expected

to satisfy the hexagon relations. This suggests that the definition of almost locality in a spectral

monoidal category should be possible to make, but is different from that definition appearing in

section A.2.19.
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Appendix B

Kac Moody algebras

Studying Kac Moody Lie algebras gives a common framework under which to study both the Lie

algebras of finite dimensional algebraic groups G and of their loop spaces LG, centrally extended.

Despite sometimes being infinite dimensional, they are almost as well behaved as finite dimensional

Lie algebras, e.g. in their representation theory.

In this section we give a brief review of Kac Moody algebras and their representations. See e.g.

[Ca, Kac, CP] for more details.

B.1 Finite dimensional Lie algebras

For motivation we begin by reviewing some facts about finite dimensional Lie algebras. We will

work over an algebraically closed ground field of characteristic 0.

B.1.1. Let g be a finite dimensional semisimple Lie algebra. Pick a Borel subalgebra b � g

(sometimes denoted b�), and an opposite Borel subalgebra b�. Their intersection b� X b�, which

is a Cartan subalgebra, denoted t. Write n and n� for the unipotent radicals of b and b�; we have

n � rb, bs, and

g � n� ` t` n�.

The action of t splits g into eigenspaces

g � t`
à
αPΦ

gα,

and the nonzero eigenvalues Φ � t� are called roots. They consist of positive and negative roots

Φ� � Φ, defined as the eigenvalues of the action of t on n�. A positive root which is not the sum
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of any two other positive roots is called a simple root, write tαiu � Φ� for these.

Their Z span of the roots forms a lattice called the root lattice ∆ � t�, and the cones associated

to Φ� are denoted ∆�. The simple roots form a basis for ∆.

B.1.2. For example, g � sl2 splits into three one dimensional eigenspaces

e h f

and the there is one irreducible representation of sl2 for each dimension n ¥ 0, whose one dimen-

sional h-eigenspaces are

�n �n� 2 nn� 2

� � �

where we have labelled the eigenvalue (or weight) and represented the action of e and f on the

eigenspaces by left and right moving arrows. The roots are Φ � t�2u and the root lattice is

∆ � 2Z.

B.1.3. Returning to the general case, dim gα � 1 for any root α. By the Jacobson Morozov

theorem there is a unique copy of sl2

sl2,α � ktfα, hα, eαu � g

where fα and eα lie in the eigenspaces g�α and gα. Requiring that αphαq � 2 uniquely determines

these three generators, and implies

αphβq � weight of gβ under the action of sl2,α on g.

The set of the hα are called coroots and are denoted Φ_ � t, and their Z span is the coroot lattice

∆_ � t.

B.1.4. The Cartan bilinear form on ∆ is defined on positive roots by

A : ∆�∆ Ñ Z pα, βq ÞÑ αphβq

and extended it to all of ∆ by linearity. It is not symmetric in general. With respect to the basis of

simple roots αi, it is represented by the matrix Aij � Apαi, αjq, which one can show is an example

of
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Definition B.1.5. A generalised Cartan matrix is an integral matrix Aij with Aii � 2, Aij ¤ 0

for i � j, and Aji � 0 whenever Aij � 0.

Indecomposable generalised Cartan matrices split into three classes:

1. Finite if all principal minors are positive.

2. Affine if all of its proper principal minors are positive and detA � 0.

3. Indefinite otherwise.

If g is a simple finite dimensional Lie algebra, its Cartan matrix has finite type, and conversely

Theorem B.1.6. There is a bijection between simple finite dimensional Lie algebras and inde-

composable generalised Cartan matrices which have finite type.

B.2 Kac Moody algebras

The inverse construction producing a Lie algebra from Cartan matrix works for any n� n matrix

A. The resulting Lie algebra gpAq is called the Kac-Moody Lie algebra attached to A.

B.2.1. First, we take the Cartan tpAq, which is a vector space of dimension

dim tpAq � n� corankA,

along with subsets th1, ..., hnu � tpAq and tα1, ..., αnu � tpAq� with αiphjq � Aij. There is a

unique choice of this data up to isomorphism. Then we form the Lie algebra g0pAq with so-called

“Chevalley” generators ei, hi, fi and relations

rhi, hjs � 0, rhi, ejs � αjphiqej,

rei, fjs � δi,jhi, rhi, fjs � �αjphiqfj.

Writing r for its maximal ideal, the Kac Moody algebra is gpAq :� g0pAq{r. When A is indecom-

posable of finite type, r is generated by the Serre relations for i � j:

padeiq
1�Aijej � padfiq

1�Aijfj � 0.

B.2.2. Write n (or n�) and n� for the subalgebras generated by the ei and the fi, respectively.

For all Kac Moody Lie algebras g � gpAq we have

g � n� ` t` n�. (B.1)

Similarly, we can write b and b� for the direct sum of n and n� with t.
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B.2.3. A well behaved category of representations is category O. Its objects are representations V

on which t acts diagonalisably with finite dimensional weight spaces, and so that the set of weights

with nonzero eigenspaces is contained in the downward closure of a finite set λ1, ..., λs P t�.

The Verma module of weight λ P t� is

Mλ :� Ind
Upgq
Upbqkλ

where we have composed b Ñ b{n � t to get a one dimensional representation of b. Its simple

quotient is written Lλ. It is easy to check that both live in category O.

Theorem B.2.4. [Kac, 9.3] The Lλ are the irreducible representations in O.

B.2.5. The Cartan matrix is related to the the Killing form. If g is finite dimensional it is the

invariant bilinear form defined by

κ : g� g Ñ k px, yq ÞÑ trgpxyq

and if g is simple it is the unique such form up to scaling. For any matrix A which is symmetrisable

(the product DS of an invertible diagonal matrix D and a permutation matrix S), the Kac Moody

algebra gpAq also carries an invariant bilinear form by [Kac, 2.2]. Its restriction to the Cartan

determines the Cartan matrix

Apαi, αjq � 2
pαi, αjq

pαi, αiq
.

When g � sl2 we have ph, hq � 8, pe, fq � 4 and other products are zero. Its Cartan matrix is

A � p2q.

B.3 Affine Lie algebras

The Lie algebras of loop spaces LG give rise to Kac Moody algebras of affine type. In physics one

studies projective representations of LG, or equivalently representations of a central extension of

LG.

B.3.1. The loop algebra of a finite dimensional Lie algebra g is

Lg :� gbk krt, t
�1s.

Writing xn � x b tn, the Lie algebra structure is given by rxn, yms � rx, ysn�m. Fix an invariant

bilinear form κ : g� gÑ k. The affine Lie algebra is the central extension

0 Ñ kc Ñ pg Ñ Lg Ñ 0,
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and having choosing a splitting as a vector space, its Lie bracket is

rxn, yms :� rx, ysn�m � nδn�m,0κpx, yqc.

B.3.2. Central extensions are classified by H2pLg, kq. Attached to κ we get the residue two cocycle

fptq ^ gptq ÞÑ Rest�0κpf
1ptq, gptqqdt

and pg is the resulting central extension.

B.3.3. When g is simple we can (non-centrally) extend once more to get a Kac Moody vertex

algebra

0 Ñ pg Ñ pg1 Ñ kd Ñ 0

where rd,�s acts on pg as tBt, so in particular xn is an eigenvector with eigenvalue n.

Proposition B.3.4. [Kac, §7.4] pg1 � gp pAq is a Kac Moody algebra with Cartan matrix

pA �

�� 2 �θphjq

�αiphθq Aij

�
.
Its Cartan subalgebra is

tp pAq � t` kc` kd,

within which the simple coroots are h0 � c � hθ along with the simple coroots hi of t. Likewise,

using the the dual basis tp pAq� � t� ` kc� ` kd� we have simple root α0 � d� � θ, from which we

can deduce the form of the Cartan matrix above. Writing ei, fi for the Chevalley generators of g,

the Chevalley generators of pg1 are

Ei � ei, Fi � fi, E0 � eθ b t, F0 � fθ b t�1

where eθ P g�θ and fθ P gθ form part of an sl2 triple where θ is the highest root of g.

One usually denotes Λ � c�.

B.3.5. For instance, in the psl2 case the Chevalley generators are e, f�1 � f b t�1 and e1 � eb t, f .

Thus, we can draw the weight space decomposition of psl2 as

� � �� � �

f�1

ee1

f

This picture is a subset of the two dimensional space t�`kd� � tp pA1q with horizontal and vertical

axes given by the α0 and α1 coefficients.
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B.3.6. The triangular decomposition (B.1) for affine vertex algebras given by the Chevalley gen-

erators in equation pg � pt�1grt�1s ` n�q ` pt` kcq ` pn� ` tgrtsq.

In the psl2 case, this corresponds in the root space picture to negative, zero and positive values of

the horizontal coordinate.

B.3.7. Representations. Since c P pg is central, it acts on any irreducible representation of pg
by a scalar, which is called the level of that representation. Thus irreducible representations are

parametrised by levels ℓ P k and a weight λ P t� of the finite dimensional Lie algebra.
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Appendix C

Fundamental classes and the exponential

map

This appendix collects a lot of the technical machinery we will need. If s : Z ãÑ X is closed

embedding of Artin stacks, in the first two sections we construct the cohomological exponential

map

H
r
pexpsq : H

r
pZ{Xq Ñ H

r
pZ{NZ{Xq

and explain how it interlaces to the bivariant Euler classes (Definition 3.2.4), and, when it is

defined, fundamental classes (Definition C.4.1)

�epZ{Xq : H
r
pZ{Xq Ñ H

r
pXq, �rZ{Xs : H

r
pZq Ñ H

r
pZ{Xq,

with epZ{Nsq and rZ{Nss.

We also give relative statements of these results. In practice, often the closed embedding s is not

quasismooth but the individual spaces Z and X are (over some common base), and so although

the fundamental class rZ{Xs is not defined, rZs and rXs are. In this case, we say how the

cohomological exponential map interlaces rZs and rXs.

In the last two sections, we record the construction of fundamental classes and umkehr maps for

the reader’s convenience.

C.1 Toy model: topological case

If i : Z Ñ X is a closed embedding of manifolds, we can define the exponential map on an open

neighbourhood of Z inside the normal bundle Ni
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Ni

Z

X

exp

By the tubular neighbourhood theorem, exp gives is an open immersion of manifolds. If exp were

to extend to the whole normal bundle, we would get a fundamental class

rNi{Xs P H0pNi{Xq,

multiplication by which is compatible with Euler and fundamental classes

H
r
pZq H

r
pZq H

r
pZq H

r
pZq

H
r
pZ{Xq H

r
pZ{Niq H

r�cpZ{Xq H
r�cpZ{Niq

�epZ{Xq �epZ{Niq [Z{X] [Z{Ni]

�[Ni{X]

�
�[Ni{X]

�

(C.1)

Here c is the real codimension of the closed embedding.

C.2 Cohomological exponential map

In algebraic geometry we cannot define an exponential map. Fortunately, we can in algebraic

geometry define analogues of the horizontal arrows in (C.1).

Let s : Z Ñ X be any map for which deformation to the normal complex is defined, e.g. closed

embeddings of finite presentation or quasismooth maps. Define the cohomological exponential map

exp : H
r
pZ{Nsq Ñ H

r
pZ{Xq

by composing the two dotted arrows

H
r
pZ{Xq H

r
pZ �Gm{X �Gmq

H
r
pZ{X �A1q H

r
pZ �A1{X �A1q

[X{X�A1]

�
[Z{Z�A1]

�

j�
X�A1

and

H
r
pZ �Gm{X �Gmq H

r
pZ{Nsq

H
r
pZ �A1{Dsq H

r
pZ{Dsq

[Ns{Ds]j�Ds

[Z{Z�A1]

�

The first dotted map is defined by picking a retraction of j�
X�A1 , so the the map is independent

of this choice. Note that Ns Ñ Ds is the pullback of 0 Ñ A1, so is quasismooth and has a

fundamental class.
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It is easy to show that

Proposition C.2.1. If i : Z Ñ X is a closed embedding of finite presentation (resp. and is

quasismooth), we have the left (resp. and the right) commuting diagrams

H
r
pZq H

r
pZq H

r
pZq H

r
pZq

H
r
pZ{Xq H

r
pZ{Niq H

r�cpZ{Xq H
r�cpZ{Niq

�epZ{Xq �epZ{Niq �[Z{X] �[Z{Ni]

exp exp

(C.2)

Proof. Follows from the compatibility of Euler and fundamental classes, and for the right diagram,

the composition rule for fundamental classes.

In particular,

Corollary C.2.2. (Cohomological tubular neighbourhood theorem) If Z and X are smooth, exp

is an isomorphism. More generally, if Z Ñ X and Z Ñ Ni are specialised, then exp is an

isomorphism modulo torsion.

Moreover,

Proposition C.2.3. If i : Z Ñ X is a closed embedding of finite presentation over a base B.

Then if Z,X are quasismooth over B, we have a commuting diagram

H
r
pZ{Bq H

r
pZ{Bq

H
r�cpZ{Xq H

r�cpZ{Niq

�[X{B]

exp

�[Ni{B] (C.3)

Note that the assumptions of the Proposition imply that Ni Ñ Z (and so Ni Ñ B) is quasismooth.

Finally, we note a functoriality statement

Proposition C.2.4. If s is any map as in (C.2), then any pullback

Z X H
r
pZ{Nsq H

r
pZ{Xq

gives commuting diagram

Z X H
r
pZ{Nsq H

r
pZ{Xq

f

s

f

exps

s exps

f� f�

where we have denoted f : Ns � Ns �Z Z Ñ Ns.

Proof. Follows since the construction of Ds is stable under arbitrary base change of X.
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C.3 Borel Moore variant

Let s : Z Ñ X be any map defined over base space B for which deformation to the normal complex

is defined, e.g. closed embeddings of finite presentation or quasismooth maps.

Assume that the localised pushforward along i : Ns Ñ Ds vanishes:

i� : H
r
pNs{Bqloc Ñ H

r
pDs{Bqloc.

Define the (Borel Moore) cohomological exponential map

exp : H
r
pX{Bqloc Ñ H

r
pNs{Bqloc

by composing the two dotted arrows

H
r
pX{Bqloc H

r
pX �Gm{B �Gmqloc

H
r
pX{B �A1qloc H

r
pX �A1{B �A1qloc

[B{B�A1]

�
[X{X�A1]

�

j�
B�A1

and

H
r
pX �Gm{B �Gmqloc H

r
pNs{Bqloc

H
r
pDs{B �A1qloc H

r
pDs{Bqloc

j�
B�A1

[B{B�A1]

�

[Ns{Ds]

Our assumption allows us to take a section of j�
B�A1 as before.

C.3.1. Assume that Z,X are quasismooth over a common base. ThenDs Ñ X�A1 is quasismooth

and we have a commuting diagram

H
r
pZ{Bqloc H

r
pX �A1{Bqloc H

r
pX �Gm{Bqloc

H
r
pNs{Bqloc H

r
pDs{Bqloc H

r
pX �Gm{Bqloc

0

[Ns{Z]� [Ds{X�A1]�

�1

i� j� �1

and the following are equivalent: i� � 0, j� is an injection, or either vertical map is an isomorphism.

C.4 Virtual fundamental classes

We recap the construction of the (virtual) fundamental class from [Kh]. Let f : X Ñ Y be a

quasismooth map, which gives the deformation to the normal complex sitting in a diagram of

stacks over Y :
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Y �Gm DX{Y NX{Y
j i

Consider the natural transformation ψ � pDX{Y �p�qp
!
DX{Y

. If we replace DX{Y with the trivial

family Y �A1,

Y �Gm Y �A1 Y
j i

we likewise get a natural transformation ψtriv. Then as endofunctors of ShpY q we have

ψtrivpi�i!q � id ψpi�i!q � pNX{Y �p
!
NX{Y

� f�f !x2dy

where we have used that NX{Y Ñ X is smooth of dimension d, and

ψtrivpj�j!q � pY�Gm�p
!
Y�Gm

� ψpj�j!q.

We now argue as for the construction of the cohomological exponential map, noting that for the

trivial family, in the Borel Moore distinguished triangle

id ñ j�j!
BY�A1

ñ i�i!r1s

the boundary map admits a canonical section γY�A1 , see [DJK, 3.2.2]. Thus we have

ψtrivpi�i!q
ψtrivpγY�A1 q

ñ ψtrivpj�j!r�1sq � ψpj�j!r�1sq
ψpBDX{Y

q
ñ ψpi�i!q. (C.4)

Definition C.4.1. Let f : X Ñ Y be a quasismooth map of relative dimension d. The funda-

mental class map is the natural transformation induced by (C.4) and pf�, f�q adjunction:

f� ñ f !x2dy.

Taking cohomology, the fundamental class rX{Y s P H�2dpX{Y q is the the image of 1 P H0pY q.

Theorem C.4.2 ([Kh]). Let f : X Ñ Y be a quasismooth map of derived Artin stacks. Then

1) Under any pullback of derived stacks

Z W

X Y

g

we have rZ{W s � g�rX{Y s.

2) Given two quasismooth maps X Ñ Y Ñ Z, we have rX{Zs � rX{Y s � rY {Zs.

3) (Purity) If f is smooth, the fundamental class f� ñ f !x2dy is an equivalence.
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Lemma C.4.3. If f : X Ñ Y is smooth of relative dimension d, then the cup product

H
r
pW {Xq

�
Ñ H

r�2dpW {Y q α ÞÑ α � rX{Y s

is an isomorphism for any map g : W Ñ X.

Proof. It follows from purity that

H
r
pW, g!kXq � H

r
pW, g!f�kY q � H

r�2dpW, g!f !kY q.

C.4.4. The fundamental class induces a map f�kY Ñ f !kY x2dy, and one can show that the

fundamental class map is given in terms of it using the projection formula:

f�p�q � f�p�q b f�kY Ñ f�p�q b f !kY x2dy Ñ f !pp�q b kY qx2dy � f !p�qx2dy.

C.5 Umkehr maps

C.5.1. Cohomology version. For any map f : X Ñ Y and any F P ShpY q, recall that we can

always define the pullback map

f� : H
r
pY,Fq Ñ H

r
pY, f�Fq

coming from the natural transformation id ñ f�f�. However, if f is quasismooth and proper of

dimension d we can use the fundamental class to define the wrong-way pushforward (or umkehr)

maps

f� : H
r
pX, f�Fq Ñ H

r�2dpY,Fq

coming from the natural transformation

f�f�
rX{Y s
ñ f�f !x2dy � f!f

!x2dy ñ idx2dy.

It is easy to see that both pushforward and pullback maps are functorial with respect to compo-

sition of maps. Next, because of the compatibility of fundamental classes with pullback squares,

we have

Lemma C.5.2. For any pullback square

X Y

X Y

f

g g

f

such that f (and hence f) is proper and quasismooth, g�f� � f�g
� as maps H

r
pZq Ñ H

r
pY q.
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C.5.3. Borel Moore version. Likewise, for any proper map f : X Ñ Y and any F P ShpY q we

have a map

f� : H
r
pX, f !Fq Ñ H

r
pY,Fq

coming from the natural tranformation f!f
! ñ id. If f is also quasismooth (and not necessarily

proper) we get the umkehr pullback map

f� : H
r
pY,Fq Ñ H

r�2dpX, f !Fq

coming from the natural transformation

id ñ f�f�
rX{Y s
ñ f�f !x2dy.

C.5.4. This gives the usual pushforward and pullback maps for cohomology and Borel Moore

homology, e.g. [BM].
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numdam.org/item/AST_2007__315__1_0/

[AB] Atiyah, M.F. and Bott, R., 1984. The moment map and equivariant coho-

mology. Topology, 23(1), pp.1-28. https://www.math.stonybrook.edu/~mmovshev/

MAT570Spring2008/BOOKS/atiyahbott_moment.pdf

[AG] Arinkin, D. and Gaitsgory, D., 2015. Singular support of coherent sheaves and the geomet-

ric Langlands conjecture. Selecta Mathematica, 21(1), pp.1-199. https://arxiv.org/abs/

1201.6343

[Bi] Bialynicki-Birula, A., 1973. Some theorems on actions of algebraic groups. Annals of math-

ematics, 98(3), pp.480-497.

[BB] A. Beilinson, J. Bernstein, Localisation de g-modules, C.R. Acad. Sci. Paris, 292 (1981),

15-18, MR82k:14015, Zbl 0476.14019

[Beh] Behrend, K., 1996. Gromov-Witten invariants in algebraic geometry. Invent. Math. 127

(1997), no. 3, 601–617. https://arxiv.org/abs/alg-geom/9601011

[Ber] Bernstein, J., 1983. Algebraic theory of D-modules, lecture notes. https://gauss.math.

yale.edu/~il282/Bernstein_D_mod.pdf

[BD1] Beilinson, A. and Drinfeld, V., 1991. Quantization of Hitchin’s integrable sys-

tem and Hecke eigensheaves. https://math.uchicago.edu/~drinfeld/langlands/

QuantizationHitchin.pdf

[BD2] Beilinson, A., Drinfeld, V. and Drinfeld, V.G., 2004. Chiral algebras (Vol. 51). American

Mathematical Soc..

[BGT] Blumberg, A.J., Gepner, D. and Tabuada, G., 2013. A universal characterization of higher

algebraic K-theory. Geometry & Topology, 17(2), pp.733-838. https://arxiv.org/abs/

1001.2282

[BK] Bakalov, B. and Kac, V.G., 2002. Field algebras. Int. Math. Res. Not. 2003, no. 3, 123–159.

https://arxiv.org/abs/math/0204282

[BLL] Beem, C., Lemos, M., Liendo, P., Peelaers, W., Rastelli, L. and Van Rees, B.C., 2015.

Infinite chiral symmetry in four dimensions. Communications in Mathematical Physics,

336(3), pp.1359-1433. https://arxiv.org/abs/1312.5344

[BM] Borel, A. and Moore, J.C., 1960. Homology theory for locally compact spaces. Michigan

Mathematical Journal, 7(2), pp.137-159.

190

http://www.numdam.org/item/AST_2007__315__1_0/
http://www.numdam.org/item/AST_2007__315__1_0/
https://www.math.stonybrook.edu/~mmovshev/MAT570Spring2008/BOOKS/atiyahbott_moment.pdf
https://www.math.stonybrook.edu/~mmovshev/MAT570Spring2008/BOOKS/atiyahbott_moment.pdf
https://arxiv.org/abs/1201.6343
https://arxiv.org/abs/1201.6343
https://arxiv.org/abs/alg-geom/9601011
https://gauss.math.yale.edu/~il282/Bernstein_D_mod.pdf
https://gauss.math.yale.edu/~il282/Bernstein_D_mod.pdf
https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
https://arxiv.org/abs/1001.2282
https://arxiv.org/abs/1001.2282
https://arxiv.org/abs/math/0204282
https://arxiv.org/abs/1312.5344


[BMP] Bordemann, M., Makhlouf, A. and Petit, T., 2005. Déformation par quantification
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groups. Journal de Mathématiques Pures et Appliquées, 131, pp.290-325. https://arxiv.

org/abs/1805.11558

[Kac] Kac, V.G., 1990. Infinite-dimensional Lie algebras. Cambridge university press.

[Kas] Kassel, C., 1984. Kähler differentials and coverings of complex simple Lie algebras extended

over a commutative algebra. Journal of Pure and Applied Algebra, 34(2-3), pp.265-275.

[Kh] Khan, A.A., 2019. Virtual fundamental classes of derived stacks I. https://arxiv.org/

abs/1909.01332

[KL] Kazhdan, D. and Lusztig, G., 1993. Tensor structures arising from affine Lie algebras. I.

Journal of the American Mathematical Society, 6(4), pp.905-947.

195

https://www.uni-due.de/~hm0002/Artikel/CohNote_v1a.pdf
https://www.uni-due.de/~hm0002/Artikel/CohNote_v1a.pdf
https://arxiv.org/abs/2010.01127
https://arxiv.org/abs/hep-th/9609017
http://faculty.sfasu.edu/hubbardke/vc.pdf
http://faculty.sfasu.edu/hubbardke/vc.pdf
https://arxiv.org/abs/math/0503029
https://people.maths.ox.ac.uk/joyce/hall.pdf
https://arxiv.org/abs/2111.04694
https://arxiv.org/abs/1805.11558
https://arxiv.org/abs/1805.11558
https://arxiv.org/abs/1909.01332
https://arxiv.org/abs/1909.01332


[Koc] Kock, J., 2004. Frobenius algebras and 2-d topological quantum field theories (No. 59).

Cambridge University Press.

[Kon] Kontsevich, M., 2003. Deformation quantization of Poisson manifolds. Letters in Mathe-

matical Physics, 66(3), pp.157-216. https://arxiv.org/abs/q-alg/9709040

[KR] Khan, A.A. and Rydh, D., 2018. Virtual Cartier divisors and blow-ups. arXiv preprint

arXiv:1802.05702. https://arxiv.org/abs/1802.05702

[KS] Kontsevich, M. and Soibelman, Y., 2010. Cohomological Hall algebra, exponential Hodge

structures and motivic Donaldson-Thomas invariants. https://arxiv.org/abs/1006.

2706

[KV1] Kapranov, M. and Vasserot, E., 2006. Formal loops IV: Chiral differential operators. arXiv

preprint math/0612371. https://arxiv.org/abs/math/0612371

[KV2] Kapranov, M. and Vasserot, E., 2019. The cohomological Hall algebra of a surface and

factorization cohomology. https://arxiv.org/abs/1901.07641

[KW] Kac, V.G. and Wakimoto, M., 2017. A remark on boundary level admissible represen-

tations. Comptes Rendus Mathematique, 355(2), pp.128-132. https://arxiv.org/abs/

1612.07423

[La] Latyntsev, A., 2021. Cohomological Hall algebras and vertex algebras. arXiv preprint

arXiv:2110.14356. https://arxiv.org/abs/2110.14356

[Li1] Li, H., 2004. Vertex algebras and vertex Poisson algebras. Communications in Contempo-

rary Mathematics, 6(01), pp.61-110. https://arxiv.org/abs/math/0209310

[Li2] Li, H., 2006. Constructing quantum vertex algebras. International Journal of Mathematics,

17(04), pp.441-476. https://arxiv.org/abs/math/0505293

[LO1] Laszlo, Y. and Olsson, M., 2008. The six operations for sheaves on Artin stacks I: Finite
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