
Unknot recognition
in quasi-polynomial time

Marc Lackenby

February 2021



Unknot recognition

Given a knot diagram, can we decide whether it represents the
unknot?



Unknot recognition

Given a knot diagram, can we decide whether it represents the
unknot?

Goeritz’s unknot



Unknot recognition

Given a knot diagram, can we decide whether it represents the
unknot?

Haken’s unknot



Early history

The problem was first formulated by Dehn in
1910.

It was mentioned by Turing in his 1954 paper
Solvable and Unsolvable Problems.

Theorem: [Haken, 1961] There is an
algorithm to determine whether a given knot
is the unknot.



Early history

The problem was first formulated by Dehn in
1910.

It was mentioned by Turing in his 1954 paper
Solvable and Unsolvable Problems.

Theorem: [Haken, 1961] There is an
algorithm to determine whether a given knot
is the unknot.



Early history

The problem was first formulated by Dehn in
1910.

It was mentioned by Turing in his 1954 paper
Solvable and Unsolvable Problems.

Theorem: [Haken, 1961] There is an
algorithm to determine whether a given knot
is the unknot.



Many other approaches

I Normal surfaces [Haken, Hass-Lagarias-Pippenger]

I Geometric structures [Thurston]

I Representations of π1 [Kuperberg]

I Hierarchies [Agol, L]

I Khovanov homology [Kronheimer-Mrowka]

I Heegaard Floer homology [Ozsváth-Szabó, Sarkar-Wang,
Manolescu-Ozsváth-Sarkar]

I Arc presentations [Dynnikov, L]

I Reidemeister moves [Hass-Lagarias, L]

I Pachner moves [Mijatovic]



A polynomial time solution?

Unsolved problem: Can we solve unknot recognition in polynomial
time?

[Thurston 2011] ‘A lot of people have thought about this question.’
‘I think it’s entirely possible that there’s a polynomial-time
combinatorial algorithm to unknot an unknottable curve, but this
has been a very hard question to resolve.’
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Theorem: [Kuperberg 2014, Agol 2002, L 2016] Unknot
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Main Theorem: [L 2021] There is an algorithm to determine
whether a diagram with n crossings is the unknot that completes
in time nO(log n). ‘quasi-polynomial time’



The complexity of unknot recognition

Theorem: [Hass-Lagarias-Pippenger 1999, L 2014] Unknot
recognition lies in NP.

Theorem: [Kuperberg 2014, Agol 2002, L 2016] Unknot
recognition lies in co-NP.

Main Theorem: [L 2021] There is an algorithm to determine
whether a diagram with n crossings is the unknot that completes
in time nO(log n). ‘quasi-polynomial time’



The complexity of unknot recognition

Theorem: [Hass-Lagarias-Pippenger 1999, L 2014] Unknot
recognition lies in NP.

Theorem: [Kuperberg 2014, Agol 2002, L 2016] Unknot
recognition lies in co-NP.

Main Theorem: [L 2021] There is an algorithm to determine
whether a diagram with n crossings is the unknot that completes
in time nO(log n).

‘quasi-polynomial time’



The complexity of unknot recognition

Theorem: [Hass-Lagarias-Pippenger 1999, L 2014] Unknot
recognition lies in NP.

Theorem: [Kuperberg 2014, Agol 2002, L 2016] Unknot
recognition lies in co-NP.

Main Theorem: [L 2021] There is an algorithm to determine
whether a diagram with n crossings is the unknot that completes
in time nO(log n). ‘quasi-polynomial time’



Hierarchies

Let M be a compact orientable 3-manifold, for example
S3 − int(N(K )) for K a knot

A hierarchy is a sequence of 3-manifolds M = M1, . . . ,M`+1 and
orientable surfaces S1, . . . ,S` such that each Si is properly
embedded in Mi and Mi+1 = Mi\\ Si .

We do not require the surfaces to be incompressible or for the final
manifold M`+1 to be balls (although we will be aiming to produce
such hierarchies).
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Essential boundary patterns

A boundary pattern P is
essential if, for any properly
embedded disc D that intersects
P at most three times, ∂D
bounds a disc D ′ in ∂M that
intersects P in one of the
following:

I the empty set,

I an arc,

I a tripod.

Forbidden

A disc D properly embedded in M that intersects P at most three
times for which ∂D does not bound a disc D ′ in ∂M as above is a
violating disc.
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A hierarchy M = M1, . . . ,M`+1 is essential if the final manifold
M`+1 inherits an essential boundary pattern.

Theorem: [Waldhausen, Johansson] Let M be a compact
orientable 3-manifold with non-empty boundary and empty
boundary pattern. Then the following are equivalent:

I ∂M is incompressible and M is irreducible;

I M has an essential hierarchy where the final manifold is a
union of balls.

So, we will use essential hierarchies as a way of proving that a knot
is non-trivial.
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(i) The knot 52

This is an essential boundary pattern, and hence the knot 52 is not
the unknot
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Simplifying inessential hierarchies

What if we have a hierarchy M1, . . . ,M`+1 that is inessential?

Let D be a violating disc for M`+1.

Then D can be used to simplify the hierarchy.

Let Sj be the last surface that ∂D runs over. Then D can be used
to compress or ‘pattern-compress’ Sj .

Sj
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Why does this terminate?

We cannot have an infinite sequence of decompositions along
normal surfaces.

So eventually we must end with a collection of 3-balls.

We can decide whether the pattern in the 3-balls is essential.

It it is, the knot is non-trivial.

If there is a violating disc, the resulting compression or pattern
compression reduces the complexity

(g(S1), . . . , g(S`))

where we use lexicographical ordering.

(Throughout the talk, I’ll refer to the ‘genus’ g(Si ) but I may
mean some related notion, for example χ− or a version that also
counts intersections with the pattern.)
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An estimate of running time

Suppose that we knew

I each surface Si in the hierarchy had g(Si ) ≤ g ;

I the maximal length of the hierarchy was at most L.

Then we could define the (g , L)-complexity of the hierarchy to be

L∑
i=1

g(Si )g
L−i−1.

(ie we would view g(S1), g(S2), . . . as a sequence of digits in
base g).

Each time we simplify the hierarchy, its (g , L)-complexity
decreases.

So the ‘running time’ would be at most LgL.
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Methods of speeding up the algorithm

The ‘running time’ is at most LgL.

Initial estimates only give L ≤ O(n) and g ≤ 2O(n), where n = the
initial crossing number.

We will give 4 methods of speeding up the algorithm:

1. use surfaces with g ≤ O(n2);

2. encode hierarchies efficiently [Agol-Hass-Thurston];

3. use ‘multi-surfaces’;

4. use Heegaard splittings and ‘Cheeger regions’.

The effect of this is ensure that L ≤ O(log n).

Hence, the running time is nO(log n).
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A quadratic bound on the genus of surfaces

The first surface in the hierachy is a Seifert surface.

Seifert’s algorithm creates a surface S1 with g(S1) ≤ O(n).

For the later surfaces in the hierarchy, we use a generalisation of
Seifert’s algorthm: we do not forget that our manifolds Mi lie in
S3.
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What makes the algorithm inefficient?

The problem is that if we compress a surface Sj , we have to
discard the later surfaces.

S1

S2

This is not the case with boundary-compressions:
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Multi-surfaces

Instead of cutting along one surface at a time, we cut along a
‘multi-surface’.

A multi-surface in a 3-manifold M is a collection of properly
embedded oriented surfaces S1, . . . ,Sk such that [S1], . . . , [Sk ]
represent linearly independent elements of H2(M, ∂M). Its rank is
k .

We can use a multi-surface S1, . . . ,Sk to create k steps in the
hierarchy using the surfaces

S ′1 = S1,

S ′2 = S2\\S1,

S ′3 = S3\\(S1 ∪ S2) . . .

Poincaré duality implies that a compact orientable 3-manifold M
contains a multi-surface of rank at least g(∂M).
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Compressing a multi-surface

Suppose that we boundary-compress some S ′j . Then we do not
need to discard the rest of the hierarchy.

Suppose that we compress some S ′j . Then we can view this as a
compression of Sj , and we simplify the multi-surface S1, . . . ,Sk .

So as far as our algorithm is concerned, a multi-surface behaves
like a single surface.

Our aim is to find a hierarchy of multi-surfaces of length O(log n).
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Logarithmic length

We hope to find a hierarchy

M1
S1−→ M2

S2−→ . . .
S`−→ M`+1

where

I Si is a multi-surface of rank g(∂Mi );

I g(∂Mi ) grows exponentially as a function of i ;

and so the hierarchy terminates after O(log n) step.



Long and thin manifolds

How might this fail?

A problematic case is where g(∂Mi ) is ‘small’ for each i :

∂M
∂M ∂M ∂M ∂MS

2 3 4 51

S2
S3

S4 S5

I examined such manifolds when I was investigating Cheeger
constants some years ago.

Recall that the Cheeger constant of a Riemannian n-manifold M is

inf

{
Area(∂M ′)

min{Vol(M ′),Vol(M −M ′)}

}
as M ′ ranges over all n-dimensional submanifolds of M.
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Measuring progress through the manifold

A hierarchy gives M = M1 ⊃ M2 ⊃ · · · ⊃ M`+1.

We measure the ‘size’ of Mi using Heegaard splittings.

We work with a generalised Heegaard splitting on our manifold M
arising from a Morse function h.

Let’s consider the simple case where it is a Heegaard splitting with
Heegaard surface H.

The ‘size’ of Mi is g(H ∩Mi ).
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Cheeger regions

We work with a generalised Heegaard splitting on our manifold M
arising from a Morse function h.

At each stage of the hierarchy, we have a submanifold Mi of M.

We say that Mi is Cheeger region if h|Mi is a Heegaard Morse
function with Heegaard surface Hi , and

g(∂Mi ) ≤ (1/3) min{g(Hi ), g(H)− g(Hi )},

where H is the level of h containing Hi .

I If we come across a Cheeger region, we can simplify the initial
generalised Heegaard splitting.

I If we never see a Cheeger region, the hierarchy completes in
O(log n) steps.
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The algorithm that runs in quasi-polynomial time

Let S   be the 
thin surfaces
for h .

Start here.
Input a diagram of
a knot K. 

Is some 
component of S  
a violating disc?

No
Run CUT ALONG SURFACE
for each surface in the
partial hierarchy and 
increase l.

Does one of these 
surfaces have a 
violating disc
component?

Yes
Yes

Does one of these 
surfaces have a 
violating disc
component?

Yes

Yes

Compute
b (M ) Is b (M ) > 0?

No
1 l

1 l

No

No

No

Yes

Is some region 
a Cheeger region?

Yes

Run BUILD HIERARCHICAL 
MULTI-SURFACE

l

l

Run CUT ALONG 
SURFACE.
Increase l by 1.

The hierarchy construction loop

1

0

l

Let M be the exterior
of K. Give M a
layered handle
structure with Morse
function h
with ∂ M = Ø

Let M  = M, set
h  = h. Set l = 1. 1

Run USE CHEEGER 
REGION to modify h.

Does the graph dual 
to the boundary pattern 
have a violating cycle?

K is non-trivial

No

No

Yes

Pick a disc 
spanned by a 
violating cycle 

Set l to be the index
of last surface in the
multi-surface and
discard later surfaces. 

K is the unknot

The hierarchy simplification process

Is this a 
compression 
disc for ∂M?

Let S  be the last
surface the disc
runs over.

Is S  part of a
multi-surface?

S  is a thin
surface.

Run HAKEN’S LEMMA 
to find weak reduction 
pair for h .

Run WEAKLY REDUCE to
create new handle structure
on M  and new Morse 
function to replace h .

j

j

j
j

j
j

Run SIMPLIFY
MULTI-SURFACE

Set l = j and
discard later surfaces.

No Yes


