Existence of factorizations

Def A compact 3-manifold M with $\partial M \neq \emptyset$ and $\hat{M} \cong \mathbb{S}^3$ is called a punctured 3-cell.

Lemma 3.19

Suppose that M is a compact 3-manifold such that every 2-sphere in $\text{Int} M$ separates. There exists an integer $k(M)$
such that if \(\{S_1, \ldots, S_n\} \) is a collection of \(n \) pairwise disjoint \(2 \)-spheres in \(\text{Int} \ M \) with \(n \geq k(|M|) \), then the closure of some component of \(M \setminus V S_i \) is a punctured \(3 \)-cell.

Proof

We fix a triangulation \(T \) of \(M \).

Take a collection \(\{S_1, \ldots, S_n\} \) of pairwise disjoint \(2 \)-spheres in \(M \) in general position with respect to \(T \), meaning:
\[\forall i, \ S_i \cap T_i^o = \emptyset \text{, and } S_i \text{ intersects edges transversely, and } S_i \notin 3\text{-simple.} \]

We easily homotope any given collection of spheres to satisfy this requirement.

We define a complexity \((i, \beta)\) of \(S_i\) by
\[d = |T^{(2)} \cap \Omega| \quad \text{and} \quad \beta = \frac{\mathcal{E}}{|\mathcal{E} \cap \Omega|} \]

We order the pairs \((x, \beta)\) lexicographically.

Now suppose that the collection \(\mathcal{E}\) satisfies

(i) the closure of every component of \(M \setminus \mathcal{E}\) is not a punctured 3-cell.

(ii) Among all collections satisfying (i), \(\mathcal{E}\) has minimal complexity.
Let D be a disc (2-cell) in $\text{Int} M$ with $D \cap V S_i = \emptyset$. Since the spheres are disjoint, we must have $\partial D \subseteq S_i$ for some i. Let E' and E'' be the two 2-cells in S_i bounded by ∂D.

Let $S_i' = D \cup E'$ and $S_i'' = D \cup E''$.

Claim: at least one of the collections $\{S_i, \ldots, S_i', \ldots, S_i'' \}$ satisfies (i).

Suppose otherwise. Since $M \setminus V S_i$ has no
punctured 3-cell component, if \(C' \)

is a connected component of \(M_1 \cup \bigcup_{j} U_{j}; s_i \)

which is a punctured 3-cell, then

\(S_i^{''} \subseteq C' \) or \(D \subseteq D C' \).

In the first case, \(S_i^{''} \) cuts \(C' \) into

two punctured 3-cells,

and so one of them

is a component of \(M_1 \cup U_{s_i} \).

Hence \(S_i^{''} \cap \text{Int} \ C' = \emptyset \).

Now, we also have a component \(C'' \)
of $M_1(\{\upsilon;\upsilon;\upsilon;\upsilon;\})$ which is a punctured 3-cell. By the same argument, $D \subseteq D'$. So $M \setminus \upsilon \upsilon \upsilon \upsilon$ contains $C' \cup C''$, which also is a punctured 3-cell. #

This proves the claim.

We say that a collection satisfying (i) obtained from $\{\upsilon;\upsilon;\upsilon;\upsilon;\}$ in the manner just described is a D-modification of $\{\upsilon;\upsilon;\upsilon;\upsilon;\}$.

We now establish further properties of the collection $\{\upsilon;\upsilon;\upsilon;\upsilon;\}$ satisfying (i)
(ii) A is simple in T, on $V S i$ is to be a disc in S. Otherwise, take D bounded by $o u s i$ and modify S by D. By homotopying in a neighborhood of D, we arrange for the modifica-

cation to be in general position with respect to T. We see that f did not increase and β decreased.
(iv) let o be a 2-simplex. Then $\gamma_i \sim I$ on $\partial \gamma_i$ cannot be an arc with both endpoints on the same edge of o. Otherwise, the arc and a part of the edge bound a disc D.

Let N be a small regular n'hood of D such that $N \cap \partial \gamma_i$ is a disc E, $\quad \nu^\gamma \circ \nu^* \circ \nu^{\partial D} = 0^2$. and such that DE bounds a disc E' on
2V, with \(E \cap T'' = \emptyset \).

We isolate \(S_i \) so that \(E \) is replaced by \(E' \).

This decreases \(t \).

(v) Let \(T \) be a 3-simplex. Every component of \(\partial T \setminus \{b\} \) contains a vertex, as otherwise we would contradict (iii).

\(\sim (iv) \).

(vi) A 3-simplex \(T \) in \(T \), \(\cap U_i \) is a disjoint union of 2-cells.
Otherwise, take a connected component \(C \) of \(T \cap V_S \); which is not homeomorphic to a disc.

Take the "innermost" such \(C \):

\(\exists \) a component of \(2C \) bounding a disc \(E \) in \(2T \) such that if a component of \(2 \cap V_S \) meets \(\text{Int } E \), then it is a disc. We "push \(E \)" to the inside of \(T \); \(\exists \) a disc \(D \) with \(\partial D = \partial \) and
First $D \subseteq \text{Int} \bar{c}$. We look at the D-modification of $\{S_i\}$ which satisfies

(i). If C is contained in the new collection (as a subset), then we push J to the inside of \bar{T} as well, and reduce d. Otherwise, I is already reduced, since we get rid of the other boundary component of C, which intersects $\bar{T}^{(0)}$.