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Abstract

These are my live-texed notes for (some subset of) the Fall 2018 student algebraic geometry seminar
on cubic fourfolds. Let me know when you find errors or typos. I’m sure there are plenty.
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1 Sep 10 (Raymond)

Sorry, no notes!

2 Sep 17 (Carl): Hodge theory of cubic four-folds

Suppose X/C is smooth projective of dimension n. Recall that there is a decomposition

Hk(X,Z)⊗C ≅⊕
i

Hi,k−i(X), Hi,k−i(X) ∶=Hk−i(X,ΩiX).

There are two structures on this decomposition:
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1. a conjugation action on the lhs where Hi,k−i =Hk−i,i;

2. a non-degenerate integral quadratic form on Hk(X,Z) given by

(α,β) ∶= ∫ α ∧ β ∧ ωn−k.

(Maybe there are some signs in front, but it doesn’t matter.) The Hodge–Riemann bilinear relations
tell us the signature of the form (−,−) and the Hodge decomposition is orthogonal with respect to it.

Now specialize to cubic four-folds. There are standard computations which give the Hodge diamond for
cubic hypersurfaces in P5:

0
0 0

0 1 0
0 0 0 0

1 1 21 1 1
0 0 0 0

0 1 0
0 0

0

.

The only interesting part is in H4. Make the following observations about it.

1. By universal coefficient, there is no torsion in H4, so it is an honest lattice and the pairing really is
just intersection.

2. By Poincaré duality, it is unimodular. Hodge–Riemann bilinear relations tells us it has signature
(21,2).

3. If h ∈H2(X,Z) is the hyperplane, (h2)2 = 3 so that H4 is an odd lattice.

From this information, the classification of lattices tells us that

H4(X,Z) ≅ (+1)21 ⊕ (−1)2.

What about primitive cohomology, i.e. H4(X,Z)0 ∶= {x ∈ H4 ∶ x ⋅ h = 0}? Recall that given any cubic
fourfold X, we can associate to it its Fano variety of lines F (X), which is smooth and projective of dimension
4 (via the hyperplane class g from the Plücker embedding). When X is a Pfaffian cubic, F (X) ≅ Hilb2(K3).
Here F (X) is an example of a holomorphic symplectic variety, but this property is deformation invariant,
and all cubic fourfolds are deformation equivalent. So in fact F (X) is always holomorphic symplectic for
cubic fourfolds.

Theorem 2.1 (Beauville–Donagi). There is an Abel–Jacobi map

α∶H4(X,Z)0
∼
Ð→H2(F,Z)0(−1)

which is an isomorphism of polarized Hodge structures. It is given by the incidence correspondence

P ∶= {(L, p) ∈ F ×X ∶ p ∈ L}.

Remark. Here H2(F,Z)0 carries the canonical Bogomolov–Beauville form, since F is holomorphic symplectic.
In this case, the form is something like

(u, v) ∶= −
1

6
g2uv.

Proof sketch. First check that α respects the pairings; this is just some computation. Then it suffices to
show that the two lattices are abstractly isomorphic, i.e. they have the same rank and discriminant (up to
sign).
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1. We know H4(X,Z)0 is rank 22. The full H4 is unimodular, and the hyperplane class has norm 3, so
the discriminant of its orthogonal complement is ±3.

2. To show H2(F,Z)0 has the same property, it suffices to show it for one F . Assume F = Hilb2(K3)
arises from Pfaffian X. Then we can just do an explicit calculation using

H2(Hilb2(K3)) =H2(K3)⊕
1

2
Z(δ)

where δ is the exceptional divisor. This gives rank 22 and discriminant 3.

Then one shows α(h2) = g geometrically via the correspondence, from which we get compatibility of Hodge
structures.

By explicitly computing H2(F )0, the conclusion is that

H4(X)0 =H
2(F )0 = (

−2 −1
−1 −2

)⊕ (
0 1
1 0

)

⊕2

⊕ (−E8)
⊕2.

Theorem 2.2 (Torelli for cubic four-folds (Voisin, Looijenga, Charles)). Let X,X ′ be cubic four-folds.
Suppose there is an isomorphism of polarized Hodge structures

ϕ∶H4(X,Z)
∼
Ð→H4(X ′,Z).

Then ϕ comes from a unique projective isomorphism X
∼
Ð→X ′, i.e. it preserves the hyperplane class.

Definition 2.3. The period map takes X to the embedding of a line H3,1 ⊂H4(X)⊗C. More formally, fix
a marked lattice (L,u) abstractly isomorphic to (H4, h2) and let L0 ∶= u⊥. LetM be the moduli of marked
cubic four-folds

M ∶= {(X,φ∶ (H4(X,Z), h2)
∼
Ð→ (L,u))}.

The period domain is
D ∶= {x ∈ P(L0 ⊗C) ∶ (x,x) = 0, (x, x̄) > 0}.

The period map is
p∶M→ D, X ↦ φ(H3,1).

Remark. Fact: M is an algebraic variety (since all X live in the same projective space; contrast this with
K3s). A quick dimension count:

1. dimM = ((8
3
) − 1) − (62 − 1) = 20 (PGL action on equation in P5);

2. dimD = (22 − 1) − 1 = 20.

There is a standard computation (Griffiths residue formula) one can do to show that p is a local isomorphism
(see Voisin’s book).

Theorem 2.4 (Torelli). p is injective.

Analogue for holomorphic symplectic varieties:

1. M′ the connected component of marked holomorphic symplectic varieties, i.e. with ϕ∶ (L′, u′) →
(H2(F,Z), g);

2. period map p′∶M′ → D′ given by (F,ϕ)↦ ϕ(H2,0(F )).

Theorem 2.5 (Torelli for hyperkählers (Verbitsky, Huybrechts, Markman)). p′ is generically injective and
a local isomorphism.
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Remark. Note that p′ can only fail to be an isomorphism at non-separated points, and non-separated points
do exist on M′. (Think moduli of K3s, where birational K3s have the same period, but can be related only
by Mukai flops.)

Fix a copy of L0 ⊂ L
′ where L0 = u

⊥. Let N be the incidence correspondence

N ∶= {(X,F (X), φ,ψ) ∶ ψ ○ α = ϕ}

i.e. require compatibility with Abel–Jacobi. So we now have

N
π′

ÐÐÐÐ→ M′

π
×
×
×
Ö

p′
×
×
×
Ö

M
p

ÐÐÐÐ→ D

We know π is injective, p′ is generically injective (by Torelli for hyperkählers).

Lemma 2.6. π,π′ are injective, and π,π′, p, p′ are local isomorphisms.

Proof. Injectivity of π: above (X,φ) sits (F (X), ψ) and we need

ψ∶ (H2(F (X)), g)→ (L′, u′)

to be uniquely specified. This is true up to sign; M apparently has two connected components and N has
one.

The content of injectivity of π′ is that given a polarized F , it can only come from one (polarized) X;
this is something classical. If we have X,X ′ ⊂ P(V ) with F,F ′ ⊂ Gr ⊂ P(∧2V ) with projective isomorphism
F → F ′, the intermediate step is to show the isomorphism must preserve the Grassmannian Gr.

Proof of theorem. Let O(L,u) be the orthogonal group of L fixing u. Let O+(L,u) be the index 2 part with
positive determinant. These both act on M and D and p is equivariant. We know M and D each have two
components fixed by O+.

It suffices to show p is injective on one connected component of M. Let N0 be a connected component
of N , and let M0 and M′

0 be the closures of the images of N0. In

N0
π′

ÐÐÐÐ→ M′
0

×
×
×
Ö

×
×
×
Ö

M0 ÐÐÐÐ→ D

we know π,π′ are injective and dominant, and M′
0 → D is generically injective. Hence p′ ○ π′ is generically

injective, and with π dominant this implies p generically injective. Since M0 is separated and p is a local
isomorphism, it follows that p is injective.

3 Oct 01 (Raymond): Special cubic fourfolds

In general, the Picard rank of a cubic hypersurface is 1. So we want to look for cubic fourfolds with extra
algebraic classes.

Definition 3.1. A cubic fourfold X is special if it has an algebraic surface S ↪ X not homologous to a
complete intersection.

Remark. This condition is equivalent to asking rankH2,2(X,Z) ≥ 2, i.e. it has to contain more than just
the hyperplane class. For this equivalence, we need to know that the (integral) Hodge conjecture is true for
cubic fourfolds. Also equivalently,

H2,2(X,Z) ∩H4(X)0 ≠ ∅.
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Definition 3.2. We relate this to period domains. A labeling of a special cubic fourfold X is a rank 2
saturated, positive definite lattice K ⊂H2,2(X,Z) containing h2. Quick recap: the period domain is

D ∶= {x ∈ P(L0 ⊗Z C) ∶ ⟨x,x⟩ = 0, ⟨x, x̄⟩ > 0},

where L ∶=H4(X,Z) contains L0 ∶= (h2)⊥. Hence K⊥ ⊂ L0. To each K, associate

DK ∶= {x ∈ P(K⊥ ⊗C) ∶ ⋯},

which is a linear section of the period domain. Hence we get a square

C
ι

ÐÐÐÐ→ D
Õ
×
×
×

Õ
×
×
×

CK ÐÐÐÐ→ DK

where CK are divisors in C, possibly empty. Here C is the moduli of marked cubic fourfolds. Act on this
whole picture by Aut(L,h2), since everything has a marking, to get rid of the markings. Descend to the
quotient and abuse notation by writing

C
ι

ÐÐÐÐ→ D
Õ
×
×
×

Õ
×
×
×

C[K] ÐÐÐÐ→ D[K]

so now [K] is the Aut(L,h2)-orbit of the lattice K.

Lemma 3.3. Given two saturated non-degenerate sublattices K,K ′ ⊂ L containing h2, then

[K] = [K ′] ⇐⇒ disc(K) = disc(K ′).

(Here disc(K) ∶= det(⟨−,−⟩K) is the determinant of the intersection form.)

Definition 3.4. This lets us write Cd ∶= C[K] where d ∶= disc(K). These are Hassett divisors. Now the
natural question is: which d occur?

Lemma 3.5. Let (X,Kd) be a labeled cubic fourfold, with lattice Kd of discriminant d. Then d > 0, is even,
and d ≡ 0,−1 mod 3, i.e. d ≡ 0,2 mod 6.

Proof. We know Kd = span{h2, T} for some T , and

d = det(
⟨h2, h2⟩ ⟨h2, T ⟩
⟨h2, T ⟩ ⟨T,T ⟩

) = 3⟨T,T ⟩ − ⟨h2, T ⟩
2

using ⟨h2, h2⟩ = 3. Finally, we know d is even because L0 is an even lattice, and K⊥ is a sublattice of L0.

Theorem 3.6. Let d > 6 and d ≡ 0,2 mod 6. Then Cd ≠ ∅ is an irreducible divisor.

Proof sketch. Idea: produce a singular cubic fourfold and smooth it out in various ways. Precisely, we will
construct

Kd = (
3 0
0 d/3

) or (
3 1
1 (d − 2)/3

)

corresponding to d ≡ 0 mod 6 and d ≡ 2 mod 6 respectively. The strategy is to make a K3 surface S with
Picard lattice

Pic(S) = (
6 0
0 2d/3

) or (
6 2
2 (2d − 4)/3

) ,
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and then use S to construct a singular cubic fourfold X0. With the X0, let x0 ∶= τ(X0) ∈ Dd and take a
small disk ∆ ⊂ Dd where x0 is the origin 0 ∈ ∆. Let C̃ denote the moduli of possibly singular cubic fourfolds
with an ordinary double point. Using C̃ ↪ D, form the map

∆→ C̃

where 0 ∈ ∆ is the only point mapping to the boundary ∂C̃. In other words, take a family whose special fiber
is the singular cubic fourfold X0. If we look at the projectivized tangent cone of X0 at p, we get a smooth
quadric. Hence if we choose coordinates where p = [1 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0], then the equation defining X0 (in an
affine chart) splits as

f(x1, . . . , x5) ∶= f2(x1, . . . , x5) + f3(x1, . . . , x5)

where f2 is degree 2 and f3 is degree 3. The condition that p is an ordinary double point says {f2 = 0} ⊂ P4

is a smooth quadric.
The observation now is that on X0, the linear projection from the special point p gives a birational map

X0 ⇢ P4. Such X0 are therefore rational. We can resolve this map by blowing up at p, to get Blp(X0)→ P4.
All lines through p are contracted, and therefore the space of such lines is a type (2,3) complete intersection
in P4 (by plugging a line p + λy into f = f2 + f3). This is a K3 surface! It follows that Blp(X0) = BlS(P4),
giving a bijection

{cubic fourfold w/ o.d.p}↔ {smooth c.i. of smooth quadric and cubic in P4}.

So it suffices to construct K3s on the rhs with desired Picard lattice.

Definition 3.7. Recall that rankH4(X) = 23. Call the rank-21 sublattice

WX,Kd
∶=K⊥d ⊂H

4(X)

the non-special cohomology. The special cubic fourfold (X,K) has associated K3 (S, f) if

[K⊥ ⊂H4(X)] ≅ [f⊥ ⊂H2(S)(−1)]

(where f ∈H1,1(S) is the polarization) are isomorphic as Hodge structures.

Theorem 3.8. (X,Kd) has an associated K3 iff

1. 4 ∤ d and 9 ∤ d;

2. p ∤ d for all odd primes p ≡ −1 mod 3.

Example 3.9. If we list d ∈ Z>0 with d ≡ 0,2 mod 6 and also satisfy the conditions of the theorem, d = 14 is
the smallest. In fact, C14 are exactly the Pfaffians.

Remark. Globally, this means there should be a map Cd → Nd where Nd denotes the moduli of polarized
degree-d K3s. It turns out that for this map to be well-defined, we must keep track of the labeling Kd, and
also remember the embedding Kd ⊂H

4(X). It turns out that

[Cmarked
d ∶= {(X,Kd ↪H4(X))}]→ [Clabeled

d ∶= {(X,Kd)}]

is an isomorphism when d ≡ 0 mod 6 and is 2-to-1 when d ≡ 2 mod 6. Hence up to some 2-to-1 cover, there
is an actual map

Cmarked
d → Nd.

Remark. If we knew our cubic fourfold X were rational, choose a map X ⇢ P4. Using weak factorization,
if everything passes through a common blowup X ← Y → P4, we get that there exist smooth surfaces
S1, . . . , Sm, T1, . . . , Tn such that

H4(X)⊕
n

⊕
i=1

H2(Ti)(−1) ≅
m

⊕
i=1

H2(Si)(−1)

as Hodge structures. This equality is why we might expect K3 surfaces to be involved in the rationality of
X. Note that we know there is a part of H4(X) that looks like H2(S) for some K3 S. Question: X rational
iff it has an associated K3? This holds in the Pfaffian locus C14, but it is unclear in other cases.
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4 Oct 08 (Noah): Kuznetsov components

Goal: explain the statement that given a smooth cubic fourfold W ⊂ P5, its Kuznetsov component

Ku(W ) ∶= ⟨OW ,OW (1),OW (2)⟩
⊥

is a non-commutative K3 surface.

Conjecture 4.1 (Kuznetsov). W is rational iff Ku(W ) ≅DbCoh(X) for X some K3.

4.1 Serre functors and FM transforms

Let k be a field and C be a k-linear category with finite-dimensional Homs.

Definition 4.2. A Serre functor is an autoequivalence S∶C → C together with natural isomorphisms

Hom(A,S(B)) ≅ Hom(B,A)∨.

Example 4.3. Let C =D(X) for X a smooth projective variety over k. Then a Serre functor is

− ⊗ ωX[dimX].

Proposition 4.4. A Serre functor on C is unique if it exists.

Corollary 4.5. Given two smooth projective varieties X,Y with Φ∶D(X) ≅D(Y ), then dimX = dimY .

Proof. By the proposition, SY ○Φ = Φ ○ SX . Apply this to the object κ(x) ∈D(X) for some point x ∈X:

SY ○Φ(κ(x)) = Φ(κ(x))⊗ ωY [dimY ]

Φ(κ(x)⊗ ωX[dimX]) = Φ(κ(x))[dimX].

Comparing both sides, Φ(κ(x)) = Φ(κ(x)) ⊗ ωY [dimY − dimX]. By looking at highest non-vanishing
cohomology, we get dimY − dimX = 0.

Definition 4.6. Let Y
q
←ÐX ×Y

p
Ð→X. A Fourier–Mukai (FM) transform with kernel K ∈D(X ×Y ) is

ΦK ∶D(X)→D(Y ), E ↦ q∗(p
∗E ⊗K).

Example 4.7. Take f ∶X → Y and let K ∶= OΓf
be the structure sheaf of the graph of f . Compute

ΦK(E) = q∗(p
∗E ⊗OΓf

) = q∗Γf∗E = f∗E.

Example 4.8. Take the Serre functor − ⊗ ωX[dimX]. This is a FM transform with K ∶= ∆∗ωX[dimX].

Example 4.9. ΦK has left and right adjoints which are also FM transforms with kernels

KL ∶=K
∨ ⊗ q∗ωY [dimY ]

KR ∶=K∨ ⊗ p∗ωX[dimX].

We can also compose two FM transforms to get another FM transform.

Theorem 4.10 (Orlov). If Φ∶D(X) → D(Y ) is a k-linear exact functor which is fully faithful, then there
exists K ∈D(X × Y ) unique up to isomorphism such that Φ = ΦK .

Corollary 4.11. If D(X) ≅D(Y ), then their (anti)canonical rings are isomorphic.
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Remark. When k = C and F ∶D(X) → D(Y ) is exact, we get a functor K0(X) → K0(Y ). If F = ΦK , then
there exists a map H∗(X,Z)→H∗(Y,Z) which makes the following commute:

K0(X) ÐÐÐÐ→ K0(Y )

ch
×
×
×
Ö

ch
×
×
×
Ö

H∗(X,Z) ÐÐÐÐ→ H∗(Y,Z)

.

This map is the “cohomological FM transform” associated to ch(K)
√

td(X × Y ) ∈H∗(X × Y ). Caution:

1. this map does not respect cup products (but does respect the Mukai pairing);

2. this map does not respect the grading on cohomologies. However it does send

⊕
p−q=i

Hp,q(X,C)→ ⊕
p−q=i

Hp,q(Y,C).

So for example if X is K3 and D(Y ) ≅D(X) then Y is K3.

4.2 Non-commutative varieties

Definition 4.12. A non-commutative smooth projective variety over k is an admissible subcategory
A ⊂ D(X) for some smooth projective variety X. Here admissible means a full triangulated subcategory
which is k-linear and the inclusion has left and right adjoints.

Definition 4.13. Let D be a triangulated category. A semi-orthogonal decomposition ⟨D1, . . . ,Dm⟩ of
D is a sequence of full triangulated subcategories satisfying:

1. Hom(Di,Dj) = 0 for i > j;

2. given F ∈ D there is a filtration 0 = Fm → ⋯→ F1 → F0 = F such that cone(Fi → Fi−1) ∈ Di for all i.

Lemma 4.14. The filtration and its factors are unique and functorial, and

δi(F ) ∶= cone(Fi → Fi−1)

is a functor D → Di. If m = 2, then:

1. δ1 is left adjoint to the inclusion D1 → D;

2. δ2 is right adjoint to the inclusion D2 → D.

Proof. Let m = 2, so that D = ⟨D1,D2⟩. Take F,K ∈ D with a morphism F → K. Then there exist
distinguished triangles

F1 ÐÐÐÐ→ F ÐÐÐÐ→ δ1(F )
[1]

ÐÐÐÐ→
×
×
×
Ö

K1 ÐÐÐÐ→ K ÐÐÐÐ→ δ1(K)
[1]

ÐÐÐÐ→

,

and we claim there exists a unique morphism F1 →K1 that makes the square commute. So we are interested
in Hom(F1,K1)→ Hom(F1,K). This fits into

Ext−1(F1, δ1(K))→ Hom(F1,K1)→ Hom(F1,K)→ Hom(F1, δ1(K)) = 0

by semi-orthogonality of the decomposition. We also get a unique δ1(F )→ δ1(K), by the same method.
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Lemma 4.15. Let C ⊂ D be an admissible subcategory. Then we get two semi-orthogonal decompositions

D = ⟨C, ⊥C⟩ = ⟨C⊥,C⟩

where C⊥ ∶= {K ∈ D ∶ Hom(F,K) = 0 ∀F ∈ C}, and ⊥C is for Hom(K,F ).

Proof. Let C → D be the inclusion with right adjoint R∶D → C. For F ∈ D, form the triangle

RF → F → cone
[1]
Ð→,

and note that RF ∈ C and cone ∈ ⊥C.

Definition 4.16. We say E ∈ D is exceptional if

Exti(E,E) =

⎧⎪⎪
⎨
⎪⎪⎩

k i = 0

0otherwise.

A collection E1, . . . ,Em is an exceptional collection is all Ei are exceptional and Ext∗(Ei,Ej) = 0 for
i > j.

Proposition 4.17. Let E be exceptional, and C ∶= ⟨E⟩ be the full triangulated subcategory in D generated
by E. Suppose D is proper, i.e. dimk⊕Exti(F,G) <∞ for all F,G. Then C is admissible.

Proof. The map D(k) → D given by V ● ↦ V ● ⊗E is actually an equivalence of categories D(k)
∼
Ð→ C. Now

just write down the adjoints. Example: the right adjoint to C ↪ D is

K ↦⊕
i∈Z

Exti(E,K)⊗E[−n].

Remark. Thus given E1, . . . ,Em an exceptional collection, we get semi-orthogonal decompositions

D = ⟨C⊥,E1, . . . ,Em⟩ = ⟨E1, . . . ,Em,
⊥C⟩

where here Ei stands for ⟨Ei⟩ and C ∶= ⟨E1, . . . ,Em⟩.

Example 4.18. If W is a smooth cubic fourfold, then OW ,OW (1),OW (2) form an exceptional collection.
To show this we have to check

H∗(W,OW ) = k[0], H∗(W,OW (−i)) = 0 ∀i = 1,2.

Hence D(W ) = ⟨Ku(W ),OW ,OW (1),OW (2)⟩, where Ku(W ) is the right orthogonal. To figure out the
other adjoint, we figure out the Serre functor on Ku(W ).

Lemma 4.19. If A ⊂D(X) is a non-commutative variety, then A has a Serre functor given by

S = R ○ SX , S−1 = L ○ S−1
X

where L and R are the adjoints.

Proof. This comes from verifying Hom(A,RSXB) = Hom(i∗A,SXB) = Hom(B,A)∨.

Definition 4.20. A non-commutative D is called a non-commutative Calabi–Yau of dimension n if its
Serre functor is just [n].

5 Oct 15 (Dmitrii)

Sorry, no notes!
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6 Oct 22 (Dmitrii): Addington–Thomas

Conjecture 6.1 (Hassett, 2000). A cubic fourfold Y is rational iff there is T ∈H2,2
prim(Y,Z) such that

⟨h2, T ⟩ ⊂H2,2(Y,Z)

has discriminant d satisfying

d ≡ 0,2 mod 6, d > 6, dnot divisible by 4,9, and any odd prime ≡ 2 mod 3. (*)

Equivalently, d is even and there exists a primitive vector v ∈ A2 = (
2 −1
−1 2

) with norm d.

Remark. If d satisfies (*), then Cd ⊂M is a non-empty irreducible divisor.

Conjecture 6.2 (Kuznetsov). A cubic fourfold Y is rational iff in its derived category

D(Y ) = ⟨AY ,O,O(1),O(2)⟩,

the Kuznetsov component AY is geometric, i.e. there exists a K3 surface S and an equivalence D(S) ≅ AY .

Theorem 6.3 (Addington–Thomas). 1. If AY is geometric, then Y ∈ Cd for some Cd satisfying (*).

2. For d satisfying (*), there exists a Zariski-open non-empty Ud ⊂ Cd of cubics with geometric AY .

First we talk about some generalities. If we have such a T ∈H2,2(Y,Z), what can we say about AY ?

Definition 6.4. The Mukai lattice for a K3 surface S is H̃(S,Z). As an abelian group, it is H∗(S,Z),
with modified Hodge structure

H̃1,1 ∶=H0(S)⊕H1,1(S)⊕H4(S), H̃0,2 =H0,2(S)

and modified intersection pairing.

Theorem 6.5 (Mukai–Orlov). Two K3 surfaces are derived equivalent iff their Mukai lattices are isometric.

So there is a unique H̃(S,Z) coming from D(S), but how do we construct it? The solution by Addington–
Thomas is to use Ktop(S).

Definition 6.6. The topological K-theory Ktop(S) is an abelian group generated by topological vector
bundles.

1. There is a map

Ktop(S)
E↦ch(E)

√
tdS

ÐÐÐÐÐÐÐÐ→H∗(S,Q)

which is injective and the image is a full rank lattice.

2. There is a pairing χ(−,−) coming from pushforward π∶Ktop(S)→Ktop(pt) = Z:

χ(E,F ) ∶= p∗(E
∨ ⊗ F ).

3. Define a Hodge structure by pulling back H0 ⊕H1,1 ⊕H4.

Fact: if S is K3, this pairing and Hodge structure defines an isomorphism between the Mukai lattice and
Ktop(S).
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Definition 6.7. Let Y be a cubic fourfold. Define

Ktop(AY ) = {E ∈Ktop(Y ) ∶ χ(E, [O(i)]) = 0 ∀i = 0,1,2}.

Set

Ktop(AY )1,1 ∶= ν−1(H0(Y )⊕H1(Y )⊕H2,2(Y )⊕H3(Y )⊕H4(Y ))

Ktop(AY )2,0 ∶= ν−1(H3,1(Y )).

Proposition 6.8. If D(S) ≅ AY ⊂ D(Y ), then the embedding comes from a Fourier–Mukai kernel P ∈
D(S × Y ), and there exists an induced map

Φ1,1
p ∶H∗(S,Q)→H∗(Y,Q).

Its associated ΦKp ∶Ktop(S) → Ktop(Y ) identifies the Mukai lattice structure on Ktop(S) with our structure
on Ktop(AY ).

Corollary 6.9. χ(−,−) on Ktop(AY ) is symmetric for every Y .

Proof sketch. This is true when AY is geometric, and is preserved under deformations.

Proposition 6.10. Let λ1, λ2 be the classes of projections to AY of Oline(1),Oline(2) ∈D(Y ). Then:

1. the lattice is

⟨λ1, λ2⟩ = (
−2 1
1 −2

) ;

2. the Mukai vector gives an isomorphism

Ktop(AY )/⟨λ1, λ2⟩
∼
Ð→H4(X,Z)/⟨h2⟩;

3. the pre-image H2,2(Y,Z) is exactly the image of Kalg(AY )→Ktop(AY ).

Proof. Proof omitted. Check that the two lattices have the same signature and discriminant and then use
lattice theory. Use the integral Hodge conjecture proved by Voisin.

Theorem 6.11. Let Y be a cubic fourfold. TFAE:

1. Y ∈ Cd for some d satisfying (*);

2. the image of Kalg(AY )→Ktop(AY ) contains a sublattice U = (
0 1
1 0

).

Proof sketch. (1) implies there exists T ∈ H2,2(Y,Z) such that ⟨h2, T ⟩ ⊂ H4(X,Z) has discriminant d.
Hence there exists K ∈ Ktop(AY ) (some arbitrary pre-image of T ) such that ⟨λ1, λ2,K⟩ ⊂ Ktop(AY ) has
discriminant d. One of the equivalent conditions for (*) is the following:

there exists an embedding (−d)↪ U3 ⊕E2
8 such that (−d)⊥ ≅ ⟨λ1, λ2,K⟩

⊥
in Ktop(AY ).

Then by some lattice theory, (−d)⊕U ≅ ⟨λ1, λ2,K⟩.
Conversely, (2) implies there exists K1,K2 ∈Ktop forming U . Then we look at ⟨λ1, λ2,K1,K2⟩. By some

reasons involving discriminants, this can only be either rank 3 or rank 4.

1. If it is rank 3, then we will get a factor of U which splits off, to get d.

2. If it is rank 4, then look at ⟨λ1, λ2, xK1 +yK2⟩. Some of these lattices will have discriminant satisfying
(*). (There is a surprising amount of number theory hidden here; we have to use Chebotarev density.)

11



Corollary 6.12. If AY is geometric, then Y ∈ Cd for some d.

Proof. If AY ≅D(S), then the classes [Opt] and [Ipt] generate a copy of U .

Proposition 6.13. For every d satisfying (*), there exists Y ∈ Cd ∩C8 such that AY is geometric.

Proof. Note (Voisin) that C8 = {cubics containing a plane}. If P2 ⊂ Y , then look at the linear projection

BlP2(Y )→ P2.

1. This is a quadric fibration.

2. If there exists T ∈ H2,2(Y,Z) satisfying T ⋅ (h2 − P ) = 1, then Y is rational. (This is the intersection
with a fiber of the map.) Here P = [P2].

By lattice theory, we can find:

1. h2, P, T ⊂H4(Y,Z) with expected pairings;

2. σ ⊂H4(Y,C) such that σ⊥ ∩H4(Y,Z) = ⟨h2, P, T ⟩.

The period map is not surjective; Laza–Looijenga has a description of its image that shows there exists some
Y with ⟨σ⟩ =H3,1. Hence Y is in C8 ∩Cd and AY is geometric.

Fact (Hassett): there exists a smooth quasi-projective variety Cvd and families Y and S of cubic fourfolds
with T ∈H2,2 and K3 surfaces such that

Y → Cvd → Cd

is a surjective finite morphism. There is also a morphism H∗(St) → H∗(Yt) comparing their Hodge struc-
tures.

Idea: over z ∈ Cvd , we have a FM kernel Pz on Sz × Yz defining a fully faithful embedding with image
AY = ⟨O,O(1),O(2)⟩

⊥
. Its image lying in AY is an open condition. So we can try to deform P0. There is

an explicit obstruction living in Ext2
Sz×Yz

(P0, P0) (Huybrechts–Thomas). It is a sum of two contributions:
one from Sz, and the other from Yz. By some calculation with Atiyah classes and the definition of the
obstruction, the two contributions basically compute the same thing and cancel each other. This gives a
first-order deformation.

Theorem 6.14 (Lieblich). Let X → B be a proper flat family of finite presentation. Then there exists a
stack M of perfect complexes E on fibers such that

1. Ext<0(E,E) = 0, and

2. M is an algebraic stack locally of finite presentation.

Remark. This is the necessary algebraization procedure for our liftings (to all orders) of P0. Now we get a
deformation in some Zariski opens.

7 Oct 29 (Carl): Galkin–Shinder

Theorem 7.1 (Galkin–Shinder, 2014). Assume cancellation holds in K0(Var/C). Then a very general cubic
fourfold is not rational.

Idea: do a computation in K0(Var/C) relating Y ⊂ P5 with F (Y ). The conclusion will be that

F (Y )⇢ Hilb2(K3)

is birational. A theorem of Addington gives that Y is associated to this K3, i.e. Y ∈ Cd for some conditions
on d, and these conditions make Hassett’s conjecture false as stated. In fact, they are strictly stronger.
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Theorem 7.2 (Borisov). Cancellation is false.

Definition 7.3. Quickly recall that K0(Var/C) is the Z-algebra generated by isomorphism classes of Var/C
with scissor relations

[X] = [U] + [Z], Z ↪X closed , U =X −Z.

The product structure is [X] × [Y ] ∶= [X × Y ]. For example,

[pt] = 1, [A1] =∶ L, [Pn] =
n

∑
i=1

[Li].

Remark (Homomorphisms). There are all kinds of interesting invariants which arise from homomorphisms
out of the Grothendieck ring.

1. There exists a homomorphism K0(VarFq) → Z counting points, which can be souped up to some kind
of zeta function.

2. Over C, we can take K0(Var/C) returning Hodge structures.

Work over C from now on. Here are some facts.

1. The association X ↦ SymnX makes sense on K0(Var). This works by

Symn(X + Y ) = ∑
i+j=n

SymiX ⋅ Symj Y

Symn(X × Y ) = SymnX × Symn Y.

2. Suppose X → S is a Zariski-locally trivial fibration with fiber F . Then

[X] = [F ][S].

This is by cutting S into pieces where X → S really is a trivial fibration. One important case is a
blow-up of a smooth locus Z ⊂X inside a smooth X. Then the exceptional divisor E → Z is a bundle,
so

[BlZX] − [E] = [X] − [Z],

and [E] = [Z][Pc−1] where c is the codimension.

Theorem 7.4 (Bittner). K0(Var/C) is generated by classes of smooth projective varieties, with all relations
coming from blow-up relations as above.

Corollary 7.5. Suppose X,X ′ are birational smooth projective varieties of dimension d. Then

[X] − [X ′] = L ⋅M

where M is a linear combination of smooth projective varieties of dimension d − 2.

Proof. By weak factorization, it suffices to prove this in the case X ′ →X is a blow-up. Then

[X ′] = [X] + [Z]([Pc−1] − 1) = [X] +L([Z] × [Pc−2]).

Definition 7.6. Given Y smooth projective, the rational defect of Y is

MY ∶=
[Y ] − [Pn]

L
∈K0(Var/C)L.

The above corollary shows that if Y is in fact rational, then this class is integral.
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Theorem 7.7 (Larson–Luntz). K0(Var)/L is precisely the free abelian group on stable birational equivalence
classes of smooth projective varieties, i.e. there exists a (clearly surjective) map

K0(Var)→ Z[stable birational classes]

with kernel L.

Remark. Recall that X,Y are stably birational if X×Pm is birational to Y ×Pn for some (possibly different)
m,n.

Proof sketch. For smooth varieties the construction of this map is clear. For singular things, cut it up. To
make sure it is well-defined, relate two different resolutions by weak factorization. Both these things require
us to be in characteristic 0.

Corollary 7.8. If
[X] ≡∑[Yi] −∑[Zj] mod L

where X,Yi, Zj are smooth projective, then X is stably birational to one of the terms on the rhs.

Conjecture 7.9 (Cancellation (known to be false)). L is not a zero divisor in K0(Var/C).

Theorem 7.10. Let Y ⊂ P5 be a smooth cubic fourfold and let

Y [2] ∶= Hilb2 Y, Y (2) ∶= Sym2 Y,

with F (Y ) its Fano variety of lines. Then:

1. [Y [2]] = [P4][Y ] +L2[F (Y )];

2. [Y (2)] = (1 +L4)[Y ] +L2[F (Y )].

Proof. (2) follows easily from (1), so we prove (1). Form an incidence correspondence

W ∶= {(x,L) ∶ x ∈ Y, L ⊂ P5 a line, x ∈ L},

with projections W → Gr(1,P5) and W → Y . The former is generically finite of degree 3, and the latter is a
P4-bundle. So W has dimension 8 and is in fact smooth. Make a birational map

φ∶Y [2] ⇢W

by forming the line through the two points (or the point and tangent vector) to get the third point of
intersection. As long as this line is not completely contained in Y , we are OK, i.e. the base locus is

Z ∶= {(x, y) ∈ Y × Y ∶ corresponding line is in Y }.

Let U ∶= Y [2] −Z, with image U ′ ⊂W . Then we get

Z ′ ∶= {(x,L) ∶ x ∈ L ⊂ Y }.

On one hand, Z → F (Y ) is a Sym2 P1 = P2-bundle. On the other, Z ′ → F (Y ) is a P1-bundle. Hence

[Y [2]] = [Z] + [U] = [Z] + [U ′]

= [P2][F (Y )] + [W ] − [Z ′]

= [P2][F (Y )] + [P4][Y ] − [P1][F (Y )] = L2[F (Y )] + [P4][Y ].

To get (2) from (1), use that Y [2] = Bl∆ Y
(2), whose blow-up relation is

[Y (2)] = [Y [2]] − [P3][Y ] + [Y ] = ([P4] − [P3] + 1)[Y ] +L2[F (Y )],

as desired.
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Theorem 7.11. In K0(Var)L, we have

[F (Y )] = Sym2(MY + [P2]) −L2.

Proof. Just compute.

Example 7.12. Assume the cancellation conjecture. Then if Y is rational, this formula holds in K0(Var).
In particular, it holds in K0(Var)/L, to give something like

[F (Y )] = Sym2(∑[Vi] − [Wj]) =∑Sym2 Vi +∑Sym2Wj +∑Vi ×Wj + Vi × Vj +Wi ×Wj .

But mod L, we know Sym2 ≡ Hilb2. Hence by Larsen–Luntz, F (Y ) is stably birational to something of the
form Hilb2 V , or V ×W . We will show it cannot be the latter, and that if it is the former, V =K3.

By explicit geometry, prove that F (Y ) is not uniruled by showing its canonical class is trivial and therefore
not negative. By the existence of an MRC (maximally rationally connected) fibration, we can remove the
word “stable”, i.e. F (Y ) is birational to V ×W or Hilb2 S for a surface S.

Remark. This argument fails in dimension > 4, because F (Y ) has negative canonical class.

Lemma 7.13. F (Y ) is not birational to V ×W .

Proof. Look at p-forms ψZ(t) = ∑p≥0 h
p,0(Z)tp, which is a birational invariant coming from K0(Var). But

ψF (Y )(t) = 1 + t2 + t4, which is irreducible in Z[t].

Lemma 7.14. F (Y ) birational to Hilb2 S implies S is K3.

Proof. First show that χ(S) = 0. From ψ, conclude that h1,0 = 0 and h2,0 = 1. Then apply classification of
surfaces.

Theorem 7.15 (Addington). In this case, Y ∈ Cd where d = (2n2 + 2n + 2)/a2 for a,n ∈ Z.

Remark. There are values of d that satisfy this condition that do not satisfy the conditions on d in Hassett’s
conjecture. So if we believe this conjecture, Hassett’s conjecture must be false.

Proof sketch. Here are the ingredients.

1. (Markman) Given a variety of K3 type, we can build lattices Λ̃F (Y ) ⊃ H
2(F (Y ),Z) and Λ̃Hilb2(S) ⊃

H2(Hilb2(S),Z). Then F (Y ) birational to Hilb2(S) implies these two lattices are isomorphic, and the
isomorphism preserves the H2.

2. More generally, if M is a moduli space of stable sheaves on S with Mukai vector v, then H2(M,Z) is
identified with v⊥ ⊂ Λ̃M . In particular, if M = Hilb2 S, then v = (1,0,1 − n).

3. On the cubic fourfold side, H2(F (Y ),Z) ⊂ Λ̃F (Y ) is identified with the embedding H2(F (Y )) ⊂
Ktop(AY ) into the topological K-theory of the Kuznetsov component.

4. Use the corresponding w ∈ Λ̃F (Y ) to produce some rank-2 sublattice of H2(F (Y )).

8 Nov 26 (Dmitrii):

The motivation for today’s talk is as follows. Let X be a K3 or abelian surface. Then the moduli of
stable vector bundles (with any fixed Chern character) is smooth and has a 2-form which is non-degenerate
everywhere (’84) and closed (’88). Beauville–Donagi proved in ’85 that for Y a cubic fourfold, its Fano
variety of lines F (Y ) has a symplectic form. Today we will discuss a paper by Kuznetsov–Markushevich
(’09) which gives:
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1. a general way to construct closed forms on moduli spaces of sheaves (which can be used to do both of
these constructions);

2. for F (Y ), and other spaces related to cubic fourfolds, a way to check non-degeneracy.

There is also work of Bottacin (’08, ’09) which did the first part independently.

Definition 8.1 (Naive version of Atiyah class). Let X be a smooth variety over C. Let v be a vector field
on X, and a∶A1 ×X →X be its flow. Let

Speck[ε] ×X
j
Ð→ A1 ×X

a
Ð→X.

Given any E ∈ D(X), take j∗a∗E, which is a flat family over dual numbers. This is an infinitesimal
deformation of E, and therefore gives a class

atv(E) ∈ Ext1(E,E) = Hom(E,E[1]).

Proposition 8.2. Some properties of this Atiyah class atv(−):

1. it is functorial;

2. it commutes with triangles in D(X);

3. it commutes with restrictions to subvarieties invariant under the flow.

Example 8.3. Let X = An = A(V ). Then v ∈ V produces a constant vector field, and the map

v ↦ atv(O0)

is an isomorphism V ≅ Ext1(O0,O0). The middle term for atv(O0) is

{f ∈ SymV ∨ ∶ f(0) = 0, ∂vf(0) = 0}.

Example 8.4. Exercise: atv(E ⊗ F ) is a sum

E ⊗ (atv(F )∶F → F [1]) + (atv(E)∶E → E[1])⊗ F.

Definition 8.5 (Actual Atiyah class). Let X be smooth, ∆ ⊂X ×X be the diagonal, and I its ideal sheaf.
Then there is a SES

0→ I/I2 → OX×X/I2 → OX×X/I → 0

of sheaves on X ×X. Note that O/I = ∆∗OX , and I/I2 = ∆∗Ω1
X . So we get a morphism

∆∗OX →∆∗Ω1
X[1]

in D(X ×X). This we can consider as a map of Fourier–Mukai kernels, which is a natural transformation of
the corresponding functors:

at(E) ∶= E ↦ E ⊗Ω1
X[1].

This is the Atiyah class.

Proposition 8.6. Some properties of this Atiyah class atv(−):

1. it is functorial;

2. it commutes with triangles in D(X);

3. it commutes with restrictions to subvarieties j∶Z ↪X in the obvious way;;
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4. it satisfies a Leibniz rule
at(E ⊗ F ) = at(E)⊗ F +E ⊗ at(F ).

Remark. There is a projection

Ext1(E,E ⊗Ω1)→H0(X,Ext1(E,E ⊗Ω1))

and locally the image of at(E) is given by the previous differential-geometric construction. So the actual
construction contains more data.

Example 8.7. Exercise: atv(OX) = 0.

Definition 8.8. Define the second Atiyah class

at2(E)∶E → E ⊗Ω1[1]→ (E ⊗Ω1[1])⊗Ω1[1]↠ E ⊗Ω2[2].

Similarly, define at3(E), . . . by iterating the same construction. (There is also a Fourier–Mukai construction.)

Definition 8.9 (Traces in derived category). View E → E ⊗F as an element of E∨ ⊗E ⊗F . (Here we only
need to consider E which are perfect.) The trace map is E∨ ⊗E ⊗ F → F , and in general is

tr∶Hom(E,E ⊗ F )→ Hom(O, F ).

Proposition 8.10. Let X be smooth and quasiprojective, and E ∈Dperf(X). Then

tr(ati(E)) ∈Hi(X,Ωi)

is d-closed (under de Rham differential).

Proof sketch. The additivity of trace and the splitting principle imply it is enough to prove this for a line
bundle. By the Leibniz rule, it is enough to prove this for a very ample line bundle. Hence by functoriality
it is enough to check for OPn(1). But on Pn we can apply Hodge theory to get that they are all closed.

Remark. There is another definition of Atiyah class by differential geometry, as an obstruction to the existence
of a holomorphic connection on E, in the case where E is a vector bundle.

Theorem 8.11 (Chern character via Atiyah class). Let X be smooth proper. Define

exp(at(E)) ∶= (idE +at(E) +
at2(E)

2!
+⋯) ∈⊕Hom(E,E ⊗Ωi[i]).

Then tr(exp(at(E))) ∈⊕Hi(X,Ωi) =⊕Hi,i(X) is the Chern character.

Definition 8.12. Let S be affine and smooth, and F → S × Y be a flat family. Let

Ext ipr(F,G)

be the sheaf on S whose fiber at s ∈ S is Exti(Fs,Gs). Since S is affine, H0(Ext1
pr(F,G)) = Ext1(F,G). In

particular, at(F ) gives a global section of Ext1
pr(F,F ⊗G).

Proposition 8.13 (Kodaira–Spencer map via Atiyah class). In this situation, the Kodaira–Spencer map

KS∶TS → Ext1
pr(F,F )

is equal to

TS
−⊗at(F )
ÐÐÐÐÐ→ TS ⊗ Ext1

pr(F,F ⊗Ω1
S×Y )

pairing
ÐÐÐÐ→ Ext1

pr(F,F ).
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8.1 Closed forms on moduli of sheaves

Let M be some moduli space of sheaves on Y . Recall from deformation theory that the tangent space at
[F ] ∈M is Ext1(F,F ). The obstruction map is squaring to Ext2(F,F ). In particular, at a smooth point
[F ] ∈M, the product

Ext1(F,F ) ×Ext1(F,F )→ Ext2(F,F )

is skew-symmetric. Recall that having a 2-form on the smooth locus onM means that for any smooth affine
base S, a family F on S × Y has a 2-form.

Definition 8.14 (Construction). Let Y be smooth projective. Fix an element ω ∈ Hr(Y,Ωr+2) and set
q ∶= n − r − 2. Given a family (S,F ), make a 2-form in the following way.

1. Use the Kodaira–Spencer map to get

TS,s × TS,s
KS×KS
ÐÐÐÐ→ Ext1(F,F ) ×Ext1(F,F ).

2. Multiply by atq(F ) to get

Ext1(F,F ) ×Ext1(F,F )→ Ext1(F,F ) ×Ext1(F,F ) ×Extq(F,F ⊗Ωq).

3. Take their product followed by the trace to get an element in Hq+2(Y,Ωq). Multiplying by ω gives an
element in Y n(Y,Ωn) ≅ C.

Theorem 8.15. This 2-form is closed, but may be degenerate.

Proof. Since we can write the Kodaira–Spencer map in terms of Atiyah classes, the 2-form may be described
as

TS × TS → TS × TS × Ext1
pr(F,F ⊗Ω1)×2 × Extqpr(F,F ⊗Ωq).

Taking traces and plugging in TS commute. So the whole 2-form is

TS × TS → TS × TS ×Extq+2(F,F ⊗Ωq)→ TS × TS ×Extq+2 ×Hr(Ωr+2)

followed by plugging in TS and taking a trace. So basically this operation is to look at atq+2(F ), take the
trace, and plug in two tangent vectors. We know

tr(atq+2(F )) ∈Hq+2(S × Y,Ωq+2
S×Y )

is closed. By Künneth formula,

Hq+2(S × Y,Ωq+2
S×Y ) =⊕H0(S,ΩjS)⊗H

q+2(Y,Ωq−jY )

because S is affine. All second components are d-closed from Hodge theory. Hence all first components
are d-closed as well. Multiplication by ω and integrating just picks one of the elements in H0(S,Ω2

S) from
atq+2(F ). It remains to check commutativity of some diagrams, which we omit.

Recall that if Y is a cubic fourfold, then D(Y ) = ⟨AY ,O,O(1),O(2)⟩. Pick ω ∈ H1,3(Y ). Then we have
the following theorem.

Theorem 8.16. IfM parameterizes sheaves only from AY , then the 2-form associated to ω is non-degenerate
on M everywhere.

Proof. Compare the recipe that we had with the recipe that uses Serre duality on AY .
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