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Abstract

Let D be a digraph. The chromatic number χ(D) of D is the smallest number of colours

needed to colour the vertices of D such that every colour class induces an acyclic subdigraph.

The girth of D is the length of a shortest directed cycle, or ∞ if D is acyclic. Let G(k, n)

be the maximum possible girth of a digraph on n vertices with χ(D) > k. It is shown that

G(k, n) ≥
⌊
n1/k

⌋
and G(k, n) ≤ (3 log2 n log2 log2 n)1−1/kn1/k for n ≥ 3 and k ≥ 2.

1 Introduction

The chromatic number χ(D) of a digraph D is the minimum number k such that V (D) can be

partitioned into k parts, none of which contains a cycle of D (see [2, 10]). By a cycle we always

mean a directed cycle, and we define the girth of D as the length of a shortest cycle in D (∞ if D

is acyclic).

Given a digraph D with n vertices and chromatic number more than k, how large can the girth

of D be? This question was posed by one of the authors [9], who conjectured a bound of O(
√
n)

in the case k = 2. The analogous question for the usual chromatic number in graphs has a long

history. A celebrated result of Erdős [5] shows that there are graphs with both girth and chromatic

number larger than any specified constant. An example of a quantitative answer to the question is

for graphs with girth at least 3 (i.e. triangle-free): the maximum chromatic number of a triangle-

free graph on n vertices is Θ(
√
n/ log n) by results of Ajtai, Komlós and Szemerédi [1] and of Kim

[8]. At the other extreme, a graph on n vertices with chromatic number 3 could consist of single

odd cycle of length n or n − 1. On the other hand, any graph with chromatic number at least 4

contains a subgraph with minimum degree at least 3, and so a cycle of length O(log n); probabilistic

constructions (see [4]) show that this is the correct order of magnitude. Similar bounds apply for

the acyclic chromatic number of a graph G, which is the minimum number k such that V (G) can

be partitioned into k parts, none of which contains a cycle of G. In one direction this is because the
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chromatic number is at least the acyclic chromatic number; for the other, it is not hard to adapt the

probabilistic construction to obtain graphs of girth Ω(log n) and acyclic chromatic number larger

than any fixed constant.

Another motivation to study the aforementioned question became apparent in a recent work of

Harutyunyan and Mohar [7]. They generalized to digraphs an old result of Bollobás [3] that for

every k ≥ 4 there is α > 0 and infinitely many graphs G of chromatic number k such that every

4-chromatic subgraph of G contains at least α|V (G)| vertices. The extension to digraphs obtained

in [7] proves the same for all 3-chromatic subdigraphs, but the conclusion does not hold for 2-

chromatic subdigraphs, as every digraph D with χ(D) ≥ 3 contains a cycle of length o(|V (D)|),
which gives a small 2-chromatic subdigraph. The last conclusion is a consequence of our Theorem 2

(the case k = 2).

2 Short cycles in digraphs

Let G(k, n) be the maximum possible girth of a digraph on n vertices with χ(D) > k. Note that

the n-cycle Cn has χ(Cn) = 2, so G(1, n) = n. Thus we may suppose that k ≥ 2. We start with a

lower bound for G(k, n). Note that the order of magnitude is very different than that for graphs.

Theorem 1. For every k ≥ 2 we have G(k, n) ≥
⌊
n1/k

⌋
.

Proof. Consider the following construction. Let C1
r = Cr denote the directed cycle of length r. For

i ≥ 1 let Ci+1
r denote the digraph on ri+1 vertices, divided into r parts Vj , j ∈ Zr of size ri, so that

each part Vj induces a copy of Ci
r, and for each j ∈ Zr we have all edges from Vj to Vj+1. Observe

that the girth of Ci
r is equal to r. We claim that χ(Ci

r) ≥ i+ 1 for 1 ≤ i ≤ r − 1. This is clear for

i = 1. Now we argue by induction for i ≥ 2. Consider any colour class X in any colouring of Ci
r.

Since Ci
r[X] is acyclic there must be some part Vj disjoint from X. Then Ci

r[Vj ] = Ci−1
r is coloured

using one fewer colour, so χ(Ci
r) ≥ χ(Ci−1

r ) + 1 ≥ i+ 1.

To deduce the theorem, let r = bn1/kc, and let D be the digraph obtained from Ck
r by adding

n − rk isolated vertices. (We can assume r ≥ 3, as the theorem is obviously true when r ≤ 2.)

Then χ(D) > k and the girth of D is r. �

We remark that χ(Ci
r) = i+ 1 for 1 ≤ i ≤ r − 1; this is easy to prove by induction.

Our main result is an upper bound that matches the lower bound up to a polylogarithmic factor.

Define g(k, n) = (3 log2 n log2 log2 n)1−1/kn1/k.

Theorem 2. For n ≥ 3 and k ≥ 2 we have G(k, n) ≤ g(k, n).

To prove Theorem 2 we introduce an additional digraph parameter. We say that S ⊆ V (D)

is a hitting set if every cycle in D contains at least one vertex of S. Let H(r, n) be the smallest

number h such that any digraph D on n vertices with girth more than r has a hitting set of size h.

Note that if r ≥ n such a digraph is acyclic, so H(r, n) = 0. Let h(r, n) = 3(n/r) log2 n log2 log2 n.

Theorem 3. For n ≥ r ≥ 3 we have H(r, n) ≤ h(r, n).
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Proof. For every fixed r ≥ 3, we argue by induction on n. The base case is n = r, when H(r, n) = 0.

Now suppose that n > r. Note that we can assume that h(r, n) < n, since the entire vertex set is

trivially a hitting set, so we have r > 3 log2 n log2 log2 n. Since 3 log2 n log2 log2 n > n for 3 ≤ n ≤ 37

we can assume that r ≥ 38. The idea for the induction step is as follows. Suppose D is a digraph

on n vertices with no cycle of length at most r. We find a small set S of vertices and a partition

of V (D) \ S as A ∪ B so that there are no edges of D from A to B. Then we apply the induction

hypothesis to find hitting sets in D[A] and D[B], to which we add S to obtain a hitting set in D.

To find S we fix any vertex v and consider its iterated neighbourhoods, defined as follows. Given

a vertex u, the out-distance of u from v is the length of a shortest path in D from v to u (or ∞ if

there is no such path). The in-distance of u from v is the out-distance of v from u. Let N+
i (v) be the

set of vertices at out-distance i from v and N−i (v) be the set of vertices at in-distance i from v. Let

N+
≤i(v) = ∪ij=1N

+
j (v) and N−≤i(v) = ∪ij=1N

−
j (v). Let t = br/2c. Note that N+

≤t(v) ∩ N−≤t(v) = ∅,
since there is no cycle of length at most r.

Now we suppose for a contradiction that D does not have a hitting set of size h(r, n). We

will see that this forces the iterated neighbourhoods of v to grow rapidly (see [6] for a similar

argument based on edge expansion). To see this, fix i < t, let S+
i = N+

i+1(v), A+
i = N+

≤i(v),

B+
i = V (D) \ (A+

i ∪ S
+
i ), and note that there are no edges of D from A+

i to B+
i . Write m = |A+

i |.
By induction hypothesis, D[A+

i ] has a hitting set of size h(r,m) and D[B+
i ] has a hitting set of size

h(r, |B+
i |) ≤ h(r, n −m). Adding S+

i gives a hitting set of D, which by assumption has size more

than h(r, n), so |S+
i | > h(r, n)−h(r,m)−h(r, n−m). We estimate h(r, n)−h(r,m)−h(r, n−m) ≥

3r−1 log2 log2 n(n log2 n−m log2m−(n−m) log2 n) ≥ c+i |A
+
i |, where c+i = 3r−1 log2

n
|A+

i |
log2 log2 n.

Therefore |A+
i+1| = |A

+
i |+ |S

+
i | > (1 + c+i )|A+

i |.
To estimate the growth of |A+

i | we divide the steps into groups Gj , j ≥ 1, such that for

i ∈ Gj we have n1−2
−j+1 ≤ |A+

i | < n1−2
−j

. Then for each i ∈ Gj we have |A+
i+1|/|A

+
i | > 1 + dj ,

where dj := 3r−12−j log2 n log2 log2 n. Also, the total expansion factor over i ∈ Gj , excluding

the last element of Gj , is at most n2
−j

. Therefore (1 + dj)
|Gj |−1 ≤ n2

−j
. Note that dj < 1, as

r > 3 log2 n log2 log2 n. Using the inequality (1 + 1/x)x ≥ 2 for x ≥ 1 we obtain n2
−j ≥ 2dj(|Gj |−1),

so |Gj | − 1 ≤ d−1j 2−j log2 n = r
3 log2 log2 n

. Let ` ∈ N be such that n1−2
−`+1 ≤ n/2 < n1−2

−`
; then

log2 log2 n < ` ≤ 1 + log2 log2 n. Thus we reach a set |A+
i+
| > n/2 for some i+, where

i+ ≤
∑̀
j=1

|Gj | ≤ (1 + blog2 log2 nc)
(

1 +
r

3 log2 log2 n

)
. (1)

Since n > r ≥ 38, we have log2 log2 n ≥ 2. If blog2 log2 nc = 2, then (1) implies that

i+ ≤ 3 +
r

log2 log2 n
≤ 3r

38
+

r

log2 log2 39
≤ r

2
.

On the other hand, if log2 log2 n ≥ 3, then r > 3 log2 n log2 log2 n ≥ 72. In this case, (1) gives the
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same conclusion as above:

i+ ≤ (1 + log2 log2 n)

(
1 +

r

3 log2 log2 n

)
≤ r

3
+ 1 +

r

3 log2 log2 n
+

r

3 log2 n

≤ r

3
+

r

72
+
r

9
+

r

24
=
r

2
.

In the last calculation we used r > 3 log2 n log2 log2 n and r ≥ 72.

The same argument applies to A−i = N−≤i(v), so we reach a set |A−
i− | > n/2 for some i− ≤ r/2.

But then A+
i+

and A−
i− intersect, contradicting the assumption that there is no cycle of length at

most r. Thus D does have a hitting set of size h(r, n), which completes the proof by induction. �

Proof of Theorem 2. Suppose that D is a digraph on n vertices with girth more than r = g(k, n).

We claim that D has chromatic number at most k. To see this, we repeatedly apply Theorem 3

(we can assume n ≥ r ≥ 3). Let S1 = V (D). For i ≥ 2 we apply Theorem 3 to find a hitting set Si
for D[Si−1]. Then |Si| ≤ h(r, |Si−1|) ≤ (3r−1 log2 n log2 log2 n)i−1n and D[Si−1 \ Si] is acyclic for

i ≥ 2. Since |Sk| ≤ (3r−1 log2 n log2 log2 n)k−1n ≤ r and D has girth more than r, D[Sk] is acyclic.

Thus we have a k-colouring, whose colour classes are Si−1 \ Si (2 ≤ i ≤ k) and Sk. �
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