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Abstract

Let D be a digraph. The chromatic number x(D) of D is the smallest number of colours
needed to colour the vertices of D such that every colour class induces an acyclic subdigraph.
The girth of D is the length of a shortest directed cycle, or oo if D is acyclic. Let G(k,n)
be the maximum possible girth of a digraph on n vertices with x(D) > k. It is shown that
G(k,n) > [n'/*| and G(k,n) < (3log, nlog, logy n)!~1/*nt/* for n > 3 and k > 2.

1 Introduction

The chromatic number x(D) of a digraph D is the minimum number k such that V(D) can be
partitioned into k parts, none of which contains a cycle of D (see [2, 10]). By a cycle we always
mean a directed cycle, and we define the girth of D as the length of a shortest cycle in D (oo if D
is acyclic).

Given a digraph D with n vertices and chromatic number more than k, how large can the girth
of D be? This question was posed by one of the authors [9], who conjectured a bound of O(y/n)
in the case k = 2. The analogous question for the usual chromatic number in graphs has a long
history. A celebrated result of Erdés [5] shows that there are graphs with both girth and chromatic
number larger than any specified constant. An example of a quantitative answer to the question is
for graphs with girth at least 3 (i.e. triangle-free): the maximum chromatic number of a triangle-
free graph on n vertices is ©(y/n/logn) by results of Ajtai, Komlés and Szemerédi [1] and of Kim
[8]. At the other extreme, a graph on n vertices with chromatic number 3 could consist of single
odd cycle of length n or n — 1. On the other hand, any graph with chromatic number at least 4
contains a subgraph with minimum degree at least 3, and so a cycle of length O(logn); probabilistic
constructions (see [4]) show that this is the correct order of magnitude. Similar bounds apply for
the acyclic chromatic number of a graph G, which is the minimum number k such that V(G) can
be partitioned into k parts, none of which contains a cycle of G. In one direction this is because the
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chromatic number is at least the acyclic chromatic number; for the other, it is not hard to adapt the
probabilistic construction to obtain graphs of girth Q(logn) and acyclic chromatic number larger
than any fixed constant.

Another motivation to study the aforementioned question became apparent in a recent work of
Harutyunyan and Mohar [7]. They generalized to digraphs an old result of Bollobés [3] that for
every k > 4 there is a > 0 and infinitely many graphs G of chromatic number k such that every
4-chromatic subgraph of G contains at least a|V (G)| vertices. The extension to digraphs obtained
in [7] proves the same for all 3-chromatic subdigraphs, but the conclusion does not hold for 2-
chromatic subdigraphs, as every digraph D with x(D) > 3 contains a cycle of length o(|V(D)]),
which gives a small 2-chromatic subdigraph. The last conclusion is a consequence of our Theorem 2
(the case k = 2).

2 Short cycles in digraphs

Let G(k,n) be the maximum possible girth of a digraph on n vertices with x(D) > k. Note that
the n-cycle C), has x(Cy) = 2, so G(1,n) = n. Thus we may suppose that k > 2. We start with a
lower bound for G(k,n). Note that the order of magnitude is very different than that for graphs.

Theorem 1. For every k > 2 we have G(k,n) > Lnl/kJ.

Proof. Consider the following construction. Let C! = C, denote the directed cycle of length r. For
i > 1let Ci! denote the digraph on r*! vertices, divided into r parts Vj, j € Z, of size r%, so that
each part V; induces a copy of C?, and for each j € Z, we have all edges from Vj to Vjq1. Observe
that the girth of C? is equal to r. We claim that x(C%) > i+ 1 for 1 <4 <7 — 1. This is clear for
i = 1. Now we argue by induction for i > 2. Consider any colour class X in any colouring of C.
Since C{[X] is acyclic there must be some part V; disjoint from X. Then C%[V;] = C:~! is coloured
using one fewer colour, so x(C%) > x(C: 1) +1 >4+ 1.

To deduce the theorem, let r = Lnl/ k|, and let D be the digraph obtained from C* by adding
n — r¥ isolated vertices. (We can assume r > 3, as the theorem is obviously true when r < 2.)
Then x(D) > k and the girth of D is 7. O

We remark that x(C?) =i+ 1 for 1 <i < r — 1; this is easy to prove by induction.
Our main result is an upper bound that matches the lower bound up to a polylogarithmic factor.

Define g(k,n) = (3logy nlog, logy n) = /*nl/k,

Theorem 2. Forn >3 and k > 2 we have G(k,n) < g(k,n).

To prove Theorem 2 we introduce an additional digraph parameter. We say that S C V(D)
is a hitting set if every cycle in D contains at least one vertex of S. Let H(r,n) be the smallest
number h such that any digraph D on n vertices with girth more than r has a hitting set of size h.
Note that if » > n such a digraph is acyclic, so H(r,n) = 0. Let h(r,n) = 3(n/r)log, nlog, log, n.

Theorem 3. Forn >r >3 we have H(r,n) < h(r,n).



Proof. For every fixed r > 3, we argue by induction on n. The base case is n = r, when H(r,n) = 0.
Now suppose that n > r. Note that we can assume that h(r,n) < n, since the entire vertex set is
trivially a hitting set, so we have r > 3log, n logs logy n. Since 3 logy nlogy logan > n for 3 < n < 37
we can assume that r > 38. The idea for the induction step is as follows. Suppose D is a digraph
on n vertices with no cycle of length at most . We find a small set S of vertices and a partition
of V(D) \ S as AU B so that there are no edges of D from A to B. Then we apply the induction
hypothesis to find hitting sets in D[A] and D[B], to which we add S to obtain a hitting set in D.

To find S we fix any vertex v and consider its iterated neighbourhoods, defined as follows. Given
a vertex u, the out-distance of u from v is the length of a shortest path in D from v to u (or oo if
there is no such path). The in-distance of u from v is the out-distance of v from u. Let N;* (v) be the
set of vertices at out-distance i from v and N, (v) be the set of vertices at in-distance i from v. Let
N;(fu) = U;ZlN;r(v) and N_;(v) = U;'»:le_(v). Let t = [r/2]|. Note that N;t(v) NN (v) =0,
since there is no cycle of length at most 7.

Now we suppose for a contradiction that D does not have a hitting set of size h(r,n). We
will see that this forces the iterated neighbourhoods of v to grow rapidly (see [6] for a similar
argument based on edge expansion). To see this, fix i < ¢, let S = N ,(v), A7 = NZ,(v),
Bf =V(D)\ (A} US;"), and note that there are no edges of D from A; to B;". Write m = |4]]|.
By induction hypothesis, D[A] has a hitting set of size h(r,m) and D[B;"] has a hitting set of size
h(r,|B;if]) < h(r,n —m). Adding S;" gives a hitting set of D, which by assumption has size more
than h(r,n), so |S;| > h(r,n)—h(r,m)—h(r,n—m). We estimate h(r,n) —h(r,m) —h(r,n—m) >
3r~tlog, log, n(nlogy n—mlogy m—(n—m)logyn) > ¢ |Af|, where ¢ = 3r~!log, |An7ﬂ log, logs n.
Therefore [AF, | = [AF| + 57| > (1+ ¢)|Af|. L

To estimate the growth of |4;| we divide the steps into groups G;, j > 1, such that for
i € Gj we have nt=27" < AT < n'=2" . Then for each i € G; we have |A L |/|Af] > 1+ dj,
where d; = 3r~1277log, nlog, logy n.  Also, the total expansion factor over i € Gj, excluding
the last element of G, is at most n%”’. Therefore (14 dj)‘Gﬂ*1 < n2”’. Note that d; <1, as
r > 3log, nlog, logy n. Using the inequality (1 + 1/x)* > 2 for x > 1 we obtain n2™ > 2d4i(IG;I=1),
so |G| —1< dj_12*j logyn = 3151555+ Let £ € N be such that n!=2"" < /2 < 127" then
logsy logyn < £ <1 4 logy logy n. Thus we reach a set |A;r+| > n/2 for some i, where

)4
T < G|l < (1 log, 1 1 S . 1
< 321631 < (1+ o o)) (14 5o )

Since n > r > 38, we have log, logy n > 2. If |log, logy n| = 2, then (1) implies that
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On the other hand, if log, logy n > 3, then r > 3log, nlog, log,n > 72. In this case, (1) gives the



same conclusion as above:

T < (1+1log,1 I
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In the last calculation we used r > 3log, nlog, log, n and r > 72.

The same argument applies to A;” = N_;(v), so we reach a set |[A" [ > n/2 for some i~ < r/2.
But then Aj+ and A, intersect, contradicting the assumption that there is no cycle of length at
most . Thus D does have a hitting set of size h(r,n), which completes the proof by induction. [J

Proof of Theorem 2. Suppose that D is a digraph on n vertices with girth more than r» = g(k,n).
We claim that D has chromatic number at most k. To see this, we repeatedly apply Theorem 3
(we can assume n > r > 3). Let S; = V(D). For i > 2 we apply Theorem 3 to find a hitting set S;
for D[S;—1]. Then |S;| < h(r,[Si—1]) < (3r~!logy nlogylogyn)i~tn and D[S;—1 \ S;] is acyclic for
i > 2. Since |Sg| < (3r~!log, nlogy logy n)*~In < 7 and D has girth more than r, D[S] is acyclic.
Thus we have a k-colouring, whose colour classes are S;—1 \ S; (2 <i < k) and Sk. O
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