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Chapter 1

Affine schemes and quasi-coherent
sheaves

1.1 Affine schemes and schemes

Definition 1.1.1. A locally ringed space is a pair (X,OX) consisting of a topological space X and a
sheaf of rings OX such that for all x ∈ X, the stalk OX,x is a local ring. A morphism of locally ringed
spaces (f, f#) : (X,OX)→ (Y,OY ) is a morphism of ringed spaces such that for all x ∈ X, the map of stalks
f#
x : OY,f(x) → OX,x is a local ring homomorphism, i.e. (f#

x )−1(mX,x) = mY,f(x). Let RS (resp. LRS) denote
the category of ringed spaces (resp. locally ringed spaces).

Definition 1.1.2. There is a global sections functor

Γ: LRS→ Rings

(X,OX) 7→ OX(X)

((f, f#) : (X,OX)→ (Y,OY )) 7→ (f# : OY (Y )→ OX(X)).

Example 1.1.3. Let (M, C∞) be a manifold M with the sheaf of smooth functions C∞. This is a lo-
cally ringed space because C∞x consists of all the germs vanishing at x ∈ M . The global sections functor
Γ(−,−) : LRSop → Rings has a left adjoint Spec: Rings→ LRSop, i.e.

MorLRS(X,Spec(A)) = MorRings(A,Γ(X,OX)).

We will prove this later. Yoneda’s lemma says this determines Spec(A) in LRS up to unique isomorphism.

Definition 1.1.4. Recall that points in the topological space SpecA are prime ideals p in the ring A. Given
f ∈ A, there is a standard open

D(f) := {p ∈ Spec(A) : f /∈ p}.

These form a basis for the topology. The structure sheaf O associated to SpecA obeys these “rules”:

1. O(D(f)) = Af ,

2. Op = Ap for all p ∈ SpecA,

3. if D(f) ⊂ D(g), then the restriction O(D(g))→ O(D(f)) commutes with the localizations O(D(f)) =
Af → Afg and O(D(g)) = Ag → Afg.

To construct O properly, we do one of the following:
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1. use the fact that given a topological space X and a basis B and a “sheaf F on B” (i.e. specified on and
satisfying the sheaf condition for open sets in B), there is a unique extension of F to a sheaf on X;

2. (Hartshorne) for an open U , set

O(U) := {(sx)x∈U : sx ∈ OX,x and ? holds}

where ? is the condition that U can be covered by opens V such that there exists a, b ∈ A such that
for every p ∈ V we have b /∈ p and sp = a/b in Ap.

Remark. Note that Ap = colimf∈A,f /∈pAf =: Op.

Lemma 1.1.5. Let X ∈ Ob(LRS) and f ∈ Γ(X,OX). Then

U = {x ∈ X : f does not vanish at x}

is open in X, and there exists a unique g ∈ OX(U) such that f |Ug = 1.

Proof. Since f does not vanish at x, it has an inverse in the stalk OX,x. But then it has an inverse in a
neighborhood of x. Hence U is open.

Theorem 1.1.6. Let X be a locally ringed space and A be a ring. Then the map

MorLRS(X,Spec(A))→ MorRings(A,Γ(X,OX)), (f, f#) 7→ (f# : A→ Γ(X,OX))

is a bijection of sets.

Proof. We will construct the corresponding (f, f#) given ϕ : A→ Γ(X,OX).

1. On points x ∈ X, let f(x) be the prime ideal p given by the inverse image of mx ∈ OX,x in the
composition

A
ϕ−→ Γ(X,OX)→ OX,x.

We must show such an f is continuous. If a ∈ A, then

f−1(D(a)) = {x ∈ X : ϕ(a) does not vanish at x}.

This set is open by the preceding lemma.

2. We also need to construct a map OSpecA(D(a))OX(f−1(D(a))). We know OSpecA(D(a)) = Aa. By
the preceding lemma, the universal property of localization is applicable to the diagram

Aa
?−−−−→ OX(f−1(D(a)))x x

A
ϕ−−−−→ Γ(X,OX),

giving the desired map.

There is more to check, but we will skip that.

Corollary 1.1.7. The category Rings of rings is anti-equivalent to the category of affine schemes, i.e. the
full subcategory of LRS consisting of objects isomorphic to SpecA for some ring A.

Definition 1.1.8. A scheme is a locally ringed space (X,OX) such that every x ∈ X has an open neigh-
borhood U such that (U,OX |U ) is an affine scheme. A morphism of schemes is a morphism of locally
ringed spaces. The category of schemes is denoted Sch, and the category of schemes over a fixed scheme S
is denoted Sch/S.
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Remark. Given a category C and a U ∈ Ob(C), the comma category C/U is the category whose objects are
arrows V → U for V ∈ C, and morphisms are morphisms V1 → V2 commuting with the arrows V1 → U and
V2 → U . So Sch/S is a comma category. If we write Sch/R for a ring R, we mean “schemes over SpecR.”
The scheme SpecZ is the final object in Sch, so Sch/Z ∼= Sch.

Lemma 1.1.9. If (X,OX) is a scheme and U ⊂ X is open, then (U,OU ) := (U,OX |U ) is a scheme.

Proof. Every point in X has an open neighborhood which is an affine scheme. Given x ∈ U , let V = SpecA
be its affine open neighborhood. Since V is affine, there exists a principal open D(a) around x in V that is
contained in U . So it suffices to show (D(a),OSpecA|D(f)) is an affine scheme. Well, D(a) ∼= Spec(Aa), and
it is straightforward to check the structure sheaves are isomorphic using the fact that (Af )g = Afg.

1.2 Quasi-coherent OX-modules

Definition 1.2.1. Let (X,OX) be a ringed space, and F be an OX -module. We say F is an OX -module
having:

Name of property every point has open nbhd U s.t.
locally generated by sections ∃

⊕
n∈I OU � F|U for some I

finite type ∃(OU )
⊕
n � F|U for some n

quasi-coherent ∃
⊕

j∈J OU →
⊕

i∈I OU → F|U → 0 exact

finite presentation ∃(OU )⊕m → (OU )⊕n → F|U → 0 exact
locally free ∃

⊕
i∈I OU ∼= F|U for some I

finite locally free ∃(OU )⊕n ∼= F|U for some n.

Warning: these notions may behave unexpectedly.

Remark. The direct sum
⊕

i Fi is the sheafification of the presheaf U 7→
⊕

i∈I Fi(U). (This sheafification
is only necessary for infinite index sets.) Alternatively, it is the coproduct, so

HomOX
(
⊕
i∈I
Fi,G) =

∏
i∈I

HomOX
(Fi,G).

Since HomOX
(OX ,F) = Γ(X,F), we can view, for example,

⊕
i∈I OU � F|U as a family of sections

si ∈ F(U).

Definition 1.2.2. Let U be an open in X, and j : U ↪→ X be the inclusion. Then the extension by zero
map j! : Ab(U)→ Ab(X) is given by

(j!F)x :=

{
Fx x ∈ U
0 otherwise.

Example 1.2.3. Let k be a field and n ≥ 1. Let X = Ank := Spec(k[x1, . . . , xn]). Let 0 ∈ X correspond to
(x1, . . . , xn). Let j : X \ {0} ↪→ X be the inclusion. Look at the extension by zero F = j!OX\{0}, so that

F(U) =

{
0 0 ∈ U
OX(U) 0 /∈ U.

The claim is that F is not locally generated by sections. The idea is that any section of F is 0 in any
neighborhood of 0, but F is not 0 when restricted to any neighborhood of 0.

Example 1.2.4. Let i : {0} ↪→ X be the inclusion. Then there is a short exact sequence

0→ j!(OX\{0})→ OX → i∗OX,0 → 0.
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We call the pushforward of a stalk, e.g. i∗OX,0, a skyscraper sheaf. (In general,

0→ j!j
−1G → G → i∗i

−1G → 0

is exact, and this often lets us do Noetherian induction.) The claim is that i∗OX,0 is of finite type, but not
quasi-coherent.

Theorem 1.2.5. Let A be a ring. Let M be an A-module. There exists a unique sheaf of OSpecA-modules

M̃ on SpecA together with a map M → Γ(SpecA, M̃) of A-modules characterized by each of the following
properties:

1. (construction) M̃(D(f)) = Mf (and when f = 1, this should be the given map) and M̃(D(f)) →
M̃(D(fg)) is the map Mf →Mfg;

2. (Yoneda) the map HomOSpecA
(M̃,F)→ HomA(M,Γ(SpecA,F)) is bijective for all OX-modules F ;

3. (Qcoh) M̃ is quasi-coherent and M → Γ(SpecA, M̃) is an isomorphism;

4. (Stalks) the map M → Γ(SpecA, M̃) induces isomorphisms Mp → (M̃)p for all p ∈ SpecA (the remark
below explains where this map comes from).

Remark. The map Γ(X,F) → Fp is a map from an A-module to an Ap-module. So there is a unique
factorization to Γ(X,F)p giving a canonically induced map Γ(X,F)p → Fp.

Corollary 1.2.6. Let X be a scheme, and F be a sheaf of OX-modules. The following are equivalent:

1. F is quasi-coherent;

2. there exists an affine open covering X =
⋃
i∈I Ui with Ui = SpecAi such that F|Ui

∼= M̃i for some
Ai-module Mi;

3. for any affine open U = SpecA ⊂ X, F|U ∼= M̃ for some A-module M .

Definition 1.2.7. Let Qcoh(OX) denote the category of quasi-coherent OX -modules.

Lemma 1.2.8. The functor ModA → Qcoh(OSpecA) given by M 7→ M̃ is an equivalence of categories, and

the functor ModA → Mod(OX) given by M 7→ M̃ is exact.

Remark. It is possible to have an abelian category and a full subcategory which is also abelian, but the
inclusion functor is not exact. For example, take the category of finitely generated modules over a DVR, and
the subcategory of torsion-free such modules. This is why it is important in this lemma to carefully specify
the targets of functors.

Proof. Taking stalks and localizing are exact.

Lemma 1.2.9. On a scheme X, the kernel and cokernel of a map of quasi-coherent sheaves are also quasi-
coherent.

Proof. We know now that quasi-coherence is a local property, so it is enough to show this for when X is affine.
By the equivalence of categories, the map M̃ → Ñ is actually φ̃ for some map φ : M → N of A-modules. By
exactness of ∼, we get

coker(φ̃) = ˜coker(φ), ker(φ̃) = k̃er(φ).

Remark. We have shown that if X is a scheme, then Qcoh(OX) is abelian and the inclusion Qcoh(OX) ↪→
Mod(OX) is exact.
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Lemma 1.2.10. Let X be a scheme. Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of OX-modules. If two of the three are quasi-coherent, so is the third.

Proof. We will assume F1 and F3 are quasi-coherent. Again, we may assume X = SpecA is affine. Set
Mi := Γ(X,Fi). So we get an exact sequence

0→M1 →M2 →M3 → · · ·

where · · · consists of higher cohomologies (since Γ is left-exact only). Apply ∼ to get

0 −−−−→ M̃1 −−−−→ M̃2 −−−−→ M̃3

∼=
y y ∼=

y
0 −−−−→ F1 −−−−→ F2 −−−−→ F3 −−−−→ 0

By the snake lemma, it is enough to show that M̃2 � M̃3. Take m ∈M2 and set

I := {f ∈ A : fm ∈ im(M2 →M3)},

which is an ideal of A. We want to show I = A, so it suffices to show for all p ∈ A prime, I 6⊂ p. Let x ∈ X
correspond to p. Since F2 � F3, there exists x ∈ U ⊂ X open such that m|U comes from s ∈ F2(U). We
can assume U ⊂ D(f) for f ∈ A and f /∈ p.

Claim: fN ∈ I for some N � 0. Let z ∈ V (f), and say z corresponds to the prime q ⊂ A. Then we can
find g ∈ A \ q and s′ ∈ F2(V (g)) lifting m|D(g). Set

m′ := s|D(fg) − s′|D(fg) ∈ F1(D(fg)) = (M1)fg.

By clearing the denominator, there exists n (which depends on g) such that m′1 := fnm′ is in (M1)g. Look
at fns on D(f) and fns′ +m′1 on D(g). These agree on D(f) ∩D(g) = D(fg) as sections of F2, so by the
sheaf condition they glue to give a section σ ∈ F2(D(f)∪D(g)) mapping to fnm ∈ F3(D(f)∪D(g)). (Just
check on both opens D(f) and D(g).) Since V (f) is quasi-compact, we can find g1, . . . , gm ∈ A such that
V (f) ⊂ D(g1)∪ · · · ∪D(gm), and there exists σj ∈ F2(D(f)∪D(gj)) mapping to fnm|D(f)∪D(gj) in F3 and
σj |D(f) = fns (independent of j).

Claim: fNσj satisfy the gluing condition for N � 0. Read the proof on the Stacks Project. But now we
are done.

Example 1.2.11. Qcoh(OSpecZ) = Ab.

Example 1.2.12. Let X := Spec k[x, y] where k is a field, and let 0 ∈ X be the point corresponding to
(x, y). Let U := X \ {0}, so that U = D(x) ∪D(y). Using the sheaf condition, we get

0 −−−−→ OX(U) −−−−→ OX(D(x))×OX(D(y)) −−−−→ OX(D(x) ∩D(y))∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ k[x, y] −−−−→ k[x, y, 1/x]× k[x, y, 1/y] −−−−→ k[x, y, 1/xy]

where the map OX(D(x))×OX(D(y))→ OX(D(x) ∩D(y)) is given by (s, t) 7→ s− t.
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1.3 Fiber products of schemes

Theorem 1.3.1. The category of schemes has all fiber products.

Proof. Johan: “do not read the proof of this!”

Remark. The category of schemes has a final object, so it has products and therefore all limits.

Lemma 1.3.2. If X → S ← Y are morphisms of affine schemes corresponding to ring maps A← R → B,
then X ×S Y is affine too, corresponding to A⊗R B (which is the pushout in the category of rings).

Proof. For any locally ringed space T , we have

MorLRS(T,X ×S Y ) = MorLRS(T,X)×MorLRS(T,S) MorLRS(T, Y )

= MorRings(A,OT (T ))×MorRings(R,OT (T )) MorRings(B,OT (T ))

= MorRings(A⊗R B,OT (T ))

= MorLRS(T, Spec(A⊗R B)).

By Yoneda’s lemma, X ×S Y = Spec(A⊗RB). (Since the category of schemes Sch is a full subcategory, this
works for schemes too.)

Lemma 1.3.3. Consider a fiber product diagram

X ×S Y
q−−−−→ Y

p

y g

y
X

f−−−−→ S

in Sch. If U ⊂ S, V ⊂ X, and W ⊂ Y are open such that f(V ) ⊂ U ⊃ g(W ), then

V ×U W = p−1(V ) ∩ q−1(W ).

Proof. We have

MorSch(T, p
−1(V ) ∩ q−1(W )) = {c : T → X ×S Y : (p ◦ c)(T ) ⊂ V, (q ◦ c)(T ) ⊂W}

= {(T a−→ X,T
b−→ Y ) : f ◦ a = g ◦ b, a(T ) ⊂ V, b(T ) ⊂W}

= MorSch(T, V )×MorSch(T,U) MorSch(T,W ).

Again we are done by Yoneda’s lemma.

Remark. Choose affine open covers

S =
⋃
i∈I

Ui, f−1(Ui) =
⋃
j∈Ji

Vj , g−1(Ui) =
⋃
k∈Ki

Wk.

Then we construct X ×S Y using affine fiber products:

X ×S Y =
⋃
i∈I

⋃
(j,k)∈Ji×Ki

= Vj ×Ui
Wk.

Corollary 1.3.4. If f : X → S is an open immersion and S′ → S is any morphism of schemes, then the
base change f ′ : X ′ → S′ is an open immersion. (Here X ′ := X ×S S′.)

Proof. Apply previous lemma.

Remark. This corollary is usually stated as “open immersions are preserved by arbitrary base change.”

Example 1.3.5. Let X be a scheme over R, i.e. X has a morphism to SpecR. Then XC means the “base
change to C” given by XC = X ×SpecR SpecC, viewed as a scheme over C.
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1.4 Quasi-compact morphisms

Definition 1.4.1. A morphism of schemes f : X → Y is quasi-compact (qc) if the underlying map of
topological spaces is quasi-compact, i.e. f−1(V ) is quasi-compact for all V ⊂ Y quasi-compact and open.

Lemma 1.4.2. Let f : X → Y be a morphism of schemes. TFAE:

1. f is qc;

2. f−1(V ) is qc for all V ⊂ Y affine open;

3. there exists an affine open covering Y =
⋃
i∈I Vi such that f−1(Vi) is qc for all i.

Proof. Let Y =
⋃
i∈I Vi. Let W ⊂ Y be qc open; we must show f−1(W ) is qc. We can find an affine open

covering W = W1 ∪ · · · ∪Wm such that for each 1 ≤ j ≤ m, there exists i ∈ I with Wj ⊂ Vi. Note that
f−1Wj = Wj ×Vi f

−1Vi by the previous lemma. Hence this has a finite affine open covering, i.e. is qc. Then
f−1W = f−1W1 ∪ · · · ∪ f−1Wm is qc.

Remark. This lemma shows that being qc is local on Y , i.e. it suffices to pick a point y ∈ Y and find a
quasi-compact open around y such that f−1(V ) is quasi-compact.

Lemma 1.4.3. Being qc is a property of morphisms which is preserved by arbitrary base change.

Lemma 1.4.4. Composition of qc morphisms is qc.

1.5 Separation axioms

Definition 1.5.1. Let f : X → S be a morphism of schemes. Let ∆X/S : X → X ×S X be the diagonal
morphism defined (uniquely) by pri ◦∆X = idX for i = 1, 2.

Definition 1.5.2. We say:

1. f is separated iff ∆X/S is a closed immersion;

2. f is quasi-separated (qs) iff ∆X/S is qc.

Lemma 1.5.3. TFAE:

1. f is quasi-separated;

2. for all U ⊂ S affine open and V,W ⊂ X affine open with f(V ) ⊂ U ⊃ f(W ), the intersection V ∩W
is qc;

3. something about open covers (literally what Johan wrote).

Proof. We have X ×S X =
⋃
U,V,W V ×U W , and

∆−1
X/S(V ×U W ) = V ∩W.

So by the lemma characterizing qc morphisms, (1) and (2) are equivalent.
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1.6 Functoriality of quasi-coherent modules

For this section, let ϕ : A → B be a ring map and f : X = Spec(A) → Y = Spec(B) be the induced map.
Let ModB → ModA given by N 7→ NA, where NA is N thought of as an A-module using ϕ.

Lemma 1.6.1. f∗(Ñ) = ÑA.

Proof. Compute that

f∗(Ñ)(D(a)) = Ñ(f−1D(a)) = Ñ(D(ϕ(a))) = Nϕ(a) = (NA)a.

Lemma 1.6.2. f∗(M̃) = ˜B ⊗AM .

Proof. Take G an OY -module. Then

HomOY
(f∗(M̃),G) = HomOX

(M̃, f∗G) = HomModA(M,Γ(X, f∗G))

= HomA(M,G(Y )A) = HomB(B ⊗AM,G(Y ))

= HomOY
( ˜B ⊗AM,G).

Corollary 1.6.3. For any morphism of schemes f : X → Y , the pullback f∗ preserves quasi-coherence.

Example 1.6.4. Warning: this is not true for f∗. Take X :=
∐
n∈Z A1

k

f−→ A1
k =: Y . Then F := f∗OX is

not quasi-coherent, because

F(A1
k) =

∏
n∈Z

k[x], F(D(x)) =
∏
n∈Z

k[x, 1/x],

and it is not true that
∏
n∈Z k[x, 1/x] is the localization of

∏
n∈Z k[x] at x. For example, the element

(1/x, 1/x2, 1/x3, . . .) is not in the localization.

Proposition 1.6.5. For a qcqs morphism of schemes f : X → Y , the pushforward f∗ preserves quasi-
coherence.

Proof. Let F ∈ Qcoh(OX). It suffices to show f∗F is quasi-coherent on an affine open covering. (We
generally just say “we may assume Y is affine.”) Note that:

1. f is qc implies X =
⋃n
i=1 Ui with Ui affine open;

2. f is qs implies Ui ∩ Uj =
⋃nij

k=1 Uijk with Uijk affine open.

Let V ⊂ Y be open. Then the sheaf condition for F says

0→ (f∗F)(V ) = F(f−1V )→
n⊕
i=1

F(f−1V ∩ Ui)→
⊕
i≤j

⊕
k

F(f−1V ∩ Uijk).

This is true for all V , and maps are compatible with restrictions. Write fijk := f |Uijk
. Then

0→ f∗F →
n⊕
i=1

fi∗(F|Ui
)→

⊕
i≤j,k

fijk∗(F|Uijk
).

Pushforward on affine schemes and direct sum preserve quasi-coherence, so these last two terms are quasi-
coherent. Now f∗F is the kernel of a map between quasi-coherent sheaves, and is therefore quasi-coherent.

Lemma 1.6.6. Let X be a scheme. Then Qcoh(OX) has arbitrary direct sums (and arbitrary colimits), and
they are the same as in Mod(OX).
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Lemma 1.6.7. If f : X → Y is qcqs, then f∗ : Qcoh(OX)→ Qcoh(OY ) commutes with arbitrary direct sums
(and arbitrary colimits).

Definition 1.6.8. A scheme X is quasi-affine iff it is qc and isomorphic to an open subscheme of an affine
scheme.

Lemma 1.6.9. Let X be a scheme. Let f1, . . . , fn ∈ Γ(X,OX). Assume that:

1. Ui := Xfi := {x ∈ X : fi does not vanish at x} is affine;

2. X =
⋃n
i=1 Ui.

Then X is quasi-affine.

Proof. Set A = Γ(X,OX). Consider the canonical map c : X → SpecA =: S. Then:

1. c is qc because X has a finite open cover such that c|Ui
: Ui → S is qc;

2. c is qs because X has an affine open cover such that Ui∩Uj = Ui∩Xfj = (Ui)fj |Ui
, which is a principal

open of the affine Ui.

Hence c∗OX ∈ Qcoh(OS), i.e.

c∗OX = ˜Γ(S, c∗OX) and Γ(S, c∗OX) = Γ(X,OX) = A.

Hence c∗OX = OS . Now Ui = SpecBi where

Bi = Γ(Ui,OUi) = OX(c−1(D(fi))) = (c∗OX)(D(fi)) = OS(D(fi)) = Afi .

So Ui = Spec(Afi)→ S = Spec(A) is an open immersion, Then c is an isomorphism

X →
n⋃
i=1

D(fi) ⊂ S.

Lemma 1.6.10. Let X be a scheme. Let f1, . . . , fn ∈ Γ(X,OX). If Xfi is affine and f1, . . . , fn generate
the unit ideal in Γ(X,OX), then X is affine.

Proof. The first (resp. second) condition here implies condition (1) (resp. condition (2)) in the previous
lemma. So X is quasi-affine with X →

⋃n
i=1D(fi) ⊂ S. But with these stronger hypotheses,

⋃n
i=1D(fi) =

SpecA, hence X ∼= SpecA.

Definition 1.6.11. A morphism f : X → Y of schemes is affine iff f−1(V ) is affine for all V ⊂ Y affine
open.

Lemma 1.6.12. Let f : X → Y be a morphism of schemes. TFAE:

1. f is affine;

2. there exists an affine open cover Y =
⋃
j Vj such that f−1Vj is affine for every j.

Proof. Look up the “affine communication lemma” in Vakil’s notes to reduce the statement to:

Given Y = SpecB =
⋃m
j=1D(bj) with f−1(D(bj)) affine, show that X is affine.

Now apply the previous lemma with fj := f#(bj).

Definition 1.6.13. Let f : X → Y be a morphism of schemes. Then we say:
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1. f is a closed immersion iff f is affine and for all V ⊂ Y affine open, OY (V ) → OX(f−1V ) is
surjective;

2. f is finite iff in addition, OY (V )→ OX(f−1V ) is a finite ring map.

Example 1.6.14. A standard example of a closed immersion is Spec(A/I)→ Spec(A). A standard example
of a finite morphism is Spec(B)→ Spec(A) where B is finite an A-module.

Lemma 1.6.15. Compositions and base change of affine (resp. finite, or closed immersions) morphisms
are affine (resp. finite, or closed immersions).
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Chapter 2

Sheaf cohomology

2.1 Preliminaries

Definition 2.1.1. An abelian category A is an additive category where there are kernels and cokernels,
and coim = im. An object I ∈ Ob(A) is injective if given a mono N → M , any map N → I extends to a
map M → I. An object is projective if the dual diagram holds. We say A has enough injectives (resp.
has enough projectives) if every object M has a mono M ↪→ I into an injective object (resp. every object
M has an epi M � I into a projective object).

Example 2.1.2. Let R be a ring and take A = ModR. Then there are enough projectives because every
free module is projective. Similarly, there are enough injectives because for an R-module F , the R-module
HomZ(F,Q/Z) is injective.

Example 2.1.3. Let (X,OX) be a ringed space and take A = Mod(OX). Then there are enough injectives.
One example of an injective is

∏
x∈X ix∗(Ix), where Ix is an injective OX,x-module, for the immersion

ix : ({x},OX,x)→ (X,OX). Warning: Mod(OX) does not have enough projectives in general.

Definition 2.1.4. Given an object M ∈ Ob(A), an injective resolution is an exact complex

0→M → I0 → I1 → I2 → · · ·

with In an injective object for all n. We will think of this as a map of complexes M → I•. A projective
resolution is an exact complex

· · · → P−2 → P−1 → P 0 →M → 0

with Pn a projective object for all n. We will think of this as a map of complexes P • →M .

Definition 2.1.5. The n-th cohomology of a complex K• is

Hn(K•) :=
ker(Kn dnK−−→ Kn+1)

im(Kn−1
dn−1
K−−−→ Kn)

.

Definition 2.1.6. A map of complexes α : K• → L• is a collection of maps αn : Kn → Ln such that each
square in

· · · −−−−→ Kn−1 −−−−→ Kn −−−−→ Kn+1 −−−−→ · · ·

αn−1

y αn

y αn+1

y
· · · −−−−→ Kn−1 −−−−→ Kn −−−−→ Kn+1 −−−−→ · · ·

We say α is a quasi-isomorphism (qis) if for all n, the induced map Hn(α) : Hn(K•) → Hn(L•) is an
isomorphism.
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Remark. If the original abelian category A is abelian, the category of complexes of objects in A is still
abelian. Short exact sequences therefore still give rise to long exact sequences of cohomology.

Definition 2.1.7. Two maps α, β : K• → L• are homotopic iff there exist hn : Kn → Ln−1 such that

(αn − βn) = dn−1
L ◦ hn + hn+1 ◦ dnK .

A map of complexes is nil-homotopic if it is homotopic to 0. Homotopic maps define the same map on
cohomology.

Lemma 2.1.8. If A has enough injectives, then injective resolutions exist and are functorial up to homotopy.
In other words, given ϕ : M → N and injective resolutions M → I• and N → J•, then there is an arrow
I• → J•, unique up to homotopy, making the following diagram commute:

M −−−−→ I•

ϕ

y y
N −−−−→ J•.

The dual statement holds for projective resolutions.

2.2 Derived functors

Definition 2.2.1. Let A,B be abelian categories and let F : A → B be an additive functor between them.

1. If A has enough injectives, define the n-th right derived functor of F by

RnF (M) := Hn(F (I•))

where M → I• is an injective resolution.

2. If A has enough projectives, define the n-th left derived functor of F by

L−nF (M) := H−n(F (P •))

where P • →M is a projective resolution.

RnF,LnF : A → B are well-defined functors.

Lemma 2.2.2. Given a short exact sequence 0 → M1 → M2 → M3 → 0 of A and injective resolutions
M1 → I•1 and M3 → I•3 , there exists a commutative diagram

0 −−−−→ M1 −−−−→ M2 −−−−→ M3 −−−−→ 0y y y y y
0 −−−−→ I•1 −−−−→ I•2 −−−−→ I•3 −−−−→ 0

such that M2 → I•2 is also an injective resolution, and 0→ In1 → In2 → In3 → 0 are short exact sequences (of
injective objects, and therefore split) for all n.

Remark. Note that F (I•1 ) → F (I•2 ) → F (I•3 ) is term-wise split (because we can take F of the splitting).
Hence in particular, this is a short exact sequence of complexes of B.

Corollary 2.2.3. In the situation of the lemma, there exists a long exact cohomology sequence

0→ R0F (M1)→ R0F (M2)→ R0F (M3)
δ−→ R1F (M1)→ R1F (M2)→ R1F (M3)

δ−→ R2F (M1)→ · · · .

The boundary maps δ : RnF (M3)→ Rn+1F (M1) are well-defined.
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Remark. F = R0F if F is left exact, and F = L0F if F is right exact. This is because left exact functors
will give an exact sequence

0→ F (M)→ F (I0)→ F (I1)→ · · ·

but R0F (M) = ker(F (I0)→ F (I1)) = F (M) by exactness.

Example 2.2.4. Some common derived functors:

Functor R/L Derived functor

HomR(−, N) : ModR → Modop
R L ExtiR(−, N)

M ⊗R − : ModR → ModR L TorRi (M,−)
Γ(X,−) : Mod(OX)→ ModΓ(X,OX) R Hi(X,−)
Γ(U,−) : Mod(OX)→ ModΓ(U,OX) R Hi(U,−)

f∗ : Mod(OX)→ Mod(OY ) R Rif∗
HomX(F ,−) : Mod(OX)→ ModΓ(X,OX) R ExtiX(F ,−)

HomX(F ,−) : Mod(OX)→ Mod(OX) R Ext iX(F ,−).

Remark. We need a good way to compare different ways of computing cohomology. For example, is
ToriR(M,N)

(L−i(M ⊗R −))(N) or (L−i(−⊗R N))(M)?

Example 2.2.5. Let Psh(Ab) (resp. Sh(Ab)) be the category of abelian sheaves (resp. abelian presheaves).
Let i : Sh(Ab)→ Psh(Ab) be the forgetful functor. This is left exact but not right exact. We have

Rni(F)(U) =
ker(iIn(U)→ iIn+1(U))

im(iIn−1(U)→ iIn(U))
= Hn(U,F)

because in Psh(Ab), the sections-over-U functor is exact. Hence Rni(F) is the “n-th cohomology presheaf.”
After sheafification, it will become 0.

2.3 Spectral sequences

Disclaimer: this section is probably typo-ridden. Check all indices yourself before using anything from
here!

Definition 2.3.1. A double complex of an abelian category A is a bigraded object A•,• with differentials
dp,q1 : Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1. Then there is an associated total complex

Totn(A) :=
⊕
p+q=n

Ap,q, d :=
∑

p+q=n

dp,q1 + (−1)pdp,q2 .

(The sign is so that d2 = 0.) Our goal is to compute Hn(Tot•(A)).

Remark. The direct sum totalization is not the same as the product totalization, but from now on we will
always assume A•,• lies in the first quadrant.

Definition 2.3.2. Let ξ ∈ H2(Tot(A)) be the class of (x0,2, x1,1, x2,0). This is an example of what we will call
a zig-zag. We can modify a zig-zag by adding elements of the form d2(yp,q−1)+d1(xp−1,q) (but note that each
element we add affects two elements of the zig-zag). So Hn(Tot•(A)) = {zig-zags}/{allowed modifications}.
Define two filtrations

F qIH
• := {zig-zags represented by (x0,n, . . . , xn,0) : xi,j = 0 ∀j < q}

F pIIH
• := {zig-zags represented by (x0,n, . . . , xn,0) : xi,j = 0 ∀i < p}.
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There are two important cases:

FnI H
n =

{x ∈ A0,n : d1(x) = d2(x) = 0}
{d2(y) : y ∈ A0,n−1, d1(y) = 0}

= Hn((V m := ker(A0,m d1−→ A1,m), d2))

FnIIH
n = Hn((Um := ker(Am,0

d2−→ Am,1), d1)).

We get maps of complexes V • → Tot•(A) ← U•. Trivially, if FnI H
n = Hn (resp. FnIIH

n = Hn), then
V • → Tot•(A) (resp. U• → Tot•(A)) is a qis. There are two types of partial zig-zags of length r at
(p, q):

1. (type I) for r = 0, they are elements xp,q ∈ Ap,q; for r = 1, they are elements xp,q ∈ Ap,q such that

d1(xp,q) = 0; for r = 2, they are elements xp−1,q+1 d1−→ same← xp,q
d1−→ 0; we continue analogously as

follows:
xp−r+1,q+r−1 −−−−→ samex

. . . −−−−→ samex
xp,q −−−−→ 0;

2. (type II) they are elements

0x
xp,q −−−−→ samex

. . . −−−−→ samex
xp+r−1,q−r+1.

The (p,q)-spot in the r-th page of the first spectral sequence is

IE
p,q
r :=

IZ
p,q
r

IB
p,q
r
,

where IZ
p,q
r is the set of heads xp,q of partial zig-zags of type I of length r. Similarly, define the second

spectral sequence IIE
p,q
r . Define the differentials

Id
p,q
r : IE

p,q
r → IE

p−r+1,q+r
r

IId
p,q
r : IIE

p,q
r → IIE

p+r,q−r+1
r

Facts: Id
2
r = IId

2
r = 0, and

IE
p,q
r+1 = cohomology of Idr at Ep,qr .

Furthermore, GrpFI
(Hn(Tot)) = Ep,qr for r ≥ n. Analogous facts hold for type II. Define

IB
p,q
0 := 0, IB

p,q
1 := im(d1 : IE

p−1,q
1 → IE

p,q
1 ) = im(Id

p−1,q
0 ), . . . .
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Example 2.3.3. We do some examples for small r.

1. (r = 0) Here IE
p,q
0 = Ap,q = IIE

p,q
0 .

2. (r = 1) Here IE
p,q
1 is the cohomology of d1 at (p, q), and IIE

p,q
1 is the cohomology of d2 at (p, q). Note

that if rows are exact except in degree 0, then V • → Tot(A•,•) is qis. (Similarly, if columns are exact
except in degree 0, then U• → Tot(A•,•) is qis.)

Remark. Assume Id
p,q
r (xp,q) = 0 in Ep−r+1,q+r

r . This implies by definition that d2(xp−r+1,q+r−1) =
d1(wp−r,q+r−1) + d2(yp−r+1,q+r−1) where yp−r+1,q+r−1 is the tail of a partial zig-zag. This allows us to
check that IE

p,q
r+1 is indeed the cohomology of IE

p,q
r using Idr, as claimed.

Example 2.3.4. Let R be a ring, M,N be R-modules, and P • → N be a projective resolution, and I• →M
be an inductive resolution. Take the double complex Ap,q := HomR(P−q, Ip), with induced differential. Since
P−q is projective, the rows HomR(P−q, I•) are exact except in degree 0, and

V • = ker(HomR(P−•, I0)→ HomR(P−•, I1)) = HomR(P−•, N).

Similarly, Hom(M, I•) = U•. Hence their cohomologies, which are Exts computed by different resolutions,
are isomorphic by the example above. In fact, this isomorphism is functorial, because the double complex
construction is functorial. Analogously, TorR(M,N) can be computed by resolving either variable.

Example 2.3.5. Let f : X → Y be a continuous map of compact topological manifolds. Then there is a
Leray spectral sequence

Ep,q2 = Hp(Y,Rqf∗Q)⇒ Hp+q(X,Q).

This may not degenerate, but, for example, taking cohomology does not change the Euler characteristic
(assuming bounded cohomological dimension). Hence this allows us to show χ(X) is made up of Euler
characteristics of certain sheaves Rqf∗Q on Y .

2.4 Čech cohomology

Definition 2.4.1. Let U = {Ui}ni=1 be an open covering of X and F be an abelian sheaf on X. Let
Ui0···ip := Ui0 ∩ · · · ∩ Uip . Then there is a Čech complex with terms

Čp(U ,F) :=
∏

i0<···<ip

F(Ui0···ip) 3 α = (αi0···ip)

and boundary map d : Čp → Čp+1

d(α)i0···ip+1
:=

p+1∑
j=0

(−1)jαi0···îj ···ip |Ui0···ip+1
.

The p-th Čech cohomology is Ȟp(U ,F) := Hp(Č•(U ,F)).

Remark. The natural category for which we define Čech cohomology is presheaves, since the only thing we
need are the restriction maps. Also, F is a sheaf implies F(X) = Ȟ0(U ,F). (It is not an if and only if
because we only took an open cover of X, instead of an arbitrary open set U .)

Remark. The problem with Čech cohomology is that a short exact sequence of (abelian) sheaves does not
give rise to a short exact sequence of Čech complexes. Also, refinement of open covers does not induce a
canonical map of Čech complexes, because there is a choice involved. So we cannot directly take a colimit
over open covers of Čech cohomology.

Lemma 2.4.2. If I is an injective abelian sheaf or OX-module, then Ȟp(U , I) = 0 for p > 0.
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Proof. Consider the complex of sheaves

K•U := · · · →
⊕
i0<i1

ji0i1!Z→
⊕
i0

ji0!Z

where ji0···ip : Ui0···ip → X is the inclusion. (Recall for j : U → X an inclusion, j! is left adjoint to j−1,

i.e. HomU (G,F|U ) = HomX(j!G,F) and (j!G)x = Gx for x ∈ U and is 0 otherwise.) Then Č•(U ,F) =
Hom(K•U ,F) by adjunction. It suffices to show K•U is exact and H0(K•U ) = Z. Since Hom is exact on
injectives, the Čech complex is exact and we are done.

To check K•U is exact, it suffices to check on stalks. Say x ∈ U1, . . . , Up but x /∈ Ui+1, . . . , Un. Then

(K•U )x : · · · →
⊕

1≤i0<i1≤p

Z→
⊕

i0=1,...,p

Z

is exact, by viewing it as a Koszul complex.

Theorem 2.4.3 (Čech to sheaf cohomology spectral sequence). For a sheaf F of OX-modules (or abelian
sheaf), there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))⇒ Hp+q(X,F)

where Hq(F) denotes the presheaf U 7→ Hq(U,F).

Proof. Choose an injective resolution F → I• and look at the double complex Ap,q := Cp(U , Iq). By the
lemma, the rows C•(U , Iq) are exact in positive degree, and in degree 0 we get Γ(X, Iq), so

Γ(X, I•)→ Tot(A•,•)

is a qis. By definition, Γ(X, I•) computes sheaf cohomology of F , and therefore so does Tot(A•,•). But the
columns are not exact, and so the (vertical) spectral sequence is

Ep,q1 =
∏

i0<···<ip

Hq(Ui0···ip ,F) = Cp(U , Hq(F))

Ep,q2 = Ȟp(U , Hq(F)).

Corollary 2.4.4. If Hq(Ui0···ip ,F) = 0 for all q > 0 and ik, then Hn(X,F) = Ȟn(U ,F).

Corollary 2.4.5. Let B be a collection of opens and Cov be a set of open coverings of opens of X. Assume:

1. if U ∈ Cov, then U : U =
⋃n
i=1 Ui and U,Ui, . . . , Ui0···ip ∈ B;

2. for U ∈ B, the coverings of U in Cov are cofinal;

3. Ȟp(U ,F) = 0 for p > 0 and U ∈ Cov.

Then Hp(U,F) = 0 for all U ∈ B and p > 0.

Lemma 2.4.6. Let X be affine and F be a quasi-coherent OX-module. Then Hn(X,F) = 0 for n > 0.

Proof. Let B be the collection of affine opens SpecA of X. Let Cov be the standard coverings
⋃m
i=1D(fi)

of affine opens SpecA of X. So to apply the previous corollary, it suffices to check Ȟp(U ,F) = 0. But
F|SpecA = M̃ for some A-module M , and therefore it suffices to show the complex

K• : 0→M →
∏
i0

Mfi0
→

∏
i0<i1

Mfi0fi1
→ · · · ,
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of A-modules is exact in positive degree. It is enough to show exactness after localizing at some prime p, i.e.
if fq is a unit for some q. We will show K• is homotopic to 0. The homotopy is defined by

h : Kp+1 → Kp, h(s)i0···ip :=

{
s1i0···ip 1 < i0

0 otherwise.

This definition makes sense because Mf1fi0 ···fip = Mfi0 ···fip when f1 is a unit. Now compute (dh +
hd)(s)i0···ip = si0···ip , and we are done.

Corollary 2.4.7. If X is a scheme which has a finite affine open cover X =
⋃n
i=1 Ui such that Ui0···ip is

affine for all p, then Ȟn(U ,F) = Hn(X,F) for all F quasi-coherent.

Remark. For a separated scheme, the intersection of affines is affine. However there are interesting non-
separated schemes where the intersection can still be affine.

2.5 Cohomology of projective space

Johan: “this is the most important calculation in algebraic geometry.”

Theorem 2.5.1. Let A be a ring. Then

Hp(PnA,OPn
A

(d)) =


A[T0, . . . , Tn]d p = 0

0 p 6= 0, n

Ed p = n

where E = A[T0, . . . , Tn][1/T0 · · ·Tn]/
∑
iA[T0, . . . , Tn][1/T0 · · · T̂i · · ·Tn] is a graded module.

Proof. We have PnA = D+(T0) ∪ · · · ∪ D+(Tn), and the intersection of two D+s is another D+, so all
intersections are affine. Let U be this covering. So Hp(PnA,O(d)) = Hp(Č•(U ,O(d))). Call the Čech complex
Č•. Recall that O(d) = A[T0, . . . , Tn](d)∼. Unwinding definitions,

Č•d :

(∏
i0

A[T0, . . . , Tn][1/Ti0 ]

)
d

→
∏
i0<i1

(
A[T0, . . . , Tn][1/Ti0Ti1 ]

)
d

→ · · · .

Now we do a trick from Hartshorne: take the direct sum over all d. Set

K• :=
⊕
d∈Z
Č•d :

∏
i0

A[T0, . . . , Td][1/Ti0 ]→
∏
i0<i1

A[T0, . . . , Td][1/Ti0Ti1 ]→ · · ·

where all the maps are the obvious ones and commute with the Zn+1-grading. It is clear that

H0(K•) = A[T0, . . . , Tn], Hn(K•) = E.

It suffices now to show Hi(K•) = 0 for 0 < i < n. We do this by induction on n. Consider the short exact
sequence

0→ K•
Tn−−→ K• → K•/TnK

• → 0.

Note that K•/TnK
• is exactly K• for n− 1. By induction we know its cohomology. So we want to show

0→ H0(K•)
Tn−−→ H0(K•)→ H0(K•/TnK

•)→ 0, 0→ Hn−1(K•/TnK
•)→ Hn(K•)

Tn−−→ Hn(K•)→ 0
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are exact. For example, take 1/T0 · · ·Tn−1 in Hn−1(K•/TnK
•). Via the boundary map, it becomes

1/T0 · · ·Tn ∈ Hn(K•), by tracing out the snake lemma:

Kn−1 −−−−→ Kn−1/TnK
n−1

∂

y
Kn Tn−−−−→ Kn

and noting that the boundary ∂ leaves the term unchanged. Conclusion: Hi(K•)
Tn−−→ Hi(K•) is an isomor-

phism for i 6= 0, n. Think of Hi(K•) as a module over A[T0, . . . , Tn]. Hence Hi(K•) ∼= Hi(K•)Tn . Localiza-
tion is exact, so this is also Hi((K•)Tn). But (K•)Tn is the Čech complex for O on SpecA[T0, . . . , Tn][1/Tn]
covered by D(T0), . . . , D(Tn), which we have seen is exact because it is a quasi-coherent sheaf over an affine
scheme.

2.6 Coherent OX-modules

Definition 2.6.1. Let f : X → Y be a morphism of schemes.

1. If Y is affine, we say X is projective over Y iff there exists n ≥ 0 and a closed immersion X → PnY
over Y .

2. We say f is locally projective iff for all V ⊂ Y affine open, f−1(V ) is projective over V .

Lemma 2.6.2. If a : W → Z is an affine morphism of schemes, then Hn(W,F) = Hn(Z, a∗F) for any
F ∈ Qcoh(OW ).

Proof. Show that Rpa∗F = 0 for p > 0. Then conclude immediately by the Leray spectral sequence
Ep,q2 = Hp(Y,Rqa∗F) ⇒ Hp+q(X,F). Recall that Rpa∗F is the sheaf associated to the presheaf V 7→
Hp(a−1V,F|a1V ). But since a is affine, we can pick V such that a−1V is affine, so that stalks of Rpa∗F are
0.

Example 2.6.3. If X = Spec k, we have Mod(OX) = Qcoh(OX) = Vectk. But an interesting subcategory
is the subcategory of finite-dimensional vector spaces, and this corresponds to Coh(OX), the category of
coherent OX -modules.

Definition 2.6.4. A scheme X is locally Noetherian iff every affine open is of the form SpecA for A
Noetherian. Equivalently, there exists an affine open cover by spectra of Noetherian rings.

Lemma 2.6.5. Let X be a locally Noetherian scheme. Let F be a OX-module. TFAE:

1. F is coherent;

2. F is quasi-coherent and for any affine open U = SpecA, we have F|U = M̃ where M is a finite
A-module;

3. F is quasi-coherent and there exists an affine open cover X =
⋃
i Ui such that F|Ui

= M̃i with Mi a
finite OX(Ui)-module.

Definition 2.6.6. The category of coherent OX -modules is denoted Coh(OX), and is a full subcategory of
Qcoh(OX), which in turn is a full subcategory of Mod(OX).

Theorem 2.6.7. Let f : X → Y be a proper morphism (e.g. locally projective) of schemes with Y (and
therefore X, by finite type) locally Noetherian. Then

(F ∈ Coh(OX)) =⇒ (Rpf∗F ∈ Coh(OY )) .

Example 2.6.8. For example, let Y = Spec k for k a field. Let F on Pnk be coherent. Then dimkH
p(Pnk ,F) <

∞, because Hp is the pushforward Rpf∗F for f : Pnk → Y .
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2.7 Cohomology of coherent sheaves on Proj

Definition 2.7.1. Let (X,OX) be a locally ringed space. An invertible OX-module is an OX -module L
which is locally free of rank 1. Equivalently, the functor −⊗OX

L : Mod(OX)→ Mod(OX) is an equivalence
of categories. The set of isomorphism classes of invertible OX -modules is denoted PicX, called the Picard
group, and is an abelian group under the group law (L,N ) 7→ L ⊗OX

N . An invertible OX -module is
trivial if it is isomorphic to OX .

Let A be a graded ring, and X = ProjA. Let OX(d) = Ã(d). Shorthand: write F(d) := F ⊗OX
OX(d).

Lemma 2.7.2. If A is generated in degree 1 over degree 0, then OX(d) is invertible and OX(d)⊗OX
OX(e) =

OX(d+ e).

Remark. In general, there is a map OX(d)⊗OX
OX(e)→ OX(d+ e), but it is not always an isomorphism.

Proof. Write X =
⋃
f∈A1

D+(f), so it suffices to restrict to D+(f). Recall that OX(d)|D+(f) = A(d)f =

(Af )d as A(f)-modules, and there exists an isomorphism of A(f)-modules (Af )0
∼= (Af )d given by x 7→ fdx.

(This is because f ∈ A1 and is invertible.) This map is compatible with tensor product.

Lemma 2.7.3. If A+ is finitely generated as an ideal, then the functor M 7→ M̃ from graded A-modules to
Qcoh(OX) is essentially surjective.

Proof sketch. Key fact: given F ∈ Qcoh(OX), taking M =
⊕

d≥0 Γ(X,F(d)) gives a graded A-module such

that there is a canonical map M̃ → F which is an isomorphism. The A-module structure on M comes from
the composition

Ad × Γ(X,F(e))→ Γ(X,OX(d))× Γ(X,F(e))→ Γ(X,F(e)⊗OX
OX(d))→ Γ(X,F(d+ e)).

The proof of this fact goes by showing F(D+(f)) = M(f), with this choice of M . This in turn is very similar
to the same statement for quasi-coherents on affines.

Lemma 2.7.4. If A+ is a finitely generated ideal and F ∈ Qcoh(X) is of finite type, then there exists r ≥ 0
and integers d1, . . . , dr ∈ Z and a surjection

⊕r
j=1OX(dj) � F .

Proof. Write F = M̃ by the previous lemma. Then F finite type and X quasi-compact implies there exists
N ⊂M a finite graded A-module such that Ñ = F . Now take a surjection

⊕r
j=1A(dj) � N .

Theorem 2.7.5. Let A0 be a Noetherian ring, A := A0[T0, . . . , Tn], and let X := PnA0
:= ProjA. Take a

coherent sheaf F ∈ Coh(OX). Then:

1. Hi(X,F) is a finite A0-module;

2. Hi(X,F(d)) = 0 for i > 0 when d� 0;

3. Hi(X,F(d)) = 0 for i ≥ n+ 1 and all d;

4.
⊕

d≥0H
0(X,F(d)) is a finite graded A-module.

Proof. (3) is clear by Čech cohomology. In particular, (3) implies (1) and (2) hold for i ≥ n+ 1. We induct
downward on i. Choose a short exact sequence

0→ G →
r⊕
j=1

OX(dj)→ F → 0.

The kernel of a map of coherent sheaves is coherent. Twist the sequence by d:

0→ G(d)→
r⊕
j=1

OX(dj + d)→ F(d)→ 0.
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By the cohomology computation over PnA previously, statements (1) and (2) are true for the middle term.
The long exact sequence is

→ · · · → Hi(
⊕
OX(dj + d))→ Hi(F(d))→ Hi+1(G(d))→ · · · .

The induction hypothesis says Hi+1(G(d)) is finite, so Hi(F(d)) is finite too. Similarly, the first and last
term vanish for d� 0, so does the middle one. Finally, for (4), combine (1) and (2) to show H0(X,F(d)) is
finite for d� 0, and only finitely many modules remain, so the entire sum is a finite graded A-module.

Theorem 2.7.6. If A is a Noetherian graded ring generated by A1 over A0, then the theorem above holds
for X = ProjA too.

Proof. Choose a surjection B := A0[T0, . . . , Tn] � A, which gives an embedding ProjA
i
↪−→ PnB . Then we

have Hi(ProjA,F) = Hi(PnB , i∗F), and the previous theorem applies.

Remark. We showed earlier that M 7→ M̃ has a right inverse F 7→
⊕

d≥0 Γ(X,F(d)). This is also a left
inverse once we take into account torsion modules, which get killed. In other words,

GrModfg(A0[T0, . . . , Tn])/torsion modules ∼= Coh(OPn
A0

)

where GrModfg means finitely generated graded modules. (For example, Mod(k[x])/tors ∼= Mod(k(x)) ∼=
Vect(k(x)).)

2.8 Higher direct images

Lemma 2.8.1 (Induction principle). Let P be a property of qcqs schemes. Assume

1. P holds for affine schemes, and

2. if X = U ∪ V with X,U, V, U ∩ V qcqs and U affine and P holds for U, V, U ∩ V , then P holds for X.

Then P holds for all qcqs schemes.

Proof. In this proof, all schemes are qcqs. Write P(X) to mean “P holds for X.” We first show P holds
for all separated X by induction on t(X), the minimal number of affines needed to cover X. Base case:
if t(X) = 0, 1, this is obvious. For the induction step, write X = U ∪ V with U affine and t(V ) < t(X).
Suppose V = V1 ∪ · · · ∪ Vt(V ) is an affine open cover. Then U ∩ V = (U ∩ V1) ∩ · · · ∩ (U ∩ Vt(V )), and since
X is separated, this is an affine open cover. Clearly t(U ∩ V ) ≤ t(V ). By the induction hypothesis, we have
the properties P(U),P(V ),P(U ∩ V ). Hence we get P(X).

Now we show P holds for all X (not necessarily separated) by induction on t(X) again. Write X = U ∪V
with U affine and t(V ) < t(X). Then U ∩ V ⊂ U is open, and hence is separated. Hence we get P(U) by
the affine case, P(V ) by induction, and P(U ∩ V ) by the separated case. Again we get P(X).

Proposition 2.8.2. Let f : X → Y be a qcqs morphism of schemes. Then Rif∗ sends Qcoh(OX) into
Qcoh(OY ).

Proof. The question is local on Y and so we may assume Y is affine. We will apply the induction principle
with the property P(X) given by “the proposition holds for f : X → Y with Y affine.” We check the
necessary properties.

1. If X is affine, then f : X → Y is affine and therefore Rif∗F = 0 ∈ Qcoh(OY ) for F ∈ Qcoh(OX) and
i > 0.
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2. If X = U ∪ V , then let a := f |U and b := f |V and c := f |U∩V . Then Mayer–Vietoris gives a long exact
sequence

0→ f∗(F)→ a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗(F)→ R1a∗(F|U )⊕R1b∗(F|V )→ · · · .

This long exact sequence gives short exact sequences

0→ coker(Ri−1a∗ ⊕Ri−1b∗ → Ric∗)→ Rif∗ → ker(Ria∗ ⊕Rib∗ → Ric∗)→ 0,

but Qcoh is closed under ker and coker and extensions, so Rif∗(F) ∈ Qcoh(OY ).

Corollary 2.8.3. Suppose f : X → Y is qcqs, Y affine, and F ∈ Qcoh(OX). Then

1. Hi(X,F) = H0(Y,Rif∗F), and

2. Rif∗F = ˜Hi(X,F).

Proof. Statement (2) is a consequence of the proposition and statement (1), so it suffices to prove (1). Use
the Leray spectral sequence Ep,q2 = Hp(Y,Rqf∗F) ⇒ Hp+q(X,F). By the proposition, Rqf∗F are quasi-
coherent, and by hypothesis Y is affine. So there is only one non-zero column in Ep,q2 and the spectral
sequence degenerates to give (1).

Corollary 2.8.4. If f : X → Y is locally projective and Y is locally Noetherian and F ∈ Coh(OX). Then
Rif∗F ∈ Coh(OY ).

Proof. Being coherent is a local property, so there is an immediate reduction Y = Spec(A0), where A0 is

a Noetherian ring, and X
i
↪−→ PnA0

is a closed immersion. Then Rif∗F = ˜Hi(X,F), so it suffices to show

Hi(X,F) is a finite A0-module. This is true because Hi(X,F) = Hi(PnA0
, i∗F), which is finite as the

cohomology of a coherent sheaf over Proj. (Pushforwards of coherents along closed immersions are coherent,
and this is easy to prove.)

Example 2.8.5. Take P1
k. Let F =

⊕
n∈ZO ⊕

⊕
n∈ZO(−2). Fact: if X is qcqs, then Hi(X,−) commutes

with all direct sums. Then dimH0(P1
k,F) = dimH1(P1

k,F) = ∞. So the above results do not hold for
quasi-coherent sheaves.

Definition 2.8.6. Let X be proper over a field k. If F ∈ Coh(OX), then the Euler characteristic of F is

χ(X,F) =

dimX∑
i=0

(−1)i dimkH
i(X,F).

Lemma 2.8.7. On Pnk , the function d 7→ χ(Pnk ,F(d)) is a numerical polynomial.

Proof sketch. We induct on dim suppF . Pick s ∈ Γ(Pnk ,O(1)) cutting suppF by a hyperplane. Then

F s−→ F(1) has a kernel K and cokernel Q that are both coherent, and have lower dimension. By induction,
we get d 7→ χ(Pn,K(d)) and d 7→ χ(Pn,Q(d)) are numerical polynomials. By the additivity of χ(Pn,−), we
get

0 = χ(Pn,K(d))− χ(Pn,F(d)) + χ(Pn,F(d+ 1))− χ(Pn,Q(d)).

Hence d 7→ χ(Pn,F(d)) is a numerical polynomial.

Corollary 2.8.8. The function d 7→ dimH0(Pnk ,F(d)) is a numerical polynomial.

Proof. By vanishing, dimH0(Pnk ,F(d)) = χ(Pnk ,F(d)) for d� 0.
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2.9 Serre duality

Let A be a Noetherian ring. Let X be a scheme projective over A, i.e. there is a closed immersion X ↪→ Pn
over SpecA. Let d be the maximum dimension of a fiber of f : X → SpecA. Fact: if F ∈ Qcoh(OX), then
Hi(X,F) = 0 for i ≥ d + 1. (This is not an easy fact; we proved it for X = PdA.) We are interested in
top-dimensional cohomology Hd(X,−) : Coh(OX) → Coh(A). This is a right exact functor, since given a
short exact sequence 0 → F1 → F2 → F3 → 0, we get Hd(X,F1) → Hd(X,F2) → Hd(X,F3) → 0 by the
fact. However instead of looking at this functor, we look at the contravariant functor F 7→ Hd(X,F)∨. This
functor is “bad”: it forgets stuff, is not exact, and does not even have finite cohomological dimension.

Definition 2.9.1 (Bad definition). In this situation, a relative dualizing module ωX/A is an object of

Coh(OX) which represents this functor Hd(X,−)∨, such that there are isomorphisms

HomX(F , ωX/A)
αF−−→ Hd(X,F)∨

functorial in F ∈ Coh(OX). In particular, we can define the trace map

trX/A := αωX/A
(idωX/A

) : Hd(X,ωX/A)→ A.

Remark. By Yoneda’s lemma, if ωX/A exists, it is unique up to unique isomorphism. However ωX/A does
not behave well unless f : X → SpecA is flat with fibers CM and equi-dimensional of dimension d.

Remark. Think of the above as a pairing

〈·, ·〉F : HomX(F , ωX/A)×Hd(X,F)→ A, (ϕ, ξ) 7→ αF (ϕ)(ξ).

Warning: that αF is an isomorphism only guarantees the pairing is perfect on the HomX(F , ωX/A) side. It
is not true that the pairing is perfect in general. (However over a field the pairing is always perfect.) Using
the trace map, we can write

〈ϕ, ξ〉F = trX/A(ϕ(ξ)).

Theorem 2.9.2. X := PdA has a relative dualizing module ω ∼= O(−d− 1).

Proof. Set ω = O(−d− 1). Pick an isomorphism tr : Hd(PdA, ω)→ A (using the computation of cohomology
of projective space earlier). Now define 〈·, ·〉F as above. This in turn gives αF ’s functorial in F , for all F
coherent.

Step 1: show that αF is an isomorphism if F = OX(a) for some a. Namely we get

HomX(OX(a),OX(−d− 1))
αF−−−−→ Hd(X,OX(a))∨∥∥∥ ∥∥∥

Γ(X,OX(−a− d− 1)) = S−a−d−1 −−−−→ (Ea)∨

where recall S = A[T0, . . . , Td] and E = S[1/T0 · · ·Td]/
∑d
i=0 S[1/T0 · · · T̂i · · ·Td]. So the map αF arises from

the multiplication

S−a−d−1 × Ea → E−d−1 = Hd(PdA, ω)
tr−→ A,

which is a perfect pairing of free A-modules.
Step 2: show that αF is always an isomorphism. Pick an exact sequence

(E1 :=

s⊕
j=1

OX(bj))→ (E0 :=

r⊕
i=1

OX(ai))→ F → 0
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coming from the coherence of F . Then apply the right-exact functor to get

Hom(E1, ω) ←−−−− Hom(E0, ω) ←−−−− Hom(F , ω) ←−−−− 0

αE1

y αE0

y αF

y
Hd(X, E1)∨ ←−−−− Hd(X, E0)∨ ←−−−− Hd(X,F)∨ ←−−−− 0,

using the functoriality of αF . So each of the squares commute. But from step 1 we know the first two
vertical arrows αE1 and αE0 are isomorphisms, so by the five lemma αF is also an isomorphism.

Theorem 2.9.3 (“Correct” duality statement). If X is flat over A, then there exists ω•X/A ∈ Db
coh(OX)

such that
RHomX(F , ω•X/A) = RHomA(RΓ(X,F), A).

Remark. We recover the relative dualizing module as ωX/A = H−d(ω•X/A), where H denotes the cohomology
sheaf.

2.10 δ-functors

Definition 2.10.1. Let A,B be abelian categories. A δ-functor from A to B is a family {Fn}n≥0 of
additive functors from A to B and for every short exact sequence 0 → A1 → A2 → A3 → 0, maps
δ : Fn(A3)→ Fn+1(A1) such that:

1. there is a long exact sequence · · · → Fn(A2)→ Fn(A3)
δ−→ Fn+1(A1)→ Fn+1(A2)→ · · · ;

2. the δ’s are compatible with morphisms of short exact sequences.

Given two δ-functors ({Fn}, δ) and ({Gn}, δ), a map of δ-functors is a family of functors {hn : Fn → Gn}
commuting with the δ maps.

Example 2.10.2. The only example we know so far of δ-functors is the derived functors of a left or right
exact functor.

Definition 2.10.3. An additive functor F : A → B is called effaceable iff for all A ∈ Ob(A), there exists

an injective map A
u−→ A′ in A such that F (u) : F (A)→ F (A′) is zero.

Example 2.10.4. Let A = Mod(OX) and B = Ab. Then F = Hi(X,−) is effaceable iff i ≥ 1. This is
because there exists enough injectives in Mod(OX), and Hi(X, I) = 0 for all i ≥ 1.

Lemma 2.10.5. Let ({Fn}, δ) and ({Gn}, δ) be δ-functors. Let t0 : F 0 → G0 be a transformation of functors.
If F i is effaceable for i ≥ 1, then t0 extends uniquely to a map of δ-functors.

Proof sketch. Suppose we have already constructed ti for 0 ≤ i ≤ n. Pick an object A ∈ Ob(A). We want

to construct tn+1 : Fn+1(A) → Gn+1(A). By assumption, we can find 0 → A
u−→ A′ → A′′ → 0 such that

Fn+1(u) = 0. Then

Fn(A′) −−−−→ Fn(A′′)
δ−−−−→ Fn+1(A)

0−−−−→ Fn+1(A′)

tn
y tn

y
Gn(A′) −−−−→ Gn(A′′)

δ−−−−→ Gn+1(A) −−−−→ Gn+1(A′).

Since the first square commutes, define tn+1 : Fn+1(A) → Gn+1(A) by lifting elements, since Fn+1(A) is a
cokernel. Then show it is independent of choice of lift,
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2.11 Back to Serre duality

Example 2.11.1. Let X/k be a projective scheme of dimension d over a field. We can consider two δ-
functors:

1. {ExtiX(−,G) : Coh(OX)→ Vectk}i≥0 for any OX -module G;

2. {Hd−i(X,−)∨}i≥0, which is a δ-functor by taking the dual of the long exact sequence for Hd−i(X,−)
(this is why we work over a field).

Lemma 2.11.2. For any coherent G on X/k projective, the functors ExtiX(−,G) are coeffaceable for i ≥ 1.

Proof. Recall that for any F ∈ Coh(OX), there exists a surjection
⊕r

i=1O(ai) � F . Note that we can
do this with ai � 0 (but the r might change), because Hom(O(−a),F) = Γ(F(a)), which gets bigger as a
becomes more negative. So it suffices to show ExtiX(OX(a),G) = 0 for a� 0. But

ExtiX(OX(a),G) = Hi(X,G ⊗OX
OX(−a)) = Hi(X,G(−a)) = 0 a� 0.

Corollary 2.11.3. If k is a field and ωX/k is a relative dualizing module on X/k, we get canonical maps

tiF : ExtiX(F , ωX/k)→ Hd−i(X,F)∨

arising from the map αF : Homi
X(F , ωX/k)→ Hd(X,F)∨ in the definition of the relative dualizing module.

Moreover, these maps are isomorphisms iff the functors {Hd−i(X,−)∨} are also coeffaceable for all i ≥ 1,
by the uniqueness of the lifted maps.

Lemma 2.11.4. On X = Pdk, the functors {Hd−i(X,−)∨} are coeffaceable.

Proof. By exactly the same arguments as in the proof of coeffaceability of ExtiX(−,G), it suffices to prove
that Hd−i(Pdk,OPd

k
(a))∨ = 0 for i ≥ 1 and a� 0. This is true by an earlier result.

Remark. We now have a beautiful duality in Pdk (over a field). We have not shown yet that the relative
dualizing module exists for a projective scheme over a field in general, but later we will use the existence of
ωX/k to construct it.

Remark. Warning: taking duals of non-finitely presented objects often has unexpected consequences.

Lemma 2.11.5. Following are some general facts about Ext.

1. The formulation of Ext iOX
(F ,−) as the right derived functor of HomOX

(F ,−) commutes with restric-
tion to opens.

2. (Local-to-global spectral sequence for Ext) There is a spectral sequence Ep,q2 = Hp(X, ExtqOX
(F ,G))⇒

Extp+qX (F ,G).

3. If F is finite locally free, then Ext iOX
(F ,G) = 0 for i > 0 and Ext0

OX
(F ,G) = HomOX

(F ,G) =
F∨ ⊗OX

G where F∨ := HomOX
(F ,OX) is also finite locally free. Then the local-to-global spectral

sequence gives ExtnX(F ,G) = Hn(X,F∨ ⊗OX
G).

Corollary 2.11.6 (Serre duality for Pdk). If F is finite locally free, then

Hi(Pdk,F∨(−d− 1)) = Hi(Pdk,F∨ ⊗ ωPd/k) = ExtiPd(F , ωPd/k) = Hd−i(Pdk,F)∨.

Let ev : F∨⊗F → O be the evaluation map. Since all cohomologies are finite-dimensional vector spaces over
a field, there is a perfect pairing

Hi(Pdk,F∨(−d− 1))×Hd−i(Pdk,F)→ Hd(Pdk,F∨(−d− 1)⊗OX
F)

ev−→ Hd(Pdk,OPd
k
(−d− 1)) = k.
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Lemma 2.11.7. If X is locally Noetherian, F is coherent, and G is quasi-coherent, then:

1. Ext iOX
(F ,G) is also quasi-coherent, and coherent if G is coherent;

2. on U = SpecA ⊂ X affine open, Ext iOX
(F ,G)|U = ˜ExtiA(M,N) where F = M̃ and G = Ñ .

Lemma 2.11.8. Let k be a field. Let P := k[x1, . . . , xn] � A be a surjection. Assume dimA = d.

(A1) For any A-module M , we have ExtiP (M,P ) = 0 for i < n− d.

(A2) For i = n− d, there is a canonical isomorphism Extn−dP (M,P ) = HomA(M,Extn−dP (A,P )).

(A3) If A is Cohen–Macaulay and equidimensional of dimension d, then ExtiP (A,P ) = 0 if i 6= n − d.
(Moreover, Extn−d+i

P (M,P ) = ExtiA(M,Extn−dP (A,P )).)

Lemma 2.11.9. If X is projective over k, then X has a dualizing module ωX/k and in fact

i∗ωX/k = Extn−dOPn
(i∗OX , ωPn

k/k
)

where i : X → Pnk is a closed immersion.

Proof sketch (see Hartshorne for more details). By duality on Pnk , we have an isomorphism of functors (in
F)

Hd(X,F)∨ = Hd(Pnk , i∗F)∨ = Extn−dPn
k

(i∗F , ωPn
k/k

).

Use the local-to-global spectral sequence of Ext :

Ea,b2 = Ha(Pnk , ExtbOPn
k

(i∗F , ωPn
k/k

))⇒ Ext∗Pn
k
(i∗F , ωPn

k/k
).

Result (A1) of the lemma above implies ExtbOPn
k

(i∗F , ωPn
k/k

) = 0 for b < n− d, so the first n− d rows of the

spectral sequence are zero. Hence

Extn−dPn
k

(i∗F , ωPn
k/k

) = H0(Pnk , Extn−dOPn
k

(i∗F , ωPn
k/k

)).

Result (A2) of the lemma above implies Extn−dOPn
k

(i∗F , ωPn
k/k

) ∼= i∗HomOX
(F , ωX/k). Finally,

H0(Pnk , i∗Hom(F , ωX/k)) = H0(X,Hom(F , ωX/k)) = Hom(F , ωX/k).

Lemma 2.11.10. If X is projective over k and is Cohen–Macaulay and equidimensional of dimension d,
then all the maps

tiF : ExtiX(F , ωX/k)→ Hd−i(X,F)∨

are isomorphisms.

Proof. We have seen it is enough to show Hd−i(X,OX(a))∨ = 0 for i > 0 and a� 0. To do this, we use

Hd−i(X,OX(a))∨ = Hd−i(Pnk , i∗OX(a))∨ = Extn−d+i
Pn
k

(i∗OX(a), ωPn
k/k

).

This is computed by the spectral sequence Ea,b2 = Ha(Pnk , ExtbOPn
k

(OX(a), ωPn
k/k

)). Result (A3) of the lemma

above says there is only a single non-zero row, at b = n−d. But the terms of the single non-zero row vanish:

Hi(Pnk , Extd−nOPn
k

(OX , ωPn
k/k

)(−a)) = 0.
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2.12 Dualizing modules for smooth projective schemes

Our goal now is to show that if X/k is smooth projective and irreducible of dimension d, then

ωX/k ∼= ΩdX/k :=

d∧
Ω1
X/k.

Definition 2.12.1. We define the sheaf of differentials Ω in several cases, of increasing generality.

1. Ωk[x1,...,xn]/k :=
⊕n

i=1 k[x1, . . . , xn]dxi, with universal differential d(f) :=
∑n
i=1(∂f/∂xi)dxi.

2. If A/k is finite type, write A = k[x1, . . . , xn]/J . Then

ΩA/k := coker(J/J2 →
n⊕
i=1

Adxi).

Explicitly, ΩX/k is the free A-module on dx1, . . . , dxn mod the sub-module generated by the d(fj)
if J = (f1, . . . , fm). There is a universal differential d : A → ΩA/k such that the following diagram
commutes:

k[x]
d−−−−→ Ωk[x]/ky y

A
d−−−−→ ΩA/k.

3. Fact: ΩAf/k = (ΩA/k)f , so ΩA/k sheafifies correctly. So if X → Spec k is locally of finite type, we can
define ΩX/k.

Definition 2.12.2 (Alternate definition using universal property). A map D : A → M is a k-derivation
if it is a k-linear map satisfying the Leibniz rule. Then (ΩA/k, d) is the initial object among derivations
A→M , i.e.

Derk(A,M) = HomA(ΩA/k,M).

Definition 2.12.3. We say A/k of finite type is smooth any of the following equivalent conditions hold:

1. ΩA/k is finite locally free of rank dimA;

2. when writing A = k[x]/J , we have J/J2 is finite locally free and J/J2 →
⊕n

i=1Adxi has maximal
rank at every point;

3. ΩA/k is finite locally free and ker(J/J2 →
⊕n

i=1Adxi) = 0. (Johan likes this definition.)

Example 2.12.4. If A = k[x1, x2]/(x1x2), then x1x2 7→ (x2 dx1, x1 dx2). But then at the point x1 = x2 = 0,
this map J/J2 → Adx1 ⊕ Adx2 is not maximal rank (as a map from a free rank 1 module into a free rank
2 module). In general, we see that a hypersurface A = k[x1, . . . , xn]/(f) is smooth iff

V

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
= ∅.

Remark. Warning: the definition of smoothness will be different in other texts, but will all mean the same
thing. The equivalence(s) will in general be hard to prove (e.g. formal smoothness).

Proposition 2.12.5. If A→ B is smooth, then we have some good properties:

1. A→ B is flat (i.e. B is a flat A-module);

2. B is a local complete intersection over A;

26



3. for any A→ A′, the base change A′ → A′ ⊗A B is smooth;

4. if A = k is a field, then B smooth over k implies B is regular. (If B is a regular finite-type k-algebra
and char k = 0, then k → B is smooth; this is false when char k 6= 0.)

Example 2.12.6. Let k = Fp(t). The standard example of a regular variety which is not smooth is
B = k[x, y]/(x2 + yp − t) (which works for p > 2; for p = 2, take k[x, y]/(x3 + y2 − t)). Compute that
J/J2 = B(x2 + yp − t)→ B dx⊕B dy has image generated by 2x dx+ 0. This does not have a kernel, since
2x is not a zero-divisor in B dx⊕B dy. The cokernel is B/(2x)B ⊕B and therefore not projective (because
B/(2x)B is torsion). Alternatively, the rank jumps at x = 0. Hence B is not smooth at x = 0. However,
the local ring there is still regular, because mx = (x, yp − t), and yp − t is generated by x.

Example 2.12.7. Why do we not define “smooth” to mean “ΩB/A is free”? Take B = k[x]/(xp) where
char k = p. Then J/J2 = Bxp → B dx is the zero map, so ΩB/k = B dx and the kernel is non-zero. So
having a free ΩB/A is not good enough for smoothness.

Example 2.12.8. For what values of λ ∈ k is the curve x3
0 + x3

1 + x3
2 − λx0x1x2 = 0 in P2

k not smooth?

1. Method 1: compute V (F, ∂0F, ∂1F, ∂2F ).

2. Method 2: affine locally, get 1 + x3 + y3 + λxy, and look at 3x2 − λy = 0 and 3y2 − λx = 0.

2.13 Koszul complex

Definition 2.13.1. Let R be a ring and f1, . . . , fr ∈ R. Then K•(R, f1, . . . , fr) is the complex

0→ ∧rR⊕r → · · · → ∧2R⊕r → R⊕r
f1,...,fr−−−−−→ R

with maps d(v1 ∧ · · · ∧ vt) :=
∑t
i=1(−1)jϕ(vj)v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vt. Then (∧∗R⊕r, d) is a differential graded

algebra.

Definition 2.13.2. We say f1, . . . , fr is a Koszul-regular sequence iff H∗(K•(R, f1, . . . , fr)) = 0 for
i > 0. (The homology in degree-0 is always R/(f1, . . . , fr).)

Theorem 2.13.3. If R is Noetherian, then the following are equivalent:

1. f1, . . . , fr is a Koszul-regular sequence;

2. for all p ∈ V (f1, . . . , fr), the sequence f1, . . . , fr is a regular sequence in the local ring Rp.

Definition 2.13.4. An ideal I ⊂ R is Koszul-regular iff locally, I can be generated by Koszul-regular
sequence. Explicitly, for all p ∈ V (I), there exists f ∈ R \ p such that If ⊂ Rf can be generated by a
Koszul-regular sequence.

Remark. If I is Koszul-regular, then it is quasi-regular, i.e. I/I2 is a finite locally free R/I-module.

Definition 2.13.5. A ring map A→ B is a local complete intersection homomorphism iff A→ B is
of finite presentation and for any presentation B = A[x1, . . . , xn]/J , the ideal J is Koszul-regular.

2.14 Closed immersions and (co)normal sheaves

Definition 2.14.1. Let i : Z ↪→ X be a closed immersion of schemes. Then

I := ker(OX → i∗OZ)

is a quasi-coherent sheaf of ideals. The conormal sheaf of Z in X is

CZ/X := i∗I.
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Remark. There is an equivalence of categories between Mod(OZ) and the subcategory of Mod(OX) annihi-
lated by I. So the following lemma uniquely specifies CZ/X , and is the reason why some people define CZ/X
as a sheaf on X by I/I2.

Lemma 2.14.2. i∗CZ/X = I/I2.

Proof. Affine locally, we have I ⊂ A an ideal where I = Ĩ. Then i∗I = ˜I ⊗A A/I. Look at 0 → I → A →
A/I → 0 and apply I ⊗A −, which is right exact, to get I ⊗A I

m−→ I → I ⊗A A/I → 0. Hence I ⊗A A/I is
just I/I2.

Definition 2.14.3. The normal sheaf is C∨Z/X := HomOZ
(CX/Z ,OZ).

Definition 2.14.4. We say i : Z ↪→ X is a (Koszul-)regular closed immersion iff I ⊂ OX is a Koszul-
regular ideal, i.e. affine locally, it corresponds to Koszul-regular ideals.

Lemma 2.14.5. If i : Z ↪→ X is a regular closed immersion, then the conormal sheaf CZ/X is finite locally
free, and

Ext iOX
(i∗OZ ,OX) =

{
0 i 6= c

∧cC∨Z/X i = c

where c is the rank of the normal sheaf C∨X/Z (in an affine open where the rank is constant).

Proof. Affine locally, we have seen that CZ/X is finite locally free. Compute affine locally with Z =
Spec(A/I) ↪→ X = SpecA and I = (f1, . . . , fc) with f1, . . . , fc a Koszul-regular sequence. Then

K•(A, f1, . . . , fr)→ A/I

is a finite free resolution. Hence Ext∗A(A/I,A) = H∗(HomA(K•, A)). Note that the Koszul complex K• is
self-dual (up to sign), i.e. there is a pairing

〈·, ·〉 : ∧∗ A⊕c × ∧∗A⊕c → ∧cA⊕c ∼= A, (ω, η) 7→ ω ∧ η

and 〈dα, β〉 + 〈α, dβ〉 = 0. So HomA(K•, A) = K•[−c], where the shifting happens because of the HomA.
This gives the vanishing we want, and gives ExtcA(A/I,A) ∼= A/I = ∧cI/I2. Each of these isomorphisms is
not canonical, but the composition is canonical.

Corollary 2.14.6 (Adjunction formula). Suppose X ⊂ Pnk is a local complete intersection of pure codimen-
sion c. Then

i∗ωX/k ∼= ExtcOPn
(i∗OX , ωPn

k/k
) = ExtcOPn

(i∗OX ,OPn)⊗ ωPn
k/k

∼=
(
i∗

c∧
(CX/Pn)∨

)
⊗ ωPn

k/k

∼= i∗

(
(

c∧
NX/Pn)⊗OX

i∗ωPn
k/k

)
.

In this situation, ωX/k is invertible.

2.15 Dualizing sheaf in the smooth case

Lemma 2.15.1. If i : X → Pnk is a closed immersion and X is smooth over k, then there exists a canonical
short exact sequence

0→ CX/Pn → i∗ΩPn/k → ΩX/k → 0.
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Proof. Over D+(T0) (set xi := Ti/T0), we get a presentation

0→ J → k[x1, . . . , xn]→ OX(X ∩D+(T0))→ 0

The definition of X being smooth gives a short exact sequence 0 → J/J2 →
⊕
B dxi → ΩB/k → 0 where

B := OX(X ∩D+(T0)). The same holds over D+(Ti) and everything glues.

Lemma 2.15.2. ωPn/k
∼= OPn/k(−n− 1) =

∧n
ΩPn/k.

Proof 1. On D+(Ti), the sheaf
∧n

ΩPn/k is free with basis ωi = d(T0/Ti) ∧ · · · ∧ ̂d(Ti/Ti) ∧ · · · ∧ d(Tn/Ti).
Note that if L = O(1) on Pn, then on D+(Ti) this is free with basis Ti, and Ti|D+(TjTi) = (Ti/Tj)Tj |D+(TiTj).
It suffices to check the transition functions of ωi are (Ti/Tj)

−n−1.

Proof 2. Show that there is a canonical short exact sequence of finite locally free modules (called the Euler
sequence)

0→ ΩPn
k/k
→ O(−1)⊕(n+1) → OPn → 0

where we think of O(−1)⊕(n+1) as having a basis of “dTi” (although they are not global sections). The first
map sends on D+(Ti)

d(Ti/Tj) 7→
1

Tj
dTi −

Ti
T 2
j

dTj

and the second map is multiplication by (T0, . . . , Tn). Then use the general fact that if 0→ A→ B → C → 0
is a short exact sequence of finite locally free O-modules, then

∧top
B ∼=

∧top
A⊗O

∧top
C.

Corollary 2.15.3. If i : X → Pnk is a closed immersion with X smooth over k, then ωX/k ∼= ΩdimX
X/k

:=∧dimX
ΩX/k.

Proof. We already know ωX/k ∼=
∧c

(CX/k)∨ ⊗ i∗ωPn/k where c := codimPn X. (This uses that i is a regular
embedding, because X is smooth over k.) But this is just

∧c
(CX/k)∨ ⊗

∧n
(i∗ΩPn/k) by the previous lemma

and that i∗ commutes with ∧. By another previous lemma,

0→ CX/k → i∗ΩPn/k → ΩX/k → 0

is a short exact sequence, so
∧n

i∗ΩPn/k
∼=
∧c CX/k ⊗OX

∧n−c
ΩX/k.

Remark. If X → Y is a closed immersion of projective schemes smooth over k, then the previous arguments
show that

∧top
ΩX/k ∼=

∧top
(NX/Y )⊗OX

i∗Ωtop
Y/K . This is also called the adjunction formula.

Example 2.15.4. If X ⊂ P2
k is a curve of degree d, then ωX/k ∼= NX/P2 ⊗OX(−3). But we have

0→ OP2(−d)
F−→ OP2 → i∗OX → 0

where F ∈ k[X0, X1, X2]d is the defining polynomial. So the ideal sheaf of X is I = OP2(−d), and by
definition CX/P22

∼= i∗I = OX(−d). The normal bundle is therefore NX/P2 = OX(d). Hence ωX/k =
OX(d− 3). By Serre duality,

dimH1(X,OX) = dimH0(X,ωX/k) = dimH0(X,OX(d− 3)).

Twist the short exact sequence above by OP2(d− 3) to get

0→ OP2(−3)
F−→ OP2(d− 3)→ i∗OX(d− 3)→ 0.

The cohomology sequence gives

H0(i∗OX(d− 3)) = H0(OP2(d− 3)) = k[T0, T1, T2]d−3, H1(i∗OX(d− 3)) = H2(OP2(−3)) = k.

Hence dimH1(X,OX) = dim k[T0, T1, T2]d−3 =
(
d−3+2

2

)
=
(
d−1

2

)
. (Note that we also get H0(X,OX) ∼=

H1(i∗OX(d− 3)) = k by Serre duality.)
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Definition 2.15.5. Let X be a projective scheme of dimension 1 over k with H0(X,OX) = k. The genus
of X is

g := dimkH
1(X,OX).

The example above shows plane curves of degree d have genus
(
d−1

2

)
. If X is smooth, then we have

g = dimkH
0(X,ΩX/k) and 1 = dimkH

1(X,ΩX/k).
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Chapter 3

Curves

3.1 Degree on curves

Definition 3.1.1. Let X be projective over k a field, and F ∈ Coh(OX). The Euler characteristic of F
is

χ(F) := χ(X,F) :=

dimX∑
i=0

(−1)i dimkH
i(X,F).

Remark. Given a short exact sequence 0→ F1 → F2 → F3 → 0 of coherent sheaves on X, we have additivity,
i.e. χ(F2) = χ(F1) + χ(F3). Hence we can interpret χ as a homomorphism χ : K0(Coh(OX)) → Z. More
generally, if f : X → SpecA is projective and A is a Noetherian ring, then we get a similar map

K0(Coh(OX))→ K0(Coh(OSpec(A))) = K ′0(A), [F ] 7→
∑
i

(−1)i[Rif∗F ].

Example 3.1.2. Let X = P1
k. Then χ(OX(n)) = n+ 1.

Definition 3.1.3. Let X be a projective scheme of dimension ≤ 1 over k. Let L be an invertible OX -module.
Then the degree of L is

deg(L) = χ(L)− χ(OX).

Remark. Riemann–Roch is built into this definition, because for H0(X,OX) = k (i.e. the case where we
define the genus g := h1(OX)),

h0(L)− h1(L) = deg(L) + h0(OX)− h1(OX) = deg(L) + 1− g.

Corollary 3.1.4. If deg(L) > 2g − 2, then h0(L) = deg(L) + 1− g and h1(L) = 0.

Definition 3.1.5. Let k be a field. A variety is a scheme over k of finite type (locally of finite type and
quasi-compact), separated (diagonal is a closed immersion), reduced (no non-zero nilpotents in local rings),
and irreducible. A curve is a variety of dimension 1.

Remark. Warning: the definition of variety is not the same in every text. For example, some people want
geometrically reduced and irreducible, i.e. stable under base changes. For example, Spec(Q(i)) is a variety
over Spec(Q), but the base change to C gives Spec(C) ×Spec(Q) Spec(Q(i)) = Spec(C) t Spec(C) which is
reducible.

Lemma 3.1.6. Let X be a projective curve. Let L be an invertible OX-module, and let s ∈ Γ(X,L) be
non-zero. Then:

1. the zeros scheme Z = Z(s) is nice closed subscheme of X (an effective Cartier divisor of X);
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2. Z → Spec(k) is finite, i.e. Z = Spec(A) and dimk(A) <∞;

3. dimk(A) =
∑
x∈X ordx(s)[κ(x) : k] where ordx(s) is the order of vanishing of s at x.

Definition 3.1.7. In the setting of the lemma, we define the degree deg(Z) := deg(Z → Spec(A)) :=
dimk(A). The degree of L is defined to be deg(L) := deg(Z).

Proof. For any x ∈ X, find an affine open U = Spec(B) ⊂ X containing x, and get an isomorphism
ϕ : L|U → OU . Set f := ϕ(s|U ) ∈ OU (U) = B. Since s 6= 0, we know f 6= 0. So f is a non-zerodivisor. An
effective Cartier divisor is a regular immersion of codimension 1, so we have obtained an effective Cartier
divisor. We know Z ∩ U := Spec(B/fB), and these pieces glue because L−1 s−→ OX gives a quasi-coherent
ideal sheaf. This ideal sheaf does not contain the generic point, so dimZ = 0 and Z = {x1, . . . , xn} is a set
of closed points. If x = xi, then by shrinking U we may assume U ∩ Z = {xi}. Suppose x corresponds to
m ⊂ B the maximal ideal. If we set

ordx(s) := lengthBm
(Bm/fBm)

then dimk B/fB = dimk Bm/fBm = ordx(s)[κ(x) : k], because B is supported only at x. Now as schemes,
Z = Z1 t · · · tZn, where on the algebra side we have A = B1/f1B1×· · ·×Bn/fnBn, and dimk A is the sum
of the individual dimensions. Finally, take

0→ OX
s−→ L → L⊗OX

OZ → 0

(where really L ⊗OX
OZ means i∗i

∗L). Since Pic(Z) = {OZ}, this last term really is just OZ . So χ(L) =
χ(OX) + χ(OZ) and it follows that deg(L) = deg(Z).

Lemma 3.1.8. Let X be projective over k with dimX ≤ 1. Let L1 and L2 be invertible sheaves on X. Then

deg(L1 ⊗OX
L2) = deg(L1) + deg(L2).

Proof. We prove this in the case of X a projective curve. Suppose L1 has a non-zero section s1 ∈ Γ(X,L1).

Then we get 0 → OX
s1−→ L1 → OZ1

→ 0 where Z1 := Z(s1). Tensoring with L2, an invertible sheaf, is an
exact functor, so we get

0→ L2
s1−→ L1 ⊗OX

L2 → OZ1 → 0

where the last term remains OZ1 because Pic(Z1) is trivial, by the discussion in the proof of the previous
lemma. Hence

χ(L1 ⊗OX
L2) = χ(L2) + deg(Z1) = χ(L2) + deg(L1)

so by the definition of deg(L1 ⊗OX
L2) we are done.

Now suppose L1 has no non-zero sections. Choose a closed immersion i : X ↪→ Pnk . Then OX(d) =
i∗OPn

k
(d). Since OX(d) for d ≥ 0 has a non-zero section, by the preceding case, deg(L1(d)) = deg(L1) +

deg(OX(d)) and similarly for (L1 ⊗ L2)(d). But now for d � 0, we see L1(d) is globally generated and
therefore has a non-zero section. Hence

deg(L1⊗L2)+deg(OX(d)) = deg(L1(d)⊗L2) = deg(L1(d))+deg(L2) = deg(L1)+deg(OX(d))+deg(L2).

Corollary 3.1.9. The degree of an invertible sheaf L on a projective curve is the leading coefficient of the
linear polynomial n 7→ χ(X,L⊗n).

Proof. By the lemma, this polynomial is just ndeg(L) + χ(OX).

Remark. This is a pretty good alternative for defining the degree of an invertible sheaf. Also, on a curve, if
the degree is positive, then we can also look at the growth rate of h0(L⊗n). If h0(L) > 0, then deg(L) ≥ 0.
If in addition deg(L) = 0 (equivalently, h0(L−1) > 0), then L ∼= OX . If deg(L) > 0, then h0(L⊗n) > 0 for
some n > 0.
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3.2 Linear series

Definition 3.2.1. Let X be a projective curve. Let d ≥ 0 and r ≥ 0. A linear series of degree d and
dimension r is a pair (L, V ) where L ∈ Pic(X) is an invertible OX -module of degree d, and V ⊂ H0(X,L)
is a vector subspace of dimension r + 1. We abbreviate this as “(L, V ) is a grd.” If V = H0(X,L), then we
say (L, V ) is a complete linear system.

Definition 3.2.2. Given (L, V ), we get an OX -module map V ⊗k OX → L given by
∑
si⊗ fi 7→

∑
fisi. If

this map is surjective, we get a morphism

ϕ(L,V ) : X → Prk = P(V ) := Proj(Sym∗ V )

such that ϕ∗O(1) = L. The general construction is as follows. Given a scheme X over a base S and a
pair (L, (s0, . . . , sn)) where L ∈ Pic(X) is an invertible OX -module and si ∈ Γ(X,L) generate L, there is a
canonical map

ϕ = ϕ(L,V ) : X → PnS
with ϕ∗O(1) = L such that Ti ∈ Γ(O(1)) pulls back to si. Namely, X =

⋃
iXsi where Xsi := {x ∈ X :

si does not vanish at x}. Then use si to get an isomorphism

L|Xsi

s−1
i−−→ OXsi

, sj 7→ fi,j := sjsi ∈ OXsi
(Xsi).

These glue. (Conversely, a morphism X → PnS gives (s0, . . . , sn) by pulling back T0, . . . , Tn.)

Remark. This construction shows that

MorS(X,PnS) = {(L, (s0, . . . , sn))}/ ∼=

where (L, (s0, . . . , sn)) ∼= (L′, (s′0, . . . , s′n)) if there is an isomorphism L → L′ sending si to s′i. By Yoneda’s
lemma, this means we know PnS if we know all line bundles and their global sections. In particular,
MorS(X,AnS) = Γ(X,OX)⊕n.

Lemma 3.2.3. Given (L, V ), then V generates L iff for any closed point x ∈ X, we have V → H0(X,L)→
H0(X,L|x) is non-zero, i.e. there exists a section in V not vanishing at x. If it is a complete linear system,
then this is equivalent to dimkH

0(X, IL) < dimkH
0(X,L) where I ⊂ OX is the ideal sheaf of the point x.

3.3 Normalization and normal varieties

Definition 3.3.1. A variety is called normal iff the following equivalent conditions hold:

1. for any non-empty U ⊂ X affine open, OX(U) is a normal domain;

2. for any x ∈ X, the local ring OX,x is a normal domain.

Remark. If X is a curve, then for x ∈ X closed, OX,x is normal iff OX,x is regular iff OX,x is a DVR.
Hence X is normal iff X is regular. In characteristic 0, regular is equivalent to smooth, so X is normal iff
X → Spec k is smooth. (In any characteristic and any dimension, smooth implies normal.)

Proposition 3.3.2. Given a variety X, there exists a finite birational morphism ν : Xν → X such that Xν

is a normal variety and such that for U = Spec(A) ⊂ X affine open, we have ν−1(U) is the Spec of the
integral closure of A in its fraction field.

Remark. The universal property of the normalization ν : Xν → X is not for all schemes; it is for all dominant
morphisms of normal varieties into X.
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Example 3.3.3. Let X = Spec k[x, y]/(x2 − y3) = Spec k[t2, t3]. The integral closure is k[t], so the normal-
ization is Xν := Spec k[t].

Remark. There is an often-used trick: if X is a normal curve, then any non-zero coherent sub-sheaf L′ ⊂ L
is invertible. This is because the classification of modules over DVRs tells us the stalks are free. Therefore
given (L, V ) a grd with r ≥ 1 on a projective normal curve, then L′ := im(V ⊗kOX → L) is invertible of degree
d′ ≤ d and V ⊂ H0(X,L′) ⊂ H0(X,L) generates L′. So we get ϕ(L′,V ) : X → P(V ) with ϕ∗O(1) = L′.

3.4 Genus zero projective curves

Situation: k is a field, X is a projective curve over k, and H0(X,OX) = k. Under these conditions, we are
allowed to talk about genus. Suppose g = 0 = dimkH

1(X,OX). (Then χ(OX) = 1.) Examples include P1
k,

and any plane curve of degree 1 or 2.

Example 3.4.1. In P2
R, the curve t20 + t21 + t22 = 0 has no real points. The curve t20 + t21 is an irreducible

non-smooth degree-2 curve. (It is singular at [0 : 0 : 1]. In fact it is also not geometrically irreducible.) The
curve aX2

0 + bX2
0 +X2

2 = 0 is geometrically non-reduced in P2
F2(a,b).

Remark. Warning: the unique R-rational closed point on T 2
0 + T 2

1 = 0 on P2
R does not give us a Cartier

divisor.

Definition 3.4.2. A variety X over k is geometrically P if X/k̄ := X ×Spec k Spec k̄ has property P.

Lemma 3.4.3. If L on X has degree 0, then L ∼= OX .

Proof. Using Riemann–Roch, χ(L) = deg(L) + χ(OX) = 0 + 1 > 0. So L has a non-zero section. This
section must be non-vanishing, so L ∼= OX .

Corollary 3.4.4. Pic(X) ⊂ Z, and it is non-empty.

Lemma 3.4.5. If L has degree d > 0, then dimkH
0(X,L) = d+ 1 and H1(X,L) = 0.

Proof. By Riemann–Roch, χ(L) = d+1 > 0. So there exists a non-zero section, giving a short exact sequence
0 → OX → L → OZ → 0 where Z = Z(s). Then H0(Z,OZ) ∼= k⊕d. Since OZ is a sum of skyscrapers,
H1(X,OZ) = 0. Since H1(X,OX) = 0, we get H1(X,L) = 0 and dimH0(X,L) = d+ 1.

Make the assumption that ωX is invertible. For this, it suffices for X to be Gorenstein. Then we get
−1 = χ(ωX) = deg(ωX) +χ(OX). This shows deg(ωX) = −2. Taking the dual L := ω∨X , we get deg(L) = 2,

i.e. 2Z ⊂ Pic(X). Hence dimkH
0(X,L) = 3. (So we have a g2

2 .) Consider 0 → OX
s−→ L → OZ → 0. By

applying global sections, we get 0 → Γ(OX) → Γ(L) → Γ(OZ) → 0. For every x ∈ X closed, there exists
t ∈ Γ(X,L) such that t does not vanish at x.

1. Case 1: if x /∈ Z, then s does not vanish at x.

2. Case 2: if x ∈ Z, then there exists f ∈ Γ(OZ) that does not vanish at x. Because Γ(X,L) � Γ(X,OZ),
let t ∈ Γ(X,L) be a lift of f .

Apply the construction of maps to get ϕ : X → P2
k with ϕ∗O(1) = L = ω⊗−1

X , and ϕ∗T0, ϕ
∗T1, ϕ

∗T2 form a
basis for H0(X,L). Since X is projective, X → P2

k is proper, and therefore closed. So ϕ(X) ⊂ P2
k is closed.

We know dimϕ(X) ≤ 1 and ϕ(X) is irreducible. However dimϕ(X) = 0 is impossible, otherwise ϕ∗O(1) is
trivial instead of L. Hence ϕ(X) = V+(F ) for some homogeneous polynomial F ∈ k[T0, T1, T2] irreducible.

Let d = deg(F ) ≥ 1. Set Y = V+(F ) as a scheme. Thus we obtain a factorization X
ψ−→ Y

f−→ P2
k.

Remark. Given ϕ : X → P2
k, how do we determine what F is? View F (T0, T1, T2) ∈ Γ(P2,O(d)). Then

F (s0, s1, s2) := ϕ∗F (T0, T1, T2) ∈ Γ(X,ϕ(O(d))) = Γ(X,L⊗d), and we want to know if this F is zero or not.
We know dimk Γ(X,L⊗2) = deg(L⊗2) + 1 = 4 + 1 = 5. But we have monomials s2

0, s0s1, s
2
1, s1s2, s

2
2, s0s2.

Hence there is a linear relation.
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Summary: assume k is a field andX is a projective curve over k withH0(X,OX) = k andH1(X,OX) = 0,
i.e. it has genus 0. Assume ωX/k is an invertible OX -module (Gorenstein condition). Then L = ω⊗−1

X/k is a

degree 2 invertible OX -module, h0(L) = 3, and choosing a basis s0, s1, s2 of H0(X,L), we get a morphism
ϕL,(s0,s1,s2) : X → P2

L which factors through Y = V+(F ) where F ∈ k[T0, T1, T2] is homogeneous of degree 2
and irreducible.

Theorem 3.4.6. Actually, X ∼= Y . In other words, any Gorenstein genus 0 curve is a conic.

Proof. Let ϕ : X → Y be the morphism of schemes. We know L = ϕ∗OY (1). Then L⊗n = ϕ∗OY (n).
Compute

ϕ∗(L⊗n) = ϕ∗ϕ
∗OY (n) = (ϕ∗OX)⊗OY

OY (n)

by the projection formula (see below). Fact: if f : X → Y is either a morphism of projective varieties or a
locally projective morphism of schemes and all fibers have dimension 0, then f is affine and even finite. (This
comes from Zariski’s main theorem.) Another fact: if f : X → Y is an affine morphism of schemes, then f
is an isomorphism iff OY → f∗OX is an isomorphism. Last fact: if i : Y ↪→ Pnk and OY (1) = i∗OPn(1) and

α : F → G is a map of quasi-coherent OY -modules, then α is an isomorphism iff Γ(Y,F(d))
∼−→ Γ(Y,G(d))

for d� 0. Applying all of the above to OY
ϕ#

−−→ ϕ∗OX , it suffices to show

Γ(Y,OY (d))
∼−→ Γ(Y, ϕ∗OX ⊗OY

OY (d)) = Γ(X,L⊗d).

Our choice of F was exactly such that this map is injective for all d ≥ 0. By definition,

dim Γ(Y,OY (d)) = 2d+ 1, dim Γ(X,L⊗d) = deg(L⊗d) + 1 = 2d+ 1

where for the last equality we used crucially that X is genus 0. Hence we have our isomorphism.

Lemma 3.4.7 (Projection formula). Let f : X → Y be a morphism of ringed spaces. Let G be a finite locally
free OY -module and F be an OX-module. Then

f∗(F ⊗OX
f∗G) = (f∗F)⊗OY

G

and in fact,
Rif∗(F ⊗OX

f∗G) = (Rif∗F)⊗Y G.

Proof. This is clear if G = O⊕nY . In general, localize. (To make this cleaner, by adjunction, construct a
global map

f∗f∗F ⊗OX
f∗G = f∗(f∗F ⊗OY

G)→ F ⊗OX
f∗G.

This saves us from having to show the proof is independent of choice of basis.)

Remark. Picture of all curves:

smooth ⊂ non-singular = regular = normal ⊂ Gorenstein ⊂ all curves.

Note that all curves are necessarily CM, so for curves there is always a dualizing module and a perfect
duality, but the module is not always invertible.

Theorem 3.4.8. If X/k is a singular projective curve with h0(OX) = 1 and h1(OX) = 0, then

1. X has a k-rational point x which is the unique singular point,

2. the normalization Xν of X is isomorphic to P1
k′ with k′/k a non-trivial finite extension, and
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3. there is a k′-rational point x′ ∈ P1
k′ mapping to x such that

Spec k′ = x′ −−−−→ P1
k′y y

Spec k = x −−−−→ X

is a pushout diagram.

Example 3.4.9. If k = k̄ is algebraically closed, P1
k̄

is the only genus zero curve. If k = R, then P1
R and

T 2
0 + T 2

1 + T 2
2 = 0 and T 2

0 + T 2
1 = 0 are the only genus zero curves.

Example 3.4.10. Over k = F2 or k = F2, consider Z ↪→ P2×P2 given by X2
0Y0 +X2

1Y1 +X2
2Y2 = 0, where

the homogeneous coordinates are [X0 : X1 : X2] and [Y0 : Y1 : Y2]. (View Z as defined by a global section of
O(2, 1).) Claim: Z is a smooth projective 3-fold over k. We give two proofs of this.

1. Look in the affine piece (X0 6= 0)× (Y0 6= 0). The equation for Z becomes 1 +x2
1y1 +x2

2y2 = 0. This is
smooth by the Jacobian criterion. By symmetry, we only have to check on one more affine open. Let’s
check on (X0 6= 0)× (Y1 6= 0). The equation for Z becomes y0 + · · · = 0, and again it is smooth by the
Jacobian criterion.

2. Consider pr1 : P2 × P2 → P2 and let π : pr1 |Z : Z → P2. The fibers of π are smooth because they are
lines. This “implies” π is smooth after we show π is flat. Now note that Z → P2 → Spec k is smooth
as the composition of smooth morphisms.

Let γ : pr2 |Z : Z → P2. Let η ∈ P2 be the generic point. Then the residue field κ(η) = k(s, t) is the function
field, where s = Y1/Y0 and t = Y2/Y0. Observe that the generic fiber of γ, i.e. the scheme X = Z ×γ η over
η, is given by X2

0 + sX2
1 + tX2

2 = 0. We know X is regular, because Z is. However it is not geometrically
reduced, by base changing to any extension where s and t are both squares. Upshot: in positive characteristic,
generic fibers of morphisms between smooth projective varieties (geometrically good) can be geometrically
non-reduced even though they are always regular. In characteristic 0, such a generic fiber is actually always
smooth, but is not necessarily geometrically irreducible.

3.5 Varieties and rational maps

We first state some facts about properties of curves. These facts will be important later on.

Proposition 3.5.1. Over an algebraically closed field, every regular variety is smooth.

Corollary 3.5.2. Normal curves are smooth. More generally, given a curve X, the normalization Xν is
smooth.

Proposition 3.5.3. If f : X → Y is a finite morphism and Y is projective over k, then X is projective over
k.

Corollary 3.5.4. Given a projective curve X, the normalization Xν is a projective curve.

Proposition 3.5.5. Every curve is either affine or projective.

Proposition 3.5.6. If the curve X is affine, then there exists an open immersion X ↪→ X̄ with X̄ a
projective curve. If X smooth, then we may pick X̄ smooth.

Definition 3.5.7. Let X and Y be varieties. A rational map from X to Y is an equivalence class of
pairs (U, f) where U ⊂ X is non-empty open and f : U → Y is a morphism of varieties, and (U, f) ∼ (U ′, f ′)
iff f and f ′ agree on some non-empty open U ′′ ⊂ U ∩ U ′. Notation: f : X → Y .
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Definition 3.5.8. A rational map f : X → Y is dominant iff f(U) is dense for any f = (U, f). This is iff f
sends the generic point of X to the generic point of Y . (This equivalence follows from Chevalley’s theorem.)

Remark. Note that the composition of rational maps does not make sense: the image of the first map may
completely miss the domain of definition of the second map. Luckily, we can compose dominant rational
maps f : U → Y and g : V → Z, by taking g ◦ f : f−1(V )→ Z.

Definition 3.5.9. Two varieties X and Y are birational iff they are isomorphic in the category of varieties
and dominant rational maps. If f : X → Y is a dominant rational map, then we get a map

k(X) := κ(generic point of X)
f#

←−− κ(generic point of Y ) = k(Y )

where k(X) is the function field of X, and is equal to the fraction field of OX(U) for any U ⊂ X non-
empty affine open, or OX,η = κ(η) where η ∈ X is the generic point. (From last semester, we know
dimX = trdegk k(X).)

Theorem 3.5.10. The functor(
varieties with

dominant rational maps

)
→
(

finitely generated field extensions K/k
and maps of fields over k

)
is an equivalence

Proof. Step 1: check the functor is essentially surjective. Pick K/k in the rhs. Pick generators θ1, . . . , θn ∈ K,
and let A be the k-algebra generated by θ1, . . . , θn inside K. Then A is a finitely generated k-algebra, and
K = FracA by construction. So X = SpecA.

Step 2: check the functor is full. Let X and Y be varieties, and k(X)
ϕ←− k(Y ) be a morphism in the rhs.

Pick U ⊂ X and V ⊂ Y non-empty affine open. Then we have the situation

k(X)
ϕ←−−−− k(Y )x x

OX(U) OY (V ).

Pick generators θ1, . . . , θn for OY (V ) as a k-algebra. Suppose ϕ(θi) = ai/bi where ai, bi ∈ OX(U), with
bi 6= 0. Then let U ′ be the principal open obtained from U by localizing at b1, . . . , bn, so that

OX(U)[1/b1 · · · bn] = OX(U ′).

Then OX(U ′)
ϕ←− OY (V ) induces Spec(ϕ) : U ′ → V , and we are done.

Corollary 3.5.11. A variety X is rational iff X is birational to Pnk . Equivalently, its function field is a
purely transcendental extension of the base field.

Theorem 3.5.12. The construction of the theorem above defines an equivalence of categories(
smooth projective curves

and non-constant (so finite) morphisms

)
→
(

finitely generated field extensions K/k
with trdegk(K) = 1 and maps of fields over k

)
.

Proof. The functor is essentially surjective: use the facts stated above for curves. The only thing left to show

is that given smooth projective curves X, Y , any morphism X ⊃ U f−→ Y extends to all of X. Put Y ↪→ Pn.
Then it is enough to show that X ⊃ U → Pn lifts to X → Pn. Since dimX = 1, X − U = {x1, . . . , xn} is a
finite set of points. So we can extend the morphism one point at a time. Main point: OX,xi

is a DVR. It is
enough to show that given a diagram

SpecK −−−−→ Pny y
SpecR −−−−→ Spec k,
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where R is a DVR over k and K = Frac(R), the arrow Spec(R)→ Pn exists. Then apply this to R = OX,xi

and K = Frac(OX,xi) = k(X).
The morphism SpecK → Pn is given by (a0 : · · · : an) where a0, . . . , an ∈ K are not all zero. Pick a

uniformizer π ∈ R and write ai = uiπ
ei where ui ∈ R are units and ei ∈ Z. Wlog, e0 is the smallest. Then

(a0 : · · · : an) = (u0 : u1π
e1−e0 : · · · : unπen−e0),

so that we get the desired map SpecR→ Pn.

Lemma 3.5.13. Given X, Y varieties, points x ∈ X and y ∈ Y , and a local k-algebra map OY,y → OX,x,
there exists an open neighborhood U 3 x and f : U → Y such that y = f(x) and ϕ = f#

x : OY,y → OX,x.

Proof. Exactly as in the proof of fullness for the functor from varieties above.

3.6 Weil divisors

Definition 3.6.1. A Weil divisor D on a smooth curve X is D =
∑N
i=1 nixi with ni ∈ Z, i.e. a formal

linear combination of closed points xi. The support of D, denoted suppD, is the union of all xi with
non-zero ni. We say D is effective if ni ≥ 0 for every i, and write D ≥ 0. If X is projective, the degree is
deg(D) :=

∑
ni.

Definition 3.6.2. Given f ∈ k(X)∗ (the units in k(X)), define the divisor associated to f as divX(f) :=
div(f) :=

∑
x∈X closed ordx(f)x, where ordx(f) is the order of vanishing of f at x. (This sum is finite because

f ∈ k(X) invertible means f is invertible in a Zariski open, and the complement of a Zariski open in a curve
is dimension 0.) It is determined by the valuation on the DVR OX,x.

Example 3.6.3. Let X = A1
C and f = (t− π)/(t− e)10. Then divX(f) = 1 · π − 10 · e.

Definition 3.6.4. Given a Weil divisor D, define OX(D) to be the sheaf of OX -modules defined by

U 7→ {0} ∪ {f ∈ k(X)∗ : divU (f) +D|U ≥ 0}.

(If f = 0, the order of vanishing ordx(f) = ∞ for any x ∈ X.) Note that OX(D) is an OX -submodule of
the constant sheaf with value k(X).

Example 3.6.5. In the preceding example of divX(f), we have f ∈ OX(10 · e)(X).

Example 3.6.6. OX(−x) is the ideal sheaf of x: it consists of regular functions which vanish to at least
order 1 on x. On the other hand, OX(x) is the sheaf of functions regular everywhere except x, where we are
allowed a simple pole.

Lemma 3.6.7. OX(D) is an invertible OX-module.

Proof idea. Pick x ∈ X. Let n be the coefficient of x in D. Pick f ∈ k(X)∗ with ordx(f) = −n. Then there
exists U 3 x open such that:

1. for all u ∈ U with u 6= x, we have ordu(f) = 0;

2. U ∩ supp(D) = {x}.

Then we see immediately that OU · f = OU (D).

Lemma 3.6.8. Given D and f ∈ k(X)∗, multiplication by f induces an isomorphism OX(D)
∼−→ OX(D −

divX(f)).

Proof. Immediate.
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Remark. We are consistently using the fact that if U ⊂ X is affine, then OU (U) = OX(U) =
⋂
u∈U OU,u,

where the intersection happens in k(X). This is true for varieties in general, and just says that a function
is regular in U iff it is regular at each point u ∈ U .

Lemma 3.6.9. There is a canonical isomorphism OX(D1) ⊗OX
OX(D2) ∼= OX(D1 + D2) given by multi-

plication on sections.

Lemma 3.6.10. If X is projective and smooth, then deg(OX(D)) = deg(D).

Proof. We know the degree of line bundles is additive, and degree of Weil divisors is additive. So it is enough
to show this in the case D = −x. Then 0 → OX → OX(D) → F → 0 where F is a skyscraper sheaf at x
with value k. Hence the degree is 1. (Alternatively, write 0→ OX(−x)→ OX → i∗OX,x → 0.)

Corollary 3.6.11. If X is projective and smooth, then deg divX(f) = 0.

Proof. deg divX(f) = degOX(f) = degOX = 0, by the isomorphism OX(f)
∼−→ OX(divX(f)−divX(f)).

Corollary 3.6.12. (X need not be projective, but must still be smooth.) The Picard group Pic(X) is
isomorphic to the group of Weil divisors mod the subgroup {divX(f) : f ∈ k(X)∗} of principal divisors:

Proof. By a previous lemma, there exists a well-defined map taking a Weil divisor to Pic(X) that descends
to Weil/principal, and by another previous lemma it is additive. If OX → OX(D) is an isomorphism, then
the image of 1 is f ∈ k(X)∗ with divX(f) = −D, so we have injectivity. For surjectivity, if L ∈ Pic(X) has
a non-zero global section, then we get

0→ OX
s−→ L → L|Z = OZ → 0

where Z := Z(s) is the zero locus of the section s. Set-theoretically, Z = {x1, . . . , xn}, say with multiplicities
ni. This means

OZ,xi
= OX,xi

/(πi)
ni

where πi is the uniformizer for OX,xi . So in terms of locally trivializing sections of L, the section s vanishes
to order ni in L, i.e. OX(

∑
nixi) = L. By a previous argument, any L is of the form L ∼= L1 ⊗ L−1

2 where
both L1,L2 have non-vanishing global sections.

3.7 Separating points and tangent vectors

Let X be a smooth projective curve.

Lemma 3.7.1. L is globally generated iff h0(L(−x)) = h0(L)− 1 for all x ∈ X closed.

Lemma 3.7.2. If for all x, y ∈ X (not necessarily distinct) we have h0(L(−x− y)) = h0(L)− 2, then with
V = H0(X,L), we get a closed immersion ϕL,V : X → P(V ).

Proof. By a previous lemma, L is globally generated, so we get ϕ : X → P(V ). We know ϕ is injective
because if x 6= y, then ϕ(x) 6= ϕ(y); otherwise the set of hyperplanes passing through ϕ(x) and ϕ(y) is the
same as the set of hyperplanes passing only through one of them, and therefore has codimension 1. But we
assumed it has codimension 2. So ϕ : X → ϕ(X) ⊂ P(V ) is a homeomorphism. To finish, we need to show
OP(V ) → ϕ∗OX is surjective. Pick x ∈ X. It suffices to check at stalks

OP(V ),ϕ(x) → (ϕ∗OX)ϕ(x) = OX,x

where the equality holds because ϕ is a homeomorphism onto its image. (In general this holds if ϕ is a
closed map with a unique point in the fiber.) Since ϕ is finite, we have (ϕ∗OX)ϕ(x) is a finite module over
OP(V ),ϕ(x). So Nakayama applies. It is enough to show OX,x/mϕ(x)OX,x = k, the residue field at any closed
point of P(V ). Take x = y ∈ X. Then there exists an s ∈ V such that s vanishes to order exactly 1 at x. So
mϕ(x)OX,x contains a uniformizer; if s′ ∈ V does not vanish at x, then f := s/s′ ∈ OP(V )(D+(s′)) maps to
the uniformizer at x.
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Definition 3.7.3. We call V the complete linear system associated to L.

Corollary 3.7.4. If degL ≥ 2g + 1 with V := H0(X,L), then ϕL,V : X → P(V ) is a closed immersion.

Corollary 3.7.5. If D is effective and degD ≥ 2g + 1, then X − supp(D) is affine.

Proof. L = OX(D) gives ϕ : X ↪→ P(V ). The section s := 1 ∈ V vanishes exactly at supp(D). So X −
supp(D) = ϕ−1(D+(s)).

Corollary 3.7.6. Any genus 1 (smooth projective) curve is a plane cubic.

Definition 3.7.7. Suppose L1 and L2 are invertible on X. Then we get a multiplication map

H0(X,L1)⊗k H0(X,L2)→ H0(X,L1 ⊗ L2), s1 ⊗ s2 7→ s1s2.

If s1, s2 6= 0, then s1s2 6= 0. This map does not kill pure tensors.

Lemma 3.7.8. Let µ : V1 ⊗k V2 → V be a linear map which does not kill pure tensors. Then dimV ≥
dimV1 + dimV2 − 1.

Proof. Let ni := dimVi. Let An1n2

k be the affine space whose points are V1 ⊗k V2, and C ⊂ An1n2

k be the
cone of pure tensors. Then dimC = n1 + n2 − 1. By dimension theory, C intersected with n hyperplanes in
An1n2 passing through 0 has dimension at least n1 + n2 − 1− n. Note that the intersection is never empty,
because 0 ∈ C. It will have another non-zero vector if n < n1 + n2 − 1. Hence apply this to the hyperplanes
λi = 0 for i = 1, . . . , n where ε1, . . . , εn is a basis for V ∗ and λi := εi ◦ µ.

Corollary 3.7.9 (Clifford’s theorem). If h0(L) > d+ 1− g and d ≥ 0, then 2h0(L) ≤ d+ 2.

Proof. In this case, h0(ωX ⊗ L−1) > 0. By the lemma applied to H0(L) ⊗k H0(ωX ⊗ L−1) → H0(ωX), we
get

g ≥ h0(L) + (h0(L)− d− 1 + g)− 1 = 2h0(L)− d− 1 + g − 1.

Remark. If equality holds in Clifford’s theorem, then X is hyperelliptic.

3.8 Degree of morphisms and ramification

Definition 3.8.1. Let f : X → Y be a dominant morphism of varieties of the same dimension. Then the
degree of f is the deg f := [k(X) : k(Y )]. (This is a finite extension because the transcendence degree of
both function fields is the same.)

Lemma 3.8.2. If f : X → Y is a non-constant (and therefore dominant) morphism of projective curves,
then

deg(f∗L) := deg(f) · deg(L).

Proof for smooth curves. Let y ∈ Y be a closed point. We will show deg(f∗OY (−y)) = −deg(f), which
is enough by additivity. Choose V ⊂ Y affine open containing y. Then f : U := f−1(V ) → V is a finite
(because its fibers are finite) morphism of affine schemes which are spectra of Dedekind domains (because
X, Y are smooth). Then f∗OY (−y) is the ideal sheaf of the scheme-theoretic fiber Xy ⊂ X. So there is a
short exact sequence

0→ f∗OY (−y)→ OX → OXy
→ 0

Then deg(f∗OY (−y)) = −deg(OXy
). So it suffices to show deg(Xy) = deg(f). This follows from the next

lemma.

Lemma 3.8.3. Let A ⊂ B be a finite extension of Dedekind domains. Then for m ⊂ A maximal, we have
dimκ(x)B/mB = [Frac(B) : Frac(A)].
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Remark. In fact, if m1, . . . ,mr ⊂ B are the maximal ideals ofB lying over m ⊂ A, and if ei is the ramification
index of Am → Bmi , then

n := [Frac(B) : Frac(A)] =

r∑
i=1

eifi

where fi := [κ(mi) : κ(m)]. This comes from B/mB being an Artinian ring and the structure theorem of
Artinian rings.

Definition 3.8.4. Let f : X → Y be a non-constant morphism of smooth curves. Then the ramification
index of f at a closed point x ∈ X is the ramification index of OY,f(x) → OX,x.

Remark. If g is a local function on Y defined in a neighborhood of f(x), then

(vanishing order of g ◦ f at x) = (ramification index of f at x) · (vanishing order of g ◦ f at f(x)).

Definition 3.8.5 (Pullback of divisors). Let f : X → Y be a non-constant morphism of smooth curves.
Then define the pullback

f∗ : Div(Y )→ Div(X), y 7→
∑

x∈f−1(y)

(ramification index of f at x) · x.

Then there is a commutative (by the remark above) diagram

k(Y )∗
divY−−−−→ Div(Y ) −−−−→ Pic(Y ) −−−−→ 0

f#

y f∗
y

k(X)∗
divX−−−−→ Div(X) −−−−→ Pic(X) −−−−→ 0.

Definition 3.8.6 (Pushforward of divisors). Assume f is finite and X,Y smooth. Then define the push-
forward

f∗ : Div(X)→ Div(Y ),
∑

nixi 7→
∑

nif(xi).

Proposition 3.8.7. f∗ divX(g) = divY (Nm g) where g ∈ k(X)∗.

Remark. It follows that there is an induced map Nm: Pic(X)→ Pic(Y ) given by the diagram

k(X)∗ −−−−→ Div(X) −−−−→ Pic(X) −−−−→ 0

Nm

y f∗

y Nm

y
k(Y )∗ −−−−→ Div(Y ) −−−−→ Pic(Y ) −−−−→ 0.

There is actually a direct way to construct Nm: Pic(X)→ Pic(Y ): define

Nm(L) := ∧n(f∗L)⊗OY
∧n(f∗OX)⊗−1

where n := deg(f). (View the second term as an “adjustment,” so that if we plug in L = OX , we get OY .)

Lemma 3.8.8. Let A ⊂ B be a finite extension of Dedekind domains. Let m ⊂ A and m1, . . . ,mr ⊂ B lying
over m. Then for b ∈ B we have

ordAm
(Nm b) =

∑
ordBmi

(b) · fi.

(See tag 02MJ for a more general statement.)
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Proof. The lhs is precisely lengthAm
((B/bB)m) because

Nm(b) = det
Am

(Bm
b−→ Bm).

Now use that (B/bB)m =
⊕

i(B/bB)mi by the structure theorem for Artinian local rings.

Remark. If f : X → Y is non-constant and X and Y are smooth projective curves, then the composition

Pic(Y )
f∗−→ Pic(X)

Nm−−→ Pic(Y )

is just multiplication by deg(f).

3.9 Hyperelliptic curves

Definition 3.9.1. A curve is hyperelliptic if it has a degree-2 morphism to P1. The gonality of a smooth
projective curve X is the smallest degree d of a non-constant morphism X → P1.

Example 3.9.2. Gonality 1 curves are P1, and gonality 2 curves are hyperelliptic. Gonality 3 curves are
called trigonal curves.

Example 3.9.3. Any genus 1 curve is hyperelliptic: pick any two points x and y, and then L := OX(x+ y)
has h0(L) = 2 + 1 − 1 and must be globally generated, because otherwise we drop a degree and end up
isomorphic to P1.

Example 3.9.4. Any genus 2 curve is hyperelliptic: the canonical bundle KX has two sections, and every
other line bundle has only one section (cf. Clifford’s theorem).

Lemma 3.9.5. The function field k(X) of a hyperelliptic curve X is a degree 2 extension of k(P1) = k(t).
So if char k 6= 2, then

k(X) = k(t)[y]/(y2 − (t− a1) · · · (t− ar))

for pairwise distinct a1, . . . , ar ∈ k. For char k = 2,

k(X) = k(t)[y]/(y2 − y + f(t)), f(t) ∈ k(t) or k(t)[y]/(y2 − t) ∼= k(y).

Remark. From this description, we see that whenever t 6= ai, there will be two points, each with ramification
index 1. When t = ai or ∞, then there will be one point with ramification index 2. We see that

g =

{
(r − 2)/2 r even

(r − 1)/2 r odd.

3.10 Riemann–Hurwitz

Note that in characteristic p > 0, it can happen that all ramification indices are > 1. For example, take
k = k̄ with characteristic p > 0. Then the map t 7→ tp from P1

k → P1
k is such a map. Keep this in mind while

we prove Riemann–Hurwitz.

Lemma 3.10.1. Let f : X → Y be a non-constant morphism of projective curves. The following are equiv-
alent:

1. k(X)/k(Y ) is separable;

2. for all but finitely many (closed) points x ∈ X, the ramification index ex is 1;

3. the module of relative differentials ΩX/Y is supported in finitely many points;
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4. f∗ΩY/k → ΩX/k is non-zero.

Proof. Pick affine opens Spec(A) ⊂ Y , and let Spec(B) ⊂ X be the inverse image of f . This gives

B −−−−→ k(X)x x
A −−−−→ k(Y ).

In this situation, commutative algebra gives an exact sequence ΩA/k ⊗A B → ΩB/k → ΩB/A → 0. Scheme-
theoretically, the sequence is f∗ΩY/k → ΩX/k → ΩX/Y → 0. Taking stalks at the generic point (i.e. localizing
at (0) ⊂ B) gives

Ωk(Y )/k ⊗k(Y ) k(X)→ Ωk(X)/k → Ωk(X)/k(Y ) → 0.

Because A and B are finite-type k-algebras, and moreover these Ω’s are finite, in fact of rank 1, the map
f∗ΩY/K → ΩX/k is non-zero iff ΩX/Y is supported at finitely many points. Field theory fact: k(X)/k(Y ) is
separable iff Ωk(X)/k(Y ) = 0 (if you have a double root, you have a non-zero differential). Pick x ∈ X closed

and set y := f(x) and consider OY,y
f#

−−→ OX,x, and take uniformizers πy and πz.
Schemes fact: (ΩX/k)x = ΩOX,x/k. Algebra fact: if A/k is a DVR, essentially of finite type, with residue

field k and uniformizer π (i.e. local ring of a curve at a smooth point), then ΩA/k = Adπ. This is because
ΩA/k is a finite A-module, and for a ∈ A we can write a = λ + πa′ where λ ∈ k and a′ ∈ A. Then
da = dλ+π(da′)+a′ dπ. By Nakayama’s lemma, we conclude dπ is a generator of ΩA/k. We finish by noting
ΩA/k cannot be torsion, because the localization at the generic point is Ωk(X)/k, which has transcendence
degree 1. Then by the classification of modules over a DVR, ΩA/k is free.

By taking stalks at x, we get ΩOY,y/k ⊗OY,y
OX,x → ΩOX,x/k → (ΩX/Y )x → 0. The generator of the first

term is dπy, and the generator of the second term is dπx. We know πy 7→ uπexx where u ∈ OX,x is a unit. So

dπy = d(uπexx ) = πexx du+ exπ
ex−1
x u dπx = (πex−1

x dπx)(exu + πx du/dπx).

This whole thing iff ex = 1, and exu 6= 0. But u 6= 0, and exu = 0 iff p | ex. Set dx := lengthOX,x
((ΩX/Y )x).

We have actually shown
dx = ordOX,x

((exu+ πxdu/dπx)πex−1
x ).

Definition 3.10.2. If any of the equivalent conditions of the lemma hold, then we say f is separable. In
characteristic 0, everything is separable. In general (when f is not necessarily separable), there exists n ≥ 0
and a factorization

f : X
Fn

X/k−−−→ X(pn) g−→ Y.

such that g is separable. The morphism FnX/k arises as follows. Take the Cartesian diagram

X(pn) −−−−→ Xy y
Spec(k)

Fn
Spec k−−−−→ Spec(k)

where FnSpec k is the (pn)-th power map, and note that the resulting map X(pn) → X is not a morphism over
Spec k. The absolute Frobenius FX : (X,OX) → (X,OX) is idX on topological spaces, and is a 7→ ap

on OX . It gives a map X → X, so because the diagram above is Cartesian, there is a factorization via
FnX/k : X → X(pn), which is the relative Frobenius.

Example 3.10.3. Suppose X ⊂ Pnk is cut out by
∑r
i=1 ai,IT

I = 0, with ai,I ∈ k. Then X(pn) is cut out by∑
ap

n

i,IT
I = 0 and FnX/k : X → X(pn) is given by Ti 7→ (Ti)

pn .
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Corollary 3.10.4 (Riemann–Hurwitz). In the situation of the lemma, assume f is separable.

1. There is a short exact sequence 0→ f∗ΩY/k → ΩX/k → ΩX/Y → 0.

2. Let dx := lengthOX,x
((ΩX/Y )x) be the multiplicity of ΩX/Y at x. Then 2g(X) − 2 = deg(f)(2g(Y ) −

2) +
∑
dx by taking degrees.

3. The relationship between dx and the ramification index ex is that dx ≥ ex − 1, with equality iff p - ex.

Definition 3.10.5. We say f is tamely ramified if p - ex for all x ∈ X (and the residue field extensions
are separable).

Corollary 3.10.6. Let KX denote the canonical divisor on X, i.e. ΩX/k = OX(KX), and similarly for
KY . Then KX ∼ f∗KY +R, where R =

∑
dx · x is the ramification divisor.

Example 3.10.7. Some applications of Riemann–Hurwitz:

1. g(X) ≥ g(Y ) (actually this is also true in the inseparable case, by the factorization via the relative
Frobenius);

2. if g(X) = g(Y ) and g(Y ) ≥ 2, then deg f = 1, i.e. X ∼= Y ;

3. suppose Y = P1 and f(suppR) = {∞}, so that if we assume only tame ramification,

2g(X)− 2 = −2 deg(f) +
∑

dx = −2 deg(f) +
∑
x 7→∞

(ex − 1) = −deg(f)−#(points above ∞),

which is impossible when deg f ≥ 2;

Example 3.10.8. Consider a hyperelliptic curve y2 = (t−a1) · · · (t−ar). Clearly we have ramification with
ex = 2 at a1, . . . , ar. So Riemann–Hurwitz gives

2g(X)− 2 = 2(2g(Y )− 2) +
∑

(ex − 1).

Since the first two terms are even, we see that there is ramification iff r is odd.
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Chapter 4

Extra stuff

4.1 Picard scheme and Jacobian variety

Let X be a smooth projective curve over k = k̄. Let x ∈ X(k) be a point.

Definition 4.1.1. The Picard functor PicX/k,x is the functor (Sch/k)op → Set given by

S/k 7→

 isomorphism classes of pairs (L, α)
where L is an invertible OX×S module

and α : OS
∼−→ x∗SL where xS := x× idS : S → X × S.

 .

The way to think about his is “invertible modules on X×S trivialized along the section x.” Given h : S′ → S
a morphism of Sch/k, define

PicX/k,x(S)
PicX/S,x(h)
−−−−−−−→ PicX/k,x(S′)

(L, α) 7→ ((X × S′ → X × S)∗L, suitable pullback of α).

Theorem 4.1.2. The functor PicX/k,x is representable by a scheme PicX/k, and there is a universal pair

(Luniv, αuniv) (where Luniv is on X × PicX/k, and αuniv : OPicX/k

∼−→ x∗Luniv) such that

Mork(S,PicX/k) = PicX/k,x(S)

h 7→ PicX/k,x(h)(Luniv, αuniv).

Remark. The k-points of PicX/k are PicX/k,x(Spec k) = Pic(X).

Lemma 4.1.3. PicX/k is an abelian group object in Sch/k.

Proof. By the Yoneda lemma, the group law on PicX/k comes from the fact that PicX/k,x is really a functor
(Sch/k)op → Ab via the rule (L, α) · (L′, α′) := (L ⊗ L′, α⊗ α′).

Lemma 4.1.4. There is a morphism of schemes

deg : PicX/k →
∐
d∈Z

Spec(k)

such that PicdX/k = deg−1(d) parametrizes degree d invertible modules on X.

Remark. If L0 on X/k has degree d, then there is an isomorphism Pic0
X/k → PicdX/k given by L 7→ L ⊗ L0.

So these components are all isomorphic k-schemes.
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Definition 4.1.5. The symmetric powers of X are given by Symd(X) := (X × · · · ×X)/Sd, where the
symmetric group acts by permutations.

Theorem 4.1.6. Symd(X) is a smooth projective variety over k.

Theorem 4.1.7. There is a universal effective Cartier divisor Duniv ⊂ X × Symd(X) whose fiber over the
closed point “x1 + · · ·+ xd” (a multi-set of closed points of X) is the divisor

∑
xi on X.

Definition 4.1.8. Now we have Ld := OX×Symd(X)(D)⊗pr∗2(something) where the “something” is to make

it trivialized along x. By the universal property, we get a map Symd(X) → PicdX/k such that the point
“x1 + · · ·+ xd” maps to OX(x1 + · · ·+ xd).

Theorem 4.1.9. For d = g, this morphism is an isomorphism over a non-empty open of PicgX/k.

Corollary 4.1.10. PicdX/k is a smooth projective variety for all d.

Theorem 4.1.11. If n ∈ Z is coprime to char k, then Pic(X)[n] ∼= (Z/nZ)⊕2g.

Definition 4.1.12. An abelian variety is a group object in the category of varieties over k which is
projective over k. (Automatically, it is commutative.)

Example 4.1.13. Pic0
X/k is an abelian variety of dimension g.

Theorem 4.1.14. If A is an abelian variety over k (= k̄), then A(k)[n] = (Z/nZ)⊕2 dimA.

Proof sketch. Look at the “multiplication by n” map [n] : A → A. The group law is a morphism, so this is
also a morphism. First look at the induced map d[n] : T0A→ T0A, which really is multiplication by n. Since
n is coprime to char k, this is an isomorphism of tangent spaces. Hence [n] is a dominant morphism, and
deg([n]) is well-defined. Because of the group structure, d[n] has maximal rank everywhere, so [n] is étale.
Then A(k)[n] = [n]−1({0}) has deg([n]) points. So it suffices to show deg([n]) = n2 dimA. To do this, we can
try to prove

[n]∗L ∼= L⊗n
2

for some L ample on A, because if so, then [n]∗c1(L) = n2c1(L) and taking powers gives [n]∗c1(L)dimA =
n2 dimAc1(L)dimA in the Chow ring. But c1(L)dimA are the same zero cycle, with positive degree because
L is ample. Hence deg([n]) deg(c1(L)dimA) = n2 dimA deg(c1(L)dimA). Finally, to get an ample L with this
property, use the theorem of the cube.

4.2 Some open problems

Conjecture 4.2.1 (Hartshorne). Let k be a field. Any codimension 2 closed sub-variety of Pnk is a complete
intersection for n ≥ 37.

Remark. This is known for codimension 1. It is probably better to assume that it is a local complete
intersection. (This holds in Pnk for high n.) There is an analogous conjecture for higher codimension. Also,
37 is way too big; usually it is 6 or 7.

Theorem 4.2.2 (Quillen–Suslin). Any vector bundle on affine space Ank is trivial.

Conjecture 4.2.3 (Hartshorne). Any finite locally free OPn-module (vector bundle) of rank 2 splits, i.e. is
isomorphic to OPn(a)⊕OPn(b) for n ≥ 37.

Conjecture 4.2.4 (Hartshorne). Let (R,m) be a regular local ring. Let U = Spec(R)\{m} be the punctured
spectrum of R. Every rank 2 vector bundle on U is trivial, i.e. isomorphic to O⊕2

U , when dimR ≤ 38.

Remark. This conjecture implies the previous one: take R = k[X0, . . . , Xn](X0,...,Xn) so that there are

morphisms U → An+1
k − {0} → Pnk . Then we can pullback vector bundles from Pnk to U .
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Definition 4.2.5. Given a Noetherian scheme X, we say X has the resolution property iff every coherent
OX -module is the quotient of a vector bundle.

Example 4.2.6. The resolution property holds for X quasi-projective over a field, because then there is an
ample line bundle we can twist by to get more global sections.

Problem 4.2.7. Find a separated finite-type scheme (or algebraic space) X over a field which does not have
the resolution property.

Example 4.2.8. Every smooth variety has the resolution property. (This comes from every divisor on a
smooth variety being an effective Cartier divisor.) However we don’t know this for algebraic spaces.

Remark. The real problem underneath these conjectures seems to be: find X which have “few” vector
bundles.

Theorem 4.2.9 (Totaro). If X is separated of finite type over a field and has the resolution property, then

X ∼= (affine finite type k-scheme)/(linear algebraic group).

Problem 4.2.10 (“Jason’s Mathoverflow question”). Does there exist a smooth projective variety X over
C and a smooth morphism f : X → P1

C which does not have a section?

Remark. The general question here is: can fibers have “interesting” moduli?

Problem 4.2.11. Does there exist an F ∈ Z[x0, . . . , xn] homogeneous of degree 3 such that X := V+(F ) ⊂ PnZ
is smooth over Z?

Remark. In degree 2, we can just take x0x1 +x2x3 + · · ·+x2nx2n+1. We also have objects which are smooth
proper over SpecZ, e.g. flag varieties, Mg.
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