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1 Introduction and motivation

Deformation theory is the study of the local structure of a space, e.g. a representable functor, near a point.
Later on, a functor will not be sufficiently general, so we will work with categories co-fibered in groupoids.
We will use deformation theory to answer the following sorts of questions.

1. Let X be a variety over C, and x ∈X(C). Describe ÔX,x.

2. Prove the (formal) smoothness of a lot of moduli problems, e.g.

(a) Mg over Z;

(b) Hilbn(S) for S a smooth surface;

(c) (Tian–Todorov theorem) the “moduli” of Calabi–Yaus;

(d) the moduli of principally polarized abelian varieties;

(e) (Deligne) K3 surfaces lift from characteristic p to characteristic 0;

(f) certain moduli of representations.

All these examples are atypical: “Murphy’s law” (Vakil) says that moduli problems are arbitrarily
singular typically.

3. Bound the dimension of moduli spaces, e.g. we can ask for dim[f ∶P1→X] Hom(P1,X).

4. Infinitesimal and generic Torelli theorems (e.g. for hypersurfaces), and infinitesimal variation of Hodge
structure.

Other topics to be discussed potentially include: the cotangent complex, the generic vanishing theorem
and deformations of complexes, dg-algebra techniques, the moduli of sheaves, Galois deformations, and
semiregularity (Bloch).

2 Deformation functors

Definition 2.1. Let k be a field, and let Art/k denote the category of local Artin k-algebras with
residue field k. An important example of such a k-algebra is k[ε]/ε2.

Definition 2.2. A deformation functor is a covariant functor D∶Art/k → Set such that D(k) = {∗}.
There is a category of deformation functors, in which morphisms are natural transformations.

Remark. Think of a curve C over Speck. If Speck fits into SpecA, we can ask how the curve C moves as
Speck moves in SpecA. Here we use A ∈ Art/k, as a sort of “microlocal neighborhood.” This is the setting
of deformation theory.

Remark. There are two ways this definition is insufficient: we shouldn’t work over a field, and “functor” is
too strong of a condition. (There are a lot of complications when deforming objects with automorphisms.)

Example 2.3. Suppose X/k is a scheme, and x ∈X(k). Define the deformation functor

F(X,x)(A) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SpecA ÐÐÐÐ→ X
Õ×××

Õ×××
Speck ÐÐÐÐ→ x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= Homk-alg(OX,x,A) = Homk-alg(ÔX,x,A)

where we can complete because the maximal ideal in A is nilpotent. (So this deformation functor can only
reveal things about ÔX,x.)

Definition 2.4. In general, given a ring R, let hR(A) ∶= Hom(R,A).
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Example 2.5. Suppose Z ↪X is a closed embedding. Define the deformation functor

HZ,X(A) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A-flat closed subschemes Z̃ ⊂XA ∶
Z̃ ÐÐÐÐ→ XA

Õ×××
Õ×××

Z ÐÐÐÐ→ X

Cartesian

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

where XA is the base change to A. The picture to have in mind is that Z̃ is a deformation of Z specified by
A. This is a local version of the Hilbert scheme. Indeed, HZ,X = F(HilbX,[Z]) if HilbX is representable.

Example 2.6. Suppose C/k is a smooth proper geometrically connected curve of genus g. Define

F[C](A) ∶= {π∶C → SpecA with ϕ∶Ck
∼Ð→ C ∶ π is finitely presented and flat of dim 1} / ∼ .

Here, think of F[C] as F(Mg,[C]). This makes sense if g ≥ 2.

Let’s analyze deformation functors. Two questions we can ask about deformation functors D are:

1. are they (pro-)representable?

2. given B → A a surjection in Art/k, what is the image and fibers of D(B)→D(A)?

2.1 Tangent-obstruction theories

Definition 2.7. Let B → A be a surjection in Art/k. We say 0 →M → B → A → 0 is a small extension if
mBM = 0. Exercise: any such B → A can be factored as compositions of small extensions.

Let R be a complete local k-algebra with residue field k such that d ∶= dimkmR/m2
R is finite. Exercise:

there exists a surjection k[[x1, . . . , xd]] → R. Let 0 → M → B → A → 0 be a small extension. We want to
analyze the map hR(B)→ hR(A).

1. Simple case: R = k[[x1, . . . , xd]]. Then the map R → A always lifts to R → B, by lifting the images of
x1, . . . , xd. The fibers are torsors for Md = Hom(mR/m2

R,M). So we have an exact sequence of sets

(mR/m2
R)∨ ⊗M → hR(B)→ hR(A)→ 0.

2. General case: there is a surjection S = k[[x1, . . . , xd]]
πÐ→ R with kernel I. Then hR(B) = {f ∶S → B ∈

hS(B) ∶ f(I) = 0}. We have the diagram

0 ←ÐÐÐÐ R
π←ÐÐÐÐ S ←ÐÐÐÐ I ←ÐÐÐÐ 0

ϕ
×××Ö

ϕ̃
×××Ö

0 ←ÐÐÐÐ A ←ÐÐÐÐ B ←ÐÐÐÐ M ←ÐÐÐÐ 0

and we want to know how many lifts ϕ̃ exist. Suppose we are given α,β∶S → B lifting ϕ ○ π. Then
α−β∶S →M . Exercise: this is a derivation over k. Hence the set of ϕ̃ is a torsor for the set of derivations
Der(S,M) = (mS/m2

S)∨ ⊗M . It follows that (α − β)(I) = 0, because I ⊂ m2
S and α − β is a derivation.

So ϕ̃∣I does not depend on ϕ̃. We also know ϕ̃(mSI) = 0. Hence ϕ̃∣I = 0 iff ob(ϕ) ∶= ϕ̃∣I ∶ I/mSI →M is
zero. This entire argument can be written as an exact sequence

(mR/m2
R)∨ ⊗M →D(B)→D(A) obÐ→ (I/mSI)∨ ⊗M.

Definition 2.8. A deformation functorD has a tangent-obstruction theory if there are finite-dimensional
vector spaces T1 and T2 and functorial (in the map B → A) exact sequences

T1 ⊗M →D(B)→D(A) obÐ→ T2 ⊗M

for any small extension 0→M → B → A→ 0 such that:
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1. a ∈D(A) has ob(a) = 0 iff a lifts to D(B);

2. if α lifts to D(B), then T1 ⊗M acts transitively on the set of lifts;

3. if A = k, then this sequence is left-exact, i.e. the action is actually simply transitive.

In this language, we proved the following theorem.

Theorem 2.9. Let R be a local k-algebra with dimmR/m2
R = d <∞, and a surjection S ∶= k[[x1, . . . , xd]]→ R

with kernel I. Then hR(−) ∶= Homk(R,−) has tangent-obstruction theory given by T1 = (mR/m2
R)∨ and

T2 = (J/mSJ)∨.

Remark. We think of T1 as the tangent space of the functor. It is determined by D, by taking B = k[ε]/ε2
and A = k. However, T2 is not canonical; this is obvious because we can inject T2 into any bigger T ′2.

Example 2.10. Let X be a proper smooth scheme and consider

DefX(A) ∶= {X → SpecA flat, with ϕ∶Xk
∼Ð→X}.

Then the tangent-obstruction theory is Ti = Hi(X,TX). (Properness is required so these Ti are finite-
dimensional.) We can also consider HZ,X , for which T1 = Hom(IZ ,OZ) and T2 = Ext(IZ ,OZ).

Example 2.11. Let X be a proper smooth scheme and E ∈ Coh(X). Then

DefE(A) ∶= {Ẽ ∈ Coh(XA) flat over A and ϕ∶ Ẽk
∼Ð→ E}

has Ti = Exti(E ,E).

2.2 Application: Lefschetz theorem for Pic

Example 2.12 (Deforming line bundles). Let X0 ↪ X be a closed embedding of schemes defined by a
square-zero ideal sheaf I. In this situation, we get a map PicX → PicX0. To find the kernel and image of
this map, we fit it into a long exact sequence:

H1(X,I)→H1(X,O∗
X)→H1(X,O∗

X0
) obÐ→H2(X,I)

arising from the short exact sequence 1 → (1 + I) → O∗
X → O∗

X0
→ 1, and the isomorphism (1 + I) ≅ I.

Hence a line bundle L on X0 lifts to X when ob(L) = 0, and the set of lifts is acted upon transitively by
H1(X,I). However this is not yet a tangent-obstruction theory; there is no deformation functor and no
finite-dimensional T1 and T2.

Let’s specialize the situation: let X be a k-scheme with k a field. For a given L ∈ Pic(X), we define a
deformation functor

P̂icX,L∶Art/k → Set, A↦ {line bundle L′ on XA, ϕ∶L∣X
∼Ð→ L}/ ∼ .

This deformation functor has a tangent-obstruction theory. Let 0 →M → B → A → 0 be a small extension
in Art/k. The map ι∶XA →XB is a closed embedding defined by the square-zero ideal sheaf π∗M . Hence we
get

H1(X,π∗M)→ Pic(XB) ι∗Ð→ Pic(XA)→H2(X,π∗M).
By the projection formula, Hi(X,π∗M) = Hi(X,OX)⊗M . Assume X proper. Then T1 ∶= H1(X,OX) and
T2 ∶=H2(X,OX) are finite-dimensional and form a tangent-obstruction theory. We have shown the following.

Corollary 2.13. T[L]Pic(X) =H1(X,OX) if Pic(X) is representable.

Remark. Note that T2 ≠ 0 in general here, but nonetheless, if chark = 0 and Pic(X) is representable, then it
is smooth because it is a group scheme. In chark = p, however, Pic0(X) is not always smooth.
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Theorem 2.14 (Lefschetz hyperplane theorem for Pic). Let chark = 0 and X/k be a smooth projective
variety of dimension ≥ 4. Let D ⊂X be a smooth ample divisor. Then PicX → PicD is an isomorphism.

Remark. If dimX = 3, then it is only injective. The 4 here is sharp because we can take X = P3 and D a
cubic surface. Then rank Pic(D) = 7.

Proof. We want to show a given line bundle L on D extends uniquely to all of X. Exercise: over C, we can
deduce this from the Lefschetz hyperplane theorem and Lefschetz (1,1) theorem. The first thing to try is
to extend L to some infinitesimal neighborhood of D. Let X̂D be the formal scheme of X completed at D
(thought of as a tubular neighborhood of D), with

Pic X̂D = lim←Ð
n

PicDn.

The next thing to try is to extend from a tubular neighborhood to an actual neighborhood, by considering
limÐ→U⊃D PicU . Finally, we extend to all of X. We write these steps as

PicD
deformation theory←ÐÐÐÐÐÐÐÐÐÐ Pic X̂D algebraization←ÐÐÐÐÐÐÐÐ limÐ→

U⊃D
PicU

extension←ÐÐÐÐÐ PicX.

1. (Extension) Note that for any U with D ⊂ U , we have dimX ∖ U = 0. Otherwise the complement
contains a curve which is disjoint from D, and therefore D is not ample. Now use Hartog’s theorem:
line bundles extend uniquely along subsets of codimension ≥ 2 when X is smooth.

2. (Deformation theory) Write D = V (f) with f ∈ H0(X,O(D)), and let Dn ∶= V (fn). (This is the n-th
infinitesimal neighborhood of D.) We want to show that the natural map lim←ÐnPicDn → PicD is an

isomorphism. It is enough to show PicDn → PicDn−1 are all isomorphisms. These fit into sequences

H1(D,O(−(n − 1)D)∣D)→ PicDn → PicDn−1 →H2(D,O(−(n − 1)D)∣D).

(Equivalently, O(−(n−1)D)∣D ≅ In−1
D /InD.) But these Hi vanish by Kodaira vanishing, which is where

we need chark = 0.

3. (Algebraization) We want to show lim←ÐnPicDn → limÐ→U⊃D PicU is an isomorphism. Suppose E is a

vector bundle on X. Then Hi(X,E) ∼Ð→ lim←ÐH
i(Dn,E ∣Dn) for i ≤ dimX − 2. This is because there is a

short exact sequence
0→ E(−nD)→ E → E ∣Dn → 0

and moreover, Hi(E(−nD)) = 0 for 0 ≤ i ≤ dimX − 1 and n≫ 0 by Serre vanishing (and Serre duality).

Hence for i ≤ dimX − 2, we have Hi(E) ∼Ð→Hi(E ∣Dn) for n≫ 0.

Now suppose E is a vector bundle on X̂D. Then there exists an open U ⊃D and a vector bundle Ẽ on
U such that E = Ẽ ∣X̂D . This is because of the following. On the formal scheme X̂D, we can resolve E ,

OX̂D(a1)n1
fÐ→ OX̂D(a2)n2 → E → 0,

so E = coker(f). But f ∈H0(X̂D,Hom(O(−a1)n1 ,O(a2)n2)), so we can apply the above isomorphism
to get f̃ ∈ H0(X,Hom(O(−a1)n1 ,O(a2)n2)) with f = f̃ ∣X̂D . Hence define Ẽ ∶= coker(f̃), which is
locally free on some open set U containing D. This proves surjectivity.

Injectivity goes as follows. Given L1 and L2 on U isomorphic on D via ϕ∶L1∣D
∼Ð→ L2∣D. Then

ϕ ∈ Γ(X̂D,HomX̂D(L1,L2)) and we can apply the isomorphism again to lift ϕ to an isomorphism on
some open set U ′ ⊃D. Hence L1 ≅ L2 in limÐ→U⊃D PicU .
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2.3 Pro-representability and Schlessinger’s criterion

Definition 2.15. A deformation functor D∶Art/k → Set is pro-representable if there exists a complete
local k-algebra R ∈ Loc/k (with residue field k and finite-dimensional tangent space) and an isomorphism

hR ∶= HomLoc/k(R,−)
∼Ð→D.

Example 2.16. Suppose X/k is a smooth projective variety and consider the deformation functor

DefX ∶Art/k → Set, A↦ {X → SpecA flat with ϕ∶X0
∼Ð→X}/ ∼ .

Then DefX is pro-representable iff H0(X,TX) = 0. We will go through this example carefully later.

Definition 2.17. Let α∶F → G be a morphism of deformation functors. We say α is smooth if it satisfies
the lifting property that defines formal smoothness, i.e. if F (B) → F (A) ×G(A) G(B) is surjective for all
small extensions B → A. Exercise: hR → hS is smooth iff S → R is formally smooth.

Definition 2.18. α∶hR → G is a hull if hR(k[ε]/ε2)→ G(k[ε]/ε2) is an isomorphism and α is smooth.

Remark. Exercise: any two hulls are isomorphic, but not canonically.

Theorem 2.19 (Baby Schlessinger). 1. A hull for a deformation functor D exists iff D admits a tangent-
obstruction theory.

2. D is pro-representable iff the (T1 ⊗M)-action on the set of lifts is simply-transitive, i.e. the tangent-
obstruction sequence is exact on the left

0→ T1 ⊗M →D(B)→D(A)→ T2 ⊗M.

Remark. We will work in the following more general setting: Λ is a Noetherian complete local ring with
residue field k, and C is the category of Artinian (as Λ-modules) Λ-algebras with residue field k.

Theorem 2.20 (Schlessinger). Let F ∶C → Set be a deformation functor. Given maps R → A and S → A in
C, consider the natural map

(∗)∶F (R ×A S)→ F (R) ×F (A) F (S).
Then F has a hull (resp. is pro-representable) iff conditions H1-H3 (resp. H1-H4) are satisfied:

H1. (gluing) if R → A is small, (∗) is surjective;

H2. (tangent spaces make sense) if R = k[ε]/ε2 and A = k, then (∗) is a bijection;

H3. (finite-dimensionality of tangent spaces) dimk F (k[ε]/ε2) <∞;

H4. (separatedness) if (R → A) = (S → A), then (∗) is a bijection.

Proposition 2.21. If Λ = k and the hypotheses of baby Schlessinger hold, so do the hypotheses of Sch-
lessinger.

Proof. Suppose we have a tangent-obstruction theory; we want to check H1 holds. Let 0→M → R → A→ 0
be a small extension. Apply F to the diagram

0 ÐÐÐÐ→ M ÐÐÐÐ→ R ×A S ÐÐÐÐ→ S ÐÐÐÐ→ 0

∥
×××Ö

×××Ö
0 ÐÐÐÐ→ M ÐÐÐÐ→ R ÐÐÐÐ→ A ÐÐÐÐ→ 0

to get
T1 ⊗M ÐÐÐÐ→ F (R ×A S) ÐÐÐÐ→ F (S) ÐÐÐÐ→ T2 ⊗M

∥
×××Ö

×××Ö
β↦γ ∥

T1 ⊗M ÐÐÐÐ→ F (R) α↦γÐÐÐÐ→ F (A) ÐÐÐÐ→ T2 ⊗M.
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Given β ↦ γ and α ↦ γ, a small diagram chase gives a lift to η ∈ F (R ×A S).
Suppose the T1-action is simply-transitive; we want to check H4 holds. Look at the diagram

0 ÐÐÐÐ→ T1 ⊗M ÐÐÐÐ→ F (R ×A R) ÐÐÐÐ→ F (R) ÐÐÐÐ→ T2 ⊗M

∥
×××Ö

×××Ö
∥

0 ÐÐÐÐ→ T1 ⊗M ÐÐÐÐ→ F (R) ÐÐÐÐ→ F (A) ÐÐÐÐ→ T2 ⊗M.

Now we run through the same argument as before, which will also show the lift is unique.

Theorem 2.22 (Grothendieck). F is pro-representable iff F satisfies H2 and H3 and preserves all finite
limits.

Proof of Schlessinger. Exercise: hull implies H1-H3 and pro-representable implies H1-H4. Suppose F satisfes
H1-H3; we want to make a hull R. We want R/mR = k =∶ R1. Let tF ∶= F (k[ε]/ε2); the condition H2 implies
this is a k-vector space. Let x1, . . . , xr be a basis of tF , with dual basis x∗1, . . . , x

∗
r . Set S ∶= Λ[[T1, . . . , Tr]].

Then R/(m2
R +mΛR) = S/(m2

S +mλS) =∶ R2. More explicitly, R2 = k[ε] ×k ⋯×k k[ε]. Hence by H2,

F (R2) = F (k[ε]) ×⋯ × F (k[ε]) = tF ×⋯ × tF = tF ⊗ t∨F .

Let ξ2 ∶= idtF⊗t∨F = ∑xi ⊗ x∗i . In general, we want Rq and ξq ∈ F (Rq) with Rq = S/Jq such that:

1. Rq/Jq−1 = Rq−1;

2. ξq ↦ ξq−1 under the induced map F (Rq)→ F (Rq−1);

3. lim←Ð(Rq, ξq) is a hull.

By Yoneda’s lemma, ξ ∶= lim←Ð ξ will define the map hR → F . The idea is to let Jq be minimal such that

mSJq−1 ⊂ Jq ⊂ Jq−1, and ξq−1 lifts to F (Rq) under the map F (Rq) → F (Rq−1). Minimality will eventually
give smoothness of the hull. Observe there is a bijection

{mSJq−1 ⊂ J ⊂ Jq−1}
∼Ð→ {vector subspaces of Jq−1/mSJq−1}.

We want to show that if J and K satisfy these properties, so does J ∩K; then we can just let Jq be the
intersection of all J satisfying these properties. Wlog assume J +K = Jq−1. This implies S/J ×S/Jq−1 S/K =
S/(J ∩K). Then H1 implies the map

F (S/(J ∩K)) = F (S/J ×S/Jq−1 S/K)→ F (S/J) ×F (S/Jq−1) F (S/K)

is surjective. Hence given ξ′q ∈ F (S/J) and ξ′′q ∈ F (S/K), they lift to an element of S/(J ∩K). So a minimal
Jq exists. We want to check:

1. tR → tF is an isomorphism (this we checked already, by the construction of R);

2. hR → F is smooth.

Let 0 →M → B → A → 0 be a small extension, so that for (2) we must check hR(B) → hR(A) ×F (A) F (B)
is surjective. Wlog, by taking a filtration of M , assume dimkM = 1. Then B ×A B ≅ B ×k k[ε]/ε2, by
(x, y)↦ (x,x mod mB + y − x) (exercise). Then H2 implies

F (B) × tF = F (B) ×F (k) F (k[ε]/ε2) ∼Ð→ F (B ×k k[ε]/ε2) = F (B ×A B)↠ F (B) ×F (A) F (B).

(If we assume H4, then the last surjection is an isomorphism; this is the origin of H4.) The composition
gives an action (x, δ)↦ (x, δ ⋅ x), and therefore F (B)→ F (A) becomes a torsor under tF .
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Let f ∈ hR(A) and η ∈ F (B) such that ξ(f) = η. By the transitivity of the action we just defined, it
suffices to find any lift of f to hR(B). Note that f factors through S/Jq = Rq for some q. In the diagram

S
wÐÐÐÐ→ Rq ×A B ÐÐÐÐ→ B

×××Ö
pr1

×××Ö
×××Ö

Rq+1 ÐÐÐÐ→ Rq
fÐÐÐÐ→ A,

we want a lift `∶Rq+1 → Rq ×A B. Exercise: either pr1 splits, or w is surjective. (This uses that B → A has
1-dimensional kernel.) Wlog assume w is surjective. By H1, the map F (Rq ×A B) → F (Rq) ×F (A) F (B) is

surjective. So we find a lift ξ̃q of ξq ∈ F (Rq). This implies kerw is an ideal in S such that:

1. by the smallness of the extension, mSJq ⊂ kerw ⊂ Jq;

2. ξq lifts to S/kerw.

By the minimality of Jq+1, we get Jq+1 ⊂ kerw. Hence w descends to Jq+1 and we are done proving the
statement for hulls.

Now assume H4; we want to show hR → F is an isomorphism. By Yoneda, it suffices to show hR(B) →
F (B) is an isomorphism for all B. We prove this by induction on the length of B. Choose a small extension
0→M → B → A→ 0 with dimkM = 1. We get

0 ÐÐÐÐ→ tR ⊗M ÐÐÐÐ→ hR(B) ÐÐÐÐ→ hR(A)

∥
×××Ö

∥

0 ÐÐÐÐ→ tF ⊗M ÐÐÐÐ→ F (B) ÐÐÐÐ→ F (A),

which shows hR(B) ≅ F (B).

Remark. If T1, T2 are a tangent-obstruction theory for F , then it is also a tangent-obstruction theory for
any hull R. This is because by smoothness, there is no obstruction to lifting, and the tangent spaces are the
same (exercise). Question: what is the dimension of R?

Theorem 2.23. If R is a hull, dimR ≥ dimT1 − dimT2.

Lemma 2.24. Let R ∈ Loc/k with S ∶= k[[x1, . . . , xr]]↠ R with tR ≅ tS with kernel J . Set T1 ∶= (mR/m2
R)∨

and T2 ∶= (J/mSJ)∨. Let T ′1, T
′
2 be another tangent-obstruction theory for R. Then:

1. T1 ≅ T ′1;

2. there exists a functorial injection T2 ↪ T ′2.

Proof of theorem. We know dimR ≥ dimS − (min # generators of J), and dimS = dimT1. By Nakayama,
the number of generators of J is at least dimT2. By the lemma, dimT1 − dimT2 ≥ dimT ′1 − dimT ′2. We need
this because a priori we have some random tangent-obstruction theory, not the one that comes from R.

Proof of lemma. We already showed that for any tangent-obstruction theory, T1 ≅ hR(k[ε]/ε2) ≅ T ′1. By
Artin–Rees, there exists i > 0 such that miS ∩ J ⊂ mS ⋅ J . Let

M ∶= (J +miS)/(mSJ +miS) = J/mSJ
B ∶= S/(mSJ +miS),

so that A ∶= B/M = R/miSR makes a small extension 0 → M → B → A → 0. Consider lifting the quotient
map π ∈ hR(R/miSR) to hR(B). The obstruction here is

hR(B)→ hR(R/miSR) obÐ→ T ′2 ⊗M = T ′2 ⊗ T ∨2 .
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Then ob(π) can be viewed as an element in Hom(T2, T
′
2), giving the desired map T2 → T ′2. Claim: ob(π) is

injective. Assume not, so that M∨ ob(π)ÐÐÐ→ T ′2 has a non-trivial kernel (M/V )∨ ⊂M∨. Now draw the diagram

0 ÐÐÐÐ→ J ÐÐÐÐ→ S ÐÐÐÐ→ R ÐÐÐÐ→ 0
×××Ö

×××Ö
π
×××Ö

0 ÐÐÐÐ→ M ÐÐÐÐ→ B ÐÐÐÐ→ R/miSR ÐÐÐÐ→ 0
×××Ö

×××Ö
∥

0 ÐÐÐÐ→ M/V ÐÐÐÐ→ B/V ÐÐÐÐ→ R/miSR ÐÐÐÐ→ 0,

where ob(π) is the obstruction to the existence of `1∶R → B. But we purposefully chose V so that the
following diagram holds:

hR(B) ÐÐÐÐ→ hR(R/miSR) π↦ob(π)ÐÐÐÐÐ→ T2 ⊗M
×××Ö

∥
×××Ö

ob(π)↦0

hR(B/V ) ÐÐÐÐ→ hR(R/miSR) ÐÐÐÐ→ T2 ⊗ (M/V ),

i.e. by functoriality, using the T ′2 obstruction theory, there is no obstruction to a lift `2∶R → B/V of
π∶R → R/miS . But using the T2 obstruction theory, the obstruction to such a lift is the map M → M/V .
This is a quotient map, and is therefore non-zero. But whether the obstruction is zero must be independent
of the obstruction theory, a contradiction. Hence ob(π) is injective.

2.4 Application: smoothness of Hilbert scheme

Definition 2.25. Let S be a scheme. Define the functor

S[n](T ) ∶= {Z ⊂ S × T flat over T ∶ length(OZt) = n for all geom. pts. t ∈ T}.

The Hilbert scheme of n points S[n] is the moduli space representing this functor.

Remark. Note that S[n] has an open subscheme which consists of sets of n distinct points on S.

Theorem 2.26. Let S be a smooth (projective) surface over a field k. Then S[n] is smooth.

Remark. Earlier we said there is a global deformation theory for S[n]; we will go through this carefully. The
obstruction space is non-zero, so it is not a priori obvious that this deformation problem is smooth. The
proof idea is that the following two properties will imply S[n] smooth:

1. S[n] is connected (this is the global step);

2. dimT[Z] = 2n for all [Z].

Lemma 2.27. Let S be a connected variety over k. Then S[n] is connected.

Proof. Clearly S[0] and S[1] are connected; we will induct on n. Let Zn ⊂ S×S[n] be the universal subscheme,
with ideal sheaf IZn . Recall that the Quot scheme lets us parametrize quotients of a coherent sheaf; let
P(IZn) ∶= Quot1

S×S[n](IZn) parametrize 1-dimensional quotients of IZn . In other words, it parametrizes,

universally, the operation of “adding one more point to the subscheme [Z] ∈ S[n].” We will show P(IZn) is
connected, make a map P(IZn)→ S[n+1], and show it is dominant. Hence S[n+1] will be connected as well.

1. Firstly, the fiber of P(IZn) → S × S[n] at t ∈ S × S[n] is P(IZn,t). By induction, S × S[n] is connected.
Hence P(IZn) is connected, as the domain of a surjective proper morphism whose fibers and codomain
are connected.
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2. We want a map P(IZn)→ S[n+1]. On S × P(IZn), there is a universal exact sequence

0→ I → π∗IZn → Q→ 0

where Q is the universal quotient line bundle on S × P(IZn), and I is the kernel. It is an ideal sheaf,
and therefore defines a subscheme Z ⊂ S × P(IZn). Hence we get an exact sequence

0→ Q→ OZ → π∗OZn → 0.

Since Q is a line bundle, this is an extension by length 1. Both Q and π∗OZn are flat over P(IZn), so
OZ is as well. Hence Z gives a map

P(IZn)→ S[n+1], [ϕ∶IZn → k(x)]↦ V (ker(ϕ)) ⊂ S.

3. Now we check P(IZ) → S[n+1] is surjective. Take [W ] ∈ S[n+1]. It suffices to find a closed subscheme
of W of length n. Pick p ∈ suppW and let m be its maximal ideal in OW . Take any f ∈ Annm. Set

W ′ ∶= Spec(OW /(f)). Since f is annihilated by m, this has length n. Take IZn → IW /mIW
γÐ→ k such

that γ(f) = 0 and γ ≠ 0. This is a point in P(IZn), and it maps to W .

Lemma 2.28. Let [F → Q → 0] ∈ Quot(F). Then its deformation functor D[F→Q→0] has tangent-
obstruction theory given by

T1 = Hom(S,Q), T2 = Ext1(S,Q)
where S ∶= ker(F → Q).

Proof. Let 0→M → B → A→ 0 be a small extension. Then we have the diagram

0 0

M ⊗A S S̃

0 M ⊗F FB FA 0

M ⊗Q Q̃

0 0

α

β

.

Note that β ○ α = 0. Denote F̃ ∶= kerβ/ imα, so that there is a short exact sequence

0→ Q⊗M → F̃ → S̃ → 0.

Claim: deformations of FA → Q̃ to B are in bijection with splittings of the above SES. In other words, the
obstruction to extending from A to B lies in Ext1(S̃,Q⊗M). This is because such a deformation is a sequence
0→ S ′ → FB → Q′ → 0 making the entire diagram commute. Given such a deformation, S ′/ im(α)→ S̃ ⊂ FA.
This map is actually an isomorphism. But S ′/ im(α) evidently maps into F̃ , giving a splitting of the SES.
Conversely, given a splitting ξ∶ S̃ → F̃ , set

S ′ ∶= {x ∈ F ⊗B ∶ (s mod imα) ∈ im ξ}.

This finishes the proof modulo the claim that Ext1(S̃,Q⊗M) = Ext1(S,Q).
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Corollary 2.29. Setting Q = O, the deformation functor DZ,X for the Hilbert scheme S[n] has tangent-
obstruction theory

T1 = Hom(IZ ,OZ), T2 = Ext1(IZ ,OZ).

Lemma 2.30. Let A be a 2-dimensional regular local ring, e.g. A = k[[x, y]]. Let I ⊂ A be an ideal of
co-length n. Then length Hom(I,A/I) ≤ 2n.

Proof of theorem. We have already shown S[n] is connected, so it suffices to show dimT[Z]S
[n] = 2n. The

open subset of S[n] corresponding to n distinct points clearly already has tangent space of dimension 2n.
By the lemma,

T[Z]S
[n] = Hom(IZ ,OZ) = ∏

p∈suppZ

Hom(IZ ∣p,OZ ∣p) ≤ 2n

for any [Z] ∈ S[n]. We are done because then there can be no other bad components in S[n].

Proof of lemma. Let 0 → R → Ar+1 → I → 0. Claim: R is free of rank r. It suffices to check Tor1(R,k) = 0
(by the local criterion of flatness). By the SES and the Koszul complex of k,

Tor1(R,k) = Tor2(I, k) = {x ∈ I ∶ xm = 0} = 0.

Hence R is free. It has rank r because rank I = 1. So we can rewrite the SES as 0→ Ar → Ar+1 → I → 0. We
get a long exact sequence

0→ Hom(I,A/I)→ (A/I)r+1 → (A/I)r → Ext1(I,A/I)→ 0.

We know the length of (A/I)r is rn. So it suffices to show length Ext1(I,A/I) ≤ n. Take the SES 0 → I →
A→ A/I → 0, giving an isomorphism

Ext1(I,A/I) ∼Ð→ Ext2(A/I,A/I).

Applying the sequence in the other factor, we also get a surjection

Ext2(A/I,A)↠ Ext2(A/I,A/I)→ Ext3(A/I, I) = 0.

(Here Ext3 vanishes by finite global dimension of regular local rings, or by explicitly taking a three-term
resolution of A/I.) So now it is enough to show length Ext2(A/I,A) ≤ n. Let E(k) denote the injective
envelope of k. Then by local duality (cf. Matlis duality),

Ext2(A/I,A) = Hom(Hloc(A/I),E(k)) = Hom(A/I,E(k)).

Local duality preserves length, and Hom(−,E(k)) preserves length. Since A/I has length n by hypothesis,
Hom(A/I,E(k)) has length n as well.

Second proof of lemma. We will show Hom(I,A/I) ≤ 2n using a global proof, via Serre duality instead of
local duality. There is an exact sequence

0→ Hom(OZ ,OZ)→ Hom(OX ,OZ)→ Hom(I,OZ)→ Ext1(OZ ,OZ)→ Ext1(OX ,OZ) = 0.

The first map is an isomorphism, because a map OX → OZ factors through OZ anyway. Hence the map
Hom(I,OZ)↪ Ext1(OZ ,OZ) is an injection, and it suffices to show Ext1(OZ ,OZ) ≤ 2n.

We will first show dim Ext2(OZ ,OZ) ≤ n. There is an exact sequence

Ext2(OZ ,OX)→ Ext2(OZ ,OZ)→ Ext3(OZ ,I) = 0

where Ext3 vanishes by the local-to-global Ext spectral sequence. Hence it is enough to show the bound
dim Ext2(OZ ,OX) ≤ n. But by Serre duality,

Ext2(OZ ,OX) = Hom(OX ,OZ ⊗KX)∨ =H0(OZ ⊗KX)∨,
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which has length n. Now we have

dim Ext1(OZ ,OZ) = dimH0(OZ ,OZ) + dimH2(OZ ,OZ) − χ(OZ ,OZ) ≤ 2n − χ(OZ ,OZ).
So to finish the proof, it suffices to show χ(OZ ,OZ) = 0. Take a locally free resolution 0→ En → En−1 → ⋯→
E1 → OZ → 0. Then

χ(OZ ,OZ) =∑(−1)iχ(Ei,OZ) =∑(−1)i rank(Ei)n = 0

and we are done.

Remark. This statement is false for 3-folds X. It is true that X[1] and X[2] = Bl∆((X × X)/(Z/2)) are
smooth, but in general X[n] is not.

Theorem 2.31. HilbN X is not smooth for N ≫ 0 when dimX > 2.

Proof. There is an open in HilbN X with dimension 3N . Our proof of connectedness worked in all dimensions,
so being singular is the same as having a point where the tangent space has dimension > 3N . In fact we can
find a point where the dimension is > 3N . Take m ⊂ R ∶= k[[x1, x2, x3]] and consider ideal sheaves supported
only at m. For example, look at (R/ms)/V where V ⊂ ms+1/ms. This is a big Grassmannian Gr(V,ms+1/ms)
whose dimension is > 3 dim((R/ms)/V ). So we have found a component in HilbN X of dimension > 3N .

3 Tian–Todorov theorem

Let k be a field of characteristic 0.

Definition 3.1. A weak Calabi–Yau variety over k is a smooth projective variety X over k such that
KX ≅ OX . A Calabi–Yau variety is a weak Calabi–Yau variety X with Hi(X,OX) = 0 for 0 < i < dimX.

Theorem 3.2 (Tian–Todorov). Let X be a weak Calabi–Yau variety with H0(X,TX) = 0. Then the functor
DefX ∶Art/k → Set is pro-representable by a power series ring in n variables where n ∶= dimH1(X,TX).

Remark. If X is Calabi–Yau and dimX ≥ 2, then H0(X,TX) = 0 automatically. This is because by Serre
duality and Hodge symmetry (which requires chark = 0),

h0(X,TX) = hdimX(X,Ω1) = h1(X,ΩdimX) = h1(X,OX) = 0.

Example 3.3. Here are some weak Calabi–Yaus:

1. abelian varieties;

2. Hilbn(K3) for n > 1, where H2(X,OX) ≠ 0;

3. Hilbn(A) where A is an abelian surface,

Here are some Calabi–Yaus:

1. a K3 surface, e.g. quartic in P3;

2. degree n + 1 (smooth) hypersurface in Pn;

3. anti-canonical sections of Fano varieties.

Tian–Todorov will tell us that locally, the moduli spaces of such objects are beautiful.

Proof sketch for Tian–Todorov. Here are the steps we will follow for this proof.

1. Prove that T1 =H1(X,TX) and T2 =H2(X,TX). This will be true for any smooth projective variety.

1’. Prove that if in addition H0(X,TX) = 0, then DefX is pro-representable.

2. Prove the T1-lifting theorem, which gives (in characteristic 0) a criterion for when a deformation functor
is smooth basically in terms of just T1.

3. Check the T1-lifting theorem for the functor DefX .
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3.1 Deformations of a smooth variety

Let X be a smooth variety over a field k. Recall that the deformation functor associated to X is

DefX(A) ∶= {X → SpecA flat, with ϕ∶Xk
∼Ð→X}/ ∼ .

The following theorem implies that DefX is pro-representable for X Calabi–Yau, where H0(X,TX) = 0
automatically.

Theorem 3.4. 1. If H1(X,TX) and H2(X,TX) are finite-dimensional, then DefX has a hull.

2. If in addition H0(X,TX) = 0, then DefX is pro-representable.

Remark. The point will be that Hi(X,TX) for i = 1,2 form a tangent-obstruction theory for DefX , and we
will basically obtain the result from Schlessinger. However, we will actually prove the following more general
result.

Theorem 3.5. Let π∶X0 → S0 be smooth and separated, with S0
gÐ→ S an extension with square-zero ideal

J .

1. There exists a canonical class ob(π) ∈ Ext2
X0

(Ω1
X0/S0

, π∗J ) such that ob(π) = 0 iff there exists a
deformation X of X0 to S.

2. The set of such deformations (up to isomorphism) is a torsor for Ext1
X0

(Ω1
X0/S0

, π∗J ).

3. The set of automorphisms of a given deformation is HomX0(Ω1
X0/S0

, π∗J ).

Proof. First consider the case where S0 = SpecR0, S1 = SpecR and X0 = SpecR0[x1, . . . , xn]/(f1, . . . , fr) are
all affine, and X0 is a global complete intersection over S0.

1. Everything in sight is affine, so ExtiX0
(Ω1

X0/S0
, π∗J ) = 0 for i = 1,2. Take ob(π) ∶= 0.

2. The content here is that there exists a unique deformation of X0 to X. Take the equations f1, . . . , fr
and lift them to f̃1, . . . , f̃r ∈ R[x1, . . . , xn], and set X ∶= SpecR[x1, . . . , xn]/(f̃1, . . . , f̃r). This gives
existence. For uniqueness, consider two lifts X,X ′ of X0 → S0:

X0 X X ′

S0 S.

There is a map between these lifts from (formal) smoothness of X0 → S0. This map is an isomorphism
because it is an isomorphism on the central fiber.

3. Consider an automorphism ϕ∶X → X as an extension of X0. Then ϕ − id∶OX → OX kills the ideal
sheaf of X0, and therefore descends to a map ϕ − id∶OX0 → π∗J . Check that this is a derivation.

In general, we cover X0 by open affines that are global complete intersections. This is possible by the
assumption that X0 → S0 is smooth, and hence a local complete intersection. Choose X0 = ⋃iUi where each
Ui is a complete intersection. Then by the local case, there exists unique lifts U ′

i of Ui over S. For each i, j,

ϕij ∶U ′
i ∣Ui∩Uj

∼Ð→ U ′
j ∣Ui∩Uj

is an isomorphism by (2) in the affine case. (Note that by separatedness, intersections are affine.) However
it is not necessarily the case that these glue together; we require the cocycle condition ϕjk ○ϕij = ϕik. So set

ob(π) ∶= ϕjk ○ ϕij ○ ϕ−1
ik − id∶U ′

k ∣ijk → U ′
k ∣ijk.
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Check that this is indeed a Čech cocycle and independent of choices (exercise using (3) from the affine case).
Since each ϕ − id is a derivation OX0 → π∗J , it follows that we get a class in Ext2

X0
(Ω1

X0/S0
, π∗J ). Clearly

ob(π) = 0 iff the ϕij glue, iff there exists a global lift X of X0.
Now suppose we have two deformations X ′,X ′′ of X0. We need to construct a unique α(X ′,X ′′) ∈

Ext1
X0

(Ω1
X0/S0

, π∗J ). Consider the open cover Ui as before. By the affine case, there exists a unique

isomorphism ψ′i∶U ′
i → U ′′

i , and these form the diagram

U ′
i ∣ij

ϕ′ijÐÐÐÐ→ U ′
j ∣ij

ψ′i
×××Ö

ψ′j
×××Ö

U ′′
i ∣ij

ϕ′′ijÐÐÐÐ→ U ′′
j ∣ij .

However, the diagram commutes iff X ′ ≅X ′′ as deformations of X0. Hence we define the class

α(X ′,X ′′) ∶= ϕ′ij − ϕ′′ij ∈ Ext1
X0

(Ω1
X0/S0

, π∗J ).
Finally, the automorphism statement is the same as for the affine case.

Corollary 3.6. If X0 and S0 are both affine with X0 → S0 smooth, then there exists a unique deformation
to X → S.

Corollary 3.7. If X0 → S0 has cohomological dimension 1, i.e. R2 and above vanish, then there exists a
deformation (because the obstruction space vanishes).

Proof of Theorem 3.4. Set T1 ∶= H1(X,TX) and T2 ∶= H2(X,TX). To check this is a tangent-obstruction
theory, for every small extension 0→M → B → A→ 0 we need an exact sequence

T1 ⊗M → DefX(B)→ DefX(A)→ T2 ⊗M.

Take S0 ∶= SpecA and S ∶= SpecB and J ∶= M̃ . Then the theorem applies: given [π∶X → S0] ∈ DefX(A), we
get ob(π) in Ext2(Ω1

X /A, π
∗J ). But

Ext2(Ω1
X /A, π

∗J ) ≅H2(X , TX /A ⊗ π∗M̃) =H2(X , TX /A)⊗M =H2(X,TX)⊗M

where the last equality uses that the extension is small in order to return to the central fiber X in X̃. This
gives the part DefX(B)→ DefX(A)→ T2 ⊗M .

Now we study the fibers of DefX(B)→ DefX(A). There is a surjection from the space of all deformations
of X over B (which only must preserve the central fiber X) to the ones which preserve a given deformation
X ∈ DefX(A). Since T1 ⊗M acts transitively on the former, it also acts transitively on the latter.

By baby Schlessinger, it follows that DefX has a hull. For pro-representability, we can prove the following
more general statement. It finishes the proof because if H0(X,TX) = 0, then by the theorem, Aut(XA) = 0
and we vacuously satisfy the condition below.

Theorem 3.8. Let XA ∈ DefX(A). The following are equivalent:

1. DefX is pro-representable;

2. for every small extension B → A and every X ∈ DefX(B), any automorphism of XA extends to an
automorphism of X .

Proof. There is a long exact sequence of sets

0→H0(X,TX)⊗M → Aut(X )→ Aut(XA)→H1(X,TX)⊗M → DefX(B)→ DefX(A).

We check exactness at H1(X,TX) ⊗M . Suppose X1,X2 ∈ DefX(B) with an isomorphism ϕ∶X1
∼Ð→ X2

restricting to the identity on X. Then ϕ∣XA is an automorphism of XA. By hypothesis, it extends to

ϕ̃∶X1
∼Ð→ X1. The map ϕ○ ϕ̃−1 therefore exhibits X1 and X2 as the same deformation of XA over B. Exercise:

check the above carefully.
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Corollary 3.9. Let X be a proper smooth curve of genus g. Then:

1. DefX is pro-representable;

2. DefX is smooth;

3. dim(DefX) = 3g − 3 for g ≥ 2.

Proof. If g ≥ 2, then H0(X,TX) = 0 and we are done by the theorem. If g = 0, then there are no deformations
of genus 0 curves, so DefX = pt. The g = 1 case requires some more work.

Smoothness follows from cohomological dimension ≤ 1, which implies obstruction spaces vanish and
therefore formal smoothness. By smoothness, dim(DefX) = dim(T1), which is 3g − 3 by Riemann–Roch.

Example 3.10 (Non-pro-representable deformation problem). Consider

X ∶= BlZ(P2), Z ∶= {100 pts of P2 lying on a line `}.

Exercise: the space of infinitesimal automorphisms of X is {g ∈ pgl3∶ g preserves `}. Hence DefX is not
pro-representable: if we deform points off the line, the automorphism will not extend.

3.2 T1-lifting theorem

Definition 3.11. Let A ∈ Art/k and M ∈ Mod(A). Define A ⊕M with underlying abelian group A ⊕M ,
with multiplication

(a,m) ⋅ (a′,m′) ∶= (aa′, am′ + a′m).
Warning: A⊕M → A is not a small extension, since M is only an A-module and not a k-module.

Theorem 3.12 (T1-lifting theorem). Let R ∈ CLoc/k. Then R ≅ k[[x1, . . . , xn]] with n ∶= dimmR/m2
R iff:

t1. for all A ∈ Art/k and all surjections M ′↠M in Mod(A), the induced map

Homk-alg(R,A⊕M ′)→ Homk-alg(R,A⊕M)

is surjective.

Remark. The T1-lifting theorem is false in characteristic p. For example, set R = k[x]/(xp). The key fact
making R a counterexample is that ΩR/k is free of rank 1.

Proof 1. Consider the diagram

Homk-alg(R,A⊕M ′) Homk-alg(R,A⊕M)

Hom(R,A).

πM′
πM

Then the t1 condition is equivalent to the condition:

t2. For A,M,M ′ as in the theorem and a map g∶R → A, the natural map π−1
M ′(g)→ π−1

M (g) is surjective.

Observe that π−1
M (g) is a torsor for Derk(R,M) = Homk(Ω̂1

R,M), and the same is true for π−1
M ′(g). These

torsors are actually the trivial torsor, because A ⊕M → A splits. Hence t2 is equivalent to the condition:
Hom(Ω̂1

R,M
′) → Hom(Ω̂1

R,M) is surjective for any surjection M ′ → M of finite-length R-modules. This is
equivalent to Ω̂1

R being free.
Choose a surjection P ∶= k[[x1, . . . , xn]]↠ R, with n ∶= dimkmR/m2

R and kernel I. The conormal exact
sequence is

I/I2 dÐ→ Ω̂1
P ⊗P R → Ω̂1

R → 0.

But the surjection is of free modules of the same rank, so df = 0 for f ∈ I/I2. In characteristic 0, this implies
f = 0, and hence I = 0.
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Proof 2. Take P ∶= k[[x1, . . . , xn]] with n = dimkmR/m2
R and a surjection π∶P ↠ R, and let I ∶= kerπ. Note

that I ⊂ m2
P , because π is an isomorphism on tangent spaces. Assume I ⊂ mr−1

P ; we will show I ⊂ mrP . It
suffices to show that the dashed arrow exists:

P R

Ar+1 ∶= P /mrP .

Let Mr ∶= ⊕n
i=1Ar−1εi = ⊕n

i=1 P /mr−2
P , which is an Ar-module. There is a map Mr+1 → Mr given by

quotienting on each coordinate. Set

P → Ar ⊕Mr = P /mr−1
P ⊕

n

⊕
i=1

P /mr−2
P εi, xi ↦ xi + εi.

This sends a polynomial f ∈ P to f +∑i(∂f/∂xi)εi. It descends to a map R → Ar ⊕Mr because I ⊂ mr−1
R , so

for f ∈ I, we have ∂f/∂xi ∈ mr−2
P . We want to lift to Ar⊕Mr+1. The existence of the lift implies ∂f/∂xi ∈ mr−1

P

for f ∈ I. By the same argument as before (in characteristic 0), we get I ⊂ mrP .

3.3 Proof of Tian–Todorov

Theorem 3.13 (Deligne–Illusie). Let S be a scheme of characteristic 0, and X → S be smooth and proper.
Then:

1. Rqf∗Ωp
X/S is locally free and its formation commutes with base change;

2. the spectral sequence Ep,q2 =Hq(X,Ωp
X/S)⇒Hp+q

dR (X/S) degenerates at E2.

Remark. We need this for Artin schemes. If S were a reduced scheme (think smooth complex manifold),
this follows directly from Hodge theory as follows. In this setting, X → S is a submersion, and topologically
it is locally trivial. So Hn(Xs,C) is locally constant as a function of s. Hodge theory says Hn(Xs,C) =
⊕p+q=nH

q(Xs,Ω
p
Xs

). But these are coherent cohomology groups, and their ranks can only jump up. Hence
Hq(Xs,Ω

p
Xs

) is locally constant as a function of s. By proper base change (in the reduced case) and
descending induction, we are done.

Lemma 3.14 (Deformations of Calabi–Yaus are Calabi–Yau). If X → SpecA is a smooth proper morphism
with A ∈ Art/k with chark = 0 and Xk weak CY, then ωX /A is trivial.

Proof. Consider H0(X,ωX /A). We know it is locally free and its formation commutes with base change.
Hence it surjects onto H0(X , ωX /A)⊗k =H0(Xk, ωXk), which has a nowhere-vanishing section. It lifts back
to ωX /A, which is therefore trivial.

Proof of Tian–Todorov. We showed pro-representability. Now we want DefX(A ⊕M ′) → DefX(A ⊕M) to
be surjective, to apply the T1 lifting theorem. We’ll actually use the t2 condition: pick X ∈ DefX(A), so we
want π−1

M ′(X )→ π−1
M (X ) is surjective. Both are torsors, so equivalently we want to show

H1(X , TX /A ⊗ f∗M ′)↠H1(X , TX /A ⊗ f∗M)

is surjective. By the projection formula,

RΓ(TX /A ⊗L Lf∗M ′) = RΓ(TX /A ⊗ f∗M ′) ≅ RΓ(TX /A)⊗LM.

We can’t directly erase the L because M is not locally free. In order for this to work for R1, it turns out we
need the following. Exercise:

R1Γ(TX /A ⊗ f∗M) ≅ R1Γ(TX /A)⊗M
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if R1Γ(TX /A) is locally free for i > 1.

RiΓ(TX /A) =Hi(X , TX /A) =HdimX−i(X ,Ω1
X /A ⊗ ωX /A)∨.

By the lemma, ωX /A is trivial. By Deligne–Illusie, HdimX−i(X ,Ω1
X /A) is locally free. So we have reduced

the map to
H1(X , TX /A)⊗M ′ →H1(X , TX /A)⊗M,

which is clearly surjective.

Proof of Deligne–Illusie. Exercise: reduce to the case S = SpecA for an Artinian local ring C-algebra A.
Claim: Ω●an

X/S is a resolution for A on Xan. There is a map A→ Ω●an
X/S given by pullback, which will give our

quasi-isomorphism. It suffices to check

Gr●mA→ Grm Ω●an
X/S = Ω●an

Xred ⊗C GrmA

is a quasi-isomorphism, and this is obvious since Ω●an
Xred ≅ C. By GAGA, it suffices to prove the theorem for

Ω●an
X/S . In addition, Rqf∗Ω●an

X/S = Rqf∗ΩX/S , by constructing an isomorphism of spectral sequences.

Since we have a resolution Ω●an
X/S → A, there are equalities

Hi(Xan,Ω●an
X/S) =Hi(Xan,A) =Hi(Xred,C)⊗A =Hi(Xred,Ω

●
Xred)⊗A.

Hence, taking lengths and noting these are just C-vector spaces,

lengthHi(Xan,Ω●an
X/S) = length(A) length(Hi(Xred,Ω

●
X/S)).

This is the analogue of the constancy of Betti numbers in the non-reduced setting. A general fact:

lengthHq(X,Ωp
X/S) ≤ length(A) length(Hq(Xred,Ωp

Xred)),

with equality iff Hq(X,Ωp
X/S) is locally free. Also,

∑
p+q=n

lengthHq(X,Ωp
X/S) ≥ lengthHn(X,Ωp

X/S)

with equality iff the spectral sequence Hq(X,Ωp
X/S)⇒Hp+q

dR (X) degenerates. These two inequalities give

∑
p+q=n

length(A) lengthHq(Xred,Ω
p
Xred) ≥ lengthHn(X,ΩX/S) = length(A) lengthHn

dR(Xred),

with equality iff the spectral sequence degenerates and Hq(X,Ωp) is locally free. But this is in fact an
equality, because dividing by length(A) we get the usual statement of Hodge theory.

4 Generic vanishing

Let X be a compact Kähler manifold (but think projective variety). Let Pic0X =H1(X,OX)/H1(X,Z) be
the identity component of PicX. In general, this is a complex torus. Our goal in generic vanishing is to
study Hi(X,L) for L ∈ Pic0X. In contrast, if L is ample, then Kodaira vanishing says Hi(X,KX⊗L) = 0 for
i > 0; equivalently, Hi(X,L∨) = 0 for i < dimX. More generally, Nakano’s generalization says for L ample,
Hq(X,Ωp ⊗L) = 0 for p + q ≥ dimX. We want analogues for L ∈ Pic0X.

Example 4.1. We show that it is too much to hope for global vanishing.

1. Take H0(X,L) for L ∈ Pic0X. Then this is non-zero iff L ≅ OX .
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2. Suppose X is a genus-2 curve and consider H1(X,L) for L ∈ Pic0X. Either L = OX and this is
2-dimensional, or L is something else and χ(L) = −1, so that H1(X,L) is 1-dimensional.

3. Let f ∶Y → X be proper with geometrically connected fibers. So we get Pic0X → Pic0 Y . Take
L ∈ Pic0 Y and consider Hi(Y,L). For L ∈ Pic0X, there is an injection Hi(X,L) → Hi(Y, f∗L). So
Hi(Y,L) ≠ 0 if L comes from X.

The picture is that the torus Pic0 Y has a sub-torus Pic0X where cohomology jumps, and we hope that
outside of Pic0X there is vanishing.

Definition 4.2. Define the subset Si(X) ⊂ Pic0X by

Si(X) ∶= {L ∶Hi(X,L) ≠ 0}.

(We will give it the structure of an analytic subvariety soon.) Fix x0 ∈X. Let

AlbX ∶=H0(X,Ω1
X)∨/H1(X,Z)

be the Albanese. Let α∶X → AlbX be the Albanese map, given by x ↦ (α ↦ ∫
x
x0
α). (This is universal

for maps from X to a complex torus with x0 ↦ 0.)

Theorem 4.3 (Green–Lazarsfeld). codim(Si(X),Pic0X) ≥ dimα(X) − i.

Corollary 4.4. For L ∈ Pic0X generic, Hi(X,L) = 0 for i < dimα(X).

Corollary 4.5. If dimα(X) = dimX, then (−1)dimXχ(X,OX) ≥ 0.

Proof. Since χ is deformation-invariant, move OX to a generic L ∈ Pic0X. By assumption, Hi(X,L) = 0 for
i ≠ dimX.

Theorem 4.6 (Green–Lazarsfeld). Let w(X) ∶= max{codimX V (ω) ∶ 0 ≠ ω ∈ H1(X,Ω1
X)}. For generic

L ∈ Pic0X, Hq(X,Ωp ⊗L) = 0 for p + q < w(X).

4.1 Analytic structure on Si(X)
Since Pic0X is a moduli space, it has a universal bundle P, which is a line bundle on X ×Pic0X called the
Poincaré line bundle. Let π∶X × Pic0X → Pic0X be the projection. Is Si(X) = supp(Riπ∗P)? This is
not true in general, because cohomology does not commute with base change. We want a complex E● which
actually computes the cohomology of P ⊗ k(s) for s ∈ Pic0X.

Lemma 4.7. Let f ∶X → S be a qcqs morphism of schemes. Let F ∈ Coh(X) be flat over S. Then locally
on S, there exists a bounded complex E● of locally free sheaves such that for all G ∈ Coh(S), there exists a
functorial isomorphism

Rif∗(F ⊗ f∗G) =Hi(E● ⊗ G),
i.e. Rif∗ is perfect.

Definition 4.8. Let E● be the complex obtained from the lemma applied to π∶X ×Pic0X → Pic0X and the
Poincaré line bundle P. Observe that Hi(E● ⊗ k(s)) =Hi(X,Ls) for s ∈ Pic0X. Let

Sim(X) ∶= {L ∈ Pic0X ∶ dimHi(X,L) ≥m}
Sim(E●) ∶= {x ∈X ∶ dimHi(E● ⊗ k(x)) ≥m}.

Proposition 4.9. These Sim(X) are analytic sub-varieties of Pic0X.
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Proof. This is a local statement, so locally E● exists and E i are actually free. For s ∈ Pic0X, s ∈ Sim(X)
iff Hi(E● ⊗ k(s)) has dimension ≥ m. This locus is given by some matrix minors of the differentials of E●.
Explicitly, if Ik denotes k × k minors, then the ideal sheaf defining Sim(X) is (exercise)

I(Sim(X)) = ∑
a+b=rankEi−m+1

Ia(di−1)Ib(di).

Our goal is to understand the tangent cone to Sim(E). Recall that the dimension of the tangent cone of V
is the dimension of V itself. Pick L ∈ Pic0X and set m = dimHi(X,L). Suppose dimL S

i
m(X) < dim Pic0X.

Then there exists some L′ such that dimHi(X,L′) <m. Replacing L with L′, we can keep reducing all the
way down to m = 0. To analyze the local structure of Sim(E●), we need the derivative complex.

Definition 4.10. Consider the m-adic filtration

0→ msE●/m2
sE● → E●/m2

sE● → E● ⊗ k(s)→ 0.

The boundary map on cohomology is

D(di, s)∶Hi(E● ⊗ k(s))→Hi+1(E● ⊗ k(s))⊗ T ∨s .

Given v ∈ TsS, we get a map Dv(di, s)∶Hi(E● ⊗ k(s)) → Hi+1(E● ⊗ k(s)), and we will show this forms a
complex. More generally, set OTs ∶= Sym∗ T ∨s =⊕nm

n
s /mn+1

s . Extend D(di, s) to an OTs -linear map to get

D(E●)∶⋯→Hi(E● ⊗ k(s))⊗OTs →Hi+1(E● ⊗ k(s))⊗OTs → ⋯.

(This recovers the previous complex by taking a section.)

Remark. Sim(D(E●)) is always a cone; it lives in Ts, which has a natural scaling action. In the setting of the
generic vanishing theorem, each irreducible component is linear.

Lemma 4.11. D(E●) is a complex on SpecOTs .

Proof. It is enough to show that the composition

Hi(E ⊗ k(s))→Hi+1(E ⊗ k(s))⊗ T ∨s →Hi+2(E ⊗ k(s))⊗ Sym2 T ∨s

is zero. There is a short exact sequence

0→ mE/m3E → E/m3E → E/mE → 0.

There is a diagram

Hi(E ⊗ k(s))

Hi+1(mE/m3E) Hi+1(mE/m3E) Hi+2(m2E/m3E)

Hi+1(E ⊗ k(s))⊗ T ∨ Hi+2(E ⊗ k(s))⊗ Sym2 T ∨s .

∂
D(di,s)

D(di+1,s)

= =

But the composition in the bottom row is zero, from the LES associated to 0 → m2E/m3E → mE/m3E →
mE/m2E → 0.

Theorem 4.12 (Tangent cone theorem). TCsS
i
m(E●) ⊂ Sim(D(E●)).
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Remark. Recall that if Z ⊂X is an analytic subvariety of a smooth X defined by an ideal sheaf I and z ∈ Z,
then TCzZ ⊂ TzX = Spec Sym∗ T ∨z is defined by

TCzZ ∶= V (⊕(I ∩mns )/(I ∩mn+1
s )) .

Corollary 4.13. dims S
i
m(E●) ≤ dimSim(D(E●, s)).

Proof. The dimension of the tangent cone TCsS
i
m is the dimension of Sim.

Example 4.14. If m = dimHi(X,E● ⊗ k(s)), then Sim(D(E●, s)) = {v ∈ Ts ∶ D(di, v),D(di−1, v) = 0}. This
is because

v ∈ Sim(D(E●, s)) ⇐⇒ dimHi(D(E●, s)⊗ k(v)) ≥m
⇐⇒ dimHi(Dv(E●, s)) ≥m

⇐⇒ ⋯→Hi−1 0Ð→Hi(E ⊗ k(s)) 0Ð→Hi+1 → ⋯.

Corollary 4.15. If Hi(Dv(E●, s)) = 0 for some i and v ∈ Ts, then Si(E●) is a proper subset of S.

Proof. TCs(Si1(E●)) ⊂ Si(D(E●, s)) ⊊ Ts. So Si(E●) ⊊ S.

Corollary 4.16. Suppose s ∈ Sim(E●) and Hi(Dv(E●, s)) = 0 for all v ≠ 0. Then s is an isolated point of
Sim(E●).

Lemma 4.17. Locally near s, E● is quasi-isomorphic to a minimal perfect complex E●0 such that Sim(E●) ≅
Sim(E●0) as complex analytic spaces. Here, minimal means the dk0 = 0 mod ms.

Remark. Let E● be a bounded complex of free modules over a local ring. Then E● contains a minimal
sub-complex E●0 such that the complex E●0 → E● is a quasi-isomorphism. (This is an auxiliary step to make
the differentials in the derivative complex easier to understand.)

Proof. We do backward induction. Consider En−1 dn−1ÐÐ→ En dnÐ→ En+1 → 0. Locally near s, write En+1 = imdn+
cokerdn. Call these two terms Fn and En+1

0 respectively. Then locally near s, we get En = Fn⊕ imdn−1⊕En0 ,
and we proceed backward.

Proof of tangent cone theorem. Wlog assume E● = E●0 . We want an inclusion

ISim(D(E●)) ⊂ ITCs(Sim(E●))

of ideal sheaves. Let Im(E●) be the ideal sheaf of Sim(E●). We have an explicit description for this:

∑
a+b=rankEi−m+1

Ia(di−1)Ib(di).

By construction of E●0 , this lives in mrankEi−m+1
s . Also, write

ITC =⊕
n

Im(E●) ∩mns
Im(E●) ∩mn+1

s

=∶⊕
`

J` ⊂ Sym∗ T ∨s .

Easy observation: J`0 for ` < rankE i −m + 1. Similarly,

Im(D(E●)) = ∑
a+b=rankHi(E●⊗k(s))−m+1

Ia(D(di−1))Ib(D(di)).

These ideals are generated in rankHi(E●⊗k(s))−m+1. Moreover, because E●0 is minimal, rankHi(E●⊗k(s)) =
rankE i. Hence it is enough to show Jei−m+1 = Im(D(E●))ei−m+1. This is just a first-order computation of
D(di) (exercise).
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4.2 The derivative complex via Hodge theory

Proposition 4.18. Let [L] ∈ Pic0X. Let v ∈ T[L] Pic0X be a tangent vector. By choosing a complex
computing the cohomology of Rπ∗P, write

Dv(Rπ∗P)∶⋯→Hi(X,L) δÐ→Hi+1(X,L)→ ⋯.

There are two explicit descriptions of δ:

1. using T[L] Pic0X =H1(X,OX), write δ = − ∪ v for v ∈H1(X,OX);

2. using the Dolbeault resolution 0 → E → A0,1(E) ∂Ð→ A0,2(E) ∂Ð→ ⋯, view v ∈ H1(X,OX) as an element
ṽ ∈ A0,1(OX), so that δ = − ∧ ṽ.

Proof. Clearly (1) implies (2), because wedging represents cup product when we use Dolbeault cohomology.
Given a SES of sheaves 0 → E → F → G → 0, it is an element α ∈ Ext1(G,E) and there is a boundary map
Hi(X,G) → Hi+1(X,E). Claim (exercise): the boundary map is cupping with α. Claim: v corresponds
to the extension 0 → εL̃ → L̃ → L → 0 in Ext1(L,L), where L̃ ∈ Pic(X × k[ε]/ε2). But the differential in
Dv(Rπ∗P) is precisely the boundary map in the LES associated to this SES.

Remark. If F ∈ Coh(X), then first-order deformations of F are given by Ext1(F ,F) by the same construction.
The differential in Dv(F)∶⋯→Hi(X,F)→Hi+1(X,F)→ ⋯ is given by cupping with v.

This description of the differential in Dv(Rπ∗P) is still not explicit enough. To obtain a more explicit
description we use Hodge theory of unitary vector bundles.

Theorem 4.19 (Riemann–Hilbert correspondence). Let X be a complex manifold. There is an equivalence
of categories

(complex rep
of π1(X,x0)

)⇔ (locally constant sheaves
of C-vector spaces

)⇔ ( flat holomorphic
vector bundle on X

)

ρ↦ Vρ ↦ Vρ ⊗C O.

We want to compute the cohomology of V. Naively we can do

0→ V→ (E ∶= V⊗O) ∇Ð→ E ⊗Ω1 ∇Ð→ ⋯

but these terms are not acyclic. Instead, we use the double complex Ap,q(E) of (p, q)-forms. Then Hodge
theory says the following.

1. Let X be compact. There are canonical representatives for classes in Hi(X,C) or Hq(X,Ωp). There

is a resolution C→ A0(O) d0Ð→ A1(O) d1Ð→ ⋯, so that Hi(X,C) = kerdi/ imdi−1. Hodge theory provides
an operator (the Hodge laplacian) whose kernel gives the “orthogonal complement” of imdi−1 ⊂ kerdi.

2. Let X be compact complex. Then we can repeat the story for OX → A0,0 → A0,1 → ⋯. If X is Kähler,
then the inclusions Ai,j → Ai+j is compatible with the inner product, i.e. a canonical representative
for Dolbeault cohomology is also a representative for singular cohomology. Hence ⊕p+q=nH

q(X,Ωp) =
Hp+q(X,C). Moreover, because we can apply complex conjugation to the double complex, Hp,q =Hq,p

as subspaces of Hp+q(X,C).

Let ρ∶π1(X)→ U(n) ⊂ GL(n,C) be a representation. Then Hodge theory works for the local system Vρ.
Specifically, let X be compact Kähler and Vρ be a unitary local system. Then

Hi(X,Vρ) = ⊕
p+q=i

Hq(X,Vρ ⊗C ΩpX) = ⊕
p+q=i

Hq(X,Eρ ⊗O ΩpX)

where Eρ ∶= Vρ ⊗C O, and there is a symmetry Hq(X,Vρ ⊗Ωp) =Hp(X,V∨
ρ ⊗Ωq).
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Proposition 4.20. There is a functor

(representations π1(X)→ U(1))→ (flat unitary line bundles)

and all L ∈ Pic0X are in the essential image.

Proof. We want to understand H1(X,O∗
X), so we write the sequence

H1(X,U(1)) c1ÐÐÐÐ→ H2(X,Z)
×××Ö

×××Ö
0 ÐÐÐÐ→ Pic0X ÐÐÐÐ→ H1(X,O∗

X) c1ÐÐÐÐ→ H2(X,Z).

Since the upper c1 is just zero, there is a lift H1(X,U(1))→ Pic0X. We want to show this is surjective. To
see this, write out the entire sequence

H1(X,Z) ÐÐÐÐ→ H1(X,R) ÐÐÐÐ→ H1(X,U(1)) c1ÐÐÐÐ→ H2(X,Z)
×××Ö

×××Ö
×××Ö

×××Ö
H1(X,Z) ÐÐÐÐ→ H1(X,O) ÐÐÐÐ→ H1(X,O∗

X) c1ÐÐÐÐ→ H2(X,Z).

By Hodge theory, H1(X,R) ≅H1(X,O). By the 4-lemma, the map H1(X,U(1))→H1(X,O∗
X) is surjective.

Corollary 4.21. Given [L] ∈ Pic0X, there exists a unitary local system VL (of rank 1) on X such that:

1. L ≅ VL ⊗C O;

2. Hi(X,L) =H0,i(X,VL);

3. Hi(X,VL) =⊕p+q=iH
p,q(X,L);

4. Hp,q(L) =Hq,p(L∨).

Corollary 4.22. Dv(Rπ∗P) is the complex H0(X,L∨) → H0(X,Ω1
X ⊗ L∨) → H0(X,Ω2

X ⊗ L∨) → ⋯ with
differentials − ∧ v where v ∈H0(X,Ω1

X).

Corollary 4.23. Let [L] ∈ Pic0X and let m ∶= dimHi(X,L). Then

dim[L] S
i
m(X) ≤ dim{ω ∈H0(X,Ω1

X) ∶ ω ∧ − annihilates
H0(X,Ωi−1 ⊗L∨)
H0(X,Ωi ⊗L∨) } .

Proof. We have

dim[L] S
i
m(X) = dimTC[L](Sim(X)) ≤ dimSim(D[L](Rπ∗P)) = dimSim(D[L](Rπ∗P)).

By the choice of m, H0(X,Ωi ⊗ L∨) is exactly m-dimensional. For cohomology to still be m-dimensional,
both differentials around it must vanish.

Corollary 4.24. If the sequence H0(X,Ωi−1 ⊗L∨) ω∧−ÐÐ→H0(X,Ωi ⊗L∨) ω∧−ÐÐ→H0(X,Ωi+1 ⊗L∨) is exact for
some ω, then Si(X) ≠ Pic0X.

Corollary 4.25. If the sequence above is exact for all ω ≠ 0, then [L] is isolated in Si(X).
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4.3 Proof of generic vanishing

Example 4.26 (Generic vanishing on a complex torus). Let T be a complex torus Cg/Λ. The Albanese
map alb∶T → T is just the identity, and Pic0X = {χ∶Z2g → U(1)}. Then

Si(T ) = {χ ∶Hi(T,Lχ) ≠ 0}

where Lχ is the flat unitary line bundle associated to χ. By Hodge theory, we get an inclusion

Hi(T,Lχ) ⊂Hi(T,χ) =Hi(Z2g, χ) = ⊕
∑nj=i

⊗
j

Hnj(Z, χ∣Z).

Since Euler characteristic is zero for the trivial local system, we know h0 = h1 for any χ on Z. Hence
Si(T ) = {O} for all i.

Proof of generic vanishing. Let Z ⊂ Si(X) be an irreducible component and choose [L] ∈ Z such that
hi(X,L) is minimal. It suffices to show codim[L] S

i
m(X) ≥ dim alb(X) − i; equivalently, dim[L] S

i
m(X) ≤

dim Pic0X−dim alb(X)+i. Choose β ≠ 0 in H0(X,Ωi⊗L∨), which is non-zero by choice of L. By a previous
corollary, clearly

dim[L] S
i
m(X) ≤ dim{ω ∈H0(X,Ω1

X) ∶ ω ∧ β = 0}.
Fix a point x ∈X. Then clearly

dim{ω ∈H0(X,Ω1
X) ∶ ω ∧ β = 0} ≤ dim{ω ∈H0(X,Ω1

X) ∶ (ω ∧ β)(x) = 0}.

Let e(x)∶H0(X,Ω1
X)→ T ∗xX be the evaluation map. Then

dim{ω ∈H0(X,Ω1
X) ∶ (ω ∧ β)(x) = 0} ≤ dim ker e(x) + dim{ϕ ∈ T ∗xX ∶ (φ ∧ β)(x) ≠ 0}.

But e(x) is the dual to the differential of alb, by the fundamental theorem of calculus (exercise). At a general
point of X, then, rank e(x) = dim alb(X). Hence

dim ker e(x) = dim Pic0X − dim alb(X),

and it remains to show
dim{ϕ ∈ T ∗xX ∶ (φ ∧ β)(x) ≠ 0} ≤ i

for general x ∈X. This follows by the following linear algebra lemma (exercise).

Lemma 4.27. Let V be a finite-dimensional vector space and β ∈ ∧iV non-zero. Then {v ∈ V ∶ v ∧ β = 0}
has dimension ≤ i.

Theorem 4.28 (Green–Lazarsfeld). Suppose there exists ω ∈H0(X,Ω1
X) such that codimX V (ω) ≥ k. Then

for generic [L] ∈ Pic0X,
Hq(X,L⊗ΩpX) = 0 ∀p + q < k.

Proof. Let π1∶X ×Pic0X →X and π2∶X ×Pic0X → Pic0X. Take E● ∶= Rπ2∗(π∗1ΩpX ⊗P) ∈Db(Pic0X). The
fibers of this complex compute the cohomology Hq(X,L⊗ΩpX), and we will study Si(E●).

Choose [OX] ∈ Pic0X and v ∈H1(X,OX). Then the complex D[OX],v(E●) is

H0(X,Ωp) v∧−ÐÐ→H1(X,Ωp) v∧−ÐÐ→H2(X,Ωp) v∧−ÐÐ→ ⋯

Let ω ∈H0(X,Ω1) be the conjugate of v. The conjugate D[OX],v(E●) is

Hp(X,O) ω∧−ÐÐ→Hp(X,Ω1) ω∧−ÐÐ→Hp(X,Ω2) ω∧−ÐÐ→ ⋯.

If we pick ω as in the statement of the theorem, it turns out the complex Hq(X,Ωp−1) → Hq(X,Ωp) →
Hq(X,Ωp+1) is exact for p + q < k. Then ω is not in Si(D(E●)) and we are done. So it suffices to prove the
following proposition.
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Proposition 4.29. Take ω as in the theorem. Then the complex Hq(X,Ωp−1)→Hq(X,Ωp)→Hq(X,Ωp+1)
is exact for p + q < k.

Proof. Consider the complex K● ∶= (0 → O ω∧−ÐÐ→ Ω1 ω∧−ÐÐ→ Ω2 ω∧−ÐÐ→ ⋯); this is some kind of Koszul complex
for ω, and the conjugate derivative complex follows from taking global sections. Claims:

1. Ep,q1 =Hq(X,Ωp)⇒ Hp+q(K●) degenerates at E2;

2. Ep,q2 =Hp(X,Hq(K●))⇒ Hp+q(K●) and Hq(K●) = 0 for q < k.

These imply the proposition because of the following. (2) implies Hp+q(K●) = 0 for p + q < k. (1) implies
Ep,q2 = 0 for p + q < k. But Ep,q2 are the cohomology groups of the sequence we are interested in.

Let’s prove (2) first. General fact about Koszul complexes: if X is regular and E is a vector bundle on

X with section s ∈ Γ(X,E) vanishing with codim k, then the complex 0 → O ∧sÐ→ E ∧sÐ→ ∧2E ∧sÐ→ ⋯ is exact in
degree ≤ k. This is a local statement, so let A be a regular local ring with sections f1, . . . , fn, in which case
the sequence becomes

K(f1, . . . , fn) =⊗
i

[0→ A
fiÐ→ A→ 0] = [0→ A

(f1,...,fn)ÐÐÐÐÐ→ An
(f1,...,fn)ÐÐÐÐÐ→ ∧2An → ⋯].

By commutative algebra, there is a subsequence of length k in f1, . . . , fn which is regular. Hence it is
enough to show the desired claim when we replace (f1, . . . , fn) with the subsequence. Then we can replace

0→ A
fiÐ→ A→ 0 by A/fi in degree 1, which is quasi-isomorphic, and induct on k.

Now we prove (1). Pick an explicit resolution of K● so that we get a bicomplex

∂

Õ××× ∂

Õ×××
A0,1 ∧ωÐÐÐÐ→ A1,1 ∧ωÐÐÐÐ→ ⋯

∂

Õ××× ∂

Õ××× ∂

Õ×××
A0,0 ∧ωÐÐÐÐ→ A1,0 ∧ωÐÐÐÐ→ A2,0 ∧ωÐÐÐÐ→ ⋯,

from which we get the spectral sequence. Now compute that d2 = 0 via a diagram chase. Pick α̃ ∈ Ep,q2 ,

where α ∈Hq(X,Ωp) is harmonic with α∧ω = ∂β for some β. Now observe that ∂(α∧ω) = 0, because ω is a
global 1-form and α is harmonic. By the ∂∂-lemma, ω ∧α = ∂∂γ for some γ. Then d2α = [ω ∧ ∂γ], which we
want to be zero, i.e. that ω ∧ ∂γ = ∂ξ. It is easy to see this is both ∂ and ∂-closed, and ∂(ω ∧ γ) = ω ∧ ∂γ, so
again by the ∂∂-lemma, we are done.

5 Unobstructedness of abelian varieties

Definition 5.1. Let k be a field. An abelian variety over k is a proper smooth geometrically connected
k-group scheme. (“Smooth” here rules out things like Speck[t]/(tp − 1) = Speck[t]/(t − 1)p.)

Definition 5.2. Let S be a scheme. An abelian S-scheme is an S-group scheme proper and flat over S
whose geometric fibers are integral.

Example 5.3. Some examples of abelian varieties:

1. take a complex torus with an ample line bundle (by GAGA);

2. Jacobian of a curve;

3. Alb(X) for X smooth and proper.
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Lemma 5.4. If S is normal, any abelian S-scheme is projective over S.

Corollary 5.5. Any abelian variety A over k contains a curve such that the map JacX → A is surjective.

Proof. By the lemma, A is projective and therefore has an ample line bundle. Try to take a generic section
of O(N)⊕(dimA−1) for N ≫ 0. We want T0 Jac→ T0A to be surjective. This is dual to the map H0(A,Ω1)→
H0(C,Ω1), which we want to be injective. Taking N ≫ 0, by Serre vanishing, the kernel will be H0 of some
very negative thing, so we are done.

Theorem 5.6. Let k be a perfect field, and A be an abelian variety over k. Then:

1. DefA is pro-representable and smooth;

2. DefgrpA is pro-representable and smooth, where DefgrpA (B) consists of abelian schemes over B with an
isomorphism ϕ∶Bk → A.

Furthermore, DefA = DefgrpA , and both are pro-representable by a polynomial ring kW (k)[x1, . . . , xg2].

Theorem 5.7 (Grothendieck). Let S be an affine scheme and S ↪ S′ be a closed embedding defined by a
square-zero ideal sheaf I. Let A/S be an abelian scheme. Then:

1. A admits a flat deformation A′ → S′;

2. for any lift of the identity section to S′, there is a unique group structure on A′ extending the group
structure on A.

Corollary 5.8. Let R be a complete local ring with residue field k, and let A be a k-scheme. Then there
exists an abelian scheme Ã→ R and an isomorphism Ãk

∼Ð→ A.

Proof sketch. The theorem allows us to lift:

A ÐÐÐÐ→ A2 ÐÐÐÐ→ A3 ÐÐÐÐ→ ⋯
×××Ö

×××Ö
×××Ö

Speck ÐÐÐÐ→ SpecR/m2 ÐÐÐÐ→ SpecR/m3 ÐÐÐÐ→ ⋯.

But this only gives a formal scheme over SpecR. There are two issues: we need to lift an ample line bundle,
and then we need to use formal GAGA (see below) to conclude we get an actual abelian scheme. (This only
works when the special fiber is projective.)

Proof of theorem. Assume we are in the special case where 2 is invertible on S. Recall there is a canonical
class ob ∈ H2(A,TA/S ⊗ I) such that ob = 0 iff there exists a flat deformation A′ of A. Hence [−1]∗ ob = ob.
But [−1] acts by −1 on TA,0, and, by functoriality, by −1 on H2(A,TA/S ⊗ I). (Proof follows below.) Since
2 is invertible, ob = 0.

When S = Speck, then H0(A,TA) = TA and TA = O. Lemma: Hi(A,O) = ∧iH1(A,O). This implies
H2(A,TA) = TA,0 ⊗ ∧2H1(A,O), and [−1] acts by −1 on each term.

Now we do the general case. Consider the map ψ∶A ×A→ A ×A given by (x, y)↦ (x,x + y). Lemma: if
X and Y are smooth S-schemes, then TX×SY = π∗1TX ⊕ π∗2TY , and

ob(X × Y ) = π∗1 ob(X) + π∗2 ob(Y ) ∈H2(X × Y,TX×Y ⊗ I).

This arises from unwinding the construction of the ob cocycle. The theorem will follow by using that
ψ∗ ob = ob.

Example 5.9. Examples of group schemes:

1. µp ∶= ker(Gm
(−)pÐÐ→ Gm) = Speck[t]/(tp − 1), with group law x + y + xy;
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2. αp ∶= ker(Ga
(−)pÐÐ→ Ga) = Speck[t]/tp, with group law x + y.

Exercise: these lift from characteristic p to characteristic 0. Claim: G ∶= µp ⋉ αp does not lift. Observe that
all abstract groups of order p2 are commutative. So if G lifts, then the central fiber would be commutative.
Since commutativity is a closed condition, we get a contradiction.

Theorem 5.10 (Smooth curves lift). Let X be a smooth proper curve over a perfect field k of characteristic
p > 0. Then there exists X over SpecW (k) such that the base change Xk =X.

Proof. There is a sequence Speck ↪ SpecW2(k) ↪ ⋯. The obstruction to lifting X lies in H2(X,TX/k),
but X is a curve so this is automatically zero. Let the lifts be Xi. Hence lim←ÐXi is a formal scheme over

SpfW (k).
We want a line bundle L on X̂ ∶= lim←ÐXi such that L∣X is ample. Let D be a rational point of X over

some finite extension of k. By formal smoothness, there exists a Cartier divisor D̃ on X̂ specializing to D.
Set L ∶= O(D̃) and then apply formal GAGA.

Theorem 5.11 (Formal GAGA). Let A be an adic Noetherian ring with ideal of definition I. Suppose X
is a finite type scheme over SpecA, and X̂ ∶= lim←Ð(X ⊗A/In) is the associated formal scheme. Then there is
a restriction map

Cohperf(X)→ Cohperfl(X̂) F ↦ F̂ ∶= lim←ÐF ⊗A/In

is an equivalence of categories, where perfl means flat over A and support is proper over I.

Corollary 5.12. Let A be an adic Noetherian ring with ideal of definition I. Let Y be a proper formal
scheme over Spf A. Suppose there exists a line bundle L on Y such that L∣Y ⊗A/I is ample over SpecA/I.

Then there exists an X over SpecA such that Y = X̂ at I.

Theorem 5.13. Suppose X0 is a g-dimensional abelian variety over a perfect field k. Then DefX0 ≅ DefgrpX0

and both are pro-represented by W (k)[[x1, . . . , xg2]].

Proof. Last time we showed DefA is smooth. By Cohen structure theorem, W (k)[[x1, . . . , xd]] is a hull.
Now we show DefA = DefgrpA and is pro-representable. First define DefgrpA → DefA by forgetting the group
structure. This is injective on T -points (exercise). It is also surjective on T -points, as follows.

Proposition 5.14. Suppose 0 → I → B → A → 0 is a small extension, and X ∈ DefX0(B) and XA is
an abelian A-scheme and ε∶SpecB → X is a section. Then there exists a unique structure of an abelian
B-scheme on X such that:

1. ε is the identity section extending the identity section on XA;

2. the abelian B-scheme structure on X extends the abelian A-scheme structure on X0.

Proof. Let µ∶XA × XA → XA be the subtraction map (x, y) ↦ x − y, and let µ0∶X0 × X0 → X0 be the
same thing. It suffices to extend µ to X in a way such that µ(ε × ε) = ε. For this, we need to understand
the deformation theory of maps. By the following proposition, the obstruction to extending µ lives in
H1(X0 ×X0, µ

∗
0TX0 ⊗ I) where I is the sheaf on X0 ×X0 corresponding to I.

1. Let ∆∶XA → XA ×XA be the diagonal, and note that µ ○∆ = εA has trivial obstruction class because
εA extends to X.

2. Let id×εA∶XA →XA ×XA, and note that µ ○ (id×εA) = id has trivial obstruction class.

Observe that TX0 = OX0 ⊗ Γ(X0, TX0) because all global sections are translation-invariant. By Künneth,

H1(X0 ×X0, µ
∗TX0) = (π∗1H1(X,OX)⊕ π∗2H1(X,OX))⊗H0(X,TX)⊗ I.

Hence ob = 0 (exercise). This shows that µ lifts.
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Now we show there is a unique lift µ̃ of µ such that µ̃(ε × ε) = ε. The lifts are a torsor for H0(X0 ×
X0, µ

∗TX0 ⊗ I) = H0(X0, TX0) ⊗ I (exercise with projection formula + that fibers of µ are geometrically
connected). Extensions of µ restricted to ε× ε are a torsor for H0(Speck,µ0∣∗ε0×ε0TX0 ⊗ I), which is the same
thing. So we can fix µ̃ using H0(X0, TX0)⊗ I.

Finally, µ̃ defines a group structure on X. In fact, we have almost proved injectivity as well!

Corollary 5.15. DefA = DefgrpA are pro-representable.

Proof. The content is that any infinitesimal automorphism of XA as a group scheme lifts to an infinitesimal
automorphism of X as a group scheme, but the tangent computation showed there are no infinitesimal
automorphisms.

Proposition 5.16. Suppose X and Y are smooth and f ∶X → Y is a qcqs morphism over SpecA. Let
SpecA ↪ SpecB be a square-zero embedding defined by an ideal I, and let X ′ and Y ′ be lifts of X and Y
over SpecB.

1. There exists a canonical class ob(f) ∈H1(X,f∗TY ⊗ I) such that f extends iff ob(f) = 0.

2. If ob(f) = 0, then the set of extensions is a torsor for H0(X,f∗TY ⊗ I).

Proof sketch (exercise). By smoothness, cover Y with global complete intersections, and cover their pre-
images with global complete intersections. Locally, we can therefore extend the map. On intersections, we
get derivations f∗ΩY → I, giving Čech cocycles.

5.1 Deformations of polarized AVs

Definition 5.17. Let X be an abelian variety over k. Define X∨ ∶= Pic0X, the identity component of PicX.
Here PicX = {T → Pic(X × T )}#. If there is a rational point (which there is),

PicX = {T → line bundles on X × T with trivialization on {0} × T}/ ∼ .

Remark. For a general variety V , Pic0(V ) is not always an abelian variety. But if V is an abelian variety,
so is Pic0(V ).

Definition 5.18. There is a map Λ∶PicX → HomAV(X,X∨) ⊂ Pic(X ×X) given by

L↦ (m − p1 − p2)∗L.

Complex-analytically, given a line bundle L ∈ Pic(A) for an abelian variety A, the first Chern class gives
c1(L) ∈H1,1(A)∩H2(A,Z), and we know H2(A,Z) = ∧2H1(A,Z). So c1(L) is a bilinear form on H1(A,C),
and therefore a map H1(A,C)∨ →H1(A,C) which preserves Hodge structure.

Proposition 5.19. There is an exact sequence

0→X∨ → Pic(X) ΛÐ→ Hom(X,X∨).

Proof. Use 0→ Z→ O → O∗ → 0 and “think a little bit”. Explicitly,

H1(X,Z) ÐÐÐÐ→ H1(X,O) ÐÐÐÐ→ H1(X,O∗) ÐÐÐÐ→ H2(X,Z)
×××Ö

∥ ⊂
Õ×××

0 ÐÐÐÐ→ Pic0X ÐÐÐÐ→ PicX ÐÐÐÐ→ Hom(X,X∨).

Definition 5.20. A map λ∶X → X∨ is a quasi-polarization (resp. polarization if λ = ΛL for some
L ∈ PicX (resp. ample L).
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Proposition 5.21 (Oort). Suppose (X,λ) lives over SpecR with a small extension SpecR → SpecR′ of
Artin W (k)-algebras. Suppose X lifts to X ′ and λ = ΛL is a quasi-polarization. Then λ lifts iff L lifts.

Definition 5.22. Let (A,λ) be a quasi-polarized AV. Define

Def(A,λ)(R) ∶= {(Ã, λ̃, ϕ) ∶ (Ã, λ̃) is quasi-polarized AV over R, ϕ∶ (Ã, λ̃)∣1 → (A,λ)}/ ∼ .

Theorem 5.23 (Mumford). The functor Def(A,λ) is pro-representable and is a closed sub-functor of DefA =
DefgrpA = hW (k)[x1,...,xg2 ] cut out by an ideal in W (k)[x1, . . . , xg2] generated by g(g − 1)/2 elements.

Remark. The g(g − 1)/2 is the dimension of H2(X,OX).

Proof. That it is a closed subfunctor is in (GIT, 6.2). This is easy if λ∶X → X∨ is separable, hence étale,
hence Ω1

X/X∨ = 0. So given a deformation of X∨, there exists exactly one deformation of X over it.

For pro-representability, use Schlessinger’s criterion. (Property H2) Clearly Def(A,λ)(k[ε]/ε2) is finite-
dimensional; it is a sub-functor of DefA. Properties H1, H3, H4 boil down to Def(A,λ) being left exact.
Suppose

Q ÐÐÐÐ→ R

r
×××Ö

π
×××Ö

T ÐÐÐÐ→ R′

is Cartesian, with π a small surjection with kernel I. We want Def(A,λ)(Q) → Def(A,λ)(T ) ×Def(A,λ)(R′)
Def(A,λ)(R) to be an isomorphism. Put this into a square w.r.t. DefA:

Def(A,λ)(Q) ÐÐÐÐ→ Def(A,λ)(T ) ×Def(A,λ)(R′) Def(A,λ)(R)
×××Ö

×××Ö
DefA(Q) DefA(T ) ×DefA(R′) DefA(R).

The vertical arrows are injective because Def(A,λ) is a sub-functor. Hence the horizontal arrow is injective.
Now do surjectivity. Choose (Y,µ,ψ) ∈ Def(A,λ)(T ) and (X,λ,φ) ∈ Def(A,λ)(R) both mapping to the same
thing in Def(A,λ)(R′). Let Z ∈ DefA(Q) to be a lift of X and Y . Choose K and L such that ΛK = µ and
ΛL = λ. The obstruction to lifting line bundles on Y to line bundles on Z is

Pic(Z)→ Pic(Y )→H2(A,O)⊗ I.

So we would like ob(K) = 0. Draw the diagram

Pic(Z) ÐÐÐÐ→ Pic(Y ) ÐÐÐÐ→ H2(A,O)⊗ I
×××Ö

×××Ö
∥

PicX ÐÐÐÐ→ PicX ′ ÐÐÐÐ→ H2(A,O)⊗ I

where X ′ ∶= X ∣R′ . But the image of K under this map is L, and L lifts. Hence ob(K) = ob(L) = 0, and K
lifts as well.

Recall that if T1, T2 is a tangent-obstruction theory for F , then there exists a hull for F which is the
quotient of a power series ring on dimT1 generators by an ideal with at most dimT2 generators. So the ideal
cutting out Def(A,λ) has at most dimH2(A,O) = g(g − 1)/2 generators.

Theorem 5.24 (Grothendieck). λ is separable iff Def(A,λ) is formally smooth over W (k).

Corollary 5.25. If X is a principally polarized AV, then X lifts to SpecW (k).

Proof. Lift X to SpfW (k), and then apply formal GAGA using the ample line bundle on X.
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6 Formal GAGA

References are EGA 3, or FGA Explained chapter 8.

Theorem 6.1. Let A be a Noetherian ring with an ideal I, and let X be finite type over A. Then for
F ∈ Coh(X) with proper support over A, the natural maps

Hq(X,F)∧ ∼Ð→ lim←ÐH
q(X,F ⊗A/In)

Hq(X̂, F̂) ∼Ð→ lim←ÐH
q(X,F ⊗A/In)

are isomorphisms.

Proposition 6.2. Let X be a scheme, and (Fn) be an inverse system of coherent sheaves on X with
surjective maps. If for all i, the systems (Hi(X,Fn)) satisfy the Mittag–Leffler condition, then

lim←ÐH
i(X,Fn)→Hi(X, lim←ÐFn)

is an isomorphism.

Remark. Recall that the Mittag–Leffler condition says im(Hi(X,Fn+1)→Hi(X,Fn)) stabilizes for n≫ 0.

Proposition 6.3. Suppose f ∶X → Y is proper and S = ⊕n≥0 Sn is a graded OY -algebra which is quasi-
coherent, S0, S1 coherent, and such that S1 generates S over S0. Let M = ⊕Mn be a finitely generated
f∗S-module. Then for all q, Rqf∗M is a graded S-module of finite type, and there exists an n0 such that
Rqf∗Mn = Sn−n0R

qf∗Mn0 for n ≥ n0.

Proof. Replace X and Y by SpecY S and SpecX f
∗S, and then use coherence properties of proper pushfor-

ward.

Corollary 6.4. In the setting of the theorem, B ∶=⊕n≥0 I
n, the module ⊕Hq(X,InF) is finitely generated

over B.

Proof of theorem, EGA III.1.4. We have a short exact sequence 0→ InF → F → Fn → 0, giving a long exact
sequence

0→ Rn →Hq(F)→Hq(Fn)→ Qn → 0.

Claims:

1. (Rn)n is an “I-good” filtration of Hq(F), i.e. R0 =Hq(F) and IRn ⊂ Rn+1 with equality for n≫ 0;

2. (Qn)n is Artin–Rees zero, i.e. there exists m such that for all n, Qn → Qn+m is zero;

3. (Hq(Fn))n is Artin–Rees Mittag–Leffler, i.e. there exists r such that for m′ ≥ m + r, the image of
Hq(Fm′)→Hq(Fm) is equal to the image of Hq(Fm+r)→Hq(Fm).

(Here, the adjective Artin–Rees means that there is some uniform statement, as opposed to a non-uniform
one.) Assuming these claims, we prove the theorem. There is an exact sequence

0→Hq(F)/Rn →Hq(Fn)→ Qn → 0.

(2) implies that lim←ÐQn = 0. The left-exactness of lim←Ð then implies lim←ÐH
q(F)/Rn

∼Ð→ lim←ÐH
q(Fn) is an

isomorphism. (1) implies lim←ÐH
q(F)/Rn ≅ Hq(F)∧. These prove the first isomorphism. For the second

isomorphism, use (3) to move inverse limits around: by the proposition, Mittag–Leffler implies lim←ÐH
q(Fn) =

Hq(F̂).
Now we sketch the proof of the claims. Claim (1) is easy: the first part is straightforward, the second

part follows from functoriality of Hq (with respect to multiplication by a ∈ I), and the third part follows
from the corollary, which implies that ⊕Rn, which is a quotient of ⊕Hq(X,InF), is finite type over B.
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For claim (2), set N ∶=⊕nH
q+1(InF), which is finitely generated by the corollary. But B is Noetherian,

so ⊕Qn is finitely generated over B as a sub-module of N . Hence Qn+1 = IQn for n ≫ 0. This is because
Qk is a quotient of Hq(Fk), and hence is killed by Ik. Hence there exists some r such that Qn is killed by
Ir for all n. Suppose we are given a ∈ Ip. Then the composition

Hq+1(In+1F) ⋅aÐ→Hq+1(In+p+1F)→Hq+1(In+1F)

is actually multiplication by a as an A-module. For p > r, the composition is zero. For n≫ 0, every element
in Qn+p+1 arises from Qn+1. Hence Qn+r+1 → Qn+1 is zero.

Claim (3) is a diagram-chase.

Corollary 6.5. Let F● ∈ D+
coh(X). Suppose Hi(F●) has support proper over A. Then Hq(F●)∧ →

Hq(X̂, F̂●) is an isomorphism. (Here F̂● ∶= i∗F● is the pullback to X̂.)

Proof. “Some spectral sequence thing”.

Corollary 6.6. Suppose F ,G ∈ Coh(X) and X/A is proper. Then

RΓ(X,RHom(F ,G))∧ ∼Ð→ RΓ(X̂,RHom(F̂ , Ĝ))

is an isomorphism.

Proof. From the previous corollary,

RΓ(X,RHom(F ,G))∧ = RΓ(X,RHom(F ,G)∧).

To move the hat inside, we want the natural map RHom(F ,G)∧ → RHom(F̂ , Ĝ) to be a quasi-isomorphism.
To do so, use that completion is exact, and that it is true locally.

Theorem 6.7 (Formal GAGA). Suppose A is an adic Noetherian ring with ideal of definition I, and X is
finite type over A. Then there is an equivalence of categories

Cohpr(X)→ Cohpr(X̂), F ↦ F̂

where pr means “proper support over A”.

Proof. We want to show this is fully faithful, i.e. given F ,G ∈ Coh(X), we want Hom(F ,G) → Hom(F̂ , Ĝ)
to be an isomorphism. First replace X with supp(F) ∩ supp(G), so that X is proper. By the corollary,

Hom(F ,G)∧ ≅ Hom(F̂ , Ĝ).

But Hom(F ,G) is a finite-type A-module, since F and G have proper support. Hence it is complete (finite

type over a complete ring), i.e. Hom(F ,G) ∼Ð→ Hom(F ,G)∧.
Now we need essentially surjective. Given F ∈ Cohpr(X̂), we want G ∈ Cohpr(X) such that F ≅ Ĝ.

We do the special case where X/A is projective, with L ∈ Pic(X) relatively ample. Choose m such that
F ∣X⊗A/I ⊗L⊗m is globally generated. Then F ⊗Lm is globally generated (exercise). So there is a surjection
(L−m)⊕s → F → 0. The same argument applies to the kernel of this surjection, giving

(L−m)⊕s
′ γÐ→ (L−m)⊕s → F → 0.

By full faithfulness, γ = β̂ for some β. Set G ∶= cokerβ, and then note right-exactness of completion.

Corollary 6.8. Let X/A be finite over A adic Noetherian. Then

(closed subschemes of X
proper over A

)→ (closed formal subschemes of X̂
proper over A

)

is a bijection.
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Proof. OZ algebraizes, and the map OX → OZ also algebraizes.

Corollary 6.9. Suppose X/A is proper. Then there is an equivalence of categories

{finite X-schemes} ∼Ð→ {finite X̂-schemes}.
Proof. Given π∶Y → X̂ finite, π∗OY algebraizes. The structure maps algebraize, so we get a sheaf of algebras
ÕY on X. Set Ỹ ∶= SpecX ÕY .

Theorem 6.10. Suppose X/A is a formal scheme proper over A adic Noetherian with ideal of definition I.
Then if there exists L ∈ PicX such that L∣X⊗A/I is relatively ample, then there exists an A-scheme X such

that X̂ ≅ X .

Proof. Apply the first corollary to P(Γ(X ,L⊗N)).

Example 6.11. Suppose A is a complete DVR and X is proper over A. Then πét
1 (X) ≅ πét

1 (Xk), i.e. there
is an equivalence of categories between finite étale covers of X and Xk. In fact, both are isomorphic to
finite étale covers of X̂, by formal GAGA. (The natural map from covers of X̂ to covers of Xk is essentially
surjective.)

7 Bend and break

Theorem 7.1 (Mori, Hartshorne’s conjecture). If X is smooth projective and geometrically connected with
ample tangent bundle, then X is isomorphic to Pn.

Definition 7.2. A vector bundle E is ample if O(1) on P(E) ∶= Proj Sym∗ E is ample. Equivalently,

1. for any coherent F and n≫ 0, Symn E ⊗F is globally generated, or

2. for any coherent F and n≫ 0, Hi(Symn E ⊗F) for i > 0.

Definition 7.3. X is Fano means X is smooth projective and −KX is ample. (Here −KX means the
numerical class of K∨

X .)

Theorem 7.4 (Mori). Suppose X is Fano of dimension n. Then through any point x ∈ X, there exists a
rational curve C with (−KX) ⋅C ≤ n + 1.

Remark. More is true: Fano varieties are rationally connected.

Definition 7.5. Let N1(X) denote {1-cycles}/ ∼num, which is dual to N1(X). Let NE(X) be the cone
spanned by effective 1-cycles. Let NE(X) denote the closure.

Theorem 7.6 (Mori, Cone theorem). Let X be smooth projective. The set R of KX-negative extremal rays
of NE(X) is countable, and

NE(X) = NE(X)KX≥0 + ∑
R∈R

R.

Moreover, the set R is locally discrete in N1(X)KX<0. Each R ∈ R is R+Γ where Γ is a rational curve with
0 ≤ −KX ⋅ Γ ≤ dimX + 1.

Corollary 7.7. Let X be Fano. Then NE(X) is polyhedral. Therefore Nef(X) is also polyhedral (as the
dual cone).

Example 7.8 (Simple varieties which are not Fano). The blow-up BlC1∩C2 P2 at the nine points at an
intersection of two cubics does not have polyhedral NE(X). If A is an abelian surface, then NE(X) has
curved walls.

Example 7.9 (Fano varieties). Pn, hypersurface of degree ≤ n in Pn, Grassmannian. There is a complete
classification in dimensions 2 and 3.

Idea behind bend-and-break: take any curve in the surface and use deformation theory to move it. If we
move it a lot, it will break up into pieces, and the pieces want to be rational curves. To move curves, we will
have to use characteristic p techniques.
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7.1 Moving curves in varieties

Suppose X is smooth and Y is proper, and they are finite type over S. We will study the parameter space
Mor(Y,X) of maps from Y to X, given by

Mor(Y,X)(T ) ∶= Hom(T × Y,X).

Proposition 7.10 (Grothendieck). Mor(Y,X) is representable by an S-scheme locally of finite type.

Corollary 7.11. The locus of [f] ∈ Mor(Y,X) such that f∗L has bounded degree for L ample is finite type.

Definition 7.12. Let f ∶Y →X. Define

Deff(A) ∶= {f̃ ∶YA →X ∶ f̃ ∣Y = f}.

Theorem 7.13. T1 =H0(Y, f∗TX) and T2 =H1(Y, f∗TX) is a tangent-obstruction theory for Deff .

Proof. Choose a square-zero extension Y → Y ′ with ideal sheaf I. We want to show there exists ob ∈
H1(Y, f∗TX ⊗ I) such that f̃ ∶Y ′ → X exists iff ob = 0, and the set of such f̃ is a torsor for H0(Y, f∗TX).
Cover Y by affines Ui. For each Ui, there exists a lift of fi to U ′

i by formal smoothness of X. Check that
fi−fj ∶ f−1OX → I is a derivation on Ui∩Uj . Hence we get a cocycle ob ∈ Ext1(f∗Ω1

X ,I) =H1(Y, f∗TX ⊗I).
The difference of two such global lifts f̃1, f̃2, the difference f̃1 − f̃2 is a derivation f−1OX → I, so we are
done.

Corollary 7.14. Given f ∶Y →X,

dim[f] Mor(Y,X) ≥ h0(Y, f∗TX) − h1(Y, f∗TX).

Definition 7.15. Given B ⊂ Y and a map g∶B →X, define

MorB(Y,X)(T ) ∶= {f ∶T × Y →X ∶ f ∣T×B = g ○ π2}.

Given f ∶Y →X with f ∣B = g, define

Deff,B(A) ∶= {f ∶YA →X ∶ f ∣B = g ○ πB}.

Theorem 7.16. Let IB be the ideal sheaf of B. Then T1 = H0(Y, f∗TX ⊗ IB) and T2 = H1(Y, f∗TX ⊗ IB)
is a tangent-obstruction theory for Deff,B. Hence

dim[f] Morf,B(Y,X) = h0(f∗TX ⊗ IB) − h1(f∗TX ⊗ IB).

Example 7.17. Let C be a smooth curve of genus g, and X be smooth and projective of dimension n. Let
B ⊂ C be an effective Cartier divisor. Then

dim[f] Mor(C,X) ≥ χ(f∗TX) = rank(f∗TX)(1 − g) + deg(f∗TX) = n(1 − g) + (−KX) ⋅ (f∗C).

Similarly,
dim[f] MorB(C,X) ≥ (−KX) ⋅ f∗C + n(1 − g − lengthB).

Idea behind bend-and-break: if (−KX) ⋅C is big, then dim[f] Mor(C,X) is also big.
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7.2 Bend and break

Proposition 7.18 (Bend-and-break 1). Over an algebraically closed field k, suppose X is projective and
smooth, C is a smooth projective curve, c ∈ C is a closed point, and f ∶C →X. If Morc(C,X) has dimension
≥ 1, there exists a rational curve in X passing through f(c).

Remark. The hypothesis is satisfied if (−KX) ⋅ f∗C − g dimX ≥ 1.

Lemma 7.19 (Rigidity). Let X,Y,Y ′ be smooth varieties, and π∶X → Y and π′∶X → Y ′ be proper maps
such that π∗OX = OY . If π′ contracts π−1(y0), then there exists a neighborhood Y0 of y0 such that π′ factors

as π′∣π−1(Y0)∶π−1(Y0)
πÐ→ Y0 → Y . If π′ contracts all fibers of π, then it factors through π.

Proof of bend-and-break 1. Choose a curve T ∈ Morc(C,X). Let T̃ be its normalization and T be its com-
pactification. Then we get a rational map ϕ∶T ×C ⇢ X, defined over T . Let S → X be a resolution of this
rational map.

Claim: ϕ is not defined along T × {c}. Suppose it is. Then ϕ contracts T × {c} to a point im(c). By
the rigidity lemma with Y = C and π = πC and X = Y ′, we see that ϕ contracts a neighborhood of T × {c}.
This is a contradiction, because this is equivalent to the existence of U ⊂ C such that ϕ contracts π−1

C (c′)
for c′ ∈ U , and hence T →Morc(C,X) is constant.

The exceptional divisor in S of the blow-up is a rational curve which passes through im(c).

Proposition 7.20 (Bend-and-break 2). Let X be projective and f ∶P1 →X generically injective. If

dim[f] Mor{0,∞}(P1,X) ≥ 2,

then f∗[P1] is numerically equivalent to a non-integral connected rational 1-cycle passing through f(0) and
f(∞).

Proof. Choose a smooth curve T →Mor{0,∞}(P1,X) such that the image is not contained within a Gm-orbit

of a map P1 → X. This means T × P1 → X × T is finite. Let T be the smooth compactification of T . Then
write

T × P1 X × T

T × P1 S

S′

where S′ is the resolution of the rational map T × P1 → X × T , and S is the Stein factorization of the map.
The map π∶S → T is flat because S is integral and T is a curve. Hence the fibers have arithmetic genus 0.
So each fiber is a tree of P1’s.

We want at least one singular fiber. (Over T ⊂ T , the fibers are P1’s.) Assume otherwise, so that S → T
is a ruled surface. Let T0 and T∞ be two sections contracted by πX . Take H ample on X and consider π∗XH.
Then (π∗XH)2 > 0. Also, π∗XH ⋅ T0 = 0 by the projection formula, and the same for T∞. Hence T 2

0 , T
2
∞ < 0

by Hodge index theorem. This is a contradiction: (T0 − T∞)2 = 0 because both are pulled back from the
base.

Theorem 7.21. Let X be Fano of dimension n. Then X is covered by rational curves Γ with Γ⋅(−KX) ≤ n+1.

Proof. Let chark = p > 0. Choose any map f ∶C →X passing through x ∈X. Note that

dim[f○FrobNC ] Morx(C,X) ≥ n(−g(C))(−KX) ⋅ (f ○ FrobNC )∗C
= n(−g(C))pN(−KX) ⋅ f∗C > 1
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for N ≫ 0, because −KX is ample. By bend-and-break 1, there exists a rational curve through x. Now we
want a rational curve Γ through x such that Γ ⋅ (−KX) ≤ n + 1. Call the curve we just constructed Γ̃, and
set f(0) = x and f(∞) = y. If Γ̃ ⋅ (−KX) ≤ n + 1, then we are done. Otherwise dim[f] Mor{0,∞}(P1,X) ≥ 2.
By bend-and-break 2, f∗P1 is numerically equivalent to g∗P1 + h∗P1 + ⋯. Take the component f ′∶P1 → X
passing through x. Then f ′∗P1 ⋅ (−KX) < f∗P1 ⋅ (−KX). Hence by induction we are done in characteristic p.

Let chark = 0. Claim: there exists a finite-type Z-algebra R and an R-scheme X̃ with an R-point x̃ and
an embedding R ↪ k such that (X̃, x̃)k ≅ (X,x). Choose a model; we may assume it is smooth proper and
Fano. Now for each m ∈ SpecR closed, there exists a rational curve of degree ≤ n+1 passing through X̃ mod
m. Consider Morx̃(P1, X̃)≤n+1, which is finite type over R and non-empty over every closed point of SpecR.
Hence its image in SpecR is constructible, and contains a dense set of closed points. So its image in SpecR
is all of SpecR. In particular, Morx̃(P1, X̃)≤n+1

k = Morx(P1,X)≤n+1 is non-empty.

Theorem 7.22. Let X be smooth projective, H ample and f ∶C →X such that f∗C ⋅KX < 0. Then for any
x ∈ f(C), there exists a rational curve Γ passing through x such that

H ⋅ Γ ≤ 2 dimX
H ⋅ f∗C

−KX ⋅ f∗C
.

Proposition 7.23 (Bend-and-break 3). Let X be smooth projective, H ample, f ∶C → X be a map and
B ⊂ C be a reduced divisor. If dim[f] MorB(C,X) ≥ 1, then there exists a rational Γ meeting f(B) such that

H ⋅ Γ ≤ 2
H ⋅ f∗C
lengthB

.

Proof of theorem. In characteristic p, do the following. Let bm ∶= ⌊−pm(KX ⋅ f∗C)/dimX − g(C)⌋, which is
positive for m ≫ 0. Choose any bm points Bm ⊂ C. Then dim[f○Frobm] MorB(C,X) > 1 for m ≫ 0. By
bend-and-break 3, there exists Γm meeting f(Bm) such that

H ⋅ Γm ≤ 2(H ⋅ f∗C)(2pm/bm)→ dimX/(−KX ⋅C).

Hence for m≫ 0, we get H ⋅ Γm ≤ 2 dimX(H ⋅ f∗C)/ length(B). Now we can repeat the previous argument
for characteristic 0.

8 Isomonodromic deformations

Definition 8.1. Let X/S be smooth with a vector bundle E on X. A connection is a map of sheaves
∇∶E → E ⊗OX Ω1

X/S satisfying a Leibniz rule ∇(fs) = df ⊗ s + f∇s. It is integrable if ∇2 = 0. Call the

category of vector bundles with integrable connection MIC(X/S).

Assume we are over a field k of characteristic 0, and that π∶X → S is smooth and S itself is also smooth.
Pick a base point 0 ∈ S. Suppose we are given an integrable (E,∇) on the central fiber X0. By Ehresmann’s
theorem, we expect to be able to deform the integrable bundle into ones that have the same monodromy
representation.

Definition 8.2. (E,∇∶E → E⊗Ω1
X/S) is an isomonodromic deformation of (E0,∇0) if there exists ∇̃∶E⊗Ω1

X

integrable such that ∇ = ∇̃ mod π∗ΩS1 .

Remark. Assume S is a disk. Given s ∈ S, we have maps Xs → X ← X0. The connection ∇̃ gives a
representation π1(X)→ GLn(C). After a choice of path between x1 ∈Xs and x0 ∈X0, we get an isomorphism
π1(X0) ≅ π1(X)→ π1(Xs).

Example 8.3. Let Y
fÐ→X

πÐ→ S with f smooth proper. (Think: family of families.) Let E = Rif∗Ω●
Y /X and

∇∶E → E ⊗Ω1
X/S be the Gauss–Manin connection mod π∗Ω1

S .
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Theorem 8.4. Let R ∶= k[[x1, . . . xn]] and X/SpfR be smooth. Suppose (E0,∇0) ∈MIC(X0/k). Then there
exists a unique isomonodromic deformation of (E0,∇0) to X/SpfR.

Proof. In the special case X = X0 ×k SpfR
πÐ→ X0, just set (E, ∇̃) = π∗X0

(E0,∇0). In general, take an affine

cover {Ui} of X. On each Ui, we get Ui
πiÐ→ Ui ∩X0. We know

HomUi∩Uj((Ei, ∇̃i), (Ej , ∇̃j)) = HomUi∩Uj(Ei,Ej)∇=0 = HomUi∩Uj∩X0(Ei0,E
j
0)∇=0

by analytic continuation. But Ei0 = Ej0 and the identity is the canonical section. Hence we get a cocycle.
Using this gluing data, we get (E, ∇̃). Now suppose (E1, ∇̃1) and (E2, ∇̃2) give isomonodromic deformations
of (E0,∇0) when reduced mod π∗Ω1

S . Then

HomX((E1, ∇̃1), (E2, ∇̃2)) = HomX0((E0,∇0), (E0,∇0)),

which contains the identity.

Theorem 8.5. Let X/SpecR be smooth proper. Then in characteristic 0, completion gives an equivalence
of categories

MIC(X/R) ∼Ð→MIC(X̂/SpfR).

Proof. Suppose (E,∇) ∈MIC(X̂/SpfR). By formal GAGA, there exists F ∈ Vect(X) such that E = F̂ . Now
we need to algebraize ∇. This does not immediately follow from formal GAGA because ∇ is not OX -linear.

Claim: the map Conn(G)→ Conn(Ĝ) from connections on G and connections on Ĝ is an isomorphism for
any G ∈ Vect(X). This is because Conn(G) is a torsor for End(G)⊗Ω1

X/R, and similarly Conn(Ĝ) is a torsor

for End(Ĝ)⊗Ω1
X̂/R, and by formal GAGA these two have the isomorphic H0. So it suffices to show Conn(G) ≠

0 iff Conn(Ĝ) ≠ 0. The Atiyah class [Conn(G)] lives in H1(X,End(G) ⊗ Ω1
X/S) = H1(X,End(Ĝ) ⊗ Ω1

X/S)
(by formal GAGA), which is where the Atiyah class [Conn(Ĝ)] lives. A computation shows they are the
same class.

Now we need to show ∇ ∈ Conn(G) integrable iff ∇̃ ∈ Conn(Ĝ) integrable. The curvature ∇2 lives in
H0(End(G)⊗Ω2) = H0(End(Ĝ)⊗Ω2) (by formal GAGA), which is where ∇̃2 lives. Another computation
shows they are the same class.

We have proved essential surjectivity. We skip fully faithfulness.

Remark. Here every time we take Taylor series, we are using characteristic 0.

Example 8.6 (Schlessinger). Take X0 = P1 − {λ1, . . . , λn} and E0 = Om with ∇0 = ∑ni=0 aij/(x − λi)dx + d
Fuchsian. (Here (aij) is a matrix of constants.) The deformation will be P1 − {λ̃1, . . . , λ̃n} → k[x1, . . . , xn]
where λ̃i ∶= λi +xi. Set E = Om and ∇̃ = d+∑ni=0 Ãi/(xi − λ̃i)d(x− λ̃i). We want to compute these Ãi so that
the result is flat. If Y is a flat section, then compute

− ∂

∂x
Y =

n

∑
j=0

∑
Ãj

x − λ̃j
Y, − ∂

∂λ̃i
Y = − Ãi

x − λ̃i
Y

up to sign. We want to pick the Ãi such that

± ∂

∂x

∂

∂λ̃i
Y = Ãi

(x − λ̃i)2
Y + Ãi

x − λ̃i

n

∑
j=0

Aj

x − λ̃j
Y

± ∂

∂λ̃i

∂

∂x
Y =

n

∑
j=0

∂λiÃi
x − λj

Y + Ãi

(x − λ̃i)2
Y +∑

Ãi
x − λj

−Ãi
x − λ̃i

Y

are equal. Equating, we get

∑
j

∂λiAj

x − λ̃j
=∑

j

[Aj ,Ai]
(x − λ̃i)(x − λ̃j)

.
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Taking residues around each λ̃j , we get

∂Ãj

∂λi
=
⎧⎪⎪⎨⎪⎪⎩

[Ai,Aj]/(λi − λj) i ≠ j
−∑j≠i[Ai,Aj]/(λi − λj) i = j.

These are the Schlessinger equations.

In characteristic p, MIC does not have canonical deformations, but D-modules do. Instead of calling them
D-modules we will call them stratified sheaves.

Definition 8.7. Let X/k be a scheme, with k of characteristic p. A stratified sheaf on X is a sequence

(Ei, σi) with σi ∶= Ei
∼Ð→ Frob∗Ei+1.

Theorem 8.8 (Gieseker). If X is smooth, there is an equivalence of categories

D−mod
∼Ð→ Strat(X/k).

Example 8.9. Suppose we have Frob∗E = OX ⊗Frob−1(E) and D is an order-1 differential operator. Then
the action is defined as

D(f ⊗ e) ∶=Df ⊗ e.

Remark. Suppose ∂ is a derivation. Then ∂∣E0 is defined by ∂(f ⊗ e′) = ∂f ⊗ e′ where f ∈ OX and e ∈ Γ(E0).

Example 8.10 (More differential operators in characteristic p). Let X = An = Speck[x1, . . . , xn] be affine.
There is a differential operator (∂/∂x1)p/p! which sends xa1 ↦ 0 for a < p and xp1 ↦ 1.

Definition 8.11. Let X
πÐ→ S. Take the Cartesian square

X(p) ÐÐÐÐ→ X
×××Ö

×××Ö
S

FrobÐÐÐÐ→ S.

Write the map X
FrobÐÐ→X making the outer square commute. The relative Frobenius is the resulting map

FrobX/S ∶X →X(p).

Example 8.12. If S = Speck and X = An, then the absolute Frobenius sends everything in k[x1, . . . , xn]
to the p-th power, including things in k. The relative Frobenius fixes k and sends only the xi to the p-th
power.

Definition 8.13. Let X → S and S be over k with 0 ∈ S a k-point. A stratified sheaf (Ei, σi) on X/S is
an isomonodromic deformation of (E0

i , σ
0
i ) on X0/S if it is restricted from a stratified sheaf on X/k.

Theorem 8.14. Let S ∶= Spf k[[x1, . . . , xr]] and X/S is schematic, i.e. base change to a closed Artin
subscheme produces a scheme. Then any stratified sheaf (Ei, σi) on X1/k admits a unique isomonodromic
deformation.

Proof. It suffices to show the theorem for Sn ∶= k[[x1, . . . , xn]]/mN . The map SN
FrobNÐÐÐ→ SN factors through

Speck. The map XN

FrobX/kÐÐÐÐ→XN factors through X1. Set Ẽ0 = F̃rob
N∗
X/kEN . In general, set Ẽi = F̃rob

N∗
X/kEi+N .

This is obviously a stratified sheaf. Uniqueness is an exercise.

Theorem 8.15. Stratified sheaves algebraize.
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9 Cotangent complex

We give two motivations for the cotangent complex.

1. Recall if X → S is smooth and S′ is a square-zero thickening of S with ideal sheaf I, then there
exists a canonical class ob ∈ Ext2(Ω1

X/S ,I) such that ob = 0 iff there is a flat deformation, and if

ob = 0 then deformations are a torsor for Ext1(Ω1
X/S ,I). Furthermore, the automorphism group of

any deformation is Hom(Ω1
X/S ,I). What happens if X → S is not smooth?

2. Given X
fÐ→ Y

gÐ→ Z, there are all kinds of interesting exact sequences. For example,

f∗ΩY /Z → ΩX/Z → ΩX/Y → 0,

and it is left-exact if X → Y is smooth. If in addition f is a closed embedding with ideal sheaf I, then

I/I2 → f∗ΩY /Z → ΩX/Z → 0,

and it is left-exact if X → Z is smooth. If in addition X → Z is a closed embedding, then

IX/Z/I2
X/Z → IX/Y /I2

X/Y → f∗ΩY /Z → 0,

and it is left-exact if Y → Z is smooth. If in addition Y → Z is a closed embedding, then

f∗IY /Z/I2
Y /Z → IX/Z/I2

X/Z → IX/Y /I2
X/Y → 0

and it is left-exact if X → Y is lci. The guess is that there is a distinguished triangle f∗LY /Z → LX/Z →
LX/Y in D−

coh(X) with H0(LX/Z) = Ω1
X/Z , and sometimes we should be able to guess H1 = I/I2. This

will be the cotangent complex.

9.1 Naive cotangent complex

The naive cotangent complex NLX/S will be the first approximation τ≥−1LX/S to LX/S . Let R → S be a ring

map. Suppose we can put SpecS
fÐ→ AN

gÐ→ SpecR and f is a closed embedding. Then we get

I/I2 → f∗ΩAN /SpecR → Ω1
S/R → 0,

and we should define NLS/R = [I/I2 → f∗ΩAN /SpecR]. This is not obviously functorial and we want a more
canonical way to do this.

Definition 9.1. View S as a set and let R[S] be the polynomial R-algebra on the elements of S. There is
an R-algebra map R[S]→ S sending [s]↦ s with kernel I generated by [s]+ [s′]− [s+ s′], [s][s′][ss′], and
[r] − r for r ∈ R. The naive cotangent complex NLS/R is

NLS/R ∶= [I/I2 dÐ→ Ω1
R[S]/R ⊗R[S] S]

in (cohomological) degrees −1 and 0.

Remark. This definition is evidently functorial, but is not computable.

Proposition 9.2. H0(NLS/R) = Ω1
S/R.

Definition 9.3. A presentation of R → S is a polynomial R-algebra P and a surjection P → S of R-
algebras. Given a presentation α∶P → S with kernel I, define

NL(α) ∶= I/I2 → Ω1
P /R ⊗P S.

Suppose we have a morphism of presentations α and α′. Then there is a morphism NL(α)→ NL(α′)
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Lemma 9.4. Suppose we have
S ÐÐÐÐ→ S′

Õ×××
Õ×××

R ÐÐÐÐ→ R′

and α is a presentation of S/R and α′ is a presentation of S′/R′. Then:

1. there exists a morphism of presentations;

2. any two morphisms of presentations induce homotopic maps NL(α)→ NL(α′);

3. these homotopies are compatible with composition;

4. if R → R′ and S → S′ are isomorphisms, any map of presentations induces a homotopy equivalence.

Proof. (1) is trivial. Suppose ϕ,ϕ′ are morphisms P → P ′. Then we have two morphisms of complexes

I/I2 dÐÐÐÐ→ Ω1
P /R ⊗P S

ϕ−1
×××Ö
ϕ′−1 ϕ0

×××Ö
ϕ′0

I ′/I ′2 dÐÐÐÐ→ Ω1
P ′/R′ ⊗P ′ S′

and we want a map h∶Ω1
P /R⊗P S → I ′/I

′2 such that h○d = ϕ−1−ϕ′−1 and d○h = ϕ0−ϕ′0. Take ϕ−ϕ′∶P → P ′,

which factors through I ′. Compose with I ′ → I ′/I ′2. The composition D∶P → I ′/I ′2 is a derivation
(exercise). Then h comes from the universal property of Ω1.

Corollary 9.5. For any presentation α, there is a canonical homotopy equivalence NL(α) ∼Ð→ NLS/R.

Example 9.6. Suppose R → S is a polynomial algebra. Then NLS/R ≅ [0 → Ω1
S/R]. (Just write S as a

presentation of itself.)

Theorem 9.7. Let 0 → I → A′ → A → 0 be a square-zero extension, with two square-zero extensions
0 → N1 → B′

1 → B1 → 0 and 0 → N2 → B′
2 → B2 → 0 over it. Suppose we have maps B1 → B2 and N1 → N2.

Then there exists a map B′
1 → B′

2 extending B1 → B2 iff the canonical class ob ∈ Ext1
B1

(NLB1/A,N2) vanishes.
If ob = 0, then solutions are a torsor for HomB1(Ω1

B1/A,N2).

Proposition 9.8. Let A be a ring and I be an A-module.

1. The set of square-zero extensions 0→ I → A′ → A→ 0 is canonically in bijection with Ext1(NLA/Z, I).

2. Given a diagram
0 ÐÐÐÐ→ I ÐÐÐÐ→ A′ ÐÐÐÐ→ A ÐÐÐÐ→ 0

×××Ö
×××Ö

0 ÐÐÐÐ→ J ÐÐÐÐ→ B′ ÐÐÐÐ→ B ÐÐÐÐ→ 0

of square-zero extensions α ∈ Ext1
A(NLA/Z, I) and β ∈ Ext1

B(NLB/Z, J) respectively, a middle arrow

exists iff α and β map to the same thing in Ext1
A(NLA/Z, J).
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9.2 Using the cotangent complex

Theorem 9.9. Suppose X
πÐ→ S is a geometrically reduced lci curve. Then DefX is formally smooth.

Proof. Obstructions live in Ext2(LX/S , π
∗I). Use that LX/S is supported in degrees −1 and 0 because X is

lci. There is a spectral sequence

Exti(H−j(LX/S), π∗I)⇒ Exti−j(LX/S , π
∗I).

It suffices to check Ext1(H−1(LX/S), π∗I) = 0. Observe that H−1(LX/S) is torsion; here we used that LX/S
“commutes” with localization. Since LX/S is perfect of tor amplitude (−1,0), this implies actually that
H−1 = 0.

Theorem 9.10. Suppose X/Fp is such that Frobabs∶X →X is an isomorphism, i.e. X is perfect. Then for
any local Artin Zp-algebra R with residue field Fp, there exists a unique deformation of X to R. Equivalently,
DefX is the constant functor {pt}.

Proof. We want Ext2(LX/S , π
∗I) = Ext1(LX/S , π

∗I) = 0. It suffices to show LX/Fp = 0. There is a triangle

Frob∗LX/Fp → LX/Fp → LFrob

which arises from the diagram X →X → SpecFp. Since Frob is an isomorphism, Frob∗LX/Fp → LX/Fp is an
isomorphism. This map is also zero, because d(xp) = 0. (We will see this later in the construction of L.)
Hence LX/Fp = 0 as well.

Corollary 9.11. Witt vectors exist for perfect fields.

Example 9.12. Take an abelian variety in characteristic p. Consider the inverse limit of the system of

multiplication by p maps lim←Ð(⋯→ A
[p]Ð→ A). This inverse limit is perfect.

9.3 Construction and properties

Idea: for the naive cotangent complex we had the map R[S]→ S. Now we just continue this resolution.

Definition 9.13. The simplex category ∆ has objects non-empty totally ordered finite sets [n] and
morphisms order-preserving maps. Let di∶ [i]→ [i + 1] be the map which “skips” i.

Definition 9.14. If C is a category, a simplicial object in C is a functor ∆op → C. The category of
simplicial objects in C is called sC.

Example 9.15. The Dold–Kan equivalence says sAb is equivalent to cochain complexes of abelian groups

supported in non-positive degree. A wrong functor sends A● to ⋯A●[2] dÐ→ A●[1] dÐ→ A●[0] where d = ∑(−1)idi.
This is not an equivalence, but the resulting functor is homotopy equivalent to the functor that actually
induces the equivalence.

Definition 9.16. Let R → S be a ring map. Consider

⋯→ R[R[S]]⇉ R[S]→ S

The two maps R[R[S]] → R[S] are [∑ai[si]] ↦ ∑ai[si] and [∑aisi]. The map back is [s] ↦ [[s]]. We
continue the left analogously. Write ⋯→ P1 → P0 ∶= R[S] for this complex which resolves S. The cotangent
complex is

LS/R ∶= (Ω1
Pi/R ⊗Pi S).

Remark. There is a functor Set→ R−alg given by the free algebra functor R[−], left adjoint to the forgetful
functor F . We get a map R[−]F → id. In this setting where we have an adjunction satisfying some mild
conditions, the construction [n]↦ (R[−]F )n(S) gives a simplicial set, which gives a resolution of S[0].
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Proposition 9.17. Properties of the cotangent complex:

1. τ≥1LS/R = NLS/R;

2. (functoriality) there is a natural map LS/R ⊗S S′ → LS′/R′ .

Remark. In characteristic 0 we can do all this with dg-algebras, and then we get a much smaller resolution
of S.

Definition 9.18. Let Σ ∶= Σ2 → Σ1 → Σ0
εÐ→ B be an augmented free simplicial A-algebra, i.e.

1. Σi = A[Xi] for some set Xi,

2. sr(Y ) =Xir for Y ∈Xi where sr is the r-th degeneracy map,

and the complex ⋯→ Σ2
dÐ→ Σ1

dÐ→ Σ0
εÐ→ B → 0 is exact.

Lemma 9.19. LB/A is canonically isomorphic in D−(B) to the complex

⋯→ Ω1
Σi/A ⊗Σi B → Ω1

Σi−1/A ⊗Σi−1 B → ⋯.

Remark. In the non-affine case, a finite type X → Y gives f−1OY → OX , and then find a resolution of OX ,
e.g. use the canonical simplicial resolution. Then LX/Y ∈D−Coh(X).

Theorem 9.20. Let f ∶X → Y0 with Y0 ↪ Y1 a closed embedding defined by a square-zero ideal sheaf I.
There exists a functorial class ob(f) ∈ Ext2

X(LX/Y0
, f∗I) such that:

1. a lift X1 making the square Cartesian exists iff ob(f) = 0;

2. if ob(f) = 0, solutions are a torsor for Ext1
X(LX/Y0

, f∗I);

3. automorphisms of the solutions are Hom(LX/Y0
, f∗I).

Lemma 9.21. Some properties of the cotangent complex for computation:

1. if f ∶X → Y is smooth, then Ω1
f = Ω1

X/Y [0];

2. if g∶Z ↪X is lci, then LZ/X = IZ/I2
Z[1];

3. if X
fÐ→ Y

gÐ→ Z, there is a distinguished triangle in D−(X)

Lf∗LY /Z → LX/Z → LX/Y
[1]Ð→;

4. given a Cartesian diagram

X ×Z Y
g̃ÐÐÐÐ→ X

f̃
×××Ö

f
×××Ö

Y
gÐÐÐÐ→ Z,

there is a natural map Lg̃∗LX/Z → LX×ZY /Y which is an isomorphism if g is flat.

Remark. This lemma encapsulates all the exact sequences we saw when motivating the existence of the
cotangent complex, at the beginning of this section.
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9.4 More applications

Theorem 9.22. Let k be a field, and X/k be a geometrically generically reduced lci curve. Then X is
unobstructed.

Proof. We want Ext2(LX/k, f
∗I) = 0. Use the local-to-global spectral sequence

Hi(X,Extj(LX/k, f
∗I))⇒ Exti+j(LX/S , f

∗I).

All terms on the E2 page which go to Ext2 are zero, as follows.

1. (i = 2, j = 0) H2(X,−) = 0 because dimX = 1.

2. (i = 0, j = 2) Ext2(LX/k, f
∗I) = 0 because LX/k is perfect, so in particular H0 of it vanishes.

3. (i = 1, j = 1) Since X is generically smooth, Ext1(LX/S , f
∗I) has zero-dimensional support. Hence H1

of it vanishes.

Example 9.23. Suppose X is smooth over Fp, and let F ∶X → X be the absolute Frobenius. Write the

exact triangle corresponding to X
FÐ→X → Fp:

F ∗LX/Fp → LX/Fp → LF
[1]Ð→ .

This is just the triangle

F ∗Ω1
X

0Ð→ Ω1
X → LF

[1]Ð→

because d on p-th powers vanishes. Hence LF = [F ∗Ω1
X

0Ð→ Ω1
X].

Example 9.24. Consider y2 = x(x − 1)(x − p). In characteristic 0 this is a donut; in characteristic p it is a
nodal cubic, with universal cover an infinite chain of P1’s. The covering map has zero cotangent complex.
Hence there exists a canonical lift over Spf Zp.

Example 9.25. Let A/Fp be an abelian scheme and consider Ã∶ lim←Ð[p]
A. Then F ∶ Ã→ Ã is an isomorphism.

This is because the multiplication by [p] operator factors as A
VÐ→ A

FÐ→ A, so on Ã the inverse to F is
therefore V . Hence the cotangent complex LÃ = 0 is zero.

In fact, if we do ̃̃A ∶= lim←Ð[n]
A, again L = 0. Let A/Zp be an abelian variety and let A ∶= (lim←Ð[n]

A)∧ be the

completion at p. This is the unique lift of ̃̃A/Fp. This only depends on the isogeny class of the special fiber.

Example 9.26. Let X/OCp be a curve of genus ≥ 1. Take X ∶= (lim←ÐX′→X
X ′)∧ where X ′ is finite and étale

over Cp, and the completion is at the maximal ideal m. Then this also only depends on X mod m, by the
same proof as the above example. Question: if g ≥ 2, does X depend on X at all? Related question: in
particular, is it true that for X and Y smooth proper curves of genus ≥ 2 over Fp, do they have a finite étale
cover in common?

10 Gauss–Manin connection

Let X → Y be a smooth proper map with Y smooth and everything is over C. Consider Rifan
∗ C ⊗ O =

(Rf∗Ω●
dR,X/Y )an. Clearly the lhs has a connection, so the rhs has a corresponding connection called the

Gauss–Manin connection. The rhs terms have a Hodge filtration given by

F iRf∗Ω●
dR,X/Y ∶= Rf∗Ω≥i

dR,X/Y
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and the Gauss–Manin connection ∇ satisfies Griffiths transversality

∇(F i) ≅ F i−1 ⊗Ω1
Y .

Since ∇(fs) = f∇(s) + df ⊗ s and df ⊗ s is clearly in F i ⊗Ω1, it follows that the map

∇∶F i → F i−1⊗1
Y → F i−1/F i ⊗Ω1

Y

is OY -linear. Let gri∇∶F i/F i+1 → F i−1/F i⊗Ω1
Y be the associated graded of the ∇. By definition, this is the

same as
gri∇∶Rj−if∗ΩiX/Y → Rj−i+1f∗Ωi−1

X/Y ⊗Ω1
Y .

Pick a base point, so this becomes Hj−i(XY,y,Ω
i) → Hj−i+1(XY,y,Ω

i−1). We get a canonical class in
H1(Xy, TXy) called the Kodaira–Spencer class such that this map is cupping with it.
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