Singularities of special Lagrangian submanifolds

Dominic Joyce
Oxford University

recommended reading:

math.DG/0111111
math.DG/0310460

These slides available at
www.maths.ox.ac.uk/~joyce/talks.html
Almost Calabi-Yau m-folds

An *almost Calabi-Yau m-fold* (M, J, g, Ω) is a compact complex m-fold (M, J) with a Kähler metric g with Kähler form ω, and a nonvanishing holomorphic $(m, 0)$-form Ω, the holomorphic volume form. It is a *Calabi-Yau m-fold* if $|\Omega|^2 \equiv 2^m$. Then $\nabla \Omega = 0$, the holonomy group $\text{Hol}(g) \subseteq \text{SU}(m)$, and g is Ricci-flat.
Special Lagrangian m-folds

Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real m-submanifold of M. We call N special Lagrangian (SL) if $\omega|_N \equiv \text{Im}\, \Omega|_N \equiv 0$, and SL with phase $e^{i\theta}$ if $\omega|_N \equiv (\cos \theta \text{Im}\, \Omega - \sin \theta \text{Re}\, \Omega)|_N \equiv 0$. If (M, J, g, Ω) is a Calabi-Yau m-fold then $\text{Re}\, \Omega$ is a calibration on (M, g), and N is an SL m-fold iff it is calibrated with respect to $\text{Re}\, \Omega$.
Let \((M, J, g, \Omega)\) be an almost Calabi–Yau \(m\)-fold and \(N\) a compact \(\text{SL}_m\)-fold in \(M\). Let \(\mathcal{M}_N\) be the moduli space of \(\text{SL}_m\) deformations of \(N\). We ask:

1. Is \(\mathcal{M}_N\) a manifold, and of what dimension?

2. Does \(N\) persist under deformations of \((J, g, \Omega)\)?

3. Can we compactify \(\mathcal{M}_N\) by adding a ‘boundary’ of singular \(\text{SL}_m\)-folds? If so, what are the singularities like?
These questions concern the **deformations** of SL m-folds, **obstructions** to their existence, and their **singularities**. Questions 1 and 2 are fairly well understood, and we shall discuss them in the first half of this lecture. Question 3 is an active area of research, and will be discussed in the second half, and next lecture.
The answer to Question 1, on deformations of SL m-folds, was given by McLean in 1990 (in the Calabi-Yau case).

Theorem. Let (M, J, g, Ω) be an almost Calabi–Yau m-fold, and N a compact SL m-fold in M. Then the moduli space \mathcal{M}_N of SL deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.
Here is a sketch of the proof. Let $\nu \to N$ be the normal bundle of N in M. Then J identifies $\nu \cong TN$ and g identifies $TN \cong T^*N$. So $\nu \cong T^*N$. We can identify a small tubular neighbourhood T of N in M with a neighbourhood of the zero section in ν, identifying ω on M with the symplectic structure on T^*N. Let $\pi : T \to N$ be the obvious projection.
Then graphs of small 1-forms α on N are identified with submanifolds N' in $T \subset M$ close to N. Which α correspond to SL_m-folds N'?

Well, N' is special Lagrangian iff $\omega|_{N'} \equiv \text{Im } \Omega|_{N'} \equiv 0$.

Now $\pi|_{N'} : N' \to N$ is a diffeomorphism, so this holds iff $\pi_*(\omega|_{N'}) = \pi_*(\text{Im } \Omega|_{N'}) = 0$.

We regard $\pi_*(\omega|_{N'})$ and $\pi_*(\text{Im } \Omega|_{N'})$ as functions of α.
Calculation shows that
\[\pi_*(\omega|_{N'}) = d\alpha \] and
\[\pi_*(\text{Im } \Omega|_{N'}) = F(\alpha, \nabla\alpha), \]
where \(F \) is nonlinear. Thus, \(M_N \) is locally the set of small 1-forms \(\alpha \) on \(N \) with \(d\alpha \equiv 0 \) and \(F(\alpha, \nabla\alpha) \equiv 0 \). Now
\[F(\alpha, \nabla\alpha) \approx d(\ast\alpha) \] for small \(\alpha \). So \(M_N \) is locally approximately the set of 1-forms \(\alpha \) with \(d\alpha = d(\ast\alpha) = 0 \). But by Hodge theory this is the de Rham group \(H^1(N, \mathbb{R}) \), of dimension \(b^1(N) \).
Question 2, on obstructions to the existence of SL \(m \)-folds, can locally be answered using the same methods.

Theorem. Let \(M_t : t \in (-\epsilon, \epsilon) \) be a family of almost Calabi–Yau \(m \)-folds, and \(N_0 \) a compact SL \(m \)-fold of \(M_0 \). If \([\omega_t|_{N_0}] = [\text{Im } \Omega_t|_{N_0}] = 0 \) in \(H^*(N_0, \mathbb{R}) \) for all \(t \), then \(N_0 \) extends to a family \(N_t : t \in (-\delta, \delta) \) of SL \(m \)-folds in \(M_t \), for \(0 < \delta \leq \epsilon \).
Singular SL m-folds

General singularities of SL m-folds may be very bad, and difficult to study. Would like a class of singular SL m-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL m-folds. SL m-folds with isolated conical singularities (ICS) are such a class.
Let N be an SL m-fold in M whose only singular points are x_1, \ldots, x_n. Near x_i we can identify M with $\mathbb{C}^m \cong T_{x_i}M$, and N near x_i approximates an SL m-fold in \mathbb{C}^m with singularity at 0. We say N has isolated conical singularities if near x_i it converges with order $O(r^{\mu_i})$ for $\mu_i > 1$ to an SL cone C_i in \mathbb{C}^m nonsingular except at 0.
SL m-folds with ICS have a rich theory.

- **Examples.** Many examples of SL cones C_i in \mathbb{C}^m have been constructed. Rudiments of classification for $m = 3$.

- **Regularity near x_1, \ldots, x_n.** Let $\iota : N \to M$ be the inclusion. If $\nabla^k \iota$ converges to C_i near x_i with order $O(r^{\mu_i-k})$ for $k = 0, 1$ then it does so for all $k \geq 0.$
• **Deformation theory.** The moduli space \mathcal{M}_N of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth $\Phi : I \to O$ and fin. dim. vector spaces I, O with I the image of $H^1_{cs}(N', \mathbb{R})$ in $H^1(N', \mathbb{R})$, $N' = N \setminus \{x_1, \ldots, x_n\}$, and $\dim O = \sum_{i=1}^n s\text{-ind}(C_i)$. Here $s\text{-ind}(C_i) \in \mathbb{N}$ is the stability index, the obstructions from C_i. If $s\text{-ind}(C_i) = 0$ for all i then \mathcal{M}_N is smooth.
• **Desingularization.** Let C be an SL cone in \mathbb{C}^m, non-singular except at 0. A non-singular SL m-fold L in \mathbb{C}^m is **Asymptotically Conical (AC)** C if L converges to C at infinity with order $O(r^\nu)$ for $\nu < 1$. Then tL converges to C as $t \to 0_+$. Thus, AC SL m-folds model how families of nonsingular SL m-folds develop singularities modelled on C.

15
If N is an SL m-fold with ICS at x_1, \ldots, x_n and cones C_i, and L_1, \ldots, L_n are AC SL m-folds in \mathbb{C}^m with cones C_i, then under cohomological conditions we can construct a family of compact nonsingular SL m-folds \tilde{N}^t for small $t > 0$ converging to N as $t \to 0$, by gluing tL_i into N at x_i, all i.
Here is how this works. Let \(B_\varepsilon(0) \) be an open ball of small radius \(\varepsilon > 0 \) in \(\mathbb{C}^m \), and choose a local diffeomorphism \(\Upsilon_i : B_\varepsilon(0) \to M \) with \(\Upsilon_i(0) = x_i \), that identifies \(C_i \) in \(\mathbb{C}^m \) with the tangent cone to \(N \) at \(x_i \), and \(\Upsilon_i^*(\omega) = \omega_0 \), for \(\omega \) the Kähler form on \(M \) and \(\omega_0 \) the Hermitian form on \(\mathbb{C}^m \). Write \(\Sigma_i = C_i \cap S^{2m-1} \). Then \(\iota_i : (\sigma, r) \mapsto r\sigma \) is a diffeomorphism \(\iota_i : \Sigma_i \times (0, \infty) \to C_i \setminus \{0\} \).
For $0 < \epsilon' < \epsilon$ small there is a unique $\phi_i : \Sigma_i \times (0, \epsilon') \to \mathbb{C}^m$ such that $\text{Im}(\gamma_i \circ \phi_i)$ coincides with $N \setminus \{x_i\}$ near x_i, and $(\phi_i - \iota_i)(\sigma, r)$ is perpendicular to $T_{r\sigma}C_i$ in \mathbb{C}^m for all $(\sigma, r) \in \Sigma_i \times (0, \epsilon')$. These are distinguished coordinates on N near x_i. Regard $\phi_i - \iota_i$ as a small closed 1-form on C_i. Regularity theory gives

$$\nabla^k(\phi_i - \iota_i) = O(r^{\mu_i - k})$$

as $r \to 0$ for some $\mu_i > 1$ and all $k \geq 0$.

18
Similarly, for $R \gg 0$ there is a unique $\psi_i : \Sigma_i \times (R, \infty) \to \mathbb{C}^m$ such that $\text{Im} \psi_i$ coincides with L_i near ∞, and $(\phi_i - \nu_i)(\sigma, r)$ is perpendicular to $T_{r,\sigma}C_i$ in \mathbb{C}^m for all $(\sigma, r) \in \Sigma_i \times (R, \infty)$. These are distinguished coordinates on L_i near ∞. Regularity gives $\nabla^k(\psi_i - \nu_i) = O(r^{\nu_i-k})$ as $r \to \infty$ for some $\nu_i < 1$ and all $k \geq 0$. We assume $\nu_i < -1$ for no obstructions, or $\nu_i = -1$ and $m < 6$.

\[\text{\quad 19}\]
Fix $\tau \in (0, 1)$. Let $t > 0$ with $2t^\tau < \epsilon'$ and $t^\tau > tR$. Define a compact, nonsingular Lagrangian N^t in M to be N outside $\gamma_i \circ \phi_i(\Sigma_i \times (0, 2t^\tau))$ for all i, to be $\gamma_i(tL_i)$ outside $\psi_i(\Sigma_i \times (t^{\tau-1}, \infty))$ in L_i, and to interpolate smoothly between these on $\Sigma_i \times [t^\tau, 2t^\tau]$. On $\Sigma_i \times [t^\tau, 2t^\tau]$ we have
\[
\phi_i(\sigma, r) \equiv \nu_i(\sigma, \tau) + O(t^{\mu_i \tau}) \quad \text{and} \quad t\psi_i(\sigma, t^{-1}r) \equiv \nu_i(\sigma, r) + O(t^{\nu_i(\tau-1)+1}),
\]
so $|\phi_i(\sigma, r) - t\psi_i(\sigma, t^{-1}r)|$ is small.
This \(N^t \) is approximately special Lagrangian, as \(\omega|_{N^t} \equiv 0 \) and \(\text{Im } \Omega|_{N^t} \) is small. Banach norms of \(\text{Im } \Omega|_{N^t} \) measure the ‘error’, e.g.
\[
\| \text{Im } \Omega|_{N^t} \|_{C^0} = O(t^{(\mu_i-1)\tau}) + O(t^{(\nu_i-1)(\tau-1)})
\]
for small \(t \). But also, \(N^t \) is nearly singular for small \(t \), with second fundamental form \(\| B \|_{C^0} = O(t^{-1}) \), Riemann curvature \(\| R(g|_{N^t}) \|_{C^0} = O(t^{-2}) \) and injectivity radius \(\delta(g|_{N^t}) = O(t) \).
We show using analysis that we can deform N^t to a nearby SL m-fold \tilde{N}^t. We must solve the nonlinear elliptic p.d.e. $Q(\tilde{N}^t) = \text{Im } \Omega|_{\tilde{N}^t} \equiv 0$. We make the solution as the limit of a series of Lagrangians $(N^t_k)_{k=0}^\infty$ with $N^t_0 = N^t$, which roughly inductively satisfy
\[
\text{d}Q|_{N^t_k}(N^t_{k+1} - N^t_k) = -\text{Im } \Omega|_{N^t_k}.
\]
The series converges if the initial ‘error’ is small enough, in terms of $\|B\|_{C^0}, \|R(g|_{N^t})\|_{C^0}, \delta(g|_{N^t}), \ldots$.

22
Three things can go wrong in this proof:
(A) For the ‘error’ to be small and the series to converge, we need $\tau \approx 1$ and $\nu_i < -1$ for all i, or $\nu_i = -1$ and $m < 6$.
(B) To make the Lagrangian N^t we join $N \backslash \{x_1, \ldots, x_n\}$ and $\Upsilon(tL_1), \ldots, \Upsilon(tL_n)$. Effectively we must find a closed 1-form on $\Sigma_i \times [t^\tau, 2t^\tau]$ interpolating between small closed 1-forms $\phi_i(\sigma, r) - \nu_i(\sigma, \tau)$ and $t\psi_i(\sigma, t^{-1}r) - \nu_i(\sigma, r)$.
Now $\phi_i(\sigma, r) - \nu_i(\sigma, \tau)$ is exact, and $t\psi_i(\sigma, t^{-1}r) - \nu_i(\sigma, r)$ is exact if $\nu_i < -1$, but if $\nu_i \geq -1$ then we can have $[t\psi_i(\sigma, t^{-1}r) - \nu_i(\sigma, r)] \neq 0$ in $H^1(\Sigma_i, \mathbb{R})$. This is a global topological obstruction to making N^t Lagrangian. To overcome it, we modify $N' = N \backslash \{x_1, \ldots, x_n\}$ by a small closed 1-form α^t whose cohomology class $[\alpha^t] \in H^1(N', \mathbb{R})$ satisfies $[\alpha^t]|_{\Sigma_i} = [t\psi_i(\sigma, t^{-1}r) - \nu_i(\sigma, r)]$ in $H^1(\Sigma_i, \mathbb{R})$ for all i. Such α^t need not exist.
(C) Suppose N is connected, but $N' = N \setminus \{x_1, \ldots, x_n\}$ has $l > 1$ connected components, which meet at x_1, \ldots, x_n. Then the Laplacian Δ^t on functions on N^t has $l - 1$ small eigenvalues of size $O(t^{m-2})$. The corresponding eigenfunctions are approximately constant on each component of N', and change on the ‘necks’ $\Upsilon(tL_i)$. The linearization $dQ|_{N^t}$ of Q at N^t is basically Δ^t. So small eigenvalues of Δ^t can cause the series $(N^t_k)_{k=0}^{\infty}$ to diverge.
To overcome this, the components of $N^t_k - N^t$ in the directions of the $l - 1$ eigenfunctions with small eigenvalues must remain small for all $k \geq 0$. There is a *global cohomological obstruction* to doing this, that there should be a small closed $(m - 1)$-form β^t on N' whose cohomology class $[\beta^t] \in H^{m-1}(N', \mathbb{R})$ satisfies $[\beta^t]|_{\Sigma_i} = [\ast (t\psi_i(\sigma, t^{-1}r) - \iota_i(\sigma, r))]$ in $H^{m-1}(\Sigma_i, \mathbb{R})$ for all i. Such β^t need not exist.
We understand obstructions (B),(C) using relative cohomology. As \(\omega|_{\tilde{N}^t} \equiv \text{Im } \Omega|_{\tilde{N}^t} \equiv 0 \), we have classes \([\omega], [\text{Im } \Omega]\) in \(H^k(M, N^t; \mathbb{R}) \) for \(k = 2, m \). Also we have \([\omega_0], [\text{Im } \Omega_0]\) in \(H^k(\mathbb{C}^m, L_i; \mathbb{R}) \). An exact sequence gives \(H^k(\mathbb{C}^m, L_i; \mathbb{R}) \cong H^{k-1}(L_i; \mathbb{R}) \), and as \(\Sigma_i \) is the ‘boundary’ of \(L_i \) we restrict to \(H^{k-1}(\Sigma_i; \mathbb{R}) \). So \([\omega_0], [\text{Im } \Omega_0]\) induce classes in \(H^{k-1}(L_i; \mathbb{R}) \) for all \(i \), which must lie in the image of \(H^{k-1}(N'; \mathbb{R}) \).