Lemma 3.8

Suppose that M is a 3-manifold and that $\text{Int } M$ contains a 2-sphere S.

If $M \setminus S$ is connected, then $M \equiv M_1 \# M_2$, where M_1 is a 2-sphere bundle over S'.

Proof

There exists a 1-sphere I crossing S once transversely, $I \subseteq \text{Int } M$.

Let N be a regular neighborhood of S in $\text{Int } M$.
\(\mathbb{V} \cong \mathbb{B} \cup S \times (-1,1) \) when \(\mathbb{B} = S^3 \) and

\(\partial \mathbb{V} \cap S \times (-1,1) \) consists of two discs, one on \(S \times f^{-1} \) and one on \(S \times f^1 \).

No \(\partial \mathbb{V} \cong S^2 \times S^1 \cong S^3 \).

\(\mathbb{V} \) cut along \(S \) is homeomorphic to

\(S^2 \times \mathbb{D}^1 \) with a ball removed.

\(S \times f^1 \) are boundary components of
Next, along \(S \), each homeomorphism to \(S^2 \) and filling these in results in \(S^3 \). So filling the third only gives \(S^3 \setminus (\beta^3 \times \beta^3) \cong S^1 \times \mathbb{R} \).

Thus \(M, = \hat{N} \) is an \(S^2 \)-bundle on \(S' \), and \(\partial \) a factor of \(M \). \(\Box \)

Note that \(M, \) is orientable if \(\hat{I} \) is an orientation preserving curve.

Let \(P \) be the non-orientable \(S^2 \) bundle over \(S' \).
Example 3.9

\[P \# P = P \# (S^2 \times S') \]

Take \(S = S^2 \) in \(P \), precise \(P \), point in \(S' \).

Now in \(P \# P \) we easily find an orientation preserving curve cutting \(S \) transversely at a single point.

So \(N(SU2) = M' \) an \(S^2 \times S' \) pair (after fixing the \(S' \)-boundary).

Now \(P \# P \setminus M \cong P \) with two-three-bags removed, together with a funnel connecting them. So \(\overline{P \# P \setminus M} \cong P \).
Theorem 3.40

If M is a compact 3-manifold, then $M = R \# M_1 \# \ldots \# M_k$, where each M_i is an S^2-bundle over S^1, $0 \leq k \leq \nu h(\pi_1(M))$, and each 2-sphere in R separates R.

Proof

The proof is an induction on $\nu h(M)$. If $\text{Int} M$ does not contain non-separating two-spheres, then $R = M$ and $k = 0$.

Otherwise, \(M = M'_1 \# M, \) where
\(M_i \) is an \(S^- \)-bundle over \(S' \).

By Lemma 3.2 and 3.3 we have
\[
\rho_\pi_i(M) < \rho_\pi_i(M), \quad \text{and} \quad 20
\]
\[M' = R \# M_2 \# \ldots \# M_n \] and hence
\[M = R \# M_2 \# \ldots \# M_n \] as required.

\[\text{Lemma 3.11} \]

Suppose that \(M \) is a compact 3-manifold,
\[M = \hat{M}, \] \(\pi_1(M) \) is not a non-trivial free product. Then \(M \) is prime.
Proof.

Suppose not. Then M admits a family \mathcal{M} which is simply connected by Lemma 3.2.

Hence,

$$H_n(M, \Omega M; \mathbb{Z}_2) \cong H^1(M, \mathbb{Z}_2) = 0$$

by Poincaré-Hopf duality and the universal coefficient theorem over fields.

The long exact sequence for pairs now gives:
\[0 = H_2(M, \mathbb{Z}; \mathbb{Z}) \rightarrow H_1(\partial M, \mathbb{Z}) \rightarrow H_1(M, \mathbb{Z}) \]

So \(H_1(\partial M, \mathbb{Z}) = 0 \).

But \(\partial M \) is a disjoint union of closed surfaces which are not spheres; each such contributes non-trivially to \(H_1(\partial M, \mathbb{Z}) \). Hence \(\partial M = \emptyset \).

Hence \(M \) is a homotopy \(S^3 \), and therefore \(M \cong S^3 \) by the Poincare' conjecture.
Corollary 3.12

Lens spaces and S^2-bundles over S^1 are prime.

Proof

It suffices to observe that B and B' do not admit non-trivial free splittings.

Def A 3-manifold is irreducible if \forall every 2-sphere in \mathcal{M} bounds a 3-cell.

Clearly, irreducible 3-manifolds are prime.
The converse is almost true:

Lemma 3.13

If M is a prime 3-manifold which is not irreducible, then M is an S^2-bundle over S^1.

Proof

Since M is prime, every separating 2-sphere in $\text{Int} M$ bounds a 3-cell. Since M is not irreducible, it must then contain a non-separating 2-sphere.
The result follows from Lemma 3.8 and Corollary 3.12. \[\square\]