6.2. The ordinals

Definition 6.2.1. A set X is transitive iff whenever $a \in b \in X$, $a \in X$.

Definition 6.2.2. A set α is an ordinal iff it is transitive and well-ordered by $\stackrel{\leftarrow}{=}$.

Theorem 6.2.3. ω is an ordinal. So is n, for every $n \in \omega$.

PROOF: ω is transitive because if $m \in n \in \omega$, then $m \in \omega$. The statement that natural numbers are transitive is proved on the problem sheets.

We have also proved that ω and its elements are well-ordered by $\stackrel{\leq}{=}$. \square

Theorem 6.2.4. If α is an ordinal, then so is α^+ .

PROOF: First we show that α^+ is transitive.

Suppose $\gamma \in \beta \in \alpha^+$. $\alpha^+ = \alpha \cup \{\alpha\}$, so there are two cases.

If $\beta \in \{\alpha\}$, then $\beta = \alpha$, so $\gamma \in \alpha$, so $\gamma \in \alpha^+$.

If $\beta \in \alpha$, then $\gamma \in \alpha$ because α is transitive, so $\gamma \in \alpha^+$.

Now we show well-ordering. Suppose S is a non-empty subset of α^+ .

There are two cases. If $S \cap \alpha \neq \emptyset$, then let β be its least element. Since $\beta \in \alpha$, β is the least element of S.

If $S \cap \alpha = \emptyset$, then $S = {\alpha}$, and obviously α itself is the least element of S. \square

THEOREM 6.2.5. If α and β are ordinals, then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

PROOF: Suppose not. Suppose $\alpha \not\subseteq \beta$ and $\beta \not\subseteq \alpha$.

Then $\alpha \cap \beta$ is transitive, for if $\xi \in \eta \in \alpha \cap \beta$, then $\xi \in \eta \in \alpha$, so $\xi \in \alpha$ since α is transitive, and $\xi \in \eta \in \beta$, so $\xi \in \beta$ since β is transitive. So $\xi \in \alpha \cap \beta$.

Let $\gamma = \min(\alpha \setminus \beta)$, and $\delta = \min(\beta \setminus \alpha)$.

We argue that $\gamma = \alpha \cap \beta$. If $\xi \in \gamma$, then $\xi \notin \alpha \setminus \beta$. On the other hand $\xi \in \gamma \in \alpha$, so $\xi \in \alpha$. So $\xi \in \alpha \cap \beta$. Now if $\xi \notin \gamma$, then $\xi \notin \alpha \cap \beta$, for otherwise, $\xi \in \alpha$, so since α is totally ordered, $\xi = \gamma$ or $\xi \ni \gamma$; and since $\alpha \cap \beta$ is transitive, $\gamma \in \alpha \cap \beta$, $\dot{\times}$.

Similarly $\delta = \alpha \cap \beta$. Hence $\gamma = \delta \in \alpha \cap \beta$, $\dot{\times}$. \square

THEOREM 6.2.6. If α and β are ordinals, then $\alpha \subseteq \beta$ iff $\alpha \stackrel{\in}{=} \beta$.

PROOF: \Leftarrow) If $\alpha = \beta$, then obviously $\alpha \subseteq \beta$. If $\alpha \in \beta$, then for all $\gamma \in \alpha$, $\gamma \in \beta$ by transitivity; so $\alpha \subseteq \beta$.

 \Rightarrow) If $\alpha \subseteq \beta$, but $\alpha \neq \beta$, let $\gamma = \min(\beta \setminus \alpha)$.

As above, $\gamma = \alpha$, so $\alpha \in \beta$. \square

DEFINITION 6.2.7. If α and β are ordinals, then $\alpha \leq \beta$ iff $\alpha = \beta$, iff $\alpha \subseteq \beta$.

Theorem 6.2.8. Suppose A is a set of ordinals. Then $\bigcup A$ is an ordinal.

PROOF: We show first that $\bigcup A$ is transitive. Suppose $\gamma \in \beta \in \bigcup A$. Since $\beta \in \bigcup A$, there exists $\alpha \in A$ such that $\beta \in \alpha$. Since α is an ordinal, it is transitive, so $\gamma \in \alpha$. Then $\gamma \in \bigcup A$.

Now we show that $\bigcup A$ is well-ordered. Suppose S is a non-empty subset of $\bigcup A$. Let $\alpha \in S$. If α is the least element of S, then we are done, so suppose not. Then there exists $\beta \in \alpha$ such that $\beta \in S$; that is, $S \cap \alpha$ is a non-empty subset of α . Since α is an ordinal,

it is well-ordered. Let β be the least element of $S \cap \alpha$. If γ now is any element of S, then either $\gamma \in \alpha$, when $\gamma \geq \beta$ as shown, or $\gamma \notin \alpha$. Then $\gamma \supseteq \alpha$, so $\gamma \supseteq \beta$, as required. \square

DEFINITION 6.2.9. An ordinal α is said to be a successor ordinal iff there exists and ordinal β such that $\alpha = \beta^+$.

An ordinal α is said to be a limit ordinal iff it is not 0 and is not a successor ordinal.

Example 6.2.10. ω is a limit ordinal. All non-zero natural numbers are successor ordinals.

Theorem 6.2.11. λ is a limit ordinal iff for all $\alpha \in \lambda$, $\alpha^+ \in \lambda$.

PROOF: If $\alpha \in \lambda$, then $\lambda \neq \alpha^+$ or λ would be a limit. Also $\alpha \subseteq \lambda$ but $\lambda \not\subseteq \alpha$. Let $\beta \in \lambda \setminus \alpha$. Then $\beta \notin \alpha$. So $\alpha \subseteq \beta$. So $\alpha \in \lambda$, so $\alpha^+ \subseteq \lambda$. Hence $\alpha^+ \leq \lambda$, so $\alpha^+ \in \lambda$. \square

THEOREM 6.2.12. Suppose A is a non-empty set of ordinals.

If A has a greatest element α , then $\bigcup A = \alpha$.

Otherwise, $\bigcup A$ is a limit ordinal, and is the least ordinal greater than all elements of α .

PROOF: If α is the greatest element of A, then for all $\beta \in A$, $\beta \subseteq \alpha$. Thus $\bigcup A \subseteq \alpha$. The reverse is clear.

Now suppose A has no greatest member.

If $\beta \in A$, then there exists $\gamma > \beta$ such that $\gamma \in A$. So $\gamma \subseteq \bigcup A$, so $\gamma \subseteq \bigcup A$, so $\beta < \bigcup A$.

Now suppose $\gamma > \beta$ for all $\beta \in A$. Then $\gamma \supseteq \beta$ for all $\beta \in A$, so $\gamma \supseteq \bigcup A$. So $\gamma > \bigcup A$. \square

PROPOSITION 6.2.13. Let α be an ordinal. Then α^+ is the least ordinal greater than α .

PROOF: Certainly $\alpha^+ > \alpha$. Suppose $\gamma > \alpha$. Then $\gamma \ni \alpha$, so $\{\alpha\} \subseteq \gamma$. Also $\gamma \supseteq \alpha$. So $\gamma \supseteq \alpha \cup \{\alpha\} = \alpha^+$. So $\gamma \ge \alpha^+$ as required. \square

PROPOSITION 6.2.14. Let α be an ordinal, and let $f: \alpha \to \alpha$ be an order-preserving function (ie. $\gamma \in \delta$ implies $f(\gamma) \in f(\delta)$).

Then for all $\beta \in \alpha$, $f(\beta) \geq \beta$.

PROOF: Suppose not. Let $S = \{\beta \in \alpha : f(\beta) < \beta\}$.

By assumption, $S \neq \emptyset$, so S has a least element γ . Since $\gamma \in S$, $f(\gamma) < \gamma$. Since $f(\gamma) < \gamma$ and γ is the least element of S, $f(f(\gamma)) \geq f(\gamma)$.

Now, $f(\gamma) < \gamma$ while $f(f(\gamma)) \ge f(\gamma)$, $\dot{\times}$ to the assumption that f is order-preserving. \Box

So [] is the supremum operator on sets of ordinals.

Corollary 6.2.15. λ is a limit ordinal iff λ is non-empty and

$$\lambda = \bigcup \{\alpha : \alpha < \lambda\}.$$

(More snappily,
$$\lambda = \bigcup \lambda$$
.) $\Delta = \bigcup \alpha^+ = \alpha$.