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0 . 1 Abst ract 
In this thesis, we study the solutions of a first-order differential equation on 
manifolds with holonomy Spin(7). This differential equation is seen to be 
analogous to the equations for a connection on a 4-manifold being a self-
dual or anti-self-dual instanton. The solutions of the differential equation 
are shown to be solutions of the Yang-Mills equations, and we will call them 
Spin(7) instantons. 

A variety of elementary results about these Spin(7) instantons are proven, 
including an energy bound on an instanton and an index-theoretical calcu-
lation of the dimension of the moduli space at a generic point. We also 
investigate the relationship of Spin(7) connections to the more well-known 
Hermitian-Yang-Mills connections on a complex manifold with complex di-
mension 4. 

We prove a non-existence result concerning finite-energy Spin(7) instan-
tons on R8 , using various analytical results of Uhlenbeck. The thesis then 
goes on to consider the phenomenon of "bubbling" of a family of Spin(7)
instantons, concluding, under mild assumptions, that "bubbling" will occur 
around a Cayley submanifold of the Spin(7)manifold. 

Finally, in the concluding three chapters, we construct a non-trivial ex-
ample of a Spin(7)instanton on a compact 8-manifold with holonomy Spin(7)
This is accomplished using a gluing construction, and successive improvement 
of an initial "almost Spin(7) instanton".. 
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Chapter 1 

Introduction 

The study of connections which are extrema of the Yang Mills functional 

on a compact 4-manifold M is an area which has revolutionised the subject 
of 4-dimensional differential geometry. There is little doubt that the study 
of the resulting self-dual and anti-self-dual instantons has aided geometers 
greatly in their study o f the underlying manifolds. O n e of the reasons for 
the existence of solutions to the instanton problem is that the 2-forms on a 
4-manifold split up into two S O4)-invariant 3-dimensional components: the 
self-dual and the anti-self dual2-forms under the Hodge o p e r a t o r Thus the 
problem of finding a connection lying within one of these two components, 
together with a gauge fixing condition becomes an elliptic problem. 

The construction of compact examples of holonomy Spin(7) [J2) opens 
the question of the behaviour of extrema of the Yang-Mills functional on such 
manifolds. In 4 dimensions, the 3-dimensional constraint that the curvature 
of a connection be self-dual (or anti-self-dual) together with the !-dimensional 
gauge fixing give rise to the possibility that the operator taking a connection 
1-form to the projection of its curvature, together with a gauge fixing map 
being elliptic, as the operator acts between spaces of the same dimension. 
Similarly, if we consider a ?-dimensional curvature constraint on a connection 
on an 8-manifold, then this, together with a gauge-fixing condition has the 
possibility of having an elliptic linearisation. 

These "Spin(7)instantons" (as I will call them throughout the thesis) will 
clearly have many properties analogous to those of self-dual and anti-self-dual 
instantons, although they will undoubtedly have many new characteristics 
also. 
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Note t'hat they should not be confused with instantons on manifolds of 
other holonomy group with gauge group Spin(7); the instantons I shall call 
Spin(7) instantons will have gauge group S U ( 2 ) but will lie on a compact 
manifold with holonomy Spin(7). 

The first two chapters of th is thesis (i.e. this one and the following one) 
are meant as an introduction. This chapter gives a brief description of each of 
the chapters of this thesis, including their aims, and the next contains back-
ground mathematics which is used in the later chapters, and which I believe 
is of use collected together. The topics covered in it are the holonomy group 
Spin(7), Yang-Mills instantons, Chern-Weil theory, some analysis, Cayley
submanifolds and spinors. All of these topics hold central roles in this thesis, 
and some familiarity with them is necessary to understand much of what 
follows. 

The third chapter contains the analogous results for Spin(7) instantons of 
some elementary r e s u l t s on 4-manifold instantons. These include an a priori 
energy bound, an index-theory calculation of the dimension of the moduli 
space of Spin(7) instantons and some analysis of the moduli space. It also 
contains an interesting (in my opinion) result on the relationship between 
Spin(7) instantons on manifolds with holonomy SU(4),and the Hermitian-
Yang-Mills connections on the manifold. (We may consider Spin(7) instan-
tons on such a manifold as SU(SU(4)4) C Spin(7) .) At first, it appears that the 
condition for a connection to be a Hermitian-Yang-Mills connection is far 
stronger than the condition for its being a Spin(7) instanton. However, un-
der the existence of a single Hermitian-Yang-Mills connection on the vector 
bundle over the manifold, the two conditions become equivalent. 

The fourth chapter, however, is of a different flavour, in that rather than 
dealing with similarities between 4-manifold instantons and Spin(7) instan-
tons, it deals with one of the differences. The finite energy instanton centred 
at the origin of is a well-known ingredient in the study of 4-manifold 
instantons, and so we may at first try to construct a similar instanton on 
R 8 . The main theorem of this chapter, however, is that such a construction 
is impossible. It does this by considering the asymptotic behaviour of any 
finite energy instanton, and then using analytic results of Uhlenbeck. 

O n a 4-manifold, the phenomenon of a family of instantons "bubbling" 
around a point helps us investigate the limit points of the moduli space of 
anti-self-dual instantons. Chapter 4 makes it look unlikely that bubbling 
around a point occurs on the manifolds with holonomy Spin(7), at least if 
we restrict our attention to the gauge group SU(4). Chapter 5 deals with 
the limit of families of Spin(7) instantons. Assuming a result of Nakajima 
[Nak, p.389], we show that the bubbling occurs around a space of Hausdorff 
dimension 4 in the 8-manifold. We further show that if this is a submanifold, 
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then it must be a Cayley submanifold. Thus we suggest an equivalence 
between the role of points in the study of 4-manifold instantons, and the role 
of Cayleysubmanifolds in the theory of Spin(7) instantons. It also leads me 
to conjecture that the moduli space of Spin(7) instantons on a manifold of 
holonomy Spin(7) will have a boundary very closley related to the moduli 
space of Cayleysubmanifolds of the 8-manifold. 

The proof running through the final three chapters (Chapters 6-8) is that 
of the existence of a Spin(7) instanton on a particular manifold, constructed 
by Joyce [J2]. Note that though the proof applies only to this specific mani-
fold, it is easily adjusted to cover many other siroliarly constructed manifolds 
with holonomy Spin(7), and the analytic part needs no adjustment; it may 
be applied to any such case. This proof is split into three chapters; the 
first consisting of the geometric component of the argument, the second con-
taining analytic estimate for the linearisation of the problem, and the final 
chapter deals with the construction, via an iterative sequence, of the solu-
tion to the instanton problem. It uses the geometric construction descibed in 
Chapter6, and the analytic bounds obtained in Chapter7. The idea behind 
the construction is analogous to Taubes' gluing construction [Tau], in that 
we construct an almost Spin(7) instanton (i.e one in which the component 
of the curvature lying in the 7-dimensional Spin(7)-invariant component of 
the 2-forms is small) and then make successive amendments to this, getting, 
in the limit, a true Spin(7) instanton. O fcourse, Chapters 4 and 5 suggest 
that though Taubes glues his instanton around a point, we may well have 
more success in the 8-manifold case if we attempted to glue around a Cay-
ley submanifold. This indeed does prove to be the case. The key idea in 
Chapter7 is the choice of Sobolevspace with which to work. We use it is 
the smallest space in which we may apply the iterative step in an elementary 
manner. The other advantage of using rather than is that setting p = 2 
ensures that we still have some notion of £2-orthogonality to work with, a n d
may split any function up into the relevant orthogonal components. 

Thus we finish with, to the best of my knowledge, the first known example 
of a Spin(7) instanton on a manifold with holonomy Spin(7). 

Finally, before I begin, a point on the notation I intend to use. I will 
use to denote a constant independent of any parameters being used. It 
will not necessarily denote the same constant throughout the thesis, but I 
do not think this should cause any confusion, and it should prevent needless 
subscripts, a s for example, isn't particularly pleasant or informative. 
Those constants whose value is of importance will be labelled separately. 
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Chapter 2 

Introductory Material 

Before embarking upon the new material in this thesis, I think it would 
be helpful if I dealt with some introductory material which will be used 
throughout the thesis. O fcourse, this material is to be found elsewhere, but 
I believe the convenience of collecting it together in this background chapter 
justifies its presence here. 

2 .1 The Holonomy Group Spin(7) 
In the list of the possible holonomy groups for a non-symmetric, irreducible 
riemannian manifold, there are two exceptional cases: G2 and Spin(7) [Berg]. 
(A description of their behaviour as Lie Groups may be found in [Sal].) It is 
the latter of the two which I hope to study in this dissertation and in this 
chapter I will give a few of its basic properties. 

T here are several ways of defining the group Spin(7), often involving 
octonians. However, I believe that one of the more natural, and certainly 
one of the more useful, definitions, is the one given below. 

Choose ... to be an oriented, orthonormal basis of R 8 (with the 
metric induced from the natural one of R 8). 

Define a form on R 8 by 

- + + 
+ 
+ 

+ - - + 
(It is perhaps worth noting at this point that is self-dual i.e. 
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We may define 5pin(7) as the subgroup of G£(8, R 8 ) preserving This 
definition is equivalent to the many other definitions of the Lie group 5pin(7), 
including the more usual one as the double cover of 50(7). Note that since 
the metric may be reconstructed from the 4-form n0 ,[J2, p. 510] then we have 
5pin(7) C 50(8). Now let M be an 8 dimensional manifold and consider 
AM, defined as a sub-bundle of 4T* M by 

AMm = E (A4T*M)m: an isomorphism TmM R 8 , t a k i n g to 

Now a smooth section of AM gives rise to a 5pin(7) structure, and where 
no confusion will occur, we will call it a 5pin(7) structure. 

If is a 5pin(7) structure forM, then induces a natural metric, g, on M 
and thus a natural Levi-Civita connection We say that is a torsion-free 
5pin(7) structure if = However, we do have that is determined 
by and thus a 5pin(7) structure is torsion free if and only if it is closed. 
[Sal, p. 176) 

O f course, as with other holonomy groups, the action of 5pin(7) on 
Ak(R 8)* leads to the splitting of Ak(R 8)* into the orthogonal direct sum 
of irreducible 5pin(7) representations. Similarly, M splits into an or-
thogonal direct sum of sub-bundles, with irreducible 5pin(7) representations 
as fibres. 

These are [J2, p. 511) 

A1T*M 
A1T*M 
A3 T*M 
A4T4 M 

and sinceA8-i = as 5pin(7) representations, the isomorphism being given 
by the Hodge star, we automatically have the splitting for A5T* M,A6T* M and A7T*M. 

We shall denote the orthogonal projection from M to by or 
more usually, when no confusion will occur, by 

5pin(7) contains 4 connected subgroups that are possible holonomy groups 
for 8-dimensional manifolds in Berger's classification, that act non-trivially 
on nonzero vectors. These are 5pin(7) itself, 5U( 4), 5p(2) and 5U(2) x 
5U(2). [J2, p. 548) 

Note that if M is a compact, simply-connected 8-manifold, with a 
torsion-free 5pin(7) structure with corresponding metricg, then Hol(g) is one 
of the four groups listed above, and which of these it is may be determined 
by the genus of the manifold, defined in [Hirz, p.l97). 
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or 

1 H ol(g) = 
2 Hol(g) = 
3 Hol(g) = 
4 H ol(g) = x 

may be defined with either of the following 2 equations 

24A(M) = -1 + b1 + b3 + 
where p1(M),p2 (M) are the first and second Pontrjagin numbers of M and 
bi is the i th Betti numbers (i.e. the dimension of Hi(M, R)) and 
are the dimensions of the self-dual and anti-self-dual subspaces of H4(M, R) 
respectively. 

2.2 Yang-Mills Instantons 
It is in 4 dimensions that the study of Yang-Mills connections has been most 
developed. 

T his is due to a convenient splitting of the 2-forms into two three dimen-
sional subspaces. 

For consider the Hodge star operator, *: A4-i and in particular, its 
action on the 2-forms, * : A2 . 

T his satisfies *2 = where id is the identity operator. Thus A2 splits 
up into two * -eigenspaces, corresponding to + 1 and -1. These are called 
and respectively. 

Thus 2 = and we have 

= 

the corresponding splitting of sections of the above bundles. 
This splitting extends to bundle valued 2-forms, so that we have 

gE is a subbundle of the bundle of endomorphisms of E, as defined in [DK, 
p.32]. 
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O fcourse, the curvature of a connection on a bundle E over a 4-manifold 
X, FA is an element of il2(QE), so that we have FA = Ft + F;t) with Ft E 
n+(QE) and F;t E n-(QE)· 

Now we define a connection A on a bundle E to be self-dual (or, respect-
ively, anti-self-dual) if F;t = 0 (or, respectively, Fj = 0). 

Now, since the splitting of i12 (QE) is orthogonal, we have, for any con-
nection A 

where 11-11 denotes an £2 norm. 
If E is a Hermitian bundle, we also have 

This can be shown either by using Schur's lemma, or by observing that 
Tr(e) = -lel2 on the Lie algebra U(n) of skew adjoint matrices. (DK, p.40] 

However J Tr( Fl) is an invariant polynomial in the curvature of a connec-
tion, and thus, by Chern-Weil theory, may be written as a certain polynomial 
in the Chern classes of the bundle. 

In this case 

J Tr(Fl) = (81r2cz(E)- 47r2 c1(E?, (M]) = 81r2K-(E). 

Thus IIF;tll2 - IIF1W = 81r2K-(E) and so self-dual and anti-self-dual con-
nections are minima for the Yang-Mills functional 

(This is clear from the two equations 

Thus we see that 

IIFill 2 -IIFtll2 = 87r2K-(E), 

IIF;tll 2 + IIFtll 2 
= IIFAII 2

-

IIFAII 2 = 87r2K-(E) + 2IIFtll 2
, 

and so that if Fj = 0, then the Yang-Mills functional is at a minimum. A 
similar method shows that if F;t = 0, then the same is true.) 

In the Spin(7) case, we do not have such a natural splitting of the 2-forms 
involving the Hodge star operator, as of course, * behaves as an involution 
with respect to the 4-forms in the 8 dimensional case. 
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There i s , however, a natural definition of Yang-Mills type instantons on 
Spin(7) 8-manifolds. 

As we have seen, the 2-forms split into two irreducible Spin(7) represent-
ations, A7 and A21· 

The most natural constraint to apply to a "Spin(7) type Yang-Mills in-
stantons" is that rr7 (FA) = 0, that is, the part of the curvature in A1 disap-
pears. 

I shall investigate some of the properties of the Yang-Mills type instantons 
on Spin(7) manifolds, which will hopefully be as interesting as the equivalent 
self-dual and anti-self-dual connections in 4 dimensions. 

2.3 Basic Chern-Weil Theory 
Suppose P : Mn(C) -+ Cis a polynomial in the entries of the matrix. Then 
we say P is an invariant polynomial if 

P(TXT-1
) = P(X) 

for all non singular matrices T. 
Now suppose that E -+ M is a complex vector bundle over some manifold 

M. Then near any point m E M we may choose a basis ell ... , en for the 
sections of E near m. 

Given a connection A for E over M, we may consider its curvature 

Thus locally we may write 

where ei is the dual of ei. Now Fii E A 2 ~ EA 2r, the commutative algebra of 
all exterior forms of even degree. Thus we may form powers of FA, writing 

F! = FA A FA 1\ ... FA 
k times 

with F! E A2k 0 End( E) and thus evaluate any polynomial at FA . 
In particular, we may consider the result of applying the polynomial P 

at FA. It will, of course, be an element of EA2r, the aforementioned com-
mutative algebra. 

Note that if P should be homogeneous of degree r, then P(FA) will be 
an exterior form of degree 2r. 
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Basic Chern-Weil theory shows that the element so obtained is, in fact, 
closed i.e. dP(FA) = 0, [MS, page 296] and so P(FA) gives rise to a class in 
the De Rham cohomology ring 

The next point worth noting from basic Chern-Weil theory is that the 
cohomology class is independent of the connection chosen, and thus is only 
dependent on the bundle E, and the manifold M. 

To see this, consider two connections A1 and A2 on the bundle E over 
M. Now consider M x R , together with the induced bundle E' and the 
connection A'= tA1 + (1 - t)A2• 

Then [P(FA)] E ffi Hi(M x R , C) 
Now consider the pair of maps 

in : M -+ M X R , in ( m) = ( m, n), where n = 0 or 1 

Clearly, the connection (in)*(A') can be identified with An on E. Thus 

But i 0 and i 1 are homotopic maps, hence 

as required. 
Now it is well known that every symmetric polynomial can be written 

as polynomial function in the elementary polynomial functions Ut, u2, u3, ... 

[MS, p.299] 
These can be obtained from the equation 

The first few are 

u1 - E>.i, 
u2 Ei<i>.i>.j, 
U3 - Ei<j<kAiAjAk. 

Now it can also be shown that any invariant polynomial P on Mn(C) 
can be expressed as a symmetric polynomial function in the eigenvalues of 
the matrix. Putting these two results together, we obtain the result that 
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any invariant polynomial may be written as a polynomial function in the 
eigenvalues of the matrix. Now since 

and 
((P1 + P2)(F)] = (P1(F)] + (P2(F)] 

(i.e. the map 0 : P -t (P(F)] is a graded algebra homomorphism), we 
have that, provided we know (O'i], we may determine [P(F)] for any invariant 
polynomial P. 

The images of O'i under the map may be determined by considering the 
two elements of ED Hi(M, C) given by 

c(E) - (1 + c1(E) + c2(E) + ... ] 
c'(E) - (p(F)], 

1 where p(X) = det(I +-.X) 
27rt 

We note that c(L) = c'(L), where Lis a line bundle, and, using a standard 
argument, we may extend this result to any bundle. (MS, 307] Thus c(E) = 
c'(E) and by reading off the component of each in H2k, we may see that 

(2.1) 

In particular, for future use, note that Tr(FA A FA) corresponds to the 
polynomial P(X) = Tr(X2 ) = EAL where Ai are the eigenvalues of X. 

2 .4 Some Pre liminary Analysis 

When considering the space of sections of a vector bundle E over a manifold 
M, it is often useful to impose an analytic structure upon it, in order to make 
the space into a Banach space. 

This structure will be particularly important when we have two vector 
bundles, E and F over the same manifold M, and must consider an elliptic 
operator mapping between them. 

O fcourse, in dealing with these analytic structures, it is essential that we 
possess some preliminary results about them. 

First let us consider four different types of Banach spaces. 
Suppose M is a compact Riemannian manifold, with metric g, and E is 

a vector bundle over M with metrics in the fibres. Let \l be a connection 
preserving the metrics in the fibres of E. 

14 



Then, firstly, we define Ck(E), the space of continuous sections of E with 
at least k continuous derivatives. We define the norm of v E Ck(E) by 

A closely related Banach space is Ck,a(E), (with 0 < a< 1), the Holder 
spaces. 

For a section v of a vector bundle F, we define 

[ l _ lv(1(1))- v(r(O))I 
V a - SUP-rEG l('y)a ' 

where G is the set of all smooth geodesic paths in M, and l(G) denotes the 
length of the geodesic path / · Note that F-r(o) and F-r(l) are identified using 
parallel translation using \1 along the geodesic. 

We say a section v is Holder continuous with exponent a if [v]a is finite. 
Finally, we define Ck,a to be those elements of Ck whose k-th order partial 

derivatives are Holder continuous with exponent a . The norm used is 

The next family of Banach spaces we must consider are the Lebesgue 
spaces, LP(E), with p ~ 1. 

This is merely the sections of E for which the Lebesgue norm 

is finite, where dJ.i- is the volume form for g on M. Note that if p = 2, this is 
the Hilbert space. 

The final family of Banach spaces we should consider are the Sobolev 
spaces, L~(E), with 1 ~ p < oo, and k a positive integer. 

In a similar manner to Lebesgue spaces, we define the Sobolev space 
Lfc(E) to be those sections of E for which the Sobolev norm 

is finite. 
Now I will give some basic analytic results relating some of these Banach 

spaces, that may come in useful later. 
First let us consider the Sobolevembedding theorem, where M is a com-

pact manifold of dimension n, and E a bundle over it. 
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Theorem. 2.1 Sobolev Embedding Theorem. [Bes, p.458} 
a) If k- l < ~ and q satisfies 

p 

1 k 1 l ---<---p n q n 

then there is a continuous inclusion L~(E) -t L1(E). Moreover, if l < k, 
and the above inequality is strict, then this inclusion is compact. 

b) If (k- l)- 1 < ~ < k -l, letting a:= k- !!. -l, we have that there is p p 

a continuous inclusion 

Now let us consider results concerning elliptic regularity. Consider P : 
C00(E) -t C00(F) a linear elliptic differential operator of order k. Then we 
have the following relationships between the norms in various Banach spaces, 
where ch ... , ct; are positive constants. [Bes, p. 463] 

llullck+t,a(E) ~ CtiiP(u)llct,a(F) + c2llullc(E) ~ c311ullc"+',a(E), 
lluiiLf+1(E) ~ c411Pui1Lf(F) + csllullo(E) ~ ct;llu11Lf+1(E)· 

Note that if u is not a member of C00(E) then we have made use of a 
result that states: 

Theorem 2.2 If P: C 00(E) -t C00(F) is a differential operator of order m, 
then P has a unique continuous extension Pf+m : Lf+m(E) -t Lf(F), and a 
similar result involving extension to Holder spaces. 

Now suppose Pu = EIPI$kap(x)a.Bu where k is the order of P. 
The theorem of elliptic regularity, a consequence of the above inequalities, 

states 

Theorem 2.3 : {Bes, p.466} If Pis elliptic, and ap(x) are C1 functions, and 
f( x) is a Lf function, then any function u E L~ satisfying 

Pu=f 

almost everywhere, lies in L~+l· 

Note that these elliptic regularity results hold only for the Sobolev and 
Holder spaces, and not for the Ck spaces mentioned before, which is why we 
often use Holder and Sobolev spaces in problems involving elliptic operators. 
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2 .5 CayleySubmanifolds 
Cayley4-manifolds are a special type of submanifold of Spin(7) 8-manifolds. 
They belong to a type of submanifold known as a calibrated submanifold. 
Cayley4-manifolds, let us proceed as follows. Riemannian manifold, and ¢ a 
closed exterior p-form on M. Then ¢ is said to be a calibration if, for every 
tangent p-plane (to M, we have 

where vol< is, of course, the volume form of the p-plane (, induced by the 
metric g. 

Now suppose N is a submanifold of M, such that 

that is, the p-form restricted to N is N's volume form. (This, of course, 
implies that N must be a p-dimensional submanifold of M) . Then N is said 
to be a calibrated submanifold of M, with calibration¢. 

Now let us suppose that M is a Spin(7) manifold with torsion free Spin(7) 
structure n. 

Then note that n is a calibration for M. For it is clear that n is closed, 
from one of the two equivalent definitions of torsion free. 

To see that ilk ::::; vol< for any 4-plane (, it is perhaps best to resort to 
the octonion definition of n. 

Consider <P(x, y, z, w) =< x, y x z x w >, where the triple product is 
defined by 

1 y x z x w = 2(y(zw)- w(zy)), 

defined on x, y, z, wE 0 . 
Considering 0 as a real 8 dimensional space, and seeing that <P is altern-

ating we see that <P is a 4-form on R 8 . Using the orientation given by the 
basis {1,i,j,k,e,ie,je,ke}, we have that <I>= 510 , which is most easily seen 
by checking the value of each on elements of the basis, or by expanding <I> by 
substituting for x, y, z, win component form. (HL, p.120] 

Now, using Cauchy Schwartz, we have immediately 

<I>(x, y, z, w) ::S ixiiY x z x wi = lxiiYIIz llwl, 
and thus 

for any four plane (. 
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Thus, as required, n is a calibration. 
Now we define N to be a Cayley 4-manifold of M if N is a calibrated 

submanifold with respect to the calibration n. 
Note that for any compact 4 sub manifold of M, say N', we have 

< [n), [N1 >= { n1N'::; { volN' = vol(N'). 
}N' }N' 

Equality would imply that N' is a Cayley 4-submanifold, and thus we 
have that a Cayley 4 manifold is globally volume minimising amongst its 
homology class. Note that this result works for any calibration. 

2.6 SpinBundles and the Dirac Operator
To consider spin bundles over a Spin(7)manifold M, it is usually best to first 
consider Clifford algebras. 

Let V be a fini te dimensional vector space with an inner product defined 
upon it. Let e1 , e2 , ... ,en be an orthonormal basis for V. 

T hen the Cliffordalgebra, Cn, of Vis defined to be the algebra generated 
by the elements e1 , ... ,en subject to the relations 

er -1, 
eie; + e;ei - 0 for i # j 

Considered as a vector space Cn is of dimension 2n, spanned by elements 
of the form 

where 8i = 0 or 1. 
Now consider the case n = 8. In this case it can be shown that 

Cs = R (16), 

the algebra of 16x16 matrices with values in R. [Sal, p.171] 
Thus we may consider R 16 as a C8 module. 
We may define the group Spin( B) as the subset of C8 consisting of all even 

products xlxz ... Xzr-lXzr of elements of V, with each llxdl = 1. (Similarly we 
might have defined Spin(7) as the subset of C1 consisting of all even products 
xlxz ... Xzr-lXzr of elements of R 7 with each llxill = 1.) 

Now let us consider the element v = e1e2 ... e8 of C8 . Then vis a involution 
of C8 , and commutes with every element of Spin(8) and hence R 16 splits as 
a Spin(8)module into the eigenspaces of v. 
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Thus R 16 = .6.+ EB .6._, where .6.+ is the +1 eigenspace of v, and .6._ 
is the -1 eigenspace of v . We call them the positive and negative spin 
representations of Spin(8)

Now suppose that M is a Spin(7) manifold. Then we have that M is 
a spin manifold i.e. there exists a spin structure of M, a principal Spin(8)
bundle E covering the 50(8) bundle of frames for the tangent bundle. 

Now since we have a principal Spin(8)bundle, and the two Spin(8)mod-
ules (namely a +  and ~- ), we may form two vector bundles associated to 
the principal spin bundles by means of the two spin representations. 

We call these bundles S+ and S_, the positive and negative spinor bundles, 
and their sections are known as positive and negative spinors. It is perhaps 
worth noting at this point that the group Spin(7) is the subgroup of 50(8) 
preserving a spinor, and hence the manifold M will possess a constant spin or. 
Thus we will have isomorphisms S+ = A0 EB A~ and S_ = A1 . 

To define the Dirac operator, we should first consider Clifford multiplic-
ation. 

Let u E R 8 , and x E R 16. Then since R 8 ~ C8 , and R 16 is a C8 module, 
then we may let u act upon x. 

Thus we have a map 
R s ® R t6 ___, R t6, 

which is known as Clifford multiplication. 
Now suppose x E 6.+, then v.x = x . Now since v .u = -u.v, smce v 

anti-commutes with every element of V, then we have 

v.(u.x) = (v.u).x = -u.(v.x) = -u.x . 

Thus u.x E 6._. 
So we have that Clifford multiplication interchanges the positive and neg-

ative spinors. 
We may extend the Clifford multiplication from a map 

to a map 

by defining the multiplication pointwise. 
Now to define the positive component of the Dirac operator, we should 

choose locally an orthonormal basis of sections ofT M, e1, e2 , ••• , e8 , and then 
for a section s of s+ we define 
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where "\1 is the Levi-Civita connection, and . denotes Clifford multiplication. 
[Roe, p.26] 

Sincethe definition is independent of the basis chosen, the local definitions 
of the Dirac operator agree and hence we have a map 

Note that the adjoint of D, 

the negative component of the Dirac operator, is also of ten denoted by D, 
and if it is necessary to avoid confusion we shall use 

D+ : coo(S+) -t C00(S_) 

D_ : C00(S_) -t C00(S+)· 

The actual Dirac operator is defined by D : S+ E9 S_ -t S+ E9 S_, 

D = ( 0 D_ 
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Chapter 3 

. Some results about Spin(7) 

instantons 

Before beginning this chapter, let us define precisely what we mean by a 
Spin(7) instanton. 

Definition 3.1 We say that a connection A on a bundle E over a com-
pact manifold with holonomy contained in Spin(7) is a Spin(7) instanton if 
1r1(FA) = 0. 

3.1 An A PrioriEnergy bound o n Spin(7) In-
stantons 

In this section, I will obtain energy bounds for the quantity fM IFAI2 , where 
FA is a connection with curvature in the A~1 part of the 2-forms, in terms 
of the bundle E -t M alone. This is closely related to the well-known 
energy bound on self-dual and anti-self-dual connections on a 4-manifold, 
corresponding to a multiple of the second Chern class of the bundle [DK, 
p.40]. 

Proposition 3.1 Let E -t M be a complex vector bundle over a compact 
Spin(7) manifold, and let A be a Spin(7) connection on E. Then 
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Proof .
Consider the quadratic form defined on 2-forms with values in End( E) as 

follows 
Q(.X) = !M Tr(.X 1\ .X) 1\ n. 

Now this is a Spin(7) invariant quadratic form, and since we may write 
the map 

pointwise as 
Tr(.X 1\ .X) 1\ n = *(ktl7r7.XI2 + k2l1r7.XI2), 

using the Spin(7) decomposition of the 2-forms, we may also write 

where 1r7 , 1r21 are projections onto the 7 and 21 dimensional parts respectively. 
Note, first of all, that the trace of the pointwise map must be zero. This 

is most easily seen by computing the trace in the orthonormal basis 

Thus we have k1 + 3k2 = 0. 
Now, unlike the 4 dimensional case, we do not have any obvious bases for 

our two subspaces of the 2-forms. 
However, in a later section, we shall see that 

Thus we may find the required constants. 

Q(w) = !M w 1\ w 1\ !1 = -12vol(M), 

and we also have 
Q(w) = kdlwW = 4ktvol(M). 

So k1 = -3, and k2 = 1, i.e. 

If A is a connection onE over M, then FA, the curvature of A is a 2-form 
with values in End(E). Thus we may use the above results with FA in place 
of .X. 
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Thus 
jMTr(FA 1\ FA) 1\ n = 117T21FAII2- 3II7T7FAW· 

But the left hand side of this equation is a Spin(7) invariant polynomial 
in the curvature of a bundle over a manifold, and thus we may apply Chern-
Weil theory to it, to get a topological invariant. 

We have 

Thus we have an energy bound on Spin(7) instantons 

0 
It will be useful later on if we note that in the case of E being an SU(2) 

bundle, then the energy bound takes a simpler form 

In any case, we may form a basis for the Spin(7) invariant 7 dimen-
sional subspace for the 2 -forms by looking for 2-forms that satisfy the above 
equation. This will give us 

1 
( T1 1\ T2 - T3 1\ T4 - Ts 1\ T6 + T7 1\ Ts), -

2 
1 

( T1 1\ T3 + T2 1\ T4 - Ts 1\ T7 - 76 1\ 7s), -
2 
1 

( T1 1\ 74 - 72 1\ 73 - 75 1\ 78 + 76 1\ T7), -
2 
1 

( T1 1\ 7s + T2 1\ T6 + T3 1\ T7 + T4 1\ 78), -
2 
1 

( Tt 1\ T6- 72 1\ 75 + 73 1\ Ts - T4 1\ T7 ), -
2 
1 

( 71 1\ T7 - 72 1\ Ts- 73 1\ 75 + 74 1\ T6), -
2 
1 

( T1 1\ 78 + 72 1\ 77 - T3 1\ T6 - T4 1\ T5). (3.2) -
2 

We may see that these are the coefficients of the standard basis for the 
imaginary octonions in the expression: 

d7 1\ df, 
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where 

each in representing one of the standard basis of octonions. It may be of in-
terest to compare with the basis for the anti-self-dual 2-forms on 4-manifolds 
given by 

dr 1\ df, 

where this timer= 2:::!=1 Tn i n can be considered as a quaternion. 

3.2 Relationship with Hermitian-Yang-Mills 
Connections 

The inclusion SU( 4) C Spin(7), using the identification Zn = Xn + ixn+4, 
allows us to consider the relationship between the Spin(7) geometry and the 
SU( 4) geometry of a manifold with holonomy a subgroup of SU( 4). 

As we have seen earlier, the splitting of the 2-forms of a Spin(7) manifold 
into Spin(7) irreducible components is 

A2 =A~ ffi A~1 . 

Similarly, for an SU( 4) manifold, an irreducible splitting is 

A2 0 C = A~' 1 ffi < w > EBA2
•
0 ffi A0

•
2

, 

where w is the Kahler form of the manifold, and A~'1 is the space of trace 
free (1,1) forms.[Sal, p.33] 

A Hermitian-Yang-Mills connection is defined to be a connection whose 
curvature lies entirely within the A~· 1 component of the splitting. 

Note, however, that the splitting above refers to the complexified space of 
2-forms, whilst the corresponding space of real 2-forms decomposes as shown 
below 

A2 = A~' 1ffi < w > EBC ffi B, 
where C and Bare 6 dimensional real subspaces of Re(A2•0 ffi A0•2). 

The dimensions of the subspaces are 

dim< w >= 1 

dimC =dimE= 6. 
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We must have that the SU( 4) invariant subspaces are also subspaces of 
the Spin(7) invariant subspaces mentioned above. Comparing dimensions, 
we have 

A;1 = A~'1 EB B 

A~=< w > EBC. 
(We may assume without loss of generality C c A~). 
Bases for A~'1 and < w > are easy to construct, so let us also construct 

bases for C and B. 
We have already seen a basis for C, albeit in passing[Equation 3.2]. The 

basis for A~, with w removed, of course, is also a basis for C. 
A similar basis for B may be constructed 

1 
2( T1 1\ T2 + T3 (\ T4 - Ts 1\ Ts- T7 1\ Ts) 

1 2( T1 (\ T3 - T2 1\ T4- Ts 1\ T7 + Ts 1\ r 8 ) 

1 
2( Tt (\ T4 + T2 (\ T3 - T5 1\ Ts - Ts 1\ T7) 

1 
2( Tt (\ Ts - T2 (\ Ts - T3 1\ Ts + T4 1\ T7 ) 

1 
2( Tt (\ T7 + T2 1\ Ts - T3 1\ Ts - T4 1\ Ts) 

1 
2(r1 (\ Ts - T2 1\ T7 + T3 1\ Ts - T4 1\ r5). 

Now it is clear that a Hermitian-Yang-Mills connection is also a Spin(7) 
instanton, since A~·1 C A~1 . 

Now I shall prove a partial converse. 

Theorem 3.1 Let E be a bundle over a manifold M, with holonomy con-
tained in SU(4)4). Suppose that E admits a Hermitian- Yang-Mills connection, 
then any Spin(7) instanton on the bundle E is also a Hermitian- Yang-Mills 
connection. 

Proof. 
Consider the 4 form n. Now n = - !w 1\ w + Re(dz1 1\ dz2 1\ dz3 1\ dz4), 

and son consists of a (2,2) part, a (0,4) part and a ( 4,0) part. 
Let us consider f!', the (0,4)+(4,0) part of n. Now this is SU(4) invariant, 

and it is also closed. (Since df! = 0, and dn' is the component of df! in 
As,o EB A4,t EB At,4 EB Ao,s) . 

25 



Thus we may consider the SU(4) invariant quadratic Q', defined on the 
2 forms by 

Q'(>.) = !M Tr(>. 1\ >.) 1\ n' 
Now, as before wi th Q, Q' can be written in t h e following form : 

where 1ru is the orthogonal projection onto the subspace U. 
The constants are easily found, since we have a basis for each subspace. 

Thus we have 

Ct = 0 

c2 = 0 

C3 = 2 

C4 = -2 

Now suppose>.= FA, the curvature form of a connection. Then 

Now if A is a Spin(7) instanton, 1rcFA = 0, and thus 

But we may apply a standard result of Chern Weil theory, [see equation 
2.1] in exactly the way we did in the previous section [equation 3.1] to get 

!M Tr(FAI\FA)I\D.' = (47r2(2c2(E)-ct(E?),n') = 41f2[2c2(E)-cl(E)2)U(n1 

Thus 2ll1fBFAW = 41f2[2c2(E)- c1(E)2] U [n'], for A a Spin(7) instanton. 
Thus i11rBFAW is a constant depending on the topology of the bundle E, 

and not upon the particular connection. 
In particular,ll1fBFAW = i11rBFA0 W, where Ao is the Hermitian-Yang-

Mills connection, that exists by hypothesis. 
Of course, 1fBFAo = 0, by definition. 
Thus 111fBFAil2 = 0, for our Spin(7) instanton, and so 1fBFA = 0. To-

gether with 1fc FA = 1f <w> FA = 0, which come from the definition of a 
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Spin(7) instanton, we have that A must be Hermitian-Yang-Mills. 
0 

Note that this result, together with results in later sections, gives us an 
interesting corollary. 

On an SU( 4) manifold, the equations for a connection to be a Hermitian-
Yang-Mills connection are over-determined elliptic. Thus we do not have 
automatically that the moduli space of Hermitian-Yang-Mills connections in 
a given bundle is a manifold of positive dimension. 

However, if the index of the problem (calculated in section 3.3) is posit-
ive, this result that a bundle E possessing a Hermitian-Yang-Mills connection 
has the property that every Spin(7) instanton connection is Hermitian-Yang-
Mills, together with the later results on the moduli space of Spin(7) instan-
tons tell us that this is indeed the case, under some mild assumptions. 

3.3 The Linearisation of the Instanton Prob-
lem 

If A is a connection satisfying the Spin(7) instanton condition 

then nearby (i .e. in some open neighbourhood), we have that a connection 
A+ r satisfies the Spin(7) instanton condition iff 

But 
1 

FA+-r =FA+ dAr+ 2[r, r] 

Thus A+ r is a Spin(7) instanton iff 

1 
11"7(dAr + 2[r, r]) = 0. 

Adding in the gauge-fixing condition d:A_r = 0, we see that locally the 
moduli space of Spin(7) instantons is 

where ~ is given by 

~-1 ((0, 0)) 

~ ( T) = ( d~ T 1 71" 7 ( d AT + ~ [ T, T])). 
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Now the linearisation of this operator is T, where 

Now T is a first order differential operator, 

By considering local equations for the differential operators dA and dA, 
we may see that the symbol for T is 

CT{ = CT~ ®Ide, 

where I de is the identity operator on E, and CT0 is given by 

for (in the sphere bundle over x, and>. E A1(M):c· [BB, p.375] 
Note in particular that CT0 is the symbol for the operator To given by 

To: !11 (M) ~ !1°(M) EB O~(M) 

To(>.) = d* >. E9 1r1(d>.). 

Thus provided we may find the index of the operator T0 (showing it is 
elliptic on the way), then we may use index theory to calculate the index of 
T. (Of course, we shall have CT{ = CT~ ®Ide is an isomorphism if CT~ is.) 

Now we have that the Spin bundles of the manifold b.+ and b._ satisfy 
isomorphisms 

Thus we have that 

.6.+ = A0 EB A~, 
.6._- A~. 

To : .6._ ~ b.+ 

and by rescaling the factors of A0 and A~ we can assume that T0 = D _, 
the Dirac operator, and T is the twisted Dirac operator, that is the Dirac 
operator with values in the bundle E. 

Thus ind(T0) = -A(M). 
By index theory, we have 

ind(T) = -(A(M)ch(E), [M]), 

where ch(E) is the Chern character of the bundle E. [Roe, p.l45] 
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Now A(M) can be expressed as a polynomial in the Pontrjaginclasses of 
M. 

Using a subscript ito denote the component of an element of EkHk(M) 
in Hk(M) we have [Hirz, p.197) 

Also 

A 

A0 = 1 
A 1 

A4 = --pt(M) 
3.23 

A 1 2 As= 
45

_27 (7pt(M) - 4p2(M)) 

ch( E)o = dim( E) 
1 

ch(E)4 = 2(ct(E)2 - 2c2(E)) 

1 
ch(E)a = 

24 
(ct(E)4

- 4c1(E?c2(E) + 2c2(E)2 + 4c1(E)c3(E)- 4c4(E)) 

. ( ) (dim(E)( )2) 1 2 ) Thus md T = -
45

_27 -4p2(M)+7Pt(M -
3

_24p1(M)(c1(E) -2c2(E ) 

1 + 24 (c1(E)4 - 4ct(E?c2(E) + 2c2(E? + 4c1(E)c3(E)- 4c4 (E)), [M] > 
Now suppose M is a manifold with holonomy Spin(7). Then 

( -4p2(M) + 7p1(M?, [M]) = 45.27 

Theorem 3.2 

ind(T) = -dim(E)- (-~p1 (M)(c1(E?- 2c2(E)) 
--.-- 3.2 

1 
+ 

24 
(ct(E)4 - c1(E)2c2(E) + 2c2(E)2 + 4c1(E)c3(E)- 4c4(E)), [M]), 

and if in addition we have that E is an SU(2) bundle, then c1(E) = 0, 
and thus 

Proof.
See above. 

0 
In the following section, we will see that this is the dimension of the 

moduli space, provided certain conditions, discussed in the next section, are 
satisfied. 
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3 .4 An Analytic Result 
In the previous section, we considered the linearised equation for instanton 
connections. In this section, we shall look at how this applies to the full 
equation. 

If we have a connection A that is a Spin(7) instanton i.e. rr7(FA) = 0, 
the 7 dimensional component of the curvature of A vanishes. 

Now we will study the moduli space of Spin(7) instanton connections 
near A, with equivalence classes produced by gauge fixing. The gauge fixing 
condition ensures that the resulting manifold is finite dimensional. 

Thus we shall consider the following submanifold of A+ C00(A 1 ® E), the 
affine space of connection 1-forms 

MA ={A+ T: T E C00 (A1 ®E), d~r = 0, 1f7(FA+r) = 0} 

The condition rr7(FA+r) = 0 is, of course, the condition that the resulting 
connection is also a Spin(7) instanton, whilst the condition dA_r = 0 is the 
gauge fixing one. 

Note that for the gauge fixing condition to be 1-1 (i.e. that each element 
of MA correspond to exactly one family of gauge equivalent Spin(7) instanton 
connections), we must impose a condition on A. 

That is, if the bundle E is a G-vector bundle, where G is a Lie group, 
and GA is the group of gauge transformations of E, then those elements of 
GA fixing A 

I(A) = {g EGA : g.A = A} 
consists of only those elements of GA in the centre of G. If this condition 
holds, then we say that A is weakly irreducible [BB, p.374]. From this point 
on, we shall assume this to be the case. 

Now 

and thus 
1 

1f7(~A+r) = 1r7(dAr) + 'lr7(2[r, r]). 

Thus MA = { T: T E C00(A 1 ® E), dA.r = '1r7(dAT + Hr, r]) = 0}. 
As we have seen, the linearisation of the operator ~ given by ~( r) -

d:4r ffi 7rr( dAr + Hr, r]) is 

T: C00(A1 ®E)-+ C00((A0 ffi A~)® E) 

T(r) = d~r + 1i7dAr 
Now MA = ~-l (0, 0). 
We will look at MA, but first we must quote some analytic theorems. 
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Lemma 3.1 Suppose Q : E1 x E2 ~ E3 is a smooth bilinear map of Her-
mitian vector bundles over M. Then Q induces a bounded bilinear map 

Q': Lt(EI) x Lj(Ez) -7 L~(E3) 

fork> ~, k 2: j. [BB, p.381} 

Lemma 3.2 Suppose D : Coo(E) -7 C00(F) is a linear elliptic operator of 
order m, with (D*)p,k+m the Sobolev extension of D*, the adjoint of D. 

Then L~(E) = I< e1·D El1 (D*)p,k+m(L~+m(F)) is the direct sum of closed 
subspaces. [BB, p.381} 

Theorem 3.3 Implicit Function Theorem [BB, p.381}: Suppose F : E 1 ~ 

E2 is a Ck map {1 ~ k ::; oo) between Banach spaces and assume 
i) dF : (T Bt)x ~ (T Bz)F(x) is a surjection, 
ii} (T B 1)x = K er( dF) ffi H, where H is closed. 
Then F-1(F(x)) is a Ck submanifold of B1 in a neighbourhood of x, with 

[{ er( dF) as tangent space at x. 

This allows us to state and prove the main theorem of the section. 

Theorem 3.4 Suppose A satisfies 1r7(FA) = 0, and is such that K er(T*) = 
0, where T is as given above. Then for 1 ::; p < oo, 0 < k < oo, with 
p(k+1) > 8, then MA- is a finite dimensional submanifold of Lt+1 (E®A1(M)) 
in a neighbourhood U of 0, with dimension as given in Section 3.2. 

Proof . 
. . Now for r E L~+l ( E Q9 A 1( M) ), then we have [r, r] E L~+l ( E Q9 A2( M)) 

by the above Lemma 3.1 , and thus r -+ [r, r] defines a bounded bilinear 
map to LHE Q9 A2(M)). 

Now recalling that 

we have a continuous Sobolev extension 

Note that <Pp,k+l is coo since it is the sum of (d:A)p,k+I, 7r7 (dA)p,k+l, and 
~1r1[r, r]. 
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The differential of <I>p,k+I at 0 is the linear part of <I>p,k+h namely the 
Sobolev extension ofT, an elliptic operator of order 1. 

Thus by Lemma 3.2, we have that L~+l (A 1 ®E) = ]{ erT E9 T*( £~+2 ( E 0 
(A~ E9 A0 ))) is the direct sum of closed subspaces. By another use of Lemma 
2, with D = T* we have that Tp,k+l is surjective. 

Thus we may apply the Implicit Function Theorem to <I>p,k+l to get that 

is a smooth su bmanifold of L~+l ( E ® A 1) in a neigh hour hood of 0. 
To see that T E MA => T is coo, we must make use of some of the theorems 

stated in Chapter2. 
Now 

I J - r l l £ ~ + 2  ~ C(IITp,k+l-riiL~+t + 11-ri]L~+) 
1 

= C(ll2[-r, 7JIIL~+ 1 + 11-rl]~+) 
~ C(C']I-rlllp + 11-riiLP ) 

k+l k+l 

and thus T E L~+2 and by induction 

Hence T E coo, using the Sobolev Embedding Theorem. 
Also note that since the map 'Ill defined by w(-r) = TA is continuous, 

where TA is the map T given above, and the property of being surjective is 
an open one, we have that in a sufficiently small neighbourhood U of A, we 
have that each A + T E U also has the property that 

Thus we have that in a neighbourhood of any Spin(7) instanton con-
nection A, with Ker(TA)'" = 0, then the moduli space near A is a smooth 
manifold of the expected dimension. 

0 
We may note that the assumptions made (i.e. T* is suurjective and that 

A is weakly irreducible) certainly seem likely to hold at generic points of the 
moduli space for which the index is positive. This would tell us that, as is the 
case for self-dual and anti-self-dual instantons, the moduli space is a smooth 
manifold of the expected dimension at generic points. 
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Chapter4 

Finite Energy Instantons on R 8 

Amongst the most well known constructions in differential geometry is the 
ADHM construction of an instanton on R 4 . [ADHM] This, together with 
Taubes' gluing constuction, [Tau] allows us to construct instantons centred 
around a point of a 4-manifold. 

Thus in attempting to construct Spin(7) instantons on compact 8-manifolds 
with holonomy Spin(7), our first attempt may well be an imitation, in some 
way, of these two constructions. However, in this chapter we shall see that 
such a method is doomed to failure at the first hurdle; before even a consider-
ation of the analysis involved in the gluing, we may see that there is, in fact, 
no finite energy Spin(7) instanton on R8 , in contrast to the 4 dimensional 
case. 

Let us, before embarking upon the proof of this result, consider some of 
the more relevant properties of the well-known ADHM instanton.[DK, p.116] 

1. 

where 

01 X1dx2- X2dX1 - X3dX4 + X4dX3 
02 x1dx3- x3dx1 - x4dx2 + x2dx4 
03 - x1dx4 - X4dx1 - x2dx3 + X3dx2, 

and i, j and k are considered as the basis for SU(2). 
2. 

F = ( 
1
1 

l2 ?(d01i +dO~+ d83k). 
1 + X 

3. The instanton is centred at the origin. 
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4. IFI dies away like x-4 , i.e. 

Note that this last fact tells us that the ADHM instanton is of finite
energy, i.e. f IFI2 < oo. It is also worth noting that by using the dilation 
x ---7 >.x we may "rescale" the instanton, obtaining an instanton of different 
concentration, but of the same energy. 

This instanton may be more succinctly described in quaternionic notation. 
For if we use the notation: 

then we may write 
1 

A= I I2 Im(xdx) 1 +X 
and 

1 
F = (1 + lxl2)2x Ax. 

Note that the use of H to define an instanton on R 4 suggests that we 
should consider the use of the octonions, 0 , to construct a similar instanton 
on R 8 . However, an attempt of 

with f a function and 7T' a projection gives several major problems. Firstly, 
for the resulting instanton to be of finite energy, the asymptotic decay of A 
must be greater than o(lxl-2 ); secondly, unlike the case of H, there is no 
natural projection of 0 onto a 3 dimensional subspace, and hence whilst we 
may well be able to use an approximation of this method for construction of 
spherically symmetric instantons with other gauge groups, its seems unlikely 
that this method will aid us in the SU(2) case; and thirdly, and perhaps most 
importantly, whilst the imaginary quaternions form a Lie algebra, the same 
cannot be said of the imaginary octonions. (The first part of this suggestion 
is motivated by .the fact that if we write: 

x = x 1 + x2i + x:J + .. . + x8ke 

then the coefficients of the standard basis of the imaginary octonions, in fact, 
give a basis for A~, the seven dimensional Spin(7) invariant subspace of the 
two-forms.) 

Let us now go on to prove that there are no non-trivial finite energy 
Spin(7) instantons with gauge group SU(2) on R 8 . The method of proof I 
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follow is splitting the result into three lemmas: the first obtains an asymptotic 
estimate of the curvature, the second uses this estimate and converts this to 
an estimate on the norm of the connection in a certain gauge, and finally, we 
use these bounds to show that any such connection must be flat. 

Before embarking on proving this lemma, I will quote a theorem of Uh-
lenbeck that will be useful in completing the proof. 

Theorem 4.1 {U2, p.B} 
Let D* F = Q , with maxxeM I Q( x) I :S Q 00 • Then there exists Eo > 0 such 

that if4p < uo,Q00p < E :S Eo and h(~,4p) < E :S Eo, then 

Note that D* F = 0 corresponds to the full Yang-Mills equation, so in our 
case Q = 0. u0 is equivalent to an injectivity radius: it corresponds to the 
radius of ball within which we can accurately estimate the metric using the 
Euclidean metric. h is the L 2-norm ofF made scale invariant. 

Lemma 4.1 Let E --7 R 8 be an SU(2) bundle with Spin(7) instanton con-
nection A, such that A has finite energy, i.e. fRaiFAI2dp < oo . 

Then IFA(x)l = o(lxl-4) 

Proof. There exists an R such that fRa-BR(o) IFAI2 <Eo, where €o is given 
as in (U2]. 

Now for x such that lx l > max(2R, 10) we have 

r IFAI2 <Eo 
JsJ;!(x) 

since Bhl(x) C R 8 - BR(O). 
2 

Thus we may apply Theorem 4.1 with~= x, p =~and 

to obtain that there exists a K such that 
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i.e. maxyE~J¥(x) JF(y)J ~ 512K(J8 !;l(x) JFAJ 2)~JxJ-4 . 
Now as x -+ oo, 

smce 
Bw. (x) c R8 - Bt!.! (0). 

2 2 
Thus, in particular JF(x)J = o(JxJ-4 ) . 

0 

Lemm a 4. 2 With the same assumption as in Lemma 4.1, there exists a 
gauge such that JAJ = o(JxJ-3 ), for R 8 outside a certain ball. 

Proof . Consider the series of annuli 

For an L00 bound on the curvature in the rescaled problem in the annulus 
Uo, we require a bound on IFIJxl2 in the original problem. Since IFIIxl2 -+ 0, 
there exists an N such that for all n 2: N , JFIIxJ2 ~ 1' on Un , where 1' is 
as given in [Ul, p.26]. 

Thus in one of these annuli, we may rescale the problem, by 

taking Un to U0 , with F lun going to a connection on U0 , and thus obtain 
a bound IIAIIoo ~ K'IJFIIoo, on the rescaled problem, which translates into 
the inequality JAimax ~ K'JxJJFimax· These gauges fit together, as they are 
unique up to multiplication by constant elements of G. 

0 

Lemma 4.3 If the gauge extends to all of R 8 , then A is fiat. 

Proof. Consider a ball of radius r. Then from Chern Simons theory we 
have: 

{ Tr(FA/\FA)/\ft=~ { Tr(dA/\A + ~A/\A/\A)/\ft 
j Br(O) 81r j Sr(O) 3 

Also, for a Spin(7) instanton, we have Tr(FA 1\ FA) 1\ n = *IFAI\ since 
FA E A~1 . 

Thus fsr(O) IFAI2 = s!2 fsr(O) Tr(dA 1\ A+ ~A 1\ A 1\ A) 1\ n 
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But A 1\ A 1\ A = o(lxl-9 ) (by Lemma 4.2), and FA 1\ A = o(lxl-7) (by 
Lemma4.1 and Lemma4.2), giving dAI\A = o(lxl- 7), and thus Tr(dAI\A+ 
~AI\AI\A)I\f! = o(lxl-7

), and so 8!2 fsr(o) Tr(dAI\A+~AI\AI\A)I\f! -t 0 
as r -t CXJ . But fBr(O) IFAI2 is an increasing, non negative function on r. Thus 
fBr(O) IFAI2 = 0, and A is flat. 

0 

Theorem 4.2 There is no non-fiat, finite energy connection on R 8 with 
curvature contained in the A~ part of the Spin(7) invariant splitting. 

Proof. Since we may choose a gauge for a connection outside a ball of fixed 
radius with the properties required above (i.e IAI = o(lxl-3 ), and also one 
for the interior of the ball, we may consider how these two gauge choices 
patch together. Note that this will be determined by the transition function 
from the shared boundary of these two spaces (i.e S7 ) to the gauge group, 
SU(2) _ S3 • 

The fact that 1r7(S3 ) = Z2 [Toda, p.186], gives us that any map from the 
seven sphere in R 8 into the structure group SU(2) are either homotopically 
trivial, or torsion of order two. The Lemma 4.3 allows us to see that the 
trivial case will give no instantons. Suppose that the second case (i.e non-
trivial transition function from S7 -t S 3) produced an instanton of finite 
energy, say E. Then consider the sum of two such instantons. This would 
have energy 2E, and thus could not correspond to either of the classes of 
transition functions in 1r7( S3 ) • 

Thus there are no finite energy Spin(7) instantons on R 8 . 

0 
Note that despite this fact, we do have that there are spherically sym-

metric instantons on R 8 . They are to be found described in the papers 
[FN]. They are, however, not instantons with gauge group SU(2), but rather 
with Spin(7). I do not know whether there exist any non-trivial spherically 
symmetric solutions to the instanton equation with gauge group SU(2) at 
present, although as the aforementioned example shows, any proof of the 
non-existence of such an object would depend on the properties of the Lie 
group SU(2). 

In any case, these results above do suggest that in looking for a method of 
constucting an instanton on a Spin(7) manifold, that we will not find much 
hope in looking to construct one based around a point. 
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Chapter 5 

On the Limit of a sequence of 
lnstantons 

A natural question to ask regarding a family of instantons of a particular 
type is concerning the 'bubbling off' phenomenon. 

The limiting behaviour of a family of self-dual, or anti self dual, Yang-
Mills instantons is well known (at least amongst differential geometers!) [DK, 
p.l17] on four dimensional manifolds. The keys features of a series of in-
stantons on a bundle E -t M are the existence of a subsequence with the 
following properties: 

• Convergence outside a finite set of points, after a suitable sequence of 
gauge transformations. 
• Within this set, convergence to a connection on a different bundle E' -t M. 
• The behaviour near one of the finite set of points is approximately the same 
as the behaviour of an ADHM instanton in R 4 that is allowed to become more 
concentrated. 
Such limiting behaviour is known colloquially as 'bubbling' around-the finite 
set of points. 

And so we may well consider whether there are analagous properties of 
families of Spin(7) instantons on 8-manifolds. This is the question I hope to 
answer, at least partially, in this chapter. 

It is perhaps worth noticing at this point that if our compact 8-manifold 
with holonomy contained in Spin(7), M, can be written as the product of 
two 4-manifolds, M = N1 x N2 , with metric and Spin(7) structure splitting 
compat ibly with this , then a self dual instanton on Nt, constant in the N2 
direction, is, in fact, a Spin(7) instanton. 

This, via naive reasoning, may well lead us to conjecture that if bubbling 
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occurs on 8 manifolds, that it will do so around a submanifold of dimension 
4. 

However, the construction of the instanton on R 8 with gauge group 
Spin(?) in the last chapter suggests that the behaviour may not always be 
as simple as this. 

Naive reasoning, though, does not lead us as far astray as we may believe. 
Indeed, we may prove that bubbling does occur around a set of finite Haus-
dorff 4-measure, provided we assume a result given in a paper by Nakajima. 
[Nak, p .389]; however, I believe the proof in this paper to be slightly flawed,
though I do not think this affects the validity of the result. 

Theorem 5.1 Let n 2:: 4, and let {D(j)} be a sequence of Yang-Mills con-
nedions which energy bounded by R < oo. Then there exists a subsequence 
{j} C {i}, a compact subset S with finite (n- 4)-dimensional Hausdorff 
measure Hn_4 (S) < oo, a G-principal bundle Q over M- S , and a Yang-
Mills connection D( oo) on Q such that for each compact subset I< C M - S 
there are bundle equivalences 

9KU) : PIK-+ Q]K 

so that 
9K(j)"(D(j)) -+ D( oo) 

in coo -topology on K. 

From this it is easy to deduce the following result, as all Spin(7) instan-
tons are Yang-Mills connections. 

Theorem 5.2 Let {Ai} be a sequence of Spin(7) instantons on a bundle 
E -+ M. Then there exists a subsequence {A;;}, a closed set of finite 
Hausdorff 4 -measure S, a bundle E' -+ M - S 1 and, for each closed sub-
set K C M- S, a sequence of bundle equivalences {g;.} such that 

where A' is a limit connection on E']K. 

Thus we see that indeed the property observed of convergence outside a 
set of Hausdorff dimension n - 4 carries over from 4 dimensional manifolds 
to 8-dimensional ones. The first major difference to note between the two 
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cases is t h a t unlike the 4 dimensional case, in which we have that the singular 
set is a finite number of points, we know very little about the singular set. 
Another major difference is that we do not a priori have that the bundle over 
M- Sin which the limit connection lies can be extended, together with an 
extension of the connection, to a bundle over M. As for the final analogy, 
the behaviour of the instanton near the singular set, I will consider this in 
later chapters. 

However, now let us presume that the set of Hausdorff dimension four 
around which the family bubbles is indeed a submanifold of dimension 4, N, 
and let us further assume that the bundle E' over M - N may be extended 
to a bundle E over the whole of M together with a limit connection. (Note 
that, in four dimensions, this corresponds to the removal of singularities, 
an operation described in [Ul]). Now we may now ask about any special 
properties held by this new submanifold . 

This manifold in fact holds the very special property of being Cayley
To show this I will use two lemmas, whose purpose I hope will be self-
explanatory. 

Lemma 5.1 Suppose E, E' are SU(2) vector bundles on an 8-manifold M, 
such that there exists a submanifold N of dimension 4, with a bundle equi-
valence between EIM- N and E'IM- N· Then c.z(E)- c2(E') is Poincare dual 
to some multiple of [ N]. 

Proof. For any neighbourhood of N, call it T0 we may choose connections 
A and A' onE and E' respectively, such that A!M-T. and A'IM-T. are gauge 
equivalent. 

Thus FA = FA' outside Tt. Now 

1 
- S1r2 Tr(FA I\ FA), 

1 
- 81T2 Tr(FA' I\ FA') 

agreeing on M - Tl) and hence c2(E)- ccE') can be supported in Tt. 
Noting that H:s(T() is generated by the Poincare dual of [N], provided 

the neighbourhood is small enough, we have that c2(E) is Poincare dual to 
k[ N], for some k E R . 

0 
Suppose, now, that we have a sequence of connections Ai on E with 

constant energy, and that there is a bundle E' on M, and a submanifold 
N of dimension 4, such that a subsequence of these connections tends to a 
connection A on E' on the set M - N. (i.e. A is a connection on E' ~ M, 
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and Ai ~  A on the set M-N .) Let us now consider a splitting T M = Vi EB V2 
near N with Vi =TN at N, and V2 the orthogonal complement of V1• With 
this, let us choose a closed 4-form 7] on M which approximates the volume 
form of Vt, and is equal to it on N. 

Lemma 5.2 fN 7] :S fN n, where n is the Spin(7) structure. 

Proof. Since both 7J and vol(Vl) are continuous, and they are equal at N, 
for all t > 0, we may choose a tubular neighbourhood of N such that 

We may also restrict this neighbourhood further, if necessary, to ensure 
that it has volume less than t/ maxM lFAl2 . Call this neighbourhood Tc. 

Now since outside Tc, Ai ~A as j ~ oo, there exists ani such that 

outside T(. 
Now c2(E)- c2 (E') is dual to k[N] for some constant k, from Lemma 5.1, 

and furthermore, k > 0. 
Thus 

kvo1N = £ k7] = jM(c2 (E)-c2(E'))/\7] = jM(Tr(FA;/\FAJ-Tr(FA/\FA))/\ry. 

We have 

kvol(N) 1rt (Tr(FA, 1\ FA.)- Tr(FA 1\ FA)) 1\ 7] 

+ JM-T, (Tr(FA, 1\ FA.)- Tr(FA 1\ FA)) 1\ 7] 

< 1rt (T1·(FA; 1\ FA;)- T1·(FA 1\ FA)) 1\ 7] + i 
< h. Tr(FA; 1\ FA;) 1\ fJ + i· 

Now near the 4-manifold N, 

where the + and - indices indicate the self dual and anti-self dual parts 
respectively. 
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Now 117- vol(\ll)l ~ f./6 fM IFA,I2 in TE, and so 

h. Tr·(FA; 1\ FAJ 1\ 1] ~ t.(IFA;Itl2 - IFA,I~I 2 ) + i ~ fr. IFA,I2 + i· 
But Ir. IFA,I2 = Ir. Tr(FA; 1\ FA.) 1\ n, since FA; is a Spin(7) instanton. 
We may argue as before to obtain that 

lr. Tr(FA, 1\ FA;) 1\ n ~ jM(Tr(FA; 1\ FA;)- Tr(FA 1\ FA)) 1\ n + i· 
But fM(Tr(FA; 1\ FA,)- Tr(FA 1\ FA)) 1\ n =IN k!l 
Thus for all f. > 0, we have 

Dividing through by the positive constant k we get 

T h eorem 5.3 N is a Cayleysubmanifold of M. 

Proof. From Lemma 5.2 above, we have that 

Also, from the definition of a calibration, we have 

0 

on the submanifold N. Hence these two four forms are equal on N, which is 
hence a Cayley submanifold. 

0 
Thus we have that, as far as the "bubbling" phenomenon is concerned, 

that Cayley submanifolds play a very similar role to points in the 4 dimen-
sional case. This information will be put to use in the following chapters. 
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Chapter 6 

G eometrical Description of the 
lnstanton Construction 

For the final chapters, I will consider a problem I have referred to earlier in 
this thesis: that of the construction of a finite energy Spin(7) instanton on 
a compact manifold with holonomy Spin(7). 

Note that what I shall present will not be, unfortunately, a general method 
for the construction of Spin(7) instantons on any manifold of holonomy 
Spin(7), but rather a specific example of such an instanton on a particu-
lar Spin(7) manifold. 

The structure of this construction will follow, to some extent, the method 
of Taubes' gluing of an anti-self dual instanton around a point of 4-manifolds 
[Tau]. That is, I shall start with an approximately Spin(7) instanton, and 
shall then make successively smaller (in some norm) corrections to this, to 
ensure the sequence converges to a true Spin(7) instanton. I believe that 
these two steps form a natural division of an otherwise long result, and so 
have divided the construction along these lines. This chapter, containing 
mostly geometric ideas, will terminate once the method of construction of 
the approximate instanton has been spelled-out. The next two chapters, of 
a more analytic flavour, will then deal with the convergence of the iterative 
sequence. 

Perhaps a natural suggestion to take from the previous chapters is that 
rather than attempt to construct an instanton centred at a point, it may be 
far easier to "glue" the instanton in around a Cayley submanifold. Thus we 
arc presented with the first two ingredients in our recipe: a compact Spin(7) 
manifold, together with a Cayley submanifold within it. 
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6.1 The Manifold 
The manifold, M, upon which the construction will take place will be that 
described in [J2, p.524]. It is constructed as the resolution of the orbifold 
obtained from T8 acted on by the 16 element group (a,{J,[,O), where 

a(xt, ... , xs) - (-x1, -x2, -x3, -x4, xs, xs, X1, xs), 
{3(x1, ..• , xs) - (x1, x2, X3 1 X4, -xs , -xs, -x1, -xs), 

1 1 1 1 
/(Xr, ... , Xg) ( 2 - X1 1 2 - X2, X3 1 X4 1 2- Xs, 2- Xs, X7, Xs), 

1 1 1 
o(x1, ... , Xs) ( -Xl 1 X2, 2- X3, X4 1 2- Xs, Xs, 2- X7 1 Xg). 

It will aid us somewhat to be able to think of the manifold as occurring 
from two separate resolutions: firstly, from resolving the singularities of the 
orbifold T 8 j (a, {3) to form the manifold K3 x K3, and then resolving (K3 x 
K3)/(i,o) to obtain M. 

Let us now consider the Cayley submanifold of this Spin(7) manifold. 
First we should consider the involution defined by: 

1 1 
t::(Xt, X2, X3 1 X4 1 Xs, Xs, X7 1 Xs) = (2- Xt, -X2 1 -X3 1 2 - X41 Xs, Xs, X7 1 Xg). 

We may see that € preserves the 4-form n defining the Spin(7) structure, 
and commutes with the group (a,{3,,,o). In addition, we have that the 
fixed points of £, being 

(a1,a2,a3,a4) x T4 , 

where at, a4 E { -~,+Hand a2, a3 E {0, n, are disjoint from the fixed points 
of (a:,/, o). 

Both resolutions (i.e. that with respect to the group (a:,{3) and that with 
respect to the group ( 1, o)) may be. done in an t:: invariant way, and hence we 
may ensure that our final manifold M possesses a family of Spin(7) structures 
that are invariant under t::. 

(Note that here I am guilty of a mildabuse of notation, by denoting both 
the isometry of T 8 and the resulting isometry of the final manifold M by 
This should cause no real confusion.) 

O n M, the fixed points of will be two copies of K3. These will be, in 
fact, Cayleysubmanifold of M. (J1, p.368]. 

Thus we are armed with the manifold, and a Cayleysubmanifold, around 
which we plan to 'glue' the instanton. Thus let us now consider the bundle 
containing the instanton connection. 

Considering€ acting on the intermediate manifold K3 x K3, we may see 
that it has fixed points {pr,p2, ... ,p8} x K3, where p1 , ... ,p8 are the points 
of K3 corresponding to those points listed above. 
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6.2 The Instanton 
Restricting our attention, for the moment, to the first K3 in the product, 
we may glue in an SU(2) instanton, A, on a bundle E --7 K3 such that the 
curvature of the instanton is concentrated near these 8 points. The method 
for this follows from Taubes' method; we shall, around each of the points, 
have two regions: a ball of small, but fixed radius (e.g. r = 1/100 will do), 
together with an annulus around this (say, 1/200 < r < 1/100 ). In the 
inner region, we have that the connection is identical to a standard ADHM 
instanton, with small characteristic radius, s. In the annulus, we use 'gluing' 
data, to ensure that the instanton decays to zero on the exterior of the 
annulus. (See figure 1 ). The gluing data and the size of these two regions 
will remain fixed throughout this construction. We can also require that the 
instanton is ( 1, o) invariant. 

Now we may pull the bundle, together with the connection, back to the 
8-manifold K 3 x K3, to obtain an SU(2) bundle, with a Spin(7) connection 
on it, over the manifold. It will be almost a Spin(7) instanton, because it is 
almost a 4-instanton in the direction of the first K3, and flat in the second K 3
direction. The Spin(7) structure on this manifold comes from the inclusion 
SU(2) x SU(2) C Spin(7). [J2, p.548) 

Since everything has been done invariantly with respect to the group 
(J, o), we have that there is a corresponding SU(2) bundle F --7 (K3 X 

K3)1 (J, o), together with a connection, A, with small A~ component of 
curvature. 

Resolving the singularities of this orbifold, with a resolving map 1r : M --7 
(K3 x K3)I(J,o), we may pull the SU(2) bundle F back to another SU(2) 
bundle F' over M, together with a connection A' = 1r*(A). Note that if 
we have ensured that E was trivial over the fixed points of ("f, o), then we 
have that F is a well-defined SU(2)-bundle which is also trivial over the fixed 
points of (J, o), from which we may go on to deduce that the pull back bundle 
F' is trivial near the resolutions of the singular points of ( K3 x K3) I (J, o). 

We have now introduced a second sort of error into the connection A'; 
as well as the original error from the gluing data, we also have that A' 
deviates from being a Spin(7) metric due to the differences the product 
Spin(7) structure on (K3 x K3)l(l,o), from the family of almost Spin(7) 
structures introduced to resolve the singularities. 

To our ad vantage, though, is the fact that the largest differences in the 
metrics occur near the singularities of the orbifold ( K3 x K3) I ( 1, o), which 
we have been careful to ensure occur away from the concentration of the 
curvature of the almost instanton. 

With this geometric recipe for the construction of instantons, we shall 
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proceed to' the next chapter to obtain some analytic results. 
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Chapter 7 

Analytic Estimates 

Let us now attempt to make precise analytically the construction described 
in the last chapter. We have, in fact, two independent small parameters 
to consider: s, the characteristic radius of the instanton glued in, and t, 
the parameter describing the family of almost Spin(7) structures on the 
manifold M. For the sake of clarity, I should point out that for almost all 
of the remainder of this thesis, we will choose, in our construction, to make 
these quantities equal. It will be made clear when we do this. Each of these 
will contribute to 1r7 (FA), the error of A from being a true Spin(7) instanton. 

Let us consider the error profile near a Gayley submanifold. This is 
displayed in figure 2 . 

Note that in the diagram Band Care the regions independent of s, t, with 
B representing the smaller of the two regions, that is, a 4-ball of small radius 
around the Cayley 4-manifold, and C representing the annulus surrounding 
this. The error in area C will be of the order s2 • This is due to the gluing 
data, and the error in the instanton on ( K3 x K3) /(I, 6) to be a Spin(7) 
instanton. 

'· The error in area B is not present in the connection on (K3 x K3)/ (!, 6), 
and is the result of the difference in the Spin(7) structure on the final mani-
fold and that on (K3 x K3)/ (1, 8). Hence it is of the order of IFAI·Int- nj. 

Lemma 7.1 111T'7(FA)IILq::; O(max(s2 ,s4/q-2t4)). 

Proof. 
First note that for each q, 

Thus it is necessary only to obtain bounds on these norms. As stated above, 
1111'7(FAic)IILq = O(s2

). 
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If we let r represent the distance of a point away from the centre of 
curvature, we may deduce that 

Now since the curvature of an standard 4-instanton satisfied 

s2 
IFAI = C (r2 + s2)2' 

we may say that for r < s, iFAi = O(s2 ), and that for r > s, IFAI ~ O(s2 r - 4). 

We have, in addition, that 111- i1tl ~ O(t4 ) from [J2, p.535], and from 
this we may calculate 

117r7(FAir<s)liLq < I<(f (t4 s-2)q)lfq 
r<s 

< O(t"s4fq-2), 

since we are integrating over an area of order s4 . 

Similarly, 

117r7(FAis<r<1f2oo)liLq < I<( { (t4s2r-4)q)lfq 
Js<r<l/200 

< I<'t"s2([r4-4q]!f200)1fq 
< O(t"s4fq-2). 

Thus 117r7(FA) ii Lq ~ O(t4s4fq -2), and finally we may deduce 

. 117r7(FA)i1Lq ~ O(max(s2 , s4/q- 2t4)) . 

From this point on, let us set s = t, and thus we obtain that 
0 

The method to be employed in producing a true Spin(7) instanton will 
be that of successive iteration of a certain equation. An instanton A is a 
Spin(7) instanton if it satisfies the equation 1r7 (FA) = 0. 

If we write A = A'+ a, where A' is a fixed connection, and a a 1-form 
with values in End( E), then we have FA = FA' + dA'a +a 1\ a, [DK, p.l35} 
and hence we may rewrite the above equation as 
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We shall write P = rr7dA' ~;DdA' for the linear operator, Q(a) = -1r7(at\a) 
for the quadratic function, and t: for the error, rr7(FA)· The term dA' is 
included for the purpose of gauge-fixing, and turns Pinto an elliptic operator. 
The equation becomes 

Pa = (Q(a) + c,O), 
if we include the gauge-fixing condition dA,a = 0. 

Iteratively, we shall set Pai+l = ( Q( ai) + t:, 0), with the further condition 
that ai+l be £ 2-orthogonal to the kernel of P. If ai converges to a limit, a, 
then we shall have a solution to our equation, and hence a Spin(7) instanton. 
The rest of this thesis will be concerned with obtaining analytical results 
concerning this convergence. 
~ We shall not attempt to obtain analytical results on the whole manifold 

immediately, but shall rather build them up from initial results on simpler 
spaces. The scheme I will follow will run as stated below: 

• Results for compactly supported, N-invariant sections on B 4 x N with 
an instanton centred at the origin. 

• Results for compactly supported function on manifolds of the type 
B 4 x N (where N is a 4-manifold), with an instanton centred at the ori-
gin of B4 • 

• Results for Z = M- (XU Y), where X,Y represent regions near the 
points of curvature of the instanton and points of resolution of the orbifold 
respectively. 

_ • Results for the whole manifold M. 

The reason for following this procedure becomes clear when we consider 
that points of curvature of the instanton may be modelled as B4 x N, and 
points of high curvature of the manifold may be modelled as U x N, where 
U is an open subset of the Eguchi-Hanson space. The results obtained for 
B 4 x N may easily be transfered to similar results for U x N, in which the 
situation is easier to handle, as there is no kernel to deal with on U. Hence 
the last step of this scheme corresponds to the "gluing" of the previous two 
results together. 
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7.1 R esults on N -invariant functions 
The following discussion holds for N any compact 4-manifold with fixed 
SU(2) s t ructure However, we shall only need it for N being either K3 or 
T4. 

Although it is obvious intuitively what we mean by an N-invariant func-
tion, let us now make the definition precise. 

For a smooth 1-form a, on a bundle E-+ 8 4 x N, we have that 

a E C00(End(E) 0 T*(B4 x N)) 
= C00((End(E) 0 T* B 4

) El1 (End( E) 0 T* N)). 

For the bundles we are considering, by their construction we have that 
End( E) is the lift to B 4 x N of a vector bundle over B 4 , and hence the idea 
of an N-invariant section of C00(End(E) 0 T* B 4) is clearly defined, being 
the lift to B 4 x N of a section of the bundle over B 4 • 

We may also define a section, s of C00(End(E) 0 T* N) to beN-invariant 
if 

'iJ NS = 0, 

that is, the Levi-Civita connection is zero in the N direction on the T* N 
component of the 1-forms. 

Now let us consider our operator P acting on such 1-forms. By considering 
only N-invariant 1-forms, we may consider P1 , the component of P involving 
differentiation in the B4 directions, together with an appropriate gauge-fixing 
condition, as an elliptic operator over the 4-manifold B 4 , and hence can use 
results concerning such operators. 

Considering P1 acting on R 4 x N with the appropriate decay, instead 
of B 4 x N, we see that P1 has a kernel, corresponding to the first-order 
deformations of the 4-instanton on R 4 , within the family of instantons created 
using the ADHM construction. 

Thus we may obtain some asymptotic bounds on elements in Ker Pt, when 
P1 is considered acting on R 4 . Let v E KerP1 . Then 

v O(s2r-4
), r 2: s, 

v - O(s-2
), r ~ s, 

as we have stated above. Also, we have 

O(s2r-4-i), 
O(s-2-i), 
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Note that we have normalised to get 

llvllv~ = 0(1), 

i.e. it is independent of s. 
Let us now attempt to approximate these sections of Ker( P1) acting on R 4 

with compactly supported 1-forms on B 4 . Denoting the dimension of Ker( P1 ) 

by k, we may choose L2-orthogonal sections w1, ... , Wk of the bundle of N-
invariant sections satisfying the following conditions: 
• Wj is compactly supported on B 4 . . -
• Wj approximate elements of KerP1 acting on R 4 . 

• 
Wj O(s-2 ), r ~ s, 
Wj O(s2r-4

), s ~ r ~ 1, 
Wj 0, r 2: 1. 

• 
0, r ~ 1/2, 
O(s2

), 1/2 ~ r ~ 1. 

As we calculated the norms of FA above, we may calculate the norms of 
Wj in a similar fashion. 

We obtain 

llwiiiL2 

IJ'ViwiiiP 
JJ'ViwiiiLq -

1, 
O(s-i), 
O(s-i+2-4fq). 

Since we have a pointwise bound on P(wi) independent of r, it is even 
more straightforward to obtain bounds on these: 

We shall now consider some elliptic regularity results, and use these to 
obtain some results on B4 . 
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For f a compactly supported function on R", with a metric and connec-
tion independent of any small parameters, we have that 

where C is a constant, also independent of any small parameters. 
We now wish to consider the eigenvalues of P1 when considered acting on 

the the space of sections £2-orthogonal to W. We expect that, having re-
moved those elements that would cause us most problems, that the remaining 
eigenvalues will not tend to zero with s. 

By elliptic regularity, we see that if a is a 1-form £ 2-orthogonal to KerP1 , 

then 

llall£4 < CIIP1a!IL2, 
I!Vallp < CIIPtallp, 

IIV2allu < CIIV Ptallu, 
IIV3all£2 < CIIV2 P1allu· 

By makings small, we may approximate Ker(Pt) by W = (wl? ... , wk) 
as closely as we choose. In particular, these exists an s0 such that for all 
s :::; s0 , the following is true: 

If a is a 1-form on R 4 orthogonal to the space W, then 

llall£4 < CIIP1ai!L2, 
I!Vall£2 < CIIP1allp, 

IIV2all£2 < CIIV P1allo, 
IIV3allp < CIIV2 P1all£2 · 

(7.1) 
(7.2) 
(7.3) 

Let us restrict our attention to such s. Considering now only those com-
pactly supported a that are £ 2-orthogonal to W, we have the following result. 

Lemma 7.2 If a is a compactly supported 1-form on B 4
1 orthogonal to 

w1 , ...• Wk 1 then there exists a constant C' 1 independent of s :::; So1 such that 

llall£4 < C'IIP1allp, 
IIY'allu < C'll P1a!ID~, 

IIY'2all£2 < C'IIVPdl£2, 
IIY'3all£2 < C'IIY'2 P1allp. 
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Proof.
It is clear that these correspond to the above inequalities 7.1 for R 4 . They 

are obtained from them by considering scaling. Note that both sides of all 
the above equations scale in a similar manner and hence the constants C' 
remain invariant. 

Thus in considering those 1-forms that are compactly supported within a 
ball of radius s-1 in R 4 with a fixed metric and connection , we may obtain 
the desired result for the ball of radius 1 (i .e B 4 ) with the instanton described 
above by scaling by the appropriate factor. 

0 
Note also that since on B\ a region of finite volume, llall£2 ~ I<llall£4, 

we have also llall£2 ~ C'IIPali£2, where, again C' is an constant independent 
of s. 

7.2 Results on B 4 x N . 
In attempting to extend our results for compactly supported N-invariant 1-
forms to, more generally, any compactly supported 1-form on B 4 x N, it is 
perhaps a sound strategy to split the 1-form up into several pieces, and use 
analytic results for each of these pieces. 

For let a E C00(End(E) ® T*(B4 x N)). Then we may write 
I II a=a+a, 

where a' is the N-invariant part of a, and a" is £ 2-orthogonal to all N-
invariant forms. Note that this will imply 

r a"= 0, 
l {x}xN 

for each x E B 4 • 

We shall find it useful if we further split a' into a0 + a1, where a0 lies 
within the space W = (w1 , ... , wk), and a1 is £ 2-orthogonal to this space. 
Similarly we may split a" into a2 + a3, where at each point n E N, a21B4x{n} 
lies in the space WIB4x{n}, and a3 is £2-orthogonal to forms of this type. 

Note that 
k 

L(a', wi)wi, 
1 
I a - a0 , 

k 
- L ( r (wi(z),a"(z,y))) Wi(x), 

1 l zeB4 
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Let us write J;(y) = fzeB4(wi(x),a"(x,y)) for the functions on N. We 
may observe that fN fi = 0. 

We may also consider the splitting of the differential operators \l and P. 
Let us write 

\l = \71 + \72 , 

where \71 corresponds to the derivative in the direction of B4 , and \72 corres-
ponds to the derivative in the N directions. It is worth noting at this point 
that \71 and \7 2 commute. Similarly, we may write 

Before continuing, let us consider some properties of the above splitting. 
Clearly, we obtain that P* = Pt" + P;. 

Since P2 is an fixed elliptic operator on a fixed four-manifold, N, we have 
that 

P;P2 = K6.2, 

that is, a constant muJtipleofthe Laplacian, using an equivalent of a Weitzen-
bock formula. 

We should also see that since they involve differentiation in different dir-
ections, we have that 

and hence 
IIPall},2 = IIPtall},2 + IIP2all},2. 

We may now use elliptic r e g u l a r i t y results for the three components of a 
orthogonal to W. We have, from the earlier section[Lemma 7.2], that 

Similarly, by first restricting our attention to the cross-section B4 x { n }, 
and then integrating the inequality we get over the manifold N, we may see 
that 

lla3llu ~ CIIP1a3llu ~ CIIPa311£2· 
Now it merely remains for us to get a similar bounds on lla2 11. Let us 

first note that since IIPa2llh = IIP1a2!l£2 + IIP2a2llh, we obviously have 
IIP2a2ll£2 ~ IIPa2ll£2· Note that 

54 



k 

L (hwi, I< !::::.2(/i)wi) 
i,j=l 

k 

L llwdli2(B1){fi, ]{ !::::.2fi)N 
i=l 

k 

- K112 I: lldfilll2, 

the last two equalities following from the fact that the Wi's are orthonormal. 
On any compact Riemannian manifold without boundary, it is true that 

for a function f such that the integral over the manifold is zero, then there is 
a constant, C, dependent only on the manifold such that llfll£2::; ClldfiiL2 · 
Applying this fact to the function fi on N, we have that 

k 

L llf,lll2 ::; CIIP2a2lll2· (7.4) 
i=4 

As l!azlll2 = E~ llf,lll2, since the norms of the w/s are 1, we may conclude 
that there exists a constant C such that 

Having these bounds on the components of a, let us continue by attempt-
ing to obtain similar bounds on the components of \l a. Again, for two of 
the components, this follows in a straightforward manner from the bound on 
N-invariant functions L2-orthogonal to W we obtained earlier [Lemma 7.2]. 
We have 11Va1llp ::; CIIPad!L2 immediately from this, and, as before, by 
first restricting out attention to a cross-section and then integrating over the 
whole manifold, we can obtain lla3 llp ::; Cll Pa3 IIL2. The only difficulty that 
arises is in dealing with a2 • 

We may use a similar approach, noticing that \72 acts only on the fi part 
of az, leaving the Wi, theN-invariant part alone. Thus we have that 

Continuing in the same manner, using elliptic regularity, we may deduce 
the following lemma. 

Lemma 7.3 There exists a constant C independent of s such that the fol-
lowing all hold. 
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lla2!!v < CI!Pa21!£2, 
lla31!L2 < CI!Pa31!v, 

IJ'Vati!L2 < CIIPati!L2 1 

II'V2a21!L2 < C!IPa2JJL2, 

ii'Va311£2 < CI!Pa3!1L2 1 

IJ'V2atiiL2 < Cll\7 Patl!v, 
II'V~a21lv < C II \7 2 P a2JI L2 , 

II'V2a311L2 < Cll\7 Pa3!1v, 
II'V3adlv < Cll\72 Pa11!v, 
IIV~a2llv < C1l'V~Pa21!L2, 

li'V3a311L2 < Cll\72 Pa311L2· 

Proof. We see that we have already proved the assertions about the 
components of a. 

We may also see that since 'Via1 = 'V{a1 , since a1 is a independent of 
the variables in the direction of N. Thus we may use Lemma 7.2 to prove 
our result, since the \7 in Lemma 7. 2 refers to \7 1 , the derivative in the 8 4 

direction. 
Considering the \7~a2 terms, we see that by elliptic regularity on the 

manifold N, which is independent of any small parameters, we see that 

'+1 
II'V~ a2JIL2 < CII'V~P2a21IL2 

< CII'V~Pa21IL2. 

Finally, let us consider the derivatives of a3. We have 

Thus we may obtain bounds on 'Qi+1a3 from bounds upon \7~\7{+1-ka3. 
Firstly, let us consider the cases when either k = 0 or k = j + 1. In these 

cases, we may proceed as above to obtain 

from Lemma 7.2 again, and 

from the fact that the manifold N is independent of any small parameters. 
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In the other cases, we have 

for any 1-form b that is £2-orthogonal to W, where the integration is over 
B 4 X { n }. But if we let el) ... ) e4 be an orthonormal basis for r: N, then we 
see that 

~k~i+I-k '\" 
v 2 v 1 a3 = ~ vi(l), ... ,i(k) 0 ei(l) 0 ei(2) 0 · · · 0 ei(k), 

and 

where 
Vi(l), ... ,i(k) = v{+l-k ( Vei(l) Vei(2) ..• Vei(k) a3) , 
Ui(l), ... ,i(k) = v{-k ( Vei(l) Vei(2) . .. Vei(k) pl a3) . 

Thus we may apply Lemma 7.2 to the v and u terms (note that they 
are L2-orthogonal to W since a3 is), and remembering that e1, ••• , e4 is an 
orthonormal basis, by integrating over N, we obtain 

Putting these results on the components of Vi+la3 together, we do indeed 
obtain the results stated in the Lemma. 

0 
Let us also consider V 1 acting on the a2 component of a. Since V 1 acts 

only on the Wi part of a2 = 'Lfiwi, we may obtain bounds on Via2 by 
considering the equivalent bounds on Viwi. We obtain the following: 

IIV 1a2IIL2 < cs-1 lla211£2, 
I!VtV2a2ilu < Cs-1 [[V2a2 [[u, 
IIV2V1a21!L2 < Cs-1 [[V2a21iu, 

IIV~a2IIL2 < Cs-21ia21iL2, 
IIVia2llu < C s-31ia2llu-

We may obtain the same results with Pa2 in place of a2 • 

The next lemma will begin to tackle a problem that we would otherwise 
encounter in attempting to estimate [[a[[ by [[Pall; that, in splitting a, we 
may find it difficult in moving from bounds of [[a[[ by [[Pa11! +II Pa2[[ + [[Pa31l 
to the bounds by the simpler llPall. 
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It is worth saying at this point that much of this section will be dealing 
with problems very similar to this one, in trying to deal with the fact that 
\Ji Pa2 and \Ji Pa3 are not necessarily £ 2-orthogonal. Many of the lemmas in 
this chapter are concerned with approximating the L2 inner product between 
these quantities, and hence in relating II 'Vi Pallu and the pair II 'Vi Pa2IIL2 
and II'ViPa311u· 

The next lemma can be seen as a first step in relating the two quantities 
Pa2 and Pa3. 

Proof . 

(Pa2, Pa3) - (P* Pa2, a3) 
((Pt P1 + P; P2)a2, a3) 

- (P; P1a2, a3) + (P; P2a2, a3). 

But by definition, a2 = 2:~ fiw;. Since j; is a function of the N-variables 
only, and hence independent of the B4 variables, we have that 

k k 

P; P1a2 = P; Pt (~ j;w;) = ~ j;(P; P1w;). 
1 l 

Also, since w; is independent of the N-variables, we have that 

k 

P; P2a2 = ~g;w;, 
1 

where g; = 6-.dj, and is independent of the B 4 variables. Thus we have 
(gjWi, a3) = 0, by definition of a3. T hus 

k 

(Pa2,Pa3) = ~(fi(PtPlwi),a3) 
1 
k 

< L lla311ullf;llu<N>IIPt P1 w; IIP(B4). 

As we stated in the construction of the w/s any norm of Pw; will be 
O(s2 ) . Hence there exists I<1 such that 
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Now we have that 
k 

lla21ii2 = 2:: llfdli2(N)IIwilli2(B4)' 
1 

by definition. Now from construction of Wi, we have that llwtlli2(B•) =1, and 
hence we may deduce that 

k 

lla2IIL2 ~ C(k) 2:: ll fdi£2(N), 
1 

for some constant C(k), depending only on k. 
Hence 

0 

Lemma 7.5 

Proof.

IIPalli2 = l1Pa1lli2 + l1Pa2llh + l1Pa31!i2 + 2(Pa2, Pa3), 
since Pa1 is N-invariant, and both Pa2 and Pa3 are £2-orthogonal to N-
invariant forms, these properties being preserved under applying P. 

Hence from Lemma 7.4, we deduce our result. 
0 

Lemma 7 .6 With the same notation as above, for small enough s there 
exists a constant C such that 

lladl£2 < CIIPallp, 
lla2l1£2 < CIIPaiiL2, 
lla311£2 < CIIPallp, 

IIY'adiL2 < CIIPall£2, 
11Va311£2 < CIIPall£2, 

IIY'2a2IIL2 < CIIPaiiL2· 
If a is L2 -orthogonal to W, i.e. a0 = 0, then in addition we have 
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Proof.
This follows immediately from the lemmas 7.3 and 7.5 . 

Next let us consider '\1 Pa = '\1 Pa1 + '\1 Pa2 + '\1 Pa3. 

Lemma 7.7 

Proof. 
We have 

2 

('lzPaz, 'lzPa3) = 2.: ('\lzPiaz, 'lzPja3)· 
iJ=1 

Firstly, we may note that 

0 

and on observing that ( P;v;V2P22) acts only on the f;'s in a2 = '£, fiwi, 
and hence that the resulting form is a also a combination of w;'s, we see that 
a3 is L2-orthogonal to this, by definition. Hence ('12 P2a2, 'V2Pza3 ) = 0. 

We may also see that 

= (P1az, Pz(v;vz)aJ) + (Pzaz, Pt(V;Vz)aJ) + (P1a2, [v;vz, Pz)a3). 
We are permitted to perform the above operation because P1 and '12'\lz 
commute, being differentiation in independent directions. But 

since P; P1 + P: P2 = 0. As for the [('12'12), P2)a3 term, it must consist of a 
bilinear combination of the manifold curvature in the V 2-direction, together 
with a3 and its derivatives. Noting the necessary degree, and the fact that 
the instanton is flat in the '\1 rdirection, we see that 

where Qi denotes a bilinear map and RN denotes the manifold curvature in 
the direction of the submanifold N. 
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We may also note that in the direction in which \12 acts, both the manifold 
curvature and its derivative are bounded. Hence 

I('V2P1a2, 'V2P2a3) + ('V2P2a2, 'V2P1a3)l < CIIP1a2ll£2 (lla3IIP + II'V2a311P) 
< Cs2lla2IIL2 (lla311o + II'V2a3llo) 
< Cs211Pallo (IIPallp + IIPall£2). 

Finally, we shall consider ('V2P1a2, 'V2P1a3). The P1 acts only on the wi 

part of a2 = L, fiwi, and we have that all norms of P1 Wi are O(s2). Thus we 
may deduce that 

Hence 

I('VzPta2, 'V2P1a3)l < Cs2(II'Va211o + lla2IIP)II'V2Pta3ll£2 
< Cs2IIPa2IIPII'V2Pta3llu 
< Cs211Palloii'V Pa311£2. 

We have 

since the images of \11 and \12 are L2-orthogonal. 
So for small enough s, we see that 

j !'V Pa1lli2 + II'V P2a2llh + II'V Pa3lli2 < C (li'V Palli,2 + II'VtPa2lli2) 

< C (II'V Palli2 + s-2IIPalli,2). 

Now from the elliptic results 

II'V2adl < CII'V Patll£2, 
II'V~a2IIL2 < CII'V Pa2llo, 

II'V2a311 < CII'V Pa3IIL2, 

0 

together with the above results, we may deduce bounds on the second deriv-
atives of the components of a in terms of II'V Pall and II Pall alone. 
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Proposition 7.1 For small enough s) there exists a C independent of s such 
that 

IIV2adi£2 < CIIV Pai1L2, 
II'V~a21i£2 < CII'V Pall£2, 
IIV2a311£2 < CIIV Pall£2. 

The third derivative follows a similar method. 

Lemma 7.8 

Proof. 

2 

(Y'~Pa2, Y'2 Pa3) = L (Y'~Pia2, Y'~Pia3). 
i,j=l 

Similarly to last time, we get 

Also, 

('V~P1a2, V~P2a3) + (V~P2a2, 'V~P1a3) 
- (P1a2, P2((Y'~)*Y'~)a3) + (P2a2, P1((Y'~)*Y'Da3) + (P1a2, [(Y'D*Y'~, P2]a3) 

(P1a2, [('V~) *V'~, P2]a3). 

Again we see that the sum of the first two terms disappear, and [("V~)*'V~, P2]a3 
will consist of derivatives of the Riemannian curvature in the 'V 2-direction 
and derivatives of a3 • That is, 

for some bilinear functions Qi. Sincethese curvature derivatives are bounded, 
independently of s, we have that this term is bounded by some constant times 

Hence we have 

lla311L2 + IIV2a3IIL2 + IIV~a311£2 + II'V~a311£2 

~ C (IIPalltz + IIV Pali£2 + IIV2 Pa31itz). 
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~ CIIP1a2!1L2 (IIPall£2 + IIVPa!IL2 + IIV2Pa3IIL2). 

The last component is (V~P1 a2 , V~P2a3). We can see, as before, that \7~ 
acts only on the Wi of a2 . Thus as before, we see 

We may then deduce 

I(V~P1a2, V~P1a3)l < Cs2II V Pa2IIL2IIV2Pa3IIL2 
< Cs2IIV Pa!li2 

These results then allow us to prove the lemma. 

Thus we may consider 

IIV2Pa - \l~Pa2 - V1V2Pa2 - V2V1Pa2lli2 

= ll\72 Patl!l2 + I[V~Pa2llh + ll\72 Pa3llh + (V~Pa2, V~Pa3). 
Lemma 7.8 then gives us that, for small enough s, 

ll\72 Pa1lll2 + IIV2 Pa2lll2 + ll\72 Pa3lll2 

< Cll\72 Palll2 + s- 211\7 Pa!ll2 + s- 411Palli2· 
We may state t his as a proposition similar to the one above. 

0 

Proposition 7 .2 For small enough s, there exists a C independent of s such 
that 

lr'v3a1IIL2 < CIIV2Pallp, 

1!V~a21!L2 < CIIV2PaiiL2, 

IIV3a311L2 < Cll\72 Pali£2· 

This will be the last result we need on B4 x N. 

7.3 Results on the remainder of the Manifold 
Now let us consider the manifold without the regions of high curvature. 
If we remove a region of radius toe around the points of concentration of 
the instanton curvature, and the manifold curvature, calling the resulting 
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manifold Z,0 then we may use elliptic regularity results to get similar bounds 
on a and its derivatives in terms of Pa. 

Note first that if we restrict our attention to compactly supported a then 
P has no kernel. This is because the only elements in the kernel of P when 
acting on T 8 jr are constant 1-forms, and, of course, when we require these to 
vanish in a certain region of the manifold, we ensure that they are uniformly 
zero. 

It is clear that, since the decay of the manifold curvature and the decay 
of the instanton curvature is of the form t'nr-n for some constants n and 
m, we may select a = a 0 > 0 so that the curvatures and all other relevant 
quantities are below a constant value, independent oft. 

We may cover Za0 with balls of fixed, constant radius, independent oft, 
and then apply standard elliptic regularity results to these balls to obtain 
the following result: 

Proposition 7.3 There exists an a 0 with 0 < a 0 < 1 such that for a a 
compactly supported1-form on Za01 we have the following inequalities: 

llaiiL2 < CIIPall£2 1 

IIVallp < CIIPaiiL2 1 

IIV2a11L2 < Cll\7 ?al1L2, 
IIV3allv < CIIY'2Pallv, 

where C is independent oft. 

Proof. 
The existence of such a C follows from elliptic regularity, and the fact 

that the kernel of P will be 0 for small enough a. 
We may obtain the result that C can be chosen independently of t by 

choosing a 0 as described above, so that the curvature, and other relevant 
quantities, are smaller than a constant independent oft. 

0 
Note that we may also use this result if instead of Za, we use Z, the 

manifold obtained by removing regions of fixed, small radius (say, the radius 
is 1/100 ) around the points of centre of curvature. 

7.4 R esults on the Whole Manifold 
Armed with these results, I shall glue them together to obtain a result on 
the whole manifold. 
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Let (3: R ~ [0, 1] have the following properties: 
• (3(x) = 0 for x::; 0. 
• (3 ( x) = 1 for x ~ 1. 
• (3 is smooth. 

Let r denote the radius function of B 4. Now define a function v : M ~ 
[0, 1] by 

We have 

Lemma 7.9 

Proof. 

v = (3 ( lo~ r ) , on B 4 x N, 
ao og t 

v = 0 outside B 4 x N. 

v 0 outside B4 x N, 
1 - v 0 outside Z'. 

\lv = 8(3 \lr , 
8x ra0 logt 

and we have that 8(3 / 8x is independent of all small parameters. Now we 
have 

rb 1 lr=a. r4 = C(logb - loga), 

where it should be amde clear that we are integrating on that region of B 4 x N 
with distance from the submanifold {0} x N between a and B. Sincewe are 
integratingbetween r =tao and r = 1, we see that 

II "' II = c I (log t)ll/4 
v v £4 I log t I . 

Thus 

0 
Consider an a £2-orthogonal toW. Since a= va + (1- v)a, we may split 

a up into a piece compactly supported on B4 x N and a piece compactly 
supported on Zoc0 • Thus we may apply our previous results to both. 
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Note t h a twe must have va being £2-orthogonal toW to apply the original 
results directly. However, we may see that (va, w) for w E W, is small 
compared to llallp, as 

l(va, w)l j(a, vw)l 
l(a, (1- v)w)l 

< llaiJ£211(1 - v)wll£2 

( 

1/100 ) l/
2 

< llall£2 lao Jwl2 

< CllaiiL' (f.::•oo(t'r-')') 1/2 

< Ct211aiiL2 (rr-4J!C00
) 

112
. 

(7.7) 

(Note that the second inequality holds as the region intergrated over is 
the intersection of the supports of the two functions.) 

So we see that provided a 0 has been chosen small enough, and we set 
t small enough, we may also apply the results we obtained for a that are 
L 2-orthogonal to W to a that are £2-orthogonal to vW. 

Thus we have 

from Lemma 7.6. 
From Lemma 7.3 , we also have 

11(1 - v)aiJ£2 :::; CIJP(l- v)ail£2. 

Adding these two results, we obtain 

llaiJ£2 < C(IIP(va)l!£2 + IIP(l- v)allp) 
< C (IIPali + IIY'v.allp). 

From this point on, let us denote the annulus of B 4 given as the projection 
of B 4 x N's intersection with Za0 by D. 

Let us consider the final term. 

Consider y fixed, we have 
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----- -- ----~-- -----------

~ (LED 1Vvl4r/2 (iED ia(x,y)l4r/2, 

by Holder's inequality. 
But from lemma 7.9 

(LED 1Vv14) 1/2 ~ Cllog tl-3/4. 

Hence 

,._ 

O n the annulus, D, considered as a 4-manifold, with fixed y, we have 
L ~  -+ L4 by Sobolev embedding. So 

and hence 

Hence we deduce 

O n the annulus, by using an argument with balls of radius independent 
of the small parameters involved, and a method similar to those used on the 
manifold with the highly curved regions removed, we have 

Thus 
llallu ~ C (IIPallu + I log tl-314lla1DIIu) . 

So for small enough t, that is provided Cllog t j-3/4 ~ 1/2, we have the 
following theorem. 

Thus we have proved the following theorem: 

Theorem 7.1 For small enough t, if a is L2 -orthogonal to vW, then 
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We may continue in a similar fashion to obtain such bounds on the de-
rivatives of the components of a. If we were to try to obtain these using the 
previous cut-off function, we may well run into the problem of dealing with 
v's higher derivatives, which are not independent of the small parameters 
used. Since we have already obtained a bound on a norm of a, we need not 
use this cut-off function again. Thus let us first define another cutoff function 
fJ. as follows: 

fJ. = {3 ( log~~~~OO)) . 

From this point onwards, we shall denote that which we have previously 
called a2 as b, and write c = a- b. That is, we shall split f.J.a into components 
a1 + a2 + aa and write b = a2. 

For r > 1, we have fJ. = 0, and for r < 1/2, we have fJ. = 1. Note that 
f.J.a is compactly supported on B 4 x N, and ( 1 - fJ. )a is compactly supported 
on Z, and hence we may apply our known results on the derivatives of a to 
them. As above (equation 7. 7 ), we may show that results for a that are 
L2-orthogonal to W may be applied to a that are £2-orthogonal to f.J.W,(i.e. 
f.J.a is L2-orthogonal to W), by an identical method. We may also see, by 
the definitionof f.J., that its derivatives are independent oft. We may use the 
results obtained above for a 1 and a3 to gain similar results for c. 

We have bounds for IIVfLciiL2 and for IIV(l- ft)ciiL2 from earlier work 
[Lemmas 7.6 and 7.3 J. 

IIVf.J.ciiL2 ~ CIIP(f.J.a)IIL2, 
IIV(l- f.J.)cii£2 ~ C IIP((l- tt)a)IIL2· 

Thus since li'Vcll£2 ~ li'Vf.J.cliL2 + ll\7(1- f.J.)cli£2, we have 

IIVcll£2 ~ C(IIP(tw)IIL2 + IIP((l- f.J.)a)IIL2 ). 

But 

Thus we obtain, since IIV f.J.IIco is independent oft, and we already have 
the result ilall£2 ~ CIIPall£2, 

II'Vcll£2 ~ Ci1PaliL2· 

Similarly, we get from the earlier bounds [Lemma 7.6] on ll\72a2IIL2 a 
bound on IIV2biiL2, namely 
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The higher derivatives of c follow similarly: 

IIV2cll :::; IIV2~tcllv + IIV2(1- ~t)c ii L2 

:::; C(IIV P(~ta)JI£2 + t- 1 IIP(~ta) iiv + IIV P((l- ~t)a)iiv + C 1 IIP((l - ~t)a)iiL2). 

Now 

IIV P(~ta )llv+ll\7 P((l-Jt )a )11£2 :::; IIV Pallv+C(IialiL211V2~tllco +I IV ailvll\7 ~til co). 
Using this, together with the previous bounds on llaiiL2 and IIVaiJv, 

remembering that the 0° norms of It are independent oft, we have 

IIV2cllv :::; C(IIV Pallv + C 1 11PaiiL2 ). 
~ A similar argument gives 

IIV~bllv :::; C(IIV Pall v + C 1 IIPallv ). 
For \73a, we see that 

IIV3ciiL2 < IIV3~tcl lv + IIV3(1- ~t)c llv 
< C(ll\72 P(~ta)llv + C 1 IIV P(~ta)ii£2 + C2 IIP(~ta)IIL2 
+ ll\72 P((I- ~t)a)llv + C 1 ll\7 P((l- ~t)a)llv + C 2 IIP((l- ~t)a)llv ). 

But 
ll\72 P(~ta)llv + ll \72 P((I - ~t)a)llv 

< IIV2Pallv + C(ll\72allviiV~tllco + 11Vallvll\72~tllco + llaiiL2 IIV2~tllco). 
Thus we may deduce 

IIV3cii L2 :::; C(ll\72 Pall£2 + C 1 il\7 Pallv + C 2 1lPailL2 ). 
Once again, we may obtain the same bound for I IV~bllv· We may sum-

marise these results in the following theorem. 

Theorem 7.2 The following bounds hold on the whole manifold with the 
splitting a = b + c as above: 

llall£2 < CIIPallL2 1 

IIVcllv < CIIPallv, 
IIV2bllv < CIIPaiiL2, 
ll\72cll v < C(IIV Pallv + C 111Pallv ), 
IIV~bllv < C(ll\7 Pallv + C 11!Pallv ), 
IIV3cllv < C(ll\72 Pallv + C 1IIV Pallv + C 2 11Pallv ), 

IIV~bllv < C(ll\72 Pallv + t-1 11\7 Pailv + C 2 !1Pallv ). 
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7.5 Results about Quadratics 
Let us proceed by obtaining estimates for the quadratic function Q, along 
with its derivatives. 

We may see that there existsa constant C such that 

But 
llalil• ~ 2( llcll l4 + llblll4 ). 

Before using any Sobolev embedding theorems, it is worth noting that 
the constants involved will be independent of t. This is a result we will use 
greatly in th is and the following chapter. The sort of result I would like to 
be able to make use of is 

with the constant C independent of the small parameter t. 
Note that this result is equivalent to the independence of the Sobolev

constants for functions, since 

and thus we may use the result for f = IY'kal. 
The result for functions on the part of the manifold with high instanton 

curvature follows from the fact that the function norm is independent of the 
instanton. 

Thus we are left to consider the Eguchi-Hanson parts. For any function 
f compactly supported on T 4 x E- H, where the E- H is scaled by a factor 
t, we may write 

f = fo + !b 
where fo is a function independent of T 4 , and ft has integral zero over T 4 . 

From scaling results on the Eguchi-Hanson space, we see that 

( )

1/2 
f l!ol4 ~ cj 1Vdl2 , 

}T4xE- H 

where V' 1 denotes differentiation in the T 4 direction, and V' 2 denotes differ-
entiation in the E - H direction. 

For any fixed x E E- H, we have that 
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Integrating over the Eguchi-Hanson space, we see 

Since Vdo = 0, we have Vd1 = '\ld, and hence 

Similarly, by first restricting toy E T 4 , and then integrating the inequality 
we obtain, we see 

This equation is conformally invariant, and henec the constant C is inde-
pendent of t. 

Now we use a proposition that I will state without proof, as the proof is 
long and uninstructive. 

Proposition 7.4 Let M and N be manifolds. Then 

Thus we may deduce that for a compactly supported function f on T 4 x 
(E- H scaled by t), we have 

w.ith C having no t-dependence. 
Now let us consider a cut-off function /3 with bounded derivatives in an 

annulus around the Eguchi-Hanson space. We have, by the remarks above, 
that 

11/3!11£8/3 < CIIV(/3f)IIL2 

with C independent oft. 

< C (IIV fiiL2 + lld/3llco-llfiiL2) 
< CIIJIIL~I 

We may obtain a similar bound upon 11(1- /3)/IILats, since the injectivity 
radius is independent of t on the support of (1 - {3). Thus we obtain the 
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result t h a t the Sobolev constant in the Sobolev embedding L813 is 
independent of t. 

Following the same method, and considering higher derivatives, we may 
see that other Sobolevconstants, in the embeddings L ~  ~ L4 and L~ ~ L8 

are also independent oft. 
There exists a constant C independent of t such that 

llfll£8/3 ::; CIIJIIL~' 
llfiiL4 ::; Cllfllq, 
II!IILs :S Cll!IIL~· 

In 8 dimensions, we have the Sobolevembedding L ~  ~ £4 , and hence we 
see that 

IJciJL4 < C (IJcllp + JJVcJJ£2 + IIV2ciiL2) 
< c (IIPaJIL2 + IIPallp + JJV PaJI£2 + r 1 IIPaJJp) 
< C (JIV PaJI£2 + r 1IIPaiiL2) . 

With b, however, we need not use the Sobolevembedding in 8 dimensions, 
but rather the more advantageous 4 dimensional Sobolevembedding, L ~  ~ 
£4. 

This is because 

llbJJL4 - (IN k4 L lfiwd4dxdy) 1/4 

- I:: (IN l!d4dx) 
114 (fs 4 lwd4dy) 

114 

L llfiiiL4 (N)IIwiiiL•(B4) 
< I:: CllfillqcN)r1 

< Ct-1 (JIV2bl1£2 + JJbJJv). 
We have ll\72biiL2 and JJbllp are both bounded by a constant multiple of 

IIPallv-
So we get 

(7.8) 

and thus we get our required bound on IIQ(a)JJ£2. 
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Lemma 7 . 1 0

We may continue by obtaining a similar bound on 'VQ(a). First, we note 
that 

ii'VQ( a )liP ~ CIIY' a.a ll r,:~ 

:::; CIIY'aiiL411aiiL4 • 

O fcourse, we may use the bound obtained earlier [equation 7.8] for lla11L4. 
Also, we have 

Using the Sobolev embedding L ~  --+ L4 in 8 dimensions, we see that 

IIY'ciiL• < C (IIY'3cllp + IIY'2ci1P + IIY'ciiL:~) 
< C (IIY'2 Pallp + r 1IIY' PaiiL2 + r 2 11 Pall£2) . 

Now 

IIY'tbiiL4 < CI: IIY'diwiiiL• 
< C L llfdiL4 {N)IIY' 1wi1lL4 

< Cr2 (llbiiL2 + IIY'2b1lL2) 
< Cr2 IIPaiiL2· 

Finally, again using the Sobolev embedding Li --+ L4 in 4 dimensions, 

IIY'2biiL4 < C L IIY'2fiwi1lL• 
< C L IIY' diiiL•IIwiiiL• 
< C :Lr1 IIY'2fdiL• 
< C:L r 1 (IIY'~fdiP + IIY'2fdiL2) 
< Cr1 (IIY'~biiL2 + IIY'2bl1L2) 
< Cr 1 (IIY' PaiiL2 + C 1!1Pallp). 

These results together give 

I IV' all£• :::; C (ll\72 PaiiL2 + r 1IIY' Pall£2 + t-211Pallp). 
This gives us the lemma: 
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Lemma 1 .11 

IIVQ(a)IIL2 ~ c (IIV Pailp + C 111Pai!L2) (IIV2PaiiP + C 1 IIV Pallp + C 21!Pallp). 
The last of our requirements to begin the iteration will be a bound on 

'V2Q(a) . 
Note that 

IIV2Q(a)ll£2 < CII'Va .'Va+ a.'V2allv 
< C (IIY'all i,4 + llcll£siiY'2ciiLs/3 + llb.V2bll£2), 

by Holder inequalities. 
We already have bounds on IIY'all£2, so let us proceed by calculating 

bounds on the other two parts. 
Now since £5 --7 L8 , we have that 

llciiLs < C (IIV3cllp + IIV2cllp + IIVciiL2 + llcllv) 
~ C (IIV2 Pall£2 + C 1 IIV Pall£2 + t - 2IIPaiiL2) . 

In 8 dimensions, we also have Li --7 £813 , and hence can deduce 

IIV2ciiLs/3 ~ C (IIV3ciiL2 + IIY'2ciiL2) 
~ C (IIV2 Pai1L2 + C 1 1!V Pal!v + C 21!PaiiL2). 

Considering the b part, we see 

llb.'\72biiP ~ C (llb.'Vibllp + llb.'Vt'V2bllp + l!b .'V~biiL2) 

~ C (r2llblli_• + t-1 llbiiL•IIY'2biiL• + llbiiL•IIV~b iiL4 ) · 
From earlier [Equation 7 .8] work, we have 

Hence 

llb.'\72biiL2 

llbiiL4 < Ct-1 (IIY'2biiL2 + llbiiP), 
IIV2biiL• < Cr 1 (IIV~biiL2 + IIV2biiL2), 
IIV~biiL• < Cr1 (IIV~bllp + IIV~bllv). 

< C[C4 (IIV2bllp +II blip?+ C 3 (IIY'2bllv + llbllv) (IIY'~biiL2 + IIV2bllp) 
+ C 2 (IIV2biiL2 + llbiiL2) (IIY'~bllv + IIV~bllp )l 
< C (r4 1!Pallh + t-3 11Pallv (IIY' Pallp + C 11!Pai!L2) 
+ t-2 iiPailv (IIV2 Pal!v + t- 1 11\7 PaJIP + C 211PaiiL2 )). 

Thus we may deduce the following lemma: 
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Lemma 7.12 

We may summarise our results in the following theorem. 

Theorem 7.3 For a that is L2 -orthogonal to W we have 

II Q (a) II L2 < c (II v P a II £2 + c 1 11 P a II u) 2 
, 

iiVQ(a)llv < C (IIV Pali£2 + t-1IIPallv) (IIV2 Pallv + C 1 IIV Pallv + C 211Pall£2), 
IIV2Q(a)llv < c (IIV2Pallv +C1 IIVPallv + IIPaiiL2f. 

With these analytic bounds on norms, let us proceed with the iterative 
solution. 
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Chapter8 

Iterative Solution to the 
Instanton Equation 

With the results from the last chapter, we may now obtain our pay-off: the 
construction of a Spin(7) instanton. We do this, as I have mentioned before, 
through the method of successive iteration of the equation: 

If P is sujective, then it is clear that this is always possible. 
Note that we may select ai+l so that it is L2-orthogonal to the space W 

mentioned in previous chapters, so that all our estimates hold. We may do 
this by selecting an arbitrary solution to the above equation, and then adding 
on an element of Ker(P) to ensure that a is L2-orthogonal to W. O fcourse, 
adding on an element of Ker(P) will not change the fact that a satisfies the 
above equation. 

We shall consider the sequence ai with a0 = 0. 

8.1 Some Estimates on a 1 

Lem ma 8.1 There exists a constant C such that 

P r o o f .
First, we may note that we have that Pic is of the same order as E. itself. 

Thus we have 
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IP;€1 < Ct2
, 

< Ct6r-4 

< Ct2 , 
, 

r < t 
t < r < 1/2 

1/2 < 7', 

Now b1 = 'L fiwi, and we know the size of lwil : 
lwil < Cr2

, r < t 
< cer-4 t < 7', - , 

Thus we may calculate 

{P;i, Wi} < c ( r 1 + r t8r-8r3dr + r t 4r - 4r3dr) 
Jr<t lt<r<l/2 Jl/2<r 

But 

< Ct4 • 

{P;i,bl) < Cl:llfdiP{P;i,wi) 

< Ct41ib1IIP· 

Using this, we may calculate estimates for the components of a1 . 

0 

Theorem 8 .1 The following bounds hold for a1 = b1 + c1, the splitting of a1 

being as mentioned before. 

llcdiL2 < Ct2 , 
ll\7clll£2 < Ct2 , 

II'V2ciliP < Ct2 , 
II \73 clll £2 < ce , 

llbdl£2 < Ct4 , 
ll\7 2blll£2 < Ct4 , 
ll'Vbdl£2 < Ct3 

' 
II'V2bdl£2 < ce , 
II'V3bd IL2 < Ct. 
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P r o o f .
Since Pa1 = €, we may obtain bounds on it and its derivatives, using 

estimates obtained earlier,(7.1} since alJ bounds on c are of the order t 2 . 

Thus we have 

IIPa1 IlL, 
I IV' Padlu 

IIY'2 Padlu 

Considering the bounds on bh we shall now use Lemma 8.1. 
Now 

and hence 

Thus 

(P;t, b1) - (P; P2c1, b1) + (Pi P1 Ct, bt) + (P; P2b1, b1) +(Pi P1 b1, b1) 
(c1, Pi P2b1) +(Pi PtCt, b1) + (Pi Ptbt, bt) + IIP2bdli2. 

We may note that Pi P2 b1 is orthogonal to c1, since P2 acts only on the h 
part of b1 . Thus the inner product is zero. Using the fact that Pi, P1 + P; P2 = 
0, we see 

Looking first at the middle term on the right hand side, we see 

(P2b1, P1b1) = (P; P2b1, bt) 

= (-PiPlbt,bt) = -(Pzb1,P1b1)· 
Hence it is zero. 

Let us consider now the last of these terms. We have that 

IIPi Plb1IIL2 < Ct211Y'2bdl 
< CtziiP2bdlu, 

since the P1 acts only on the w; parts of b. 
Thus we have 

(P2"' Ptbt, c1) < Ct211PzbdiL,IIcdiL2 
< Ct4 jjP2bdjL2· 
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Hence 
IIP2bllll2 :::; Ct411P1bdiP + Ct4 + Ct4 ilbdiL2, 

using the preceeding lemma. 
We have that, since P1 acts only on the wi part of b1 , 

IIPibdiP:::; Ct21ib1IIL2· 
From earlier work (see Lemma 7.4 ), we see that 

llbliiL2 :::; CIIP2bdiP· 
Hence we may deduce that 

IIP2bdll2 :::; c (t2IIP2bl 1112 + t 4 11P2bdiP) . 
Thus we must have 

and so we have 
llbl liP :::; Ct4

. 

From this, we may easily deduce the bounds on the derivatives of b1 by 
splitting up \l as \l = \71 + \72 , and using the bounds on the derivatives of 
Pa1• 

We see that 

and since 

and 

we have our result that 
IIVbdl :::; Ct3 . 

. Higher derivatives follow similarly via the method of proof of Lemma 7.2. 
-"1 . 

··· The bounds for c1 and its derivatives follow immediately from the proof 
of Theorem 7.2 in the previous chapter, together with the bounds on b1 , since 

llc1llP < 
IIVcdiP < 

IIV2cl li L2 < 
< 

IIV3c1IIP < 
< 
+ 

CIIPalii£2, 
CIIPad[L2> 
c (llv Pa1 1i + t-1 llPbdlP) 

C (IIV Pad[P + t - 1 (llP1b1IIP + IIP2bd[P)), 

C (IIV2PalllP +C1[[\l2Pb1llP +t-211Pbl[IP) 
Cbigl[ li\l2PaiiiL2 + C 1 (ll\l2P1bliiL2 + IIV2P2b21iP) 
C 2 (IIPtbt liP + l1P2b1 IIP)]. 
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So we may deduce 

IIQ(al)ll£'2 < ce, 
WvQ(at)ll£2 < Ct, 

II'V2Q(ai)IIP < C. 

8.2 The Inductive Hypothesis 
Using the notation bj = bi- bi-h cj = Cj- Cj-1 , whilst noting that 

0 

and that for any quadratic function Q, there exist cl, c2 and c3 such that 

we have that 

IIQ(aj)- Q(aj-1)11£'2 < c1 (llbjll£4 (llb;IIL• + llb;-dl£4) + llcjiiL· (llb;ll£4 + llb;- dl£4 ) 

+ ilbjiiL• (ilc;IIL• + llc;-diL•) + llcjiiL4 (llciiiL• + llci-diL•)) · 
Similarly, 

II'V(Q(a;)- Q(a;-t))ll£2 

< C2(II'VbjiiL4 (llbiiiL• + llbi-IIIL•) + II'VcjiiL• (llb;IIL• + llbi-tiiL•) 
+ II'VbjiiL• (llcill£4 + llc;-dl£•) + II'VcjiiL• (llcill£4 + llci-tllo) 
+ llbjiiL• (II'Vb;IIL• + II'Vb;-111£•) + llc-;11£• (II'VbiiiL• + II'Vb;-dl£•) 
+ llbjll£4 (II'Vcill£4 + II'Vci-III£'1 ) + llciiiL• (II'Vc;ll£1 + II'Vc;-dl£•)), 

and 

< c3 (ll(bj + cj)ll£8 (II'V2(bj)ll£8/3 + II'V2(b;-dl l£8/3 + II'V2(cj)ll£8/3 + II'V2(Cj-1)11Lst3) 
+ II'V(bj + cj)IIL• (ll'V(b;)IIL• + ll'V(b;-I)IIL• + II'V(c;)IIL• + II'V(c;-diiL•) 
+ II'V2(bj + cj)ll£8/3 (llbill£8 + llb;-tll£8 + llciiiLs + llc;-III£8)· 

I 
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(8.2) 

Let us state our inductive hypothesis on the values of the iterative terms 
bi and Cj. It is somewhat long, but I hope it will be self explanatory, and the 
necessity of each term will become clearer later on. 

Hypothesis 8.1 Assume that for j < k there exists a K 1 such that 

ll cil l£2 < Ktt2, llcjll£2 $ Ktt42-i, 

II'Vcil l£2 < Ktt2, II'Vcjll r,2 $ K1t42- i, 

II'V2cill£2 < K1t2, II'V2c-:-tl < I< t32-i 1 £2 - 1 ' 

II'V3
Cj 11£2 < K1t2, II'V3cjll£2 $ K1t22-i, 

llbill£2 < K1t\ llbjll£2 $ Ktt42-j) 

II'V1bjllu < !{1 t3
' II'Vtbjllu::; K1t32-i, 

II 'V2bjllu < K1t\ II'V2bjll£2 ::; K1t42-j, 

II'V~bill£2 < Ke 1 , II'V~bj llr,z $ K1 t32-j, 

lt'V2bjll£2 < K1e, II'V2b-:-ll < K t22- i ) £2 _ 1 , 

II'V3bi ll u < K1t, II'V3bjll£2 $ K1t2-i. 

8.3 Some SobolevEmbedding Results 
Note that we then have the following: 

Lemma 8.2 With the assumptions of Hypothesis 8.1 , when j < k there 
exists a constant 1<2 such that 

llci11Lst3 < Kzt2
, llcjll£8/3 $ K2t 42- i, 

II'Vcill£8/3 < K2t2, II'Vcjllr,8/3 :S Kzt32-i, 

II'V2cill£8/3 < Kzt2
, II'V2cjll£s/3 :S K2t2 2-i, 

llbi 11£8/3 < Ct3 , llbjll£8/3 :S K2t32-i, 

II'Vbill£8/3 < [{2t2, II'Vbjll£8/3 $ Kzt22-i, 

II'V2billr,at3 < Kzt, II'V2bjll£8/3 ::; K2t2- j. 
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Proof.
This is a consequence of the fact that in 8 dimensions the L ~  norms 

bounds the L813 norm. Thus for any function x, we have 

Putt ingb and c and their derivatives as x, we obtain our result. 
0 

Lemma 8.3 Again with the assumptions of Hypothesis 8.1 1 with j < k we 
have 

I lei II£• < K3t2
, llc.ill£4:::; K3t32-i, 

IIY'cjll£4 < K3t2
, IIY'cjll£• :::; ce-2-j, 

llbj 11£4 < K3t3, lib:- II < K t 32-j 1 £4 - 3 , 

II v bj 114 < K3t2
, IIY'bjll£4:::; K3t22-i. 

Proof .
The inequalities for c follow from the Sobolev embedding L ~ - +  L4 in the 

same way as the lemma above. 
Remembering b = 2: fiwi, we have 

But ft is a function on the 4-manifold N, hence we may use the Sobolev 
embedding L~ -+ L4 on it to obtain 

Hence we have, since llwill£4 = O(t-1 ), 

which gives us the required result . 
0 

Lemma 8.4 Again with the assumptions of Hypothesis 8.1 and j < k, we 
have 

llcill£8 < K4t2, 

llbill£8 < K4t312 , 
licjiiLa :::; K4t22-i, 

llbjll£8:::; K4t3122-i. 

82 



Proof. 
We have the inequalities involving c from the Sobolev embedding £5 ~ £8 

in 8 dimensions. 
Also, since 

llbll£3 ~ CL: 11/iiiLsllwiiiLs, 
the 4 dimensional Sobolev embedding L ~  ~ £8 becomes of use to us. (This 
is not the optimal embedding in 4 dimensions; however, it is sufficient for 
out purposes.) Noting that 

and that llwill£8 = o(t-312 ), we may obtain 

llbll£8 ~ Cc312 (llbll£2 + II'V2bll£2 + II'V~bll£2). 

0 

8.4 Initial estimates for the hypothesis 
Now let us work towards showing that Hypothesis 8.1 holds in the case 
j = 2. We shall use the bounds obtained on a1 . 

Proposition 8.1 Hypothesis 8.1 holds for j = 2. 

Proof. 
Firstly, we note that we need only prove the right-hand inequalities, as 

these, together with the above inequalities on a1 will give us the results we 
reqUire. 
- Noting P(a2 - a 1) = Q(a1), we may obtain estimates for P(a2 - a 1) and 

its derivatives using the above estimates (Theorm 8.1) for norms of a1 . 

IIP(az - a1)IIL2 - IIQadl£2 
< Clladli~ 
< Ct2 , 

by the Sobolevembedding L ~  ~ £4 in 8 dimensions. 
In addition, 

II 'V P(a2- al) IIL2 II'VQalll£2 
< Cllai ii £4 1i 'Vadi£4. 
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But 
IIVctllc.• $ O(t2

), 

by the same Sobolevembedding, and 

IIVbtiiL4 < C(IIVtbtiiL1 + IIV2bdlc.•) 
< c (r1 llbdlc.1 +t-1 (11V~bdlc.2 + IIV2btiiL2)) 
< (r2 (II'VzbdiP + llbdiP) + C 1 (II Vzbt ii P + llbdiP) 
< Ct2 . 

Hence 

Also, 

ll\72P(a2- at)IIP - IIV2Qadl 
< C (IIVadli• + lladiL•·IIV2atiiLa'3) . 

Now we have bounds on IIVatlll•· Bounds on the c1 component of a1 are 
easy to obtain: we use the Sobolev embeddings £5 -7 £8 and £~ -7 £ 813 to 
obtain that both are of the order t 2 • 

Looking at 

as £~ -7 £8 in 4 dimensions. Thus llbdiLa is of the order t312 . From the 
inequality 

we obtain that \72 P( a2 - at) is of the order t512 • 

Proceeding using the inequalities relating the components of a with Pa, 
we obtain 

llc2- cdlc.2 < 
IIV(c2- ct)IIL2 < 

IIV2(c2- ct)IIL2 < 
IIV3(c2- ct)IIP < 

< 
llb2- bdlu < 

II v 1 ( b2 - b 1 ) II L2 < 

CIIP(a2- a1)IIL2 $ Ktt\ 
CIIP(a2- at)IIP $ I<tt4

, 

C (I IV P(a2- at)IIL2 + C 1IIP(a2- at)IIL2) :::; Ktt3
, 

C (ll\72 P(a2- at)IIP + C 1IIV P(a2- at)IIL2 + C 2IIP(a2- at)IIL2) 
K1e, 
CIIP(a2- at)IIL2 $ K1t\ 
cr 1llb2- b1I IP :::; K1t3

, 
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IIY'2(b2- bt)llv < CliP(a2 - at)llv ~ K1t\ 
IIV~(b2- bt)ll£2 < C (I IV' P(a2- at)ll + C 1IIP(a2- at)llv) ~ K1t3

, 

IIY'2(b2 - bt)llv 

IIY'3 (b2 - bt)ll£2 

< 
< 
< 

c (11V~(b2- bt) llv + IIY'tV2(b2- bi)II£2 + IIV~(b2- bt)llv) 

C (r2llb2- bdlv + tliiY'2(b2- bt)llv + t3
) ~ K1t2, 

c(t- 3 l lb2 - btl lv + C 2IIY'2(b2 - bt) ll £2 
+ C1 IIV~(b2- bt) ll £2 + II Y'~(b2- bi)IIv) 
< 
< 

C ( II Y'2 P(a2 - a!)llv + C 1 IIY' P(a2 - at)llv + C 2IIP(a2- at)llv) 
Ktt, 

for some constant /(1 independent oft. Hence Hypothesis 8.1 holds when 
j = 2. 

0 

8.5 Inductive Step
With the base step of our proof done, let us proceed with the inductive step. 

Proposition 8.2 For small enough t {required size independent of k} if Hy-
pothesis 8.1 is true for j = k, then it is true for j = k + 1, with the same 
constant K1 . 

Proof. 
Clearly, once more it suffices to show this with only the right hand in-

equalities, as these will imply the left hand inequalities of the Hypothesis 
8.1. 

Since P(ak+t - ak) = Q(ak)- Q(ak_I), we may obtain bounds on the 
various derivatives of the component s of ak+t-ak from estimates on ak - ak-t, 
ak and ak-1· 

Again, we shall start by obtaining bounds on P( ak+t - ak) and its deriv-
atives. 

IIP(ak+t- ak)IIL2 < Cd lak- ak-d iL• ( llakiiL• + llak-diL•) 
< 2CtKJt52- k, 

from Lemma 8.3. 

I!VP(ak+t- ak)ll£2 < C2(llak - ak-tiiL• (li'VakiiL• + llak-tiiL•) 
+ IIY'(ak- ak-diiL• (iiakiiL• + llak- diL•)) 
< 8C2K;t4 2-k, 
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again frorri Lemma 8.3. 

ll\72 P( ak+l - ak)ll£2 < C3 (jj\7( ak - ak-t)ll£4 (jj\7 akiiL4 + jj\7 ak-t ll£4) 
+ ll\72(ak- ak-dll£8/3 (l lakll£8 + llak-1IIL8) 
+ llak- ak-tll£8 (ll\72ak ll£8/3 + ll\72ak-tiiLa/3) 
< C3(2K; + 4K2 K4)t5122-k, 

by Lemmas 8.2, 8.3 and 8.4. 
Thus we may estimate the components of ak+l - ak and their various 

derivatives. 

llck"+l iiL2 < CjjPa;;+liiP ~ Ks2-kt5 , 

ll\7 c;;+liiL2 < CjjPa;;+ 1liL2 ~ Ks2-kt5
, 

ll\72c;;+IIIP < C (II\7Pa;;+IIIL2 +t-1 11Pa;;+1 IIP) ~ I<s2-kt4
, 

ll\73ck"+II IP < C( II \72Pak+II IP + r 1 ll\7 Pa;;+l llu 
+ r 2 IIPa;;+tiiP) 
< f{ 2-ktS/2 5 , 

jjbk+ljjp < CjjPa;;+1 IIP ~ Ks2-kt5
, 

ll\7tbk"+IIlu < Ct- 1 llbk"HIIL2 ~ Ks2-kt\ 
ll\7zbk"+IIIL2 < CjjPa;;+liiP ~ Kst52-k 
ll\7~bk"+IIIu < C (11\7 Pa;;+lll£2 + r 1 jiPa;;+liiL2) 

< f{ 2-kt4 5 , 
ll\72bk"HIIu < C(ll\7~b;;+IIIu + ll\7t\72bk"+tiiP 

+ ll\7~bk+ljjp) 
< f{ 2- kt3 5 , 

ll\73bk"+~IIL2 < C(ll\7ib;;+tiiL2 + ll\7~\72bk"HIIu 
+ ll\7t\7~b;;HIIu + ll\7~bk"+tllu) 
< C(r3 llbk"+IIIL2 + r 2ll\72bk"+IIIu 
+ r1 ll\7~b;;+t i iP + ll \72 Pa;;+tll + r 1 ll\7 Pa;;+tll + r 2 Pa;;+lll) 
< [{ 2-kt5f2 5 , 

where K5 is clearly independent of k, being a function of the numbers 
K1 , K2 , K3 , K4 , Ct. C2 , C3 and the size of the bounds on the norms of the 
derivatives of a in terms of Pa obtained earlier[Lemma 7.2]. 

From these equations, it is clear that we have a finite number of con-
straints on t, each of which it is easy to see a bound on t such that the 
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hypothesis will follow inductively. Consider the last but one equation, for 
example. If we choose t such that f~Ktf(2K5 ), then it is clear that if the 
equation ll 2bi 11£2 :::; K12-it2 holds for i = k then it will hold for i = k + 1. 

Thus may choose t small enough, independently of k such that Hypothesis 
8.1 holding for k implies it holding for k + 1, with the same constant, K 1 • 

0 
Thus we may conclude that the series ai does indeed converge to a limit 

in L~. Our next task is to show that this solution is, in fact, smooth. 
First let us consider the space £!619. 

Lemma 8 .5 

P roof. 
Note that 

II\73 (Q(a) - Q(b))llust9 < cc(ll\73alluat7 + ll\73bllust7) II a- bilLs 

+ (ll\72aiiL'ats + ll\72biiL'sts) ll\7(a- b)ll£4) 
+ (ll\7alluets + ll\7bllost3) ll\72(a - b)IILa/3 
+ (llallo6 + llbiiL16) ll\73(a- b)ll£2· 

because of the Sobolev embeddings L% --+ £ 81(4-k) and £~6/9 --+ £81(912-k) 

which all hold in 8-dimensions. 
The lower derivatives of Q also follow from similar methods. 

0 
We have 

llai- aiiiLts/9 < CIIP(ai- ai)IILtste 
4 3 

< CIIQ(aj-1)- Q(ai-I)IIL's/9 
3 

< Cllai-1 - ai-1llq (11ai-111L!sf9 + llai-1IIL!a'9) , 

and also we know that the sequence { ai} converges in £5. Thus there exists 
an N such that for all i,j 2: N, we have 

llai-1- ai-11lL~:::; 1/(100C). 

Thus for any i 2: N, we have 

llaj - aNIILt6/9 $ 1/100 (llai-diLl6/9 + llaN-dl£16/9) . 
4 4 4 

Hence we may deduce the following lemma: 
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Lemma 8'.6 { aj} converges in £~619 . 

Proof .
Note that the above equation gives us that 

for large enough j. 
Using induction, we see that we may see that we may obtain an aprior 

bound for llaill£'6/9, and hence we see that this sequence must converge. 
4 0 

Lemma 8.7 
E £8/5 a 5 . 

Proof .
We have that 

E £16/9 a 4 , 

from above, and hence we may deduce that a is in any of the Sobolev spaces 
£P, with p ~ 16, using the Sobolev embedding theorem. [DK, p.l66] . Thus 
we see 

llaiiLsfs < CIIPaiiLsts 
5 4 

< C (liQaiiL:/5 + lltiiL:ts) 
< C (IIY'4aiiL'6/911allue + IIY'3allos/TIIY'allvsf3 + IIV2all~~s;s + lltiiL!ts) 

< C (11a11~!6/9 + lltiiL:/5) . 

As the right hand side is finite, we have a bound for the left hand side, 
8/5 and hence a E £ 5 . 

0 
We may then use the Sobolev embedding £~/5 -+q to obtain that a E £~. 

An identical argument to the lemma above will then give a E £;15 . 
Now we may see, using a standard bootstrapping argument, that a will 

in fact be smooth. 

Theorem 8.2 a is smooth. 
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Proof.
Assume, as an inductive hypothesis, that a is in Lk. Then we have that 

llallq+1 
< CIIPaiiLz 

k 

< C (IIQaiiL~ + ll~llq) 
< C (llaiiL~IIallco + 11 ~11£~) 
< C (liaiiL~ lia iiL~fs + 11 ~11£~) , 

because of the Sobolev embedding £~15 ~ C0 . Hence we have that a E Lk 
for all k, and hence that it is smooth. 

0 

Theorem 8.3 There exists a Spin(7) instanton. 

Proof. See above. 
0 

This is, to the best of my knowledge, the first construction of a connec-
tion with curvature in the c o m p o n e n t of the 2-forms on a manifold with 
holonomy Spin(7)

Again, I will point out that whilst the method only applies to the one 
specific case of a particular manifold, much of the analysis will generalise 
quite easily to other cases. 

The existence of such an instanton opens up many questions about the 
moduli space of Spin(7) instantons. We have seen that it is not compact, 
as we have bubbling around a Cayley submanifold a possible occurance. 
Whether this is the only case of a family of Spin(7) instantons tending to 
a limit other that another instanton, I am unsure. If this were the only 
possiblity, we could 'compactify' the moduli space by attaching a copy of 
the moduli space of Cayley submanifolds. This , however, would raise the 
question as to what the behaviour of a family of Spin(7) instantons is like 
near a degenerate Cayley submanifold. This is a question which has no 
parallel in the theory of 4-dimensional self- and anti-self-dual instantons, as 
here the bubbling occurs around a point. 

We may also ask what properties of a compact Spin(7)manifold will help 
determine whether a Spin(7) instanton can exist upon it, and, in addition, if 
properties of the moduli space of Spin(7) instantons will tell us much about 
the underlying manifold. This, contrasting with the previous question, is a 
subject which has been studied at depth on 4-manifolds. 

Further, we could ask about gauge groups other that S U ( 2 ) It was early 
on in this thesis that I restricted my attention to this gauge group, but by 

89 



considering other gauge groups, we have that finite energy Spin(7) instantons 
exist on R 8 . This suggests a great difference in the nature of the moduli space 
when considering different gauge groups. 

There are many unanswered questions about Spin(7) instantons, and 
whilst it would be extremely optimistic of me to believe that the study of 
instantons of this type will be as influencial on area of differential geometry 
as the study of 4-manifold instantons has been, I do believe that there is a 
rich, undiscovered area of mathematics that will yield great rewards. 
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Chapter 9 
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