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Abstract

These are my live-texed notes for the Spring 2019 student learning seminar on symplectic duality.
Let me know when you find errors or typos. I’m sure there are plenty.
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1 Sam (Feb 07): Instantons, ALE spaces, quiver varieties

The starting point is Yang–Mills theory.

Definition 1.1 (Yang–Mills theory). Let (M,g) be a Riemannian/Lorentzian manifold. (The physicists are
ultimately interested in the Lorentzian case.) Let G be a compact Lie group. The space of physical fields
are connections A on a vector bundle E such that End(E) = g. Explicitly, a connection will therefore be

∇A∶Ω0(E) → Ω1(E),
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locally given by a matrix of 1-forms. It extends to a map

dA∶Ωk(E) → Ωk+1(E).

We care about its square d2
A = FA ∧ −, where FA is some 2-form. In coordinates, it is Fij = [∇i,∇j]. The

field strength associated to a connection A is ∣FA∣2 (which is a function of the metric g). The Yang–Mills
functional is

SYM[A] ∶= ∫
M

∣FA∣2 dµ = ∫
M

tr(FA ∧ ⋆FA)dµ.

Remark. The Euler–Lagrange equation for this functional is d∗AFA = 0, where d∗A = ⋆dA⋆ is the adjoint of
dA. By the Bianchi identity, dAFA = 0. This makes it easy to construct solutions to the Euler–Lagrange
equations, because if

⋆FA = ±FA
then we automatically satisfy this.

Definition 1.2 ((A)SD connections). Since ⋆∣Ω2 satisfies ⋆2 = 1, we can split Ω2 into eigenspaces with
eigenvalues ±1, i.e.

Ω2 = Ω+ ⊕Ω−,

with projections FA ↦ F ±
A. From this perspective, if FA = F +

A or FA = F −
A, then d∗AFA = 0 and we call such

connections self-dual (SD) or anti-self-dual (ASD).

Example 1.3 (Electromagnetism). For G = U(1), it turns out we get Maxwell’s equations from this. This
is by splitting FA as follows:

FA =
⎛
⎜⎜⎜
⎝

0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

⎞
⎟⎟⎟
⎠

where B is the magnetic field and E is the electric field.

Definition 1.4 (Instantons). Move now to a Riemannian manifold (M,g), so that now we have a Euclidean
version of the action SE[A] and all of the above theory carries through. Instantons are solutions to the
Euler–Lagrange equation d∗AFA = 0 such that the total Euclidean action SE[A] is finite.

Definition 1.5 (Hyperkähler manifolds). Take a complex structure I on (M,g). It gives a hermitian metric
given by

h(X,Y ) ∶= g(X,Y ) + ig(X,IY ), ω(X,Y ) ∶= g(X,IY ).

Here ω is a real (1,1)-form with respect to I. A hyperkähler structure is when we have three compatible
complex structures I, J,K on (M,g), i.e.

I2 = J2 =K2 = IJK = −1

and all three are integrable. Doing the same procedure, we get three real (1,1)-forms ωI , ωJ , ωK . In fact,
we get an entire 2-sphere of complex structures by quaternionic rotation of I, J,K.

Definition 1.6. We know ωJ is a real (1,1)-form with respect to J , so that with respect to I,

ωJ + iωK ∈ Ω2,0

is a holomorphic symplectic form. (This works with respect to J and K as well.)

Proposition 1.7. The SD 2-forms on a hyperkähler manifold are spanned by ωI , ωJ , and ωK .

Proof. We can count dimensions and see that Ω+ is rank-3. But locally, ωI = dx1dx2 + dx3dx4. The Hodge
dual ⋆ exchanges dx1, dx2 and dx3, dx4, so that ωI = ω+I . This is also true for ωJ and ωK . Since these are
all non-degenerate sections of Ω+, they form a frame and span Ω+.
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Corollary 1.8. FA is ASD iff FA is a (1,1)-form and FA ∈ ω⊥I ⊂ Ω1,1.

Proposition 1.9. The connection A is ASD iff A is compatible with the unitary connection on E and
(FA, ωI) = 0.

Proof. We can write down the ASD equation in the following form:

A ASD ⇐⇒ ([∇1 + i∇2,∇3 + i∇4] = 0
[∇1,∇2] + [∇3,∇4] = 0

) .

The top equation is ∂̄2
A = 0, and the bottom equation is (FA, ωI) = 0. We also know that all this works for

any of the other complex structures coming from I, J,K.

The way to actually get solutions to these equations is to reduce the problem to a quadratic linear algebra
problem. The way this happens is kind of magical. We will start with some vector space of matrices, and
then take a quotient by a Lie group which will preserve some symplectic form on the vector space. The
action will give exactly these ASD equations as the moment map.

Definition 1.10 (Symplectic reduction). Let G be a compact Lie group acting on a symplectic manifold
(M,ω). The infinitesimal action is

g→ {Γ(TM) ∶ LXω = 0}.

Make the assumption that all the vector fields created from the infinitesimal action are Hamiltonian. From
this assumption, the map

(g, [, ]) → (C∞(M),{−,−})

induces a moment map

(g∗,{−,−}) µ←Ð (M,{−,−}).

We call
M �G ∶= µ−1(0)/G

the symplectic reduction.

Remark. More generally, if G acts on a hyperkähler manifold preserving ωI , ωJ , ωK , we get three moment
maps µI , µJ , µK . We will package this as

(µI , µJ , µK) = (µR, µJ + iµK)∶M → g∗ ⊕ g∗ ⊗C.

(For example, we will have g = u(n) so that the target is u(n) ⊕ gl(n).) The hyperkähler quotient is

M ��G ∶= (µR, µC)−1(0)/G.

Theorem 1.11. A hyperkähler quotient is hyperkähler.

Example 1.12 (ADHM construction). This will be an example of a hyperkähler quotient. The goal of
the ADHM construction is to produce instantons on C2. First view C2 ≅ H, the quaternions, to give it
a hyperkähler structure. We always start with a 4n-dimensional vector space in this way, viewed as a
quaternionic vector space. The data it contains will be the following.

1. Put C2 ⊂ S4 = HP1 and consider the fiber E∞ of the vector bundle at ∞. This is an n-dimensional
complex vector space.

2. To allow non-trivial bundles, introduce a complex vector space V of complex dimension k.

3. We include the data of maps

i∶E∞ → V, j∶V → E∞, B1,B2 ∈ End(V ).
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In other words, the quaternionic vector space we will consider is

M ∶= Hom(V,V ) ⊕Hom(V,V ) ⊕Hom(V,E∞) ⊕Hom(E∞, V ).

By construction, M has a natural hermitian metric induced from V and E∞, giving ωR. We get ωC by

ωC((B, i, j), (B′, i′, j′)) ∶= tr(B1(B′
2)�) − tr(B2(B′

1)�) + tr(ij′ − i′j).

The group action is the U(n)-action on V , i.e. G ∶= U(V ). (There is an SU(n)-action on E∞, but we will
not quotient by it, so that we get framed instantons.) The G-action is the natural induced one:

g ⋅ (B, i, j) ∶= (gB1g
−1, gB2g

−1, gi, jg−1).

We can now take the hyperkähler quotient
M��G.

The moment map equations in this case are called the ADHM equations:

⎧⎪⎪⎨⎪⎪⎩

0 = µC(B, i, j) = [B1,B2] + ij ∈ gl(V )
0 = µR(B, i, j) = [B1,B

�
1] + [B2,B

�
2] + ii� − j�j ∈ u(V ).

Definition 1.13. These equations look very similar to the ASD equations! So we want to reinterpret B1,B2

as connections. The way to do this is, for a point x ∈ C2, to take

V
αxÐ→ C2 ⊗ V ⊕E∞

βxÐ→ V

and let our bundle (the instanton) be the cohomology of this complex. (For x = ∞, the cohomology should
just be the E∞ we started with.) We engineer αx, βx such that this is a complex. The right thing to do
turns out to be

αx ∶= (B1 − x1,B2 − x2, i)
βx ∶= (−B2 + x2,B1 − x1, j),

so that βxαx = 0 iff the ADHM equations are satisfied. There also is a nondegeneracy condition for the
cohomology to be a vector bundle (i.e. constant rank).

Theorem 1.14. The non-degeneracy condition is equivalent to surjectivity of

Rx ∶= α∗x ⊕ βx∶C2 ⊗ V ⊕E∞ → V ⊕ V.

Theorem 1.15 (ADHM). If (B, i, j) satisfies the ADHM equations and this non-degeneracy condition, then
the vector spaces

ker(Rx)

glue together to give a vector bundle, which has a natural ASD connection A with finite energy.

Proof. We will prove the forward direction. The converse, that each ASD connection arises from this con-
struction, is much harder.

To show that A is ASD, it suffices to show ker(Rx) gives a holomorphic vector bundle with respect to
I, J,K. For one complex structure, this is equivalent to

βxαx = 0.

But this is equivalent to the ADHM equations. Those were symmetric with respect to I, J,K, so we only
need to check it for one.
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The hard part of the forward direction is that the bundle ker(R) has finite energy. The way to do it is
by extending from C2 to S4, which is compact. By fixing a complex structure, we get isomorphisms

C2 ≅ H = S− V ⊕ V = (C⊕C) ⊗ V = H⊗ V = S+

where S± are the spin bundles. Under this repackaging, Rx is actually a map

Rx∶H⊗ V ⊕E∞ → H⊗ V, (B1 + jB2 − q)(
j
i�
)

where q ∶= x ∈ H. This extends to S4 because this linear quaternionic polynomial can be turned into a
homogeneous quaternionic polynomial on HP1.

Remark. In fact, c2(ker(R)) = k = dimC V .

Definition 1.16 (Generalized ADHM construction). Now we generalize to ADE surfaces, which are reso-
lutions of C2/Γ for a finite subgroup Γ ⊂ SU(2) of ADE type. To generalize the ADHM description to this
setting, we generalize the data of morphisms to diagrams Γ of affine Dynkin type Ãn, D̃n, or Ẽn.

1. Each node in the Dynkin diagram is a vector space Vi. At each node, add a new node corresponding
to E∞ with corresponding vector space Wi.

2. Every edge in the Dynkin diagram gives two maps Bk,1,Bk,2 in each direction.

3. Every edge from the Dynkin diagram to the extra nodes at infinity gives two maps ik, jk.

So in general, we will have

M ∶= ⊕
h∈E(Γ)

Hom(in(h),out(h)) ⊕
k

⊕
i=1

Hom(Vi,Wi) ⊕Hom(Wi, Vi).

This has an action by G ∶= ∏iU(Vi). We have ωR and ωC by the straightforward generalization. The
hyperkähler quotient

Mξ(v⃗, w⃗) ∶= (µR, µC)−1(ξ)/G

is called the quiver variety associated to the quiver Γ. (Instead of taking 0, we will take a parameter
ξ ∈ Z(g⊕ g⊗C). This is more general.) We label the quiver variety by:

1. a vector v⃗ giving dimensions of the Vi;

2. a vector w⃗ giving dimensions of the Wi.

Theorem 1.17 (Nakajima). Let Γ = Ãn, D̃n, Ẽn, with generalized Cartan matrix C. Let n ∈ kerC be a
generator such that its first entry (corresponding to the affine root) is normalized to be 1.

1. Mξ(n⃗,0) is smooth when ξ is generic, and is isomorphic to the corresponding ADE surface.

2. Varying ξR gives the resolution of singularities.

3. These are gravitational instantons in the sense that SE,gravity[Mξ(v⃗,0)] < ∞.

4. All other quiver varieties on the same graph are moduli of instantons on the ADE surface, and all are
hyperkähler.

Theorem 1.18 (Nakajima). For fixed quiver Γ, the smooth locus

M reg
ξ (v⃗, w⃗)

are moduli of ASD finite-energy connections on M−ξ(n⃗,0). They are smooth for v0 = 0 and generic ξ.
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2 Semon (Feb 14): Hypertoric varieties and Gale duality

Definition 2.1. A polarized hyperplane arrangement is the data V of

V ⊂ RI , η ∈ RI/V, ξ ∈ V ∗ = (RI)∗/V ⊥.

We can think of this as giving us some hyperplanes, plus an affine covector. Denote Vη to be V translated
by η. Define hyperplanes

Hi ∶= Vη ∩ {xi = 0} ⊂ Vη.
If V is rational, i.e. everything is defined over Q, one can associate a hypertoric variety MV,η to this
data, and ξ will determine a C∗-action on MV,η.

Definition 2.2. Given V, define its Gale dual V∨ ∶= (V ⊥,−η,−ξ).

Given V, we can associate to it two combinatorially-defined algebras A(V) and B(V). These are quadratic
algebras.

Definition 2.3. A quadratic algebra is a ring

E ∶= TR(M)/W

which is the tensor algebra TR(M) of some R-module M , modulo an ideal with only quadratic relations. Its
dual is

E! ∶= TR(M∗)/W ⊥.

Example 2.4. Take E = SymV . Then E! = ∧∗(V ⊥) in some canonical way.

Theorem 2.5. A(V) and B(V) are quadratic algebras, and

A(V)! = A(V∨) = B(V).

Some motivation for caring about this is as follows. If E = ⊕k≥0Ek is a graded algebra, then E is Koszul
if every simple subobject has a linear resolution, i.e. a resolution where the i-th object is generated in degree
i. For Koszul algebras, there is the following very deep theorem.

Theorem 2.6 (BGS). If E is Koszul, then E is quadratic, E! is also Koszul, and

E! = Ext∗E(E0,E0)op

where E0 is the augmentation of E, and
Db(E) ≅Db(E!).

Definition 2.7 (Hypertoric varieties). Before we continue, we need to define hypertoric varieties. From a
hyperplane arrangement, get VZ ∶= V ∩ZI and V ∗

Z ⊂ V ∗. Take

G→ (S1)I ↠ T

acting on ker→ RI/ZI → V ∗/V ∗
Z . Then G acts on W ∗ ∶= ker. The action of G on W gives an action on T ∗W

in a Hamiltonian way, giving a moment map

T ∗W → g∗, µ(z,w)(X) = Ω(g ⋅ z,w).

Given λ ∈ Z(g∗), we know G preserves µ−1(λ). We also need the data of a character α ∈ Z(g∗)Z. Then we
can form the hyperkähler quotient

T ∗W ��λ,αG ∶= µ−1(λ) �α G.

Usually we take λ = 0 and α ∈ g∗ comes from η. This is because from how we defined G, we get

g→ Lie((S1)I) → Lie(T ),

acting on RI/V , RI , and V respectively.
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Example 2.8. Consider T ∗Pn. Take

C∗ t↦(t,...,t)
ÐÐÐÐÐ→ (C∗)n+1 → (C∗)n.

Explicitly, the matrix of the second arrow (on the tangent space) is something like (for n = 2)

(1 0 −1
0 1 −1

) .

Say we pick the character α(t) = t−1 in Lie(C∗). Then (for n = 2) we get the hyperplanes

{x0 = 1}, {x1 = 1}, {−x0 − x1 = 1},

from unwinding the construction above. Concretely, we transposed the matrix and set it equal to the matrix
of the first map. These hyperplanes form the moment polytope of P2. The resulting hyperkähler quotient
gives T ∗P2.

Remark. Note that the choice of ξ gives a 1-parameter subgroup on the quotient torus (C∗)n. Using ξ, some
regions in the moment polytope will have values bounded under the covector ξ. Picking ξ generically, it acts
in the standard way on T ∗Pn. There is a correspondence between the bounded regions and components of
the attracting strata of the action coming from ξ.

Example 2.9. Consider C̃2/Zn. Its defining equation is

(z, u, v) ∈ C3 ∶ zn+1 − uv = 0}.

Define a subtorus
K ∶= {(t1, . . . , tn+1) ∶ ∏ ti = 1} ⊂ (C∗)n+1.

The quotient is a 1-dimensional C∗. The maps will be

(C∗)n → (C∗)n+1 → C∗

given by the transposes of the previous matrices for T ∗Pn. The resulting hyperplane arrangement is

{x = 1}, {x = 2}, . . . , {x = n}.

Importantly, these points don’t coincide. Fact: this hyperplane arrangement and the previous one are Gale
dual.

Definition 2.10. We will now define the algebra A(V). An element α ∈ (−1)I determines a component ∆α

of the hyperplane diagram by intersection of half-planes. (Note that these signs do not change under Gale
duality.) Let

F ∶= {α ∶ ∆α ≠ 0}.

Define the algebra
B ∶= {α ∶ ξ is bounded on ∆α},

and let P ∶= F ∩B. We can run this construction on the Gale dual side to get F ∨, and the standard duality
from linear programming tells us that

F ∨ = B, B∨ = F, P ∨ = P.

The algebra A(V) is constructed as follows.

1. Take the quiver Q with vertices F and arrows (both ways) if α and β differ by a single sign.

2. Let A be the path algebra P (Q) ⊗R Sym(V ∗) modulo relations:
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(a) if α ∉ P , then eα = 0;

(b) going around in a square commutes;

(c) going in a loop α → β → α gives tieα where ti is the equation of the hyperplane in V .

Theorem 2.11. A(V) is quadratic.

Proof. Consider path algebra P (QP ) of the subquiver with only vertices from P . There is a map

P (QP ) → A.

Relation (3) lets us expand a function into a path. In particular, there is a surjection P (QF ) → A from
the path algebra of the whole quiver. Then relation (1) says the vertices in F ∖ P die. The relations in
this presentation come from relation (2), since the other relations are all gone. But these relations are all
quadratic.

To show that A(V)! = A(V∨), the idea is to take a free R-module M on paths p(αβ). We identify M∨

with M∗ by writing down an inner product given by

⟨p(αβ), p(βα)⟩ = ±1

with sign chosen so that going around a commuting square gives −1. (Of course, these choices are not
canonical.)

Example 2.12. Let’s compute A(V) for C̃2/Z3. Let p, q, r, s be the edges. Then the relations are

{pq + sr = 0, rs = 0}.

Definition 2.13. The algebra B(V) is the convolution algebra associated to the cohomology of components
of the attracting stratification, which is a union of toric varieties. The components are indexed by α ∈ P .

3 Yasha (Feb 21): Physics of symplectic duality

Let’s first look at N = 2 supersymmetric 4d theories, with a SU(2)R symmetry acting on susy charges Qd.
What is the on-shell spectrum?

1. It contains a hypermultiplet
(φ, φ̄, ψ, ψ̄)

where (φ, φ̄) are complex scalars, and (ψ, ψ̄) are Weyl fermions.

2. It contains a vector multiplet
(ϕ,λ, λ̄,Aµ)

where ϕ is a complex scalar, (λ, λ̄) is a Weyl fermion, and Aµ is a gauge field.

If we want to see the theory in the infrared, we should look at the zeros of the potential. It turns out here are
no kinetic terms in the Lagrangian mixing hypermultiplets and vector multiplets. This is why the moduli
space decomposes as

M=Mhyper ×Mvector.

The first term is called the Higgs branch, and the second is called the Coulomb branch.
Now let’s look at 3d N = 4 theory. It can be obtained from N = 1 6d theory by dimensional reduction.

For example, take super Yang–Mills with gauge group G

∫ F ∧ ⋆F + ψ̄ /∇ψ.

In 6d, we have the gauge field Aµ and two Weyl fermions (ψ̄, ψ). The R-symmetry SU(2)R acts on the two
fermions. We assume the fields are independent on the coordinates x4, x5, x6 which we want to compactify.
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1. Aµ splits into A≤3,A4,A5,A6 where A4,A5,A6 are scalars. These three form some connection on 3d
space. So out of Aµ, we get a 3d gauge field Aµ and three scalars φ1, φ2, φ3.

2. What is the symmetry of this theory? There is an SU(2)R symmetry (which we started with), and a
SU(2)N and SU(2)E . Here

SU(2)N ∶= SO(x4, x5, x6)

and SU(2)E = SO(x1, x2, x3) is the Euclidean rotation group of 3d space. As a representation, the
fermions decompose as 2⊗ 2⊗ 2.

What is the resulting action? Since F = dA+A∧A, we get dφ+φ∧φ as well. Hence we get an extra potential
term in the Lagrangian

V = 1

4e2 ∑
i<j

tr[φi, φj]2.

To get 0 out of this, the φi should commute. By gauge transformations, they can be put into the Cartan of
the gauge group G. So if rankg = r, there are 3r fields {φi}. The gauge group is broken to U(1)r, i.e. the
subgroup of G which preserves each individual φi.

There is also a dual photon σ such that dσ = ⋆dA. We consider this scalar instead of the whole gauge
field Aµ. It is the only component which is important in the IR limit.

In total, this gives us 4r scalars {φ1, φ2, φ3, σ}. In the infrared, the physics should be described by the
sigma model to the vacua. Since we started with N = 4, it follows that this moduli of vacua should be
hyperkähler with SU(2)-action. (This is a heuristic guess.)

Example 3.1. Let’s consider G = SU(2). Then the scalar fields are

φi = (ai 0
0 −ai

) .

The Weyl group is ai ↔ −ai. The dual photon σ under this action is also σ ↔ −σ. The classical moduli
space is therefore

M= (R3 × S1)/Z2.

For U(1), we have R3 × S1 without the Z2. To make them the same, let’s postpone modding by Z2. The
classical metric we can guess to be

ds2 = 1

e2 ∑dφ2
i + e2dσ2.

There should be quantum corrections to this classical metric. At ∞, the space R3 ×S1 looks like S2 ×S1.
After quantum correction, this should be violated and we should get some S1-bundle over S2. The ansatz
we make is

ds2 = 1

e2 ∑dφ2
i + e2(dσ + sBi(φ)dφi)2

where s ∈ Z and Bi is the monopole field.
What is a monopole? They are instantons of codimension 3. Take a 3d theory,

∫ FµνF
µν + 1

e2
(Dµφ)2.

For example, in classical electrodynamics, if we take B = gr⃗/4πr3, then it violates the monopole condition.
At ∞, we can have non-trivial maps S2 → SU(N)/U(1)N−1, to the set of {φi}. These non-trivial maps arise
from monopole insertions. Such maps are classified by

π2(SU(N)/U(1)N−1) = π1(U(1)N−1) = ZN−1.

In this setting, such a thing is called a monopole because Dµ(φ) → 0 as 1/r2. In this case, ∂φ → 0 as 1/r,
and therefore we should have A ∼ 1/r. Hence B ∼ 1/r2.
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How do we parametrize S1-bundles over S2? Over any base B, they are parametrized by the Euler class
H2(B,Z). For B = S2, we have

H2(S2,Z) = Z.

This is the s ∈ Z we had in the ansatz earlier. To explicitly construct this bundle, we introduce u1, u2 ∈ C
such that ∣u1∣2 + ∣u2∣2 = 1, forming a sphere S3. As u1, u2 ↦ [u1 ∶ u2] ∈ CP1 = S2, we get the Hopf fibration
corresponding to s = 1. In general, for s ∈ Z, introduce a transformation as follows. Take S3 × S1 with
coordinates ((u1, u2), ψ). Consider U(1) acting by

(u1, u2, ψ) ↦ (eiθu1, e
iθu2, ψ + sθ).

Taking the quotient (S3 × S1)/U(1) = S3/Zs =∶ Ls, called the lens space. If we forget about S1, we can
project to S2, giving the desired S1-bundle for the given s. All these bundles have symmetry SU(2) ×U(1),
acting on (u1, u2) and ψ.

Now we want to determine the s for our theory. What is the contribution of the monopole to the quantum
correction of the metric? If I is the value of the action on the monopole, then we get e−I+iσ, where we add
iσ to make sure the flux at infinity is correct. There are also Fermi 0 modes (which in localization is the
contribution of the tangent bundle). Recall the symmetry group SU(2)R ×SU(2)N ×SU(2)E . The monopole
is invariant under SU(2)E ×SU(2)R, but SU(2)N is broken into U(1) because we constructed the monopole
from the scalars φ1, φ2, φ3.

We showed earlier that in N = 4 under SU(2)R ×SU(2)N ×SU(2)E , supercharges decompose as 2⊗ 2⊗ 2.
Fact: BPS monopoles are invariant under half of the supersymmetries. The rest of the supersymmetries
generate Fermi 0 modes. Under the broken symmetry group SU(2)R × SU(2)E × U(1)N , supercharges
decompose as (2,2)1/2 ⊕ (2,2)−1/2, and BPS monopoles are invariant under half of the supersymmetries in
SU(2)R × SU(2)E ×U(1)N .

Then the unbroken symmetry is e.g. (2,2)−1/2. (We can choose either one.) So fermion zero modes
transform as (2,2)1/2. So the instanton amplitude has the form

∫ ψψψψe−(I+iσ).

Here these ψ’s have 1/2 charge each, and I is invariant. The transformation of σ is the action of the generator
of U(1) as 2∂σ, to make the whole thing invariant.

Because the ψ’s have charge 1/2, we deduce that the bundle at ∞ must be L−4, i.e. s = −4. With
hypermultiplets, s = −4+2Nf where Nf is the number of fermions. (Here the computation to do is that each
component of a fermion contributes 1 to s.) For U(1) there are no monopoles, so s = Nf . So now we know
the whole metric on the Coulomb branch.

Let’s consider an example of duality between quivers. The content of a quiver gauge theory is encoded
in a quiver. Given a quiver with labels ni on vertices, the gauge group is G = ∏U(ni), and every edge is a
hypermultiplet in n∗i ⊗ nj . If we put a square instead of a vertex, we consider the gauge group there as a
global symmetry, not as a gauge symmetry. Consider the following two theories.

1. U(k) gauge group with n hypermultiplets in fundamental representation and 1 hypermultiplet in the
adjoint representation.

k n

.

The Higgs moduli here is the moduli Mk(SU(n)) of k-instantons.
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2. ∏U(k) gauge group with 1 hypermultiplet in fundamental representation and n hypermultiplets in
the adjoint representation.

k

kk

k

k k

1

.

Let’s provide some counting evidence for Coulomb branches and Higgs branch have the same dimension, and
the number of mass and FI parameters are the same. FI parameters are constants ξ added to the action as

+λ∣µ − ξ∣2

where µ is the moment map. So the number of FI parameters is the number of U(1) factors in the gauge
group.

1. (A) rankG = k and

dimMHiggs = dim(hypermultiplets) − dim(gauge) = (nk + k2) − k2 = nk,

and dimMCoulomb = r (because we take hyperkähler reduction from dim 4r). The number of FI terms
is 1. The number of mass parameters is n+ 1− 1 = n. (Some mass terms can be gauged out, hence the
−1.)

2. (B) rankG = kn, and
dimMHiggs = nk + k2 − nk2 = k,

and dimMCoulomb = kn. The number of FI terms is n, since in each U(k) we have one U(1) factor.
The number of mass parameters is n + 1 − n = 1.

Numerically, we see that perhaps the Higgs and Coulomb branches are swapped in these two different theories,
and similarly we swap mass and FI parameters.

There is a string realization of these quiver gauge theories in IIB string theory. Consider

1. NS5 branes X0,X1,X2,X3,X4,X5;

2. D5 branes X0,X1,X2,X7,X8,X9;

3. D3 branes X0,X1,X2,X6

where the D3 branes are stretched between NS5 and NS5 branes, and D5 branes are along the orthogonal
direction. If between the i-th and (i + 1)-th NS5 branes there are ki 3-branes, then we get a U(ki) gauge
theory. If ω⃗i is the position of NS5 in X7,X8,X9, then FI terms are ξ⃗i = ω⃗i − ω⃗i+1. If m⃗i are positions of the
D5 branes in X3,X4,X5, then they are the masses of hypermultiplets. If we compactify X6, then strings
don’t have to start and end on the NS5. They can wrap around it along X6. This way, we get the A-model
above, with hypermultiplets between D3 and D5 branes. The SL(2,Z) symmetry for IIB strings preserves
D3 branes (because N = 4 SYM has this symmetry, called Montonen–Olive duality) and swaps D5 and NS5
branes. (D5 is charged under ∫ B ∧B ∧B and NS5 is charged under ∫ B∗ such that dB∗ = ⋆dB.)

4 Shuai (Feb 28): Koszul duality

The first step is the classical version of Koszul duality. Let’s first recall something familiar. If we want to
consider the representation theory of finite/compact groups G, we can think about the character group Ĝ,
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which is on the dual side. Then Rep(G) is identified with functions on Ĝ. We can also look at L2(G) vs
L2(Ĝ). What do we mean by “duality”? In this context, it is realized by G↦ Ĝ.

In our situation, we don’t consider finite/compact groups, but instead Koszul algebras. The picture is
still almost the same. On one hand, we have some Koszul algebra A, and on the other hand we have its dual
algebra A!. The classical example is

A = ∧∗V ↔ A! = (∧∗V )! = Sym∗(V ∨).

Think about Mod(∧∗V ) and Mod(Sym∗(V ∨)). What is the analogue of “taking the character” in our
situation? This operation is given by

A↦ Ext∗A(k, k).

In this context and many other contexts, Ext∗(−,−) serves as a “character”.

Example 4.1. Let V be a vector space.

1. Let’s first consider V = k. Then ∧∗V = k[ε]/ε2. The resolution is

⋯ εÐ→ k[ε] εÐ→ k[ε] εÐ→ k → 0.

Now compute Ext by

0→ Homk[ε](k[ε], k)
εÐ→ Homk[ε](k[ε], k)

εÐ→ ⋯.

So each term is a copy of k. Computing the pairing, we see the answer is k[x].

2. In general, for V = Cn, we have the usual Koszul resolution

⋯ → Sym2 V ⊗ ∧∗V → Sym1 V ⊗ ∧∗V → ∧∗V → k → 0

with the usual maps. Compute Ext by

0→ HomA(∧∗V, k) → HomA(Sym1 V ⊗ ∧∗V, k) → ⋯.

So the i-th term is Symi V , and the whole algebra is isomorphic to Sym∗ V . (The harder part is
checking the algebra structure, but it is true.)

The conclusion is that Ext∗∧∗V (k, k) = Sym∗(V ∨).

Remark. Since we are calling this a “duality”, it should be that ExtA!(k, k) = A. In the case of A = ∧∗V , we
can use the same Koszul resolution to show this.

Theorem 4.2. There is an equivalence

Db(Pn) Db(Sym∗)/Ffg

Db(∧∗)/Ffree

Here Ffg is the full subcategory generated by finitely generated modules, and similarly for Ffree and free
modules.

Remark. The right-most arrow is what we call Koszul duality. The horizontal arrow is actually a theorem
due to Serre.

12



Proof sketch. For finite/compact groups, we go between one side and the dual by something like

L2(G) ↔ `2(Ĝ)
V →∑dim Hom(R,Vi)χi

⊕V
⟨f,χi⟩
i ← f.

Similarly, in our case, we have

Db(S) ↔Db(∧)
(W,d) → (Homk(∧,W ), ∂) ∂(v)λ ∶= −∑xiv(ξiλ) + d(v(λ))

(S∗(V ∨) ⊗ V, d) ← (V, ∂) d(s⊗ v) ∶= ∑xis⊗ ξiv + s⊗ ∂V.

We can gain some intuition about these equivalences via the equivalence to Db(Pn). What is that
equivalence? Let P be the class of free ∧∗V -modules. Say V1 ∼P V2 are P-equivalent if V1 ⊕ P1 ≅ V2 ⊕ P2

for some P1, P2 ∈ P. Given a module V over ∧∗V , the equivalence is

V ↦ L●, Lj ∶= V−j ⊗O(j).

For example, k ↦ O and ∧∗V ↦ 0.

Definition 4.3. A ∧-module is called faithful if

Hi(Lξ(V )) = 0, ∀ξ ≠ 0, i ≠ 0.

Here Lξ(V ) means the localization of the complex L(V ).

Remark. If the module is faithful, because all other Hi are zero, let Φ(V ) ∶=H0 be some bundle over Pn. It
turns out that:

1. Φ(V ) = Φ(V ′) iff V ∼P V ′;

2. the construction Φ commutes with ⊗, S∗,∧∗, (−)∨;

3. for given V,V ′, there is an exact sequence 0→ V → P → V ′ → 0 where P is free, and then

Φ(V ′[1]) = Φ(V );

Let ω ∶= ξ0 ∧⋯ ∧ ξn be the volume form. Then Vect(Pn) ≅Mod(∧/(ω)).

Definition 4.4. Now let’s talk about parabolic-singular duality. Fix a semisimple Lie algebra g, with
h ⊂ b ⊂ g. Let Ug be the universal enveloping, with center Z. Let W be the Weyl group.

1. Category O is the sub-category of Mod(Ug) of objects which are:

(a) finitely generated;

(b) locally finite over b, i.e. the sub-module generated by the b-action should be finite;

(c) semisimple over h.

2. Fix λ ∈ h∗. Verma modules are M(λ) ∶= U ⊗Uh Cλ . Its simple quotient is the highest-weight irrep
L(λ). It has a projective cover P (λ) → L(λ). (For a given g, the number of projective covers is
finite. More precisely, it is ∣W ∣.) The analogue of the “regular representation” is

P ∶=
∣W ∣
⊕
i=1

Pi.
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3. Define L ∶= ⊕∣W ∣
i=1 Li, where Li are the simple highest-weight modules which have trivial infinitesimal

character, i.e. AnnZ(L) == AnnZ(C).

Theorem 4.5 (Parabolic-singular duality in λ = 0 case). There is an isomorphism of Koszul rings

EndO(P ) ≅ Ext∗O(L,L).

Definition 4.6. A Koszul ring is a Z+-graded ring

A =⊕
j≥0

Aj

such that:

1. A0 is semisimple (as a module over A);

2. there is a resolution ⋯ → P 2 → P 1 → P 0 → A0 → 0 such that P i is generated by only degree i elements,
i.e. P i = AP ii .

Its dual should be something like A! ∶= ExtA(A0,A0) (up to taking opposite categories).

Proof idea. Why is this a natural identification? In the case of finite/compact groups, one important result
is how to decompose C[G]. Let A be an abelian category with projective generator P . This means P has a
surjection to all the simple objects L ∈ A. (So P is really analogous to the regular representation.) By an
abstract construction,

A ≅ EndA(P ), M ↦ HomA(P,M).

For example, if G = S1 or Z/n, then this says Rep(G) ≅ Mod(C[G]). In some sense, the lhs of parabolic-
singular duality can be thought of in this way. The rhs can be interpreted as some kind of “characters”.

Example 4.7. Let g = sl2 with standard Borel. Then G/B = P1. The parabolic-singular duality allows us
to take the category of perverse sheaves P(P1,W ) (parametrized by the Weyl group) and identify it with
category O. To compute things like dim Hom(ICx, ICy), we can push it to O and just compute something
about Homs between modules.

Definition 4.8. A more general version of Koszul duality gives us a correspondence between categories Oλ
and Oq.

1. Define
Oλ ∶= {M ∈ O ∶ AnnZ(M) = AnnZ(L(λ))}.

Define s ⋅ λ ∶= s(λ − ρ) − λ = λ. In Oλ, all the simples and projective covers are given by

{L(x ⋅ λ)}x∈Wλ , {P (x ⋅ λ)}x∈Wλ .

2. Let q denote a parabolic subgroup. Define

Oq ∶= {M ∈ O0 ∶ q-locally finite}.

The simples and projective covers are given by

{Lqx ∶= L(x−1w0 ⋅ 0)}, {P qx ∶= P (x−1w0 ⋅ 0)}.

Theorem 4.9. If sλ = sq, then

ExtOλ(⊕P (x ⋅ λ)) ≅ ExtOq(⊕Lqx ⊕Lqx)
ExtOq(⊕P qx) ≅ ExtOλ(⊕L(x ⋅ λ) ⊕L(x ⋅ λ)).

Remark. If P = B, then we recover the original parabolic-singular duality, which says O0 is self-dual.
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5 Henry (Mar 07): Symplectic resolutions

If a singular variety Y comes from some representation theory problem, we want a resolution π∶X → Y which
is:

1. semismall, i.e. for every closed Z ⊂X we have 2 codimZ ≥ codimπ(Z);

2. equivariant with respect to some group action on Y .

This turns out to be possible for Springer resolutions and quiver varieties. Interestingly, in these cases, X is
holomorphic symplectic. Actually, this turns out to be important: that X is holomorphic symplectic ensures
semismall-ness, cohomological purity of fibers, etc.!

Definition 5.1. A symplectic singularity is a normal irreducible algebraic variety Y with a nondegenerate
symplectic form

ω ∈H0(Y sm,Ω2)

which extends to a possibly-degenerate symplectic form on a smooth resolution X → Y . (Later, for a
symplectic resolution, we will require non-degeneracy.)

Remark. We want Y to be normal so that functions extend uniquely from Y sm to Y . This is because normal
is equivalent to:

1. (R1) the singular locus is codimension 2, and

2. (S2) functions extend uniquely over codimension 2.

Lemma 5.2. Symplectic singularities are:

1. canonical, i.e. KX = f∗KY +∑aiEi with ai ≥ 0;

2. rational, i.e. Rif∗OX = 0 for i > 0.

We will most often be concerned with affine Y . Since we assume Y to be normal, H0(X,OX) =
H0(Y,OY ), and it follows that Y = SpecH0(X,OX). Hence if we assume Y affine, we can forget about
Y altogether!

Definition 5.3. A symplectic resolution is a smooth variety X with a closed non-degenerate 2-form ω
such that the affinization map

X → Y ∶= SpecH0(X,OX)

is a resolution of singularities, i.e. projective birational. If in addition H0(X,OX) has a grading, then Y
has a C×-action, and we call such a symplectic resolution conical.

Remark. Some people don’t require non-degeneracy in symplectic resolutions, in which case a resolution of a
symplectic singularity is symplectic iff it is crepant. We require non-degeneracy, so for us there is a difference
between “symplectic” and “crepant”.

Example 5.4 (T ∗(G/B)). Let G be a complex semisimple and simply-connected algebraic group.

1. Let B be its flag variety, parametrizing Borel subalgebras b ⊂ g.

2. Given a Borel b, let n− ⊕ t⊕ n be its associated Cartan decomposition.

Define the nilpotent cone
N ∶= {x ∈ g ∶ adx is nilpotent}.

Its smooth locus consists of regular elements, i.e. those for which charpoly(adx) = rankg. A resolution is
given by

Ñ ∶= {(x,b) ∈ N × B ∶ x ∈ b}.
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The projection Ñ → B has fibers n = [b,b], which are exactly the fibers T ∗bB. Hence

T ∗B ≅ Ñ .

Fact: it is a resolution of singularities because any nilpotent x is contained in a unique Borel. This is the
Springer resolution.

Remark (Demailly–Campana–Peternell). Conjecturally, every symplectic resolution of the form T ∗M is
actually of the form T ∗(G/P ) for a semisimple algebraic group G and a parabolic P ⊂ G.

Example 5.5 (Hypertoric varieties). We constructed hypertoric varieties

Mθ,ζ ∶= µ−1(ζ) �θ (C∗)k

as hyperkähler quotients. General theory of GIT quotients gives us a projective birational map

Mθ,ζ →M0,ζ = SpecC[µ−1(ζ)](C
∗)k .

Such a map is a symplectic resolution.

Example 5.6 (Quiver varieties). A large class of symplectic resolutions is given by Nakajima quiver varieties,
which are also given by hyperkähler reduction. The symplectic resolution is given by the projective GIT
map

Mθ,ζ(v⃗, w⃗) →M0,ζ(v⃗, w⃗) = SpecC[µ−1(ζ)]Gv⃗ .

One of Kaledin’s key insights toward the study of singular symplectic varieties is to apply the Poisson
methods developed in the theory of symplectic manifolds. Specifically, look at the Poisson structure
instead:

{f, g} ∶= ιΘ(df ∧ dg) ∈H0(Y,OY ) f, g ∈H0(Y,OY )

where Θ is the 2-vector dual to the symplectic form. A priori this is only defined on Y sm, but functions
extend uniquely. We can now look at the algebraic equivalent of “symplectic leaves”.

Theorem 5.7 (Kaledin). Let X be a symplectic variety. Then there exists a canonical stratification X =
X0 ⊃X1 ⊃X2 ⊃ ⋯ such that:

1. Xi+1 is the singular part of Xi;

2. the normalization of every irreducible component of Xi is a symplectic variety.

Another of Kaledin’s contributions is to use purely algebraic methods (e.g. Hodge theory) to study the
geometry of symplectic resolutions.

Theorem 5.8 (Kaledin). Let X → Y ∶= SpecH0(X,OX) be a symplectic resolution. Then:

1. (semismall) X → Y is semismall, i.e. for any stratum Yi of codim 2`, its pre-image has codim ≥ `;

2. (Hodge number vanishing) Hq(X,ΩpX) = 0 for all q > p;

3. (cohomological purity) cohomology H∗(Xan
y ,C) of fibers is generated by algebraic cycles, i.e. no odd

cohomology, and even cohomology is Hodge–Tate (generated by (p, p)-cycles);

4. (exactness of ω) in any formal neighborhood of a fiber, ω is exact.

Proof of semismall-ness. Let Xi be the pre-image of Yi and fix y ∈ Yi. Fact: on fibers of (Xi)sm, the
symplectic form ω restricts to zero. (This is a Hodge-theoretic calculation.) So

Tx(Xi)y ⊂ kerω∣x,
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i.e. (Xi)y and Xi are orthogonal with respect to ω. But ω is non-degenerate on all of X,

dim(Xi)y + dimXi ≤ dimX.

We have dim(Xi)y = dimXi − dimYi, so

2 codimXi = 2 dimX − 2 dimXi ≥ dimX − dimYi = codimYi

since π is birational and dimX = dimY .

What is the deformation theory of a symplectic resolution X? We require deformations preserve the
symplectic form ω, so first-order deformations are parametrized by H2

dR(X). There is an analogue of Tian–
Todorov unobstructedness here.

Theorem 5.9 (Kaledin–Verbitsky). Let (X,ω) be a symplectic resolution. Then it admits a (topologically
trivial) universal formal deformation (X, ωX) whose base is the completion of H2

dR(X) at [ω].

Proof sketch. The idea for deformations of a manifold X over a base S is standard:

1. (Kodaira–Spencer theory) to an n-th order deformation Xn/Sn, there is an associated Kodaira–Spencer
class

θn ∈H1(Xn, TXn/Sn ⊗Ω1(Sn));

2. (T1-lifting property) to get an (n + 1)-th order deformation, θn must lift to

θ̂n ∈H1(Xn, TXn/Sn ⊗ i
∗
nΩ1(Sn+1)).

For manifolds, Ran proves liftings exist via Hodge theory. For symplectic deformations, we replace TX/S by

K●
X/S ∶= F

1(Ω●
X/S)[−1] = [Ω1 dÐ→ Ω2 dÐ→ ⋯].

Kaledin–Verbitsky prove that liftings exist in this general context.

Example 5.10 (T ∗(G/B)). Let G be a complex semisimple and simply-connected algebraic group. Note

H2
dR(T ∗B) =H2(B;Z) ⊗C ≅ Hom(T,C∗) ⊗C ≅ t∗

Dλ ∶= c1(O(λ)) ↦ λ,

so we expect the Springer resolution to fit into a family over t∗. This is the (more canonical) Grothendieck–
Springer resolution, with total space

X̃ ∶= {(x,b) ∶ x ∈ [b,b]⊥} ⊂ g∗ × B

and map

X̃ ∋ (x,b) φÐ→ x∣b/[b,b] ∈ t∗.

1. (Springer resolution) The special fiber is

X ∶= φ−1(0) ≅ T ∗B

as follows. The condition (x,b) ↦ 0 means x∣b/[b,b] = 0, i.e. that x is purely the data of (g/b)∗. Hence
X ≅ G ×B (g/b)∗, which is exactly the cotangent bundle.

2. The generic fiber of φ is a coadjoint orbit of G with its canonical Kirillov–Kostant form ω.

This picture extends to T ∗(G/P ) for parabolics P , and then to resolutions of (normalizations of closures of)
nilpotent orbits in g.
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Definition 5.11 (Weyl group). Let X → Y be a conical symplectic resolution. The singular part Σ in Y is
codimension 2. Let {Σj} be the connected components of its smooth part.

1. (Normal slices) Let xj ∈ Σj . Let Nj be a normal slice to Σj at xj . Then it is a surface, with a
singularity.

2. (ADE singularities) Symplectic singularities are canonical, so Nj has a canonical singularity. Such
surface singularities are always ADE, i.e. rational double points, giving a Dynkin diagram Dj .

3. (Automorphisms) π1(Σj) acts on Dj by diagram automorphisms via the monodromy representation.

The Namikawa Weyl group is the product W ∶= ∏Wj of centralizers of this π1(Σj) action in the Coxeter
group associated to Dj .

Theorem 5.12 (Namikawa). Let X→H2(X,C) be the universal deformation of X.

1. Let Y be the universal (Poisson) deformation of Y . Then X → Y is locally a Galois covering with
Galois group W , giving a diagram

X ÐÐÐÐ→ Y
×××Ö

×××Ö
H2(X,C) ÐÐÐÐ→ H2(X,C)/W.

2. Put Y′ ∶=Y ×H2(X,C)/W H2(X,C), with induced diagram

X
ΠÐÐÐÐ→ Y′

×××Ö
×××Ö

H2(X,C) idÐÐÐÐ→ H2(X,C).

Then Π is a crepant projective resolution. There is a hyperplane arrangement in H2(X,Q) such that
away from the hyperplanes, Π is an isomorphism (and hence produces affine fibers Xp).

Example 5.13. Take the An−1 resolution

X → Y ∶= {(x, y, z) ∈ C3 ∶ x2 + y2 + zn = 0}.

1. (Weyl group) H2
dR(X) is an (n − 1)-dimensional vector space generated by components E1, . . . ,En−1,

with negative definite intersection pairing (−,−). In it is the An−1 root system, with Weyl group Sn.

2. (Deforming Y ) The universal deformation of Y is

Y ∶= {(x, y, z, u1, . . . , un−1) ∈ Cn+2 ∶ x2 + y2 + zn + u1z
n−2 +⋯ + un−2z + un−1 = 0}

where (u1, . . . , un−1) ∈ Cn−1 is the base. (By a change of variables, we can get rid of the zn−1 term.)

3. (Deforming X) The base for the universal deformation of X ought to be

V ∶= {(s1, . . . , sn) ∈ Cn ∶ ∑ si = 0} ≅H2
dR(X) ⊗C.

This is an Sn Galois cover of the base Cn−1 for Y via

(s1, . . . , sn) ↦ (σ2, . . . , σn)

18



where σi is the i-th elementary symmetric function. Write Y′ ∶=Y ×V /Sn V , or more explicitly,

Y′ ∶= {(x, y, z, s1, . . . , sn) ∈ Cn+3 ∶ x2 + y2 + (z − s1)(z − s2)⋯(z − sn) = 0, ∑ si = 0}

This is singular along
H ∶= ⋃

i<j
Lij , Lij ∶= {si = sj}.

Take a simultaneous resolution of all of Y′ → V along H to get the universal deformation X→ V of X.

For p ∉ H, note that Xp → Y′
p are isomorphisms, and therefore Xp is affine. For p contained in k different

Lij , we require k blow-ups and therefore get k proper curves (resolving an Ak−1 singularity). Those Xp are
not affine.

Remark. The general proof is not much harder than this. The key idea is to prove that the hyperplanes arise
as codimension 1 faces of the closure of the ample cone for some crepant projective resolution X ′ → Y . This
we do by flopping around. In the process, the argument proves that Y can have only finitely many crepant
projective resolutions.

We actually care about non-commutative deformations of X, and even in this case there is a nice unob-
structedness theorem.

Definition 5.14 (Quantization). Let (X,{−,−}) be a Poisson variety over k. A quantization of X is a
sheaf Oh̵ of flat k[[h̵]]-algebras on X, complete in the h̵-adic topology, such that:

1. there is an isomorphism Oh̵/h̵ ≅ OX given by f ↦ f̄ ;

2. for any two local sections f, g ∈ Oh̵,

fg − gf = h̵{f̄ , ḡ} mod h̵2.

Example 5.15 (Local model). Let (V,ω) be a symplectic vector space. Then Sym∗ V is a Poisson algebra
with (degree −2) bracket determined by

{u, v} ∶= ω(u, v), u, v ∈ V.

Its quantization is the Weyl algebra

W (V ) ∶= T (V )/⟨u⊗ v − v ⊗ u − ω(u, v)⟩,

filtered by the monomial degree.

1. Explicitly, for something like V = T ∗A1
k, we have

W (T ∗A1
k) = k[x, ∂x], ∂xx − x∂x = 1.

In general, a quantization of T ∗X is therefore the sheaf DX of differential operators.

2. To add in the necessary h̵, modify the product structure by

v ∗ f ∶= fv + h̵vf, u ∗ v − v ∗ u ∶= h̵[u, v], u, v ∈ TX , f ∈ OX ,

and then h̵-adically complete it to get Dh̵,X .

Theorem 5.16 (Bezrukavnikov–Kaledin). Let X be a symplectic resolution with universal formal deforma-
tion X/S. Then there exists a canonical quantization Õh̵ of X universal in the sense that for any quantization
Oh̵ of X, there is a section

s∶Speck[[h̵]] → Speck[[h̵]]×̂S

of the projection such that s∗(Õh̵) ≅ Oh̵.

19



Remark. In other words, non-commutative deformations are classified by elements in H2
dR(X)[[h̵]] with

leading-order term [ω]. Let Q(X) be the isomorphism classes of quantizations of X. The map Q(X) →
H2

dR(X)[[h̵]] is the non-commutative period map.

Proof sketch. The idea is to quantize the whole argument above.

1. (Local model) Prove a “quantum” Darboux theorem: locally, every quantization of (T ∗Ank)∧̵h is iso-
morphic to D ∶= Dh̵,An

k
. If Aut≥`(D) ⊂ Aut(D) denotes the subgroup of automorphisms which are the

identity on D/h̵`D, then
1→ k[[h̵]]∗ →D∗ → Aut≥1(D) → 1

is an exact sequence. (This is some Hochschild cohomology computation.)

2. Problem: H2
dR(X) parametrizing deformations of symplectic structure and k[[h̵]] parametrizing defor-

mations Aut≥1(D) don’t decouple and may be obstructed. Manually analyze the entire lifting problem
to show that formally locally, it does decouple, and is unobstructed.

3. (Globalization) Express this all-order unobstructedness in the language of formal geometry. (Aut(D)
becomes a torsor, etc.)

6 Macky (Mar 14): Quantizations of conical symplectic resolu-
tions

Definition 6.1. A conical symplectic resolution of weight n ≥ 1 is a symplectic variety (M,ω) over C,
with an action of S ∶= C× such that:

1. z∗ω = znω;

2. M →M0 ∶= SpecC[M] is a projective resolution of singularities;

3. S contracts M0 to a cone point, i.e. the action of S on C[M] has positive weights on all generators.

This is a symplectic resolution, as we defined last time, with this additional S action.

Definition 6.2. Recall that a (formal) quantization of M is a sheaf Q of C[[h̵]]-algebras with an isomor-
phism

Q/h̵Q ≅ OM
such that the induced Poisson structure is the one induced by ω.

Theorem 6.3 (Bezrukavnikov–Kaledin). There is a period map giving an isomorphism

Per∶ {quantizations of (M,ω)} ∼Ð→ [ω] + h̵H2(M,C)[[h̵]].

Definition 6.4. We need to upgrade the quantization to take into account the S action. Recall that a
G-equivariant sheaf on X is a pair

(F , α∶a∗F ∼Ð→ p∗F)

for G ×X ⇉ap X where a is the action and p is the projection. We would like to define an equivariant
quantization to be a sheaf Q on M such that

a∗Q ≅ a−1Q⊗C[[h̵]] OS[[h̵]]

together with an isomorphism a∗ω ≅ znp∗ω. But there can be no isomorphism between a∗Q and p∗Q just
because they do not quantize the same symplectic form. We fix it by twisting the pullback a∗:

a∗twQ ∶= a−1Q⊗C[[h̵]] OS[[h̵]]
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where in the tensor product, we twist the embedding

C[[h̵]] → OS[[h̵]], h̵↦ h̵n.

This tells us that h̵ has weight n, the same as the symplectic form.

Theorem 6.5 (Losev). There is a period map

Per∶ {S-equivariant quantizations of (M,ω)} ∼Ð→ [ω] + h̵H2(M,C).

Definition 6.6. Fix a conical symplectic resolution M with S-equivariant quantization Q. Define sheaves

D ∶= Q[h̵−1/n], D(m) ∶= h̵−m/nQ[h̵1/n].

So there is a chain of inclusions
⋯ ⊂ D(1) ⊂ D(0) ⊂ D(−1) ⊂ ⋯ ⊂ D.

Define the section rings
A ∶= ΓS(D), A(m) ∶= ΓS(D(m)).

Here ΓS is (weight-0, as usual) equivariant sections. There is a filtration of A whose graded components are
A(m), and so there is an isomorphism

grA
∼Ð→ C[M]A(m) h̵m/nÐÐÐ→ Γ(D(0)) → Γ(OM).

Example 6.7. Here are some examples of M with their corresponding A.

M A
T ∗(G/B) central quotient of Ug

hypertoric varieties central quotient of hypertoric enveloping algebra

Hilbm(C̃2/Γ) spherical symplectic reflection algebra of Sm ≀ Γ.

These algebras were all of independent interest. If we had a localization relating the algebras on the rhs to
D-modules on the lhs, then we would have a unified view of them.

Definition 6.8. The (equivariant) global sections functor is

ΓS∶D-ModS → A-Mod.

(Here subscript S means S-equivariant.) The functor in the reverse direction is

Loc∶A-Mod→ D-ModS, N ↦ D ⊗A N,

called the localization functor. Just like in Beilinson–Drinfeld localization, in practice we restrict to
certain subcategories:

D-mod ⊂ D-Mod, A-mod ∶= A-Modfg ⊂ A-Mod.

The category D-mod is of good D-modules, which means it has a coherent D(0)-lattice.

Definition 6.9. We say localization holds for D or at λ where λ = Per(D) if these two functors give an
equivalence

D-mod ≅ A-mod.

We say derived localization holds if the derived functors RΓS and LLoc give an equivalence.

Theorem 6.10 (BPW). Let η, λ ∈H2(M,C), with η = c1(ample). Then:

1. derived localization holds at all but finitely many λ + kη where k ∈ C;
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2. localization holds at almost all λ + kη where k ∈ Z.

Example 6.11. For T ∗(G/B), the dominant chamber in H2(G/B,C) ≅ h∗ is the ample cone. The theorem
says that if we start with λ anywhere, adding enough copies of η gets us into the ample cone, and then
localization holds.

Remark. The key ingredient is to take λ ∈ H2(M,C) and look at the twistor deformation, which is the
1-parameter family of deformations parametrized by the line λ. But there are multiple ways of taking a
quantization on Mλ and restricting to a quantization of M . Note that the S-action identifies all the non-zero
fibers of the twistor deformation.

Theorem 6.12 (Kaledin). If λ = c1(ample), then Mλ(∞) is affine.

Definition 6.13 (Hypertoric case). (Reference: the WARTHOG on symplectic duality in this case.) The
setup is

K ⊂ T = (C×)n ↷ T ∗Cn

with a choice of character η∶K → C×. This gives a moment map

µ∶T ∗Cn → k∗

with respect to which we can take algebraic symplectic reduction and get the hypertoric variety

M ∶= µ−1(0) �η K.

We assume M is smooth. (This is some combinatorial condition.) The torus S acts on T ∗Cn by s ⋅ (z,w) ∶=
(s−1z, s−1w), and commutes with the T -action, and guarantees that M0 is contracted to the cone point, the
image of (0,0). This gives a conical symplectic resolution of weight 2.

Definition 6.14 (Quantization in hypertoric case). Let’s look at the quantization Uλ of C[M] for a
character λ∶Z(U) → C. Let D be the Weyl algebra, the canonical quantization of T ∗Cn. Schematic:

T × S↷ T ∗Cn T × S↷ D

U ∶= DK

T /K × S↷M Uλ ∶= U/(kerλ)U.

⋅/K

quantizes

quantizes

Here U is called the hypertoric enveloping algebra. Concretely, write

D ∶= C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩/ ∼

so that under the T -action we can write D = ⊕z∈t∗Z Dz. The K-invariant parts DK are

U = DK = ⊕
z∈(t/k)∗Z

Dz.

Example 6.15. Let M = T ∗P1. (This can be easily extended to T ∗Pn.) Here we have

1→K = C× (1,1)
ÐÐÐ→ T = (C×)2 → C× → 1.

Imagine D sitting on the lattice Z2. For example,

D(0,0) = C[x1∂1, x2∂2].
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The part (t/k)∗Z is the anti-diagonal line. So

D(i,−i) =
⎧⎪⎪⎨⎪⎪⎩

D0 ⋅ (x1∂2)i i ≥ 0

D0 ⋅ (x2∂1)i i ≤ 0.

Hence in this case we have a triangular decomposition of U as

U = D0[x1∂2] ⊕D0 ⊕D0[x2∂1].

A calculation shows that
Z(U) = C[x1∂1 + x2∂2] ⊂ D0.

(More generally, Z(U) ≅ Sym k.) So a central character λ∶Z(U) → C is specified by where we send x1∂1+x2∂2.
The quotient Uλ is therefore twisted differential operators on T ∗P1.

Remark (Kirwan surjectivity). Earlier we said quantizations are indexed by H2, but here we took a central
character instead. In this case, claim: Uλ account for all quantizations of M . To make this plausible, we
can check that

{central characters of U} ≅ k∗ →H2
K(T ∗Cn) Kirwan mapÐÐÐÐÐÐÐ→H2(M,C)

is an isomorphism. More generally, if we start with a (conical) symplectic resolution X with Hamiltonian
G-action, we can do quantum Hamiltonian reduction of the canonical quantization of X to get a quantization
of the algebraic symplectic reduction µ−1(0)�ηG, with period given using the Kirwan map. So if the Kirwan
map is surjective, we produce all quantizations in this way.

Definition 6.16. We can now globalize to get Uλ, which quantizes OM . Note that we could have arrived
at Uλ in two ways.

D

U Yλ ∶= D/(kerλ)D

Uλ Uλ ∶= EndD(Yλ).

The right hand side path sheafifies, by taking the canonical quantization (D,∗) on T ∗Cn where

D ∶= OT ∗Cn((h̵1/2))

f ∗ g ∶= mult(eh̵χ/2(f ⊗ g)), χ ∶= Poisson bivector ∑∂xi ∧ ∂yi .

Here ∗ is called the Moyal product. This sheafifies the Weyl algebra in the following way. Compute that

h̵−1/2x ∗ h̵−1/2y = h−1xy + h̵
2
h̵−1

h̵−1/2y ∗ h̵−1/2x = h−1xy − h̵
2
h̵−1.

So these satisfy exactly the commutation relations for xi and ∂i. (We also see that the 1/2 is very important,
since xi and ∂i have weights ±1.)

Definition 6.17 (Twisting functors). Let O = O(g,b,h) be BGG category O. There is a decomposition of
it into blocks

O = ⊕
λ∈h∗/(W ⋅)

Oλ,

where Oλ is all modules which have the same central character as L(λ). (The Weyl group action here is
with a shift by ρ.) We define a few functors on category O.

23



1. Choose weights λ,λ′ ∈ h∗ such that λ − λ′ is integral. There is a unique w such that w(λ − λ′) is
dominant integral, and

L(w(λ − λ′))

is finite-dimensional. Define the translation functor

Tλ
′

λ ∶Oλ ↪ O
⊗L(w(λ−λ′))
ÐÐÐÐÐÐÐ→ O ↠Oλ′ .

This relates different blocks and has a bunch of nice properties.

2. If s is a simple reflection, then we can go from 0 to some integral weight which is on the s-wall, and
come back. This composition is called the wall-crossing functor. In other words,

θs ∶= T 0
λT

λ
0 ∶O0 → O0.

3. Let s be a simple reflection again. Define the shuffling functor

Shs ∶= cone(id→ θs)∶DbO0 →DbO0.

4. Twisting functors. Secretly, twisting functors will be symplectic dual to something defined in terms
of translation functors.

7 Macky (Mar 28): Quantizations of conical symplectic resolu-
tions

Today we will define categories Og and Oa, which are full subcategories of the two sides of the (derived)
localization correspondence we saw last time. They will depend on additional geometric data.

Example 7.1 (B-B decomposition). Let B ⊂ G be a Borel in a connected complex reductive G. There is a
Schubert stratification

G/B = ⊔
w∈W

BwB/B.

There is an alternate way of thinking about this. Choose a maximal torus T ⊂ B. Introduce another torus
T ∶= C× and take a generic cocharacter χ∶T → T with the property that its adjoint action on B has all > 0
weights. This action has finitely many fixed points

(G/B)T = {wB/B}w∈W

and gives a Bialynicki-Birula decomposition which coincides with the Schubert stratification, i.e.

BwB/B = {p ∈ G/B ∶ lim
t→0

t ⋅ p = wB/B}.

Pass to T acting on T ∗(G/B) =∶M . Then MT is still the same, and

X○
w ∶= {p ∈M ∶ lim

t→0
t ⋅ p = wB/B}

has closure Xw ∶=X○
w which is the conormal to BwB/B in G/B. Let

M+ ∶= ⋃Xw.

Example 7.2 (BGG category O). Fix λ. Localization says

(λ-twisted D(G/B)-modules) ≃ (Aλ-modules).

Define associated categories O as follows.
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1. On the D-module side, take the subcategory given by those modules which are regular and have singular
support in M+. This is the geometric category Og.

2. On the Aλ-module side, this corresponds the subcategory to U(b)-locally finite modules. This is the
algebraic category Oa.

Soergel says that if λ is regular, then Oa ≃ O via some non-trivial equivalence.

Remark. We started with the choice of a generic cocharacter, but the choice is really just a choice of standard
Borel.

Definition 7.3. In general, the definition of Og and Oa depends on a T ∶= C× Hamiltonian action on M
which commutes with the S-action. Assume that MT is a finite set {pα}α∈I . Then we make the exact same
definition as the BGG category O case.

1. (Geometric side) Define the attracting set

X○
α ∶= {p ∈M ∶ lim

t→0
t ⋅ p = pα}

with closure Xα ∶=X○
α. Let

M+ ∶= ⋃Xα

be the relative core. The geometric category Og is the full subcategory of D-modules N which
are:

(a) (supported on conormal) set-theoretically supported on M+;

(b) (regularity) there exists a D(0)-lattice N(0) ⊂ N which are stable under an action of ξ.

2. (Algebraic side) The T-action gives a grading A = ⊕k∈ZA
k on the section ring. Define

A+ ∶= ⊕
k≥0

Ak.

The algebraic category Oa is the full subcategory of A-modules which are A+-locally finite.

Example 7.4 (Hypertoric review). Let K ⊂ T ∶= (C×)n be a subtorus acting on T ∗Cn. Let S be a torus
scaling the fibers. After choosing a character η∶K → C×, we get a hypertoric variety

M ∶= µ−1(0) �η K

with residual T /K and S-actions, making it a conical symplectic reduction. Let’s review some associated
objects.

1. Let U ∶= DK be the hypertoric enveloping algebra discussed last time. For example,

Z(U) ≃ SymC(k),

which lets us view η as a central character of U . Then the section ring is

Uη ∶= U/(kerη)U.

Recall that k× ≅H2(M ;C) via Kirwan surjectivity.

2. Fix some combinatorial data, namely the hyperplane arrangement. For example, for M = T ∗Pn with
n = 1,

K = C× t↦(t,t)
ÐÐÐÐ→ T = (C×)2

we have WZ ∶= t∗Z
(1,1)
ÐÐÐ→ k∗Z → 0. A hyperplane arrangement is the data of

Λ0 ∶= (kerWZ → k∗Z)

along with a choice η ∈ k∗Z. This really is a hyperplane arrangement, where the hyperplanes are where
the coordinate axes intersect the affine Λ0 + η.
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3. There is a T -action on
D = C⟨x1, x2, ∂1, ∂2⟩/ ∼

giving a decomposition ⊕z∈WZ Dz. We worked out last time that

D0 = C[x1∂1, x2∂2],

and that there is a natural triangular decomposition

U = DK = C[x2∂1] ⊗C D0 ⊗D C[x1∂2].

Definition 7.5 (Hypertoric category O). Consider D-modules (or U -modules or Uη-modules) M which are
weight modules for D0, i.e.

M = ⊕
w∈WZ

Mw

where Mw are generalized eigenspaces corresponding to w. (Really there is some ambiguity here, because
the identification of D0 is not canonical; we had to choose some normal ordering. So really we have to talk
about a W -torsor WZ and “quantized” hyperplane arrangements.) It is a computation in the Weyl algebra
that

Dz ⋅Mw ⊂Mz+w.

Example 7.6. Return to T ∗P1 with η = (3,0) for example. Here, Z(U) = C[x1∂1 + x2∂2]. If M is a weight
module for Uη, then

supp(M) ⊂ Λ0 + η.

Let’s describe a few Uη-modules. There is a decomposition of the lattice points in Λ0 + η into chambers
∆++,∆−+,∆+− where the two coordinates have the respective signs. For each sign vector α ∈ {±1}n, define
an associated D-module Lα. For our example,

L++ ∶= D/D⟨∂1, ∂2⟩ = C[x1, x2]
L−− ∶= D/D⟨x1, x2⟩ = C[∂1, ∂2]
L+− ∶= D/(D⟨∂1⟩ +D⟨x2⟩)
L−+ ∶= D/(D⟨x1⟩ +D⟨∂2⟩).

Let Lηα be the projection of Lα to Uη −Mod, i.e. to only the weight spaces that matter. For example,

Lη=3
++ = C⟨x3

1, x
2
1x2, x1x

2
2, x

3
2⟩

Lη=3
−− = 0.

Theorem 7.7. There is a bijection

{simples in Uη-Mod}/ ∼ ↔ Fη
Lηα ↔ {α ∶ ∆α ≠ ∅}

where F is the η-feasible set of sign vectors.

Example 7.8. Continuing, this means supp(Lηα) = ∆α. Using a cocharacter ξ∶T→ T /K, we get a notion of
positivity U+

η . The algebraic category O is therefore

Oa ∶= ( full subcategory of Uη −Mod
D0-weight modules which are U+

η -locally finite
) .

Combinatorially, a cocharacter ξ of T /K is the same data as

ξ ∈ (t/k)Z ≅ (Λ0)∨,
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which we called a polarization before. So specifying ξ determines which lattice points on Λ0 + η we call
positive. The whole package

X ∶= (Λ0 ⊂WZ, η, ξ)
we called a polarized hyperplane arrangement. Write Oa = O(X).

Theorem 7.9. Let Pη,ξ denote the η-feasible and ξ-bounded sign vectors. Then

{{simples in O(X)}/ ∼↔ Pη,ξ.

Remark. In terms of the hyperplane arrangement, we can actually describe the relative core M+ as the union
of some toric varieties given by the chambers ∆α where α ∈ Pη,ξ.

Example 7.10 (Symplectic duality for BGG O). Now that we have seen an extended example, we can
discuss symplectic duality. Previously, we described the Koszul self-duality of BGG category O, which
decomposes into blocks

O = ⊕
λ∈h∗/W ⋅

Oλ.

Concentrate on the principal blockO0, which has simples {L(w⋅0)}w∈W , with projective covers {P (w⋅0)}w∈W .
Symplectic duality in this situation comes from the fact that there are two completely different ways of
relating this to the geometry.

1. (“Higgs side”) Use BB localization and Riemann–Hilbert:

O0
locÐ→D(G/B) RHÐÐ→ Perv(B)(GB)

where simples L correspond to simples IC.

2. (“Coulomb side”, Soergel’s V) Define the coinvariant algebra

C ∶= SymC(h)/SymC(h)W+ .

Fact: there is a natural isomorphism C ≅H∗(G∨/B∨,C). For example, for SL2, we have

C = C[x]/(x2) ≅H∗(P1,C)

with deg h = 2. Then Soergel proved the following.

Theorem 7.11 (Soergel). 1. EndO0(P (w ⋅ 0)) ≅ C canonically.

2. There is a functor

O
Hom(P (w⋅0),−)
ÐÐÐÐÐÐÐÐ→ mod −C ≅ C −mod

sending Pw to a combinatorially-defined module Dw called a Soergel module. This functor is fully
faithful on projectives.

3. There is a functor

Db
(B∨)(G

∨/B∨)
H∗(−)
ÐÐÐ→ C − grmod

which is fully faithful on semisimples.

Remark. Koszul self-duality combines these two:

Lw ∈ O0(g) O0(g∨) ∋ Pww0

ICw ∈ Perv(G/B)

∼ .

To formulate this Koszul duality more precisely, we get the following.
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Theorem 7.12. There is an isomorphism of ungraded rings

EndO0(⊕Pw) ≅ Ext●O0
(⊕Lw).

Remark. Via this isomorphism, EndO0(⊕Pw) receives a natural grading. So we can define graded category
Õ0, giving a grading shift ⟨1⟩.

Theorem 7.13 (BGS). There is a triangulated equivalence

(DbÕ0, [1], ⟨1⟩)
∼Ð→ (DbÕ0, [1], ⟨−1⟩[1]).

Remark. This kind of behavior with two shifts is really the hallmark of Koszul duality. It means we really
can’t forget about the grading.

The symplectic duality BLPW conjectures says that associated to a physical theory MC and MH , and
to each we associate a category O. Their conjecture says that each one has a graded lift ÕC and ÕH and
there is a derived equivalence between the two with exactly the BGS kind of triangulated auto-equivalence.

8 Ivan (Apr 04): The affine Grassmannian

Let K ∶= C((t)) and O ∶= C[[t]]. Think of SpecK =∶ D̊ as a formal punctured disk sitting inside SpecO =∶ D
which is a formal disk. This is a local picture, which embeds into a global picture that we will consider later.

Definition 8.1. Let G be a reductive group and P0 be a trivial G-principal bundle over D. The affine
Grassmannian is

Gr ∶= {(P,ϕ) ∶ P ∈ BunG, ϕ∶P0∣D̊
≃Ð→ P ∣D̊}.

An equivalent description is
Gr = G(K)/G(O).

(We can think of G(O) not as a Borel but as a parabolic. If we get rid of the negative parts at level-0, then
we get the Iwahori subgroup, which behaves more like a Borel.)

Proposition 8.2. Gr is an ind-scheme.

1. There is an infinite filtration by G(O)-stable subsets

Gr1 ⊂ Gr2 ⊂ ⋯ ⊂ Gr .

2. The inclusion Gri ↪ Grj for i < j is a projective embedding.

Remark (Lusztig). Define a map
gG(O) ↦ Adg g(O).

Then we have a description
Gri = {L ⊂ g(K) ∶ tig(O) ⊂ L ⊂ t−ig(O)}.

It will turn out that the Gri have Poisson structures.

Definition 8.3. A Manin triple is (g,g+,g−) where:

1. g is a Lie algebra with non-degenerate invariant pairing (⋅, ⋅);

2. g+,g− are isotropic sublagebras under this pairing;

3. g = g+ ⊕ g−.

The pairing must induce an isomorphism g− ≅ g∨+.
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Definition 8.4. A Lie bialgebra g is a Lie algebra equipped with a cobracket

δ∶g→ ∧2g

such that;

1. (cobracket) the dual δ∨∶ ∧2g∨ → g∨ is a Lie bracket;

2. (cocycle condition) dδ = 0, or equivalently

δ([a, b]) = (ada⊗1 + 1⊗ ada)δ(b) − (adb⊗1 + 1⊗ adb)δ(a).

Definition 8.5. Given a Manin triple (g,g+,g−), we can construct a Lie bialgebra g+. This is because the
bracket on g− becomes a co-bracket on g∨+. So we can think about Manin triples instead of Lie bialgebras.

Example 8.6. In our case, g(K) naturally splits as

g(K) = t−1g[t−1] + g(O).

The pairing is the residue pairing

(f(t), g(t)) = Rest=0(K(f(t), g(t)))

where K is the Killing form on G. We want to focus on t−1g[t−1], because it is the tangent space of
Gr = G(K)/G(O) at the identity. So we can compute a cobracket on it. It is helpful to write it in terms of
the R-matrix

r ∶= ∑
n≥0

dimg

∑
i=1

xit
−n−1 ⊗ xitn

where {xi} and {xi} are dual bases in g. If we write u = t⊗ 1 and v = 1⊗ t, then

r = Ω

u − v

where Ω is the quadratic Casimir, expanded at ∣u∣ > ∣v∣. In this notation,

δ(a) = [a⊗ 1 + 1⊗ a, r].

Definition 8.7 (Poisson structure). We think of δ as the “derivative of the Poisson bivector”

P ∶G(K) → ∧2G(K).

So we want to exponentiate the above formula for δ, giving

P ∣g = Adg r − r.

Since the Casimir is invariant, we see that this descends to G(K)/G(O). This gives a Poisson structure
on Gr.

Definition 8.8. There is a G(K)-action on G(K)/G(O), along with another C×
s scaling the loop parameter t.

Given a coweight λ∨∶C× → T , we can compose with the inclusion Spec(K) → C× of the formal neighborhood
of 0, to get

tλ
∨

∈ Hom(SpecK, T ) = T (K) ⊂ G(K).

We write tλ
∨

∈ Gr for the induced points.

Lemma 8.9. The tλ
∨

are the only T -fixed points, and are also C×-fixed points.
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Remark. This implies that the G(O)-orbits are

Grλ
∨

∶= G(O) ⋅ tλ
∨

.

Since Grwλ
∨

= Grλ
∨

, we can always pick λ∨ to be dominant.

Proposition 8.10. 1. There is a decomposition

Gr = ⊔
λ∨ dominant

Grλ
∨

.

2. There is a stratification

Grλ
∨ = ⊔

µ∨≤λ∨
Grµ

∨

.

Here µ∨ ≤ λ∨ means λ∨ − µ∨ ∈ R∨
+ is a positive co-root.

3. Grλ
∨

is a vector bundle over certain partial flag varieties G/P . It is contracted to the zero section by
C×
s .

4. Grλ
∨

is the smooth part of its closure. In particular, Grλ
∨

is smooth iff λ∨ is minuscule.

Definition 8.11. Whenever there is a stratification S, we can talk about perverse sheaves with respect
to it. They form a full subcategory

PervS(Gr) ⊂Db
S(Gr,C)

of the category of S-constructible C-sheaves. This means sheaves which satisfy:

1. Hk(X,F) = 0 if k ≠ 0;

2. Hk(F)∣S is a local system of finitely generated C-modules, for any stratum S ∈ S.

In other words, over each cell we have just a complex of constant sheaves (valued in C-linear spaces). The
subcategory we will take allows for non-trivial cohomological behavior in higher degrees.

Example 8.12. Take the constant sheaf on Grλ
∨

and extend by 0. This creates some “correction” on the
boundary, and in general produces a complex

ICλ∨ ∈ PervS(Gr)

called the intersection cohomology (IC) sheaves. Such IC sheaves are simple objects in PervS(Gr). Now
act by G(O). Since these sheaves are constant on the open part, we get a trivial G(O)-equivariant structure
there.

Proposition 8.13. Let PervG(O)(Gr) be the category of G(O)-equivariant perverse sheaves. Then

PervG(O)(Gr) ≃ PervS(Gr).

Definition 8.14 (Lusztig). In this category we have a convolution product. Start with Gr×Gr and
consider the composition

Gr×Gr G(K) ×Gr Gr .p
m

We want to do something like m∗(p∗A1 ⊠L A2). However the dashed arrow has infinite-dimensional fibers.
We fix it by introducing an intermediate step

Gr×Gr G(K) ×Gr Gr

G(K) ×G(O) Gr .

p
q

m

m
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Then we define
A1 ∗A2 ∶= Rm∗Ã

for some perverse sheaf Ã on G(K) ×G(O) Gr such that

q∗Ã = p∗(A1 ⊠L A2).

(Such a perverse sheaf Ã exists and is unique, by equivariant descent.) Hence we get

Db
G(O)(Gr)c ×Db

G(O)(Gr) →Db
G(O)(Gr).

We need compact support for one factor.

Lemma 8.15. 1. If A1,A2 are perverse, then A1 ∗A2 is perverse.

2. A1 ∗A2 ≃ A2 ∗A1, but non-canonically.

3. (A1 ∗A2) ∗ A3 ≃ A1 ∗ (A2 ∗A3) canonically.

Theorem 8.16 (Geometric Satake correspondence). There is an equivalence of Tannakian categories

PervS(GrG) Rep(G∨)

Vect

H∗

∼

forgetful

where the downward arrows are fiber functors. The correspondence satisfies

A1 ∗A2 ↔ V1 ⊗ V2

H∗(A) ↔ V

ICλ
∨

↔ Vλ∨-irreps.

9 Gus (Apr 11): Introduction to BFN spaces

What are Braverman, Finkelberg and Nakajima trying to do? Take a complex reductive group G and a
finite-dimensional rep V . Given this data, we can form the space

MH ∶= µ−1(0) �G.

When G = (C×)n, we get hypertoric varieties. When (G,V ) comes from a quiver, we get Nakajima quiver
varieties.

From MH we can produce a quantization Ah̵ = Ch̵[MH], which is some associative algebra, and as-
sociated to it is some category O, like the usual category O in Lie theory. We saw in the hypertoric case
that there is an interesting combinatorial duality, called Gale duality, which allowed us to produce a dual
hypertoric variety M! and dual algebra Ah̵[M!] and dual category O!. The upshot of Macky’s talks was
that (O,O!) were in some sort of Koszul duality.

Problem 9.1. Given a general pair (G,V ), can we construct M!,Ch̵[M!],O! dual to M,Ch̵[M],O?

What BFN do in their sequence of paper is as follows. From (G,V ), they produce an affine Poisson
variety MC which is a candidate for M!. The entirety of this talk will be to explain this recipe. (BFN do
not formulate or prove any kind of Koszul duality between their MC and MH , but there is a recent paper
by Ben Webster which does.)
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Example 9.1 (Basic pattern/analogy in rep theory). Let G be a simple complex Lie group with T ⊂ B ⊂ G.
Let

N ∶= {x ∈ g ∶ x nilpotent}

be its nilpotent cone. Think of G/B as the variety of Borel subalgebras in g. The tangent space TgB(G/B)
is gbg−1 where b is the standard Borel. Dually, using the Killing form, identify

T ∗gB(G/B) = (gbg−1)⊥ = gng−1

where n is the unipotent radical. So set-wise we can think of T ∗(G/B) as

T ∗(G/B) = {(gB,x) ∈ G/B ×N ∶ x ∈ gng−1}.

An equivalent way to say this is that

T ∗(G/B) = G ×B n ∶= (G × n)/B, b ⋅ (g, x) = (gb−1, bxb−1),

so that there is an isomorphism [g, n] ↦ (gB, gng−1). Using this idea, we can form the Steinberg variety

Z ∶=X ×N X = {(g1B,g2B,x) ∈ G/B ×G/B ×N ∶ x ∈ g1ng
−1
1 ∩ g2ng

−1
2 },

also called a “variety of triples”. We can identify Z as the union of conormal bundles to G-orbits in
G/B ×G/B. There are three projections

pij ∶X ×N X ×N X → Z

equipping HBM
G or KG(Z) with convolution products.

Theorem 9.2 (Chriss–Ginzburg, Lusztig). With the convolution product,

KG(Z) ≅ Z[Waff]

where Waff ∶=WG ⋉weight lattice is the affine Weyl group. If C× scales cotangent fibers,

KG×C×(Z) ≅ HW

where HW is the affine Hecke algebra of W .

Definition 9.3. One way to think about the BFN theory is that it “affinizes” the above picture. First
replace the flag variety G/B with the affine Grassmannian for G, which recall is

GrG ∶= G(K)/G(O), K ∶= C((z)), O ∶= C[[z]].

Then replace the cotangent bundle with

TG,V ∶= G(K) ×G(O) V [[z]].

This embeds into GrG ×V ((z)), given by [g, v] ↦ ([g], gv). So set-wise,

TG,V = {([g], x) ∶ [g] ∈ Gr, x ∈ V ((z)) ∩ gV [[z]]}.

Now we need an analogue of the Steinberg Z. The first try is

Z ∶= TG,V ×V ((z)) TG,V

and study its G(K)-equivariant homology or K-theory. This turns out to be bad because Z is infinite-
dimensional. But even in the finite-dimensional case, we can write

Z ≅ G ×B R, R ∶= {(gB,x) ∶ x ∈ n ∩ gng−1}
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where R is a union of conormals to Schubert cells in T ∗G/B. Then we get an induction isomorphism

KG(Z) =KG(G ×B R) =KB(R).

It is better to work with KB(R) in the general BFN setup. The affine analogue of R is to take the map

a∶ TG,V = G(K) ×G(O) V [[z]] → V ((z))

and look at the pre-image

RG,V ∶= a−1(V [[z]]) = {([g], s) ∶ s ∈ V [[z]] ∩ g ⋅ V [[z]]}.

This is what BFN calls the variety of triples. The moduli-theoretic interpretation of it is as the moduli of
(P,ϕ, s) where:

1. P is a principal G-bundle on the formal disk D;

2. ϕ is a trivialization of P on the punctured formal disk D×;

3. s is a section of P ×G V such that s is regular at zero under ϕ.

Example 9.4. If V = 0, then RG,V = GrG.

Example 9.5. If G = C× is abelian and V = C, then

GrG = ⊔
n∈Z

{zn}

is a collection of discrete points, one for each possible valuation of a Laurent series. Then

T = ⊔
n∈Z

{zn} × znO

where O = C[[z]]. The space R is also some infinite-rank bundle over Gr:

R = ⊔
n∈Z

{zn} × (znO ∩O).

So R ⊂ T as bundles over GrG, but with fibers of finite codimension.

Example 9.6. If G is simple and V is the adjoint g, then

RG,V = {([g], x) ∈ GrG ×g((z)) ∶ x ∈ g[[z]] ∩ gg[[z]]g−1}.

This is the “affine Grassmannian Steinberg variety”. It is the union of conormals to G(O)-orbits in T ∗ GrG.

Definition 9.7. Remember we want to study the affine analogue of KB(R), which for us is KG(O)(RG,V ),
as convolution algebras. Then we take Spec to construct M!. Take the diagram

Gr×Gr
p←ÐÐÐÐ G(K) ×Gr

qÐÐÐÐ→ G(K) ×G(O) Gr
mÐÐÐÐ→ Gr

so by equivariant descent we get

HG(O)×G(O)(G(K) ×Gr) =HG(O)(G(K) ×G(O) Gr).

Analogously, for R, we would like to have the diagram

T ×R p←ÐÐÐÐ G(K) ×R qÐÐÐÐ→ G(K) ×G(O)R
mÐÐÐÐ→ T

([g1, g2v], [g2, v]) ←ÐÐÐÐ (g1, [g2, v]) ÐÐÐÐ→ [g1, [g2, v]] ÐÐÐÐ→ [g1g2, v].
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This diagram must be restricted to R ⊂ T :

R×R ←ÐÐÐÐ p−1(R ×R) ÐÐÐÐ→ qp−1(R ×R) mÐÐÐÐ→ R

in order for the multiplication map to land in R. Again by equivariant descent,

HG(O)×G(O)(p−1(R ×R)) ≅HG(O)(qp−1(R ×R)).

Using the diagram, we therefore can define a convolution product on HG(O)(RG,V ):

c1 ∗ c2 ∶=m∗(q∗)−1p!(c1 ⊠ c2).

Theorem 9.8 (BFN). 1. This convolution defines a commutative and associative algebra structure on
HG(O)(RG,V ).

2. If C×̵
h acts by loop rotation, then

HG(O)×C×(RG,V )

is an associative algebra over C[h̵] which quantizes HG(O)(RG,V ).

Definition 9.9. By (1) of the theorem, it makes sense to write

MC ∶= Spec(HG(O)(RG,V )),

and by (2), it is an affine Poisson variety. The varietyMC is BFN’s definition of the Coulomb branch for
(G,V ).

10 Gus (Apr 18): More on BFN spaces

Recall the setup from last time. The input to the BFN construction is a complex reductive group G together
with a finite-dimensional representation V . Write

K ∶= C((z)), O ∶= C[[z]] ⊂ K.

The affine Grassmannian is GrG ∶= G(K)/G(O). We introduced a couple of important spaces last time:

TG,V ∶= {([g], s) ∈ GrG ×V ((z)) ∩ gV [[z]]} = G(K) ×G(O) V [[z]]
RG,V ∶= {([g], s) ∈ GrG ×V [[z]] ∩ gV [[z]]} ⊂ TG,V .

We called RG,V the “variety of triples”. We constructed a convolution product last time via the second row
of the diagram

T ×R p←ÐÐÐÐ G(K) ×R qÐÐÐÐ→ G(K) ×G(O)R
mÐÐÐÐ→ T

Õ×××
Õ×××

Õ×××
Õ×××

R×R ←ÐÐÐÐ p−1(R ×R) ÐÐÐÐ→ qp−1(R ×R) mÐÐÐÐ→ R.

The convolution on HG(O)(RG,V ):

c1 ∗ c2 ∶=m∗(q∗)−1p!(c1 ⊠ c2).

Today we want to compute a few examples of this convolution, but to do that we will need to be more precise
about what the pullback p!. It is called the refined Gysin map or pullback with support.
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Definition 10.1. Suppose we have a diagram

Z ÐÐÐÐ→ Y
×××Ö

×××Ö
X

pÐÐÐÐ→ W.

Let N be the pullback to Z of the normal bundle NX/W . There is a specialization map

σ∶H∗(Y ) →H∗(N), [V ] ↦ [C(V ∩Z)/V ].

The refined Gysin map is the composition

p!∶H∗(Y ) →H∗(N) →H∗(Z), i−1
0 ○ σ

with pullback along the zero section.

Example 10.2 (G = C×, V = C). In this case, GrG = ⊔a∈Z[za]. We have

TG,V = ⊔
a∈Z

[za] × zaO

RG,V = ⊔
a∈Z

[za] × (zaO ∩O) =∶ ⊔Ra.

Write Sym(Lie(G)∗) = C[w]. Then as a vector space, the equivariant Borel–Moore homology is

H
G(O)
∗ (RG,V ) = ⊕

a∈Z
C[w] ⋅ [Ra].

Let’s compute [Ra] ∗ [Rb]. We need to understand the square

T ×R p←ÐÐÐÐ G(K) ×R
Õ×××

Õ×××
R×R ←ÐÐÐÐ p−1(R ×R).

The space G(K) ×G(O)R is

G(K) ×G(O)R = ⊔
a,b∈Z

[za] × [za+b] × (za+bO ∩ zaO)

[g1, [g2, v]] ↦ ([g1], [g1g2], g1g2v).

The fiber of the square over [za] × [za+b] is therefore

(s, z−as) ←ÐÐÐÐ s

zaO ⊕ (zbO ∩O) ←ÐÐÐÐ za+bO ∩ zaO
Õ×××

Õ×××
(zaO ∩O) ⊕ (zbO ∩O) ←ÐÐÐÐ O ∩ zaO ∩ za+bO.

1. If a = 1 and b = −1, then we have
zO ⊕O ←ÐÐÐÐ zO

Õ×××
Õ×××

zO ⊕O ←ÐÐÐÐ zO.
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In the notation of the Gysin diagram, Y =W . So in this case, p! = p∗, i.e.

p!([Ra] ⊠ [Rb]) = [zO],

the fundamental class of the fiber in G(K) × R. Now push forward to H
G(O)
∗ (Ra+b). In our case

Ra+b = O, and
m∗[zO] = [zO] = w[O] = w[R0]

inside O. (This class as cut out by a single linear section.) Hence

[R1] ∗ [R−1] = w[R0].

2. If a = −1 and b = 1, then the diagram is

W = z−1O ⊕ zO ←ÐÐÐÐ O =X
Õ×××

Õ×××
Y = O ⊕ zO ←ÐÐÐÐ O = Z.

Note that Y = X ⊕ (0, zO) and W = X ⊕ C ⋅ (z−1,0) ⊕ (0, zO). So Y is cut out in W by the linear
condition that the C ⋅ (z−1,0) vanishes, which is a weight (w − h̵) condition. Hence

p!([R−1] ⊠ [R1]) = (w − h̵)[O].

Pushing forward,
m∗((w − h̵)[O]) = (w − h̵)[O] = (w − h̵)[R0].

Summary: we computed that

[R1] ∗ [R−1] = w[R0], [R−1] ∗ [R1] = (w − h̵)[R0].

So the commutator is
[[R1], [R−1]] = h̵[R0].

In particular, if h̵ = 0, we get a commutative product, like we asserted last time. In general, if ra ∶= [Ra],
the multiplication (without the weight h̵) is

ra ∗ rb = wma,bra+b, ma,b =
⎧⎪⎪⎨⎪⎪⎩

min(∣a∣, ∣b∣) a, b different sign

0 otherwise.

If we include h̵, the wma,b becomes (w − h̵)(w − 2h̵)⋯.

Example 10.3 (G = C×, V = C⊕N ). Let x ∶= [R1] and y ∶= [R−1], and w be the generator of H∗
T (pt). Then

they satisfy the following relations:

xy = (w − h̵)N [x,w] = 2h̵x

yx = wN , [y,w] = −2h̵y.

This is a quantization of the AN−1 surface. For example, when N = 2 we get the nilcone xy = w2 of sl2. The
quantization is

Usl2/⟨trivial central ideal⟩.

If we do this in K-theory, we get the quantization

Uqsl2/⟨trivial central ideal⟩, q = eh̵.

36



Remark. For general reductive G, use localization with respect to the maximal torus T ⊂ G. The first
observation is that

(GrG)T = GrT = ⊔
λ∈P∨

+

[zλ].

Then in fact (RG,V )T = RT,V T where V T is literally the T -invariants of V . The next step is to show

H
T (O)
∗ (RG,V ) =HG(O)

∗ (RG,V ) ⊗H∗
T (O)(pt)

and HG(O)(RG,V ) =HT (O)(RG,V )W . Now apply localization:

i∗∶HT (O)(RT,V T ) →HT (O)(RG,V )

is an isomorphism after localizing at root hyperplanes. So

Frac(HT (O)(RT,V T )W ) ≅ Frac(HG(O)(RG,V )).

We can get the dimension of the Coulomb branch this way: in the abelian case, the dimension is 2 dimT , so
in general

dimMC = 2 rank(G).

In fact, RG,V are birational for different V .

Remark. The space given by HT (O)(RT,V T )W is the “classical” Coulomb branch. The fraction fields are
equal, but the inequality of actual rings demonstrates the physical quantum corrections.

Definition 10.4 (Monopole formula). Look at the zero section embedding z∶GrG ↪RG,V and the pullback

z∗∶HG(O)(RG,V ) →HG(O)(GrG)

in order to help us study the Coulomb branch. Let’s look at K-theory and consider

z∗(i∗)−1∶KG(O)(RG,V ) →KT (O)(GrT ).

For example, if G = GLn and V = g is the adjoint representation, then

KT (O)(GrT ) = C⟨w±
i , T

±
i ⟩/(Tiwj = qδijwjTi).

We can ask what happens to the classes [Rwi] under this homomorphism. Let C×
t scale V . Then

KG(O)×C×q×C
×

t (RG,V ) →KT (GrT )

[Rwi] ↦ ∑
I⊂[rankG]

∏
i∈I
j∉J

txi − xj
xi − xj

∏
i∈I
Ti.

These are Macdonald operators in spherical DAHA. Remember that RG,V is supposed to be the affine
Steinberg, so it makes sense that after affinization we got DAHA.

11 Andrei (Apr 25): q-difference equations, monodromy, and el-
liptic cohomology

We will talk today about q-difference equations

Ψ(qz) =M(z)Ψ(z).
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In principle, M(z) could also depend on q, but in general is a rational function of z. This equation is
regular at 0 if 0 is not a pole, and if M(0) ∈ GL(N) is invertible. The situation of quantum difference
equations is that M(0) comes from a classical computation and doesn’t depend on q at all. The local theory
of solutions to such equations is the same as that of differential equations. Solutions form a sheaf over
coordinate z ∈ C×/qZ.

If we are interested in just the 1×1 case, we have constant coefficients, and we are solving f(qz) = af(z).
Already there is something to discuss. We can view solutions as meromorphic sections of some line bundle,
e.g. of the form θ(azb)/θ(a)θ(zb), which have a sequence of poles of the form b−1qN . We can also have
non-single valued solutions, of the form exp(log a log z/ log q).

The better approach is to take the theory of constant coefficient equations as something given, and
consider something that conjugates the general equation to the constant coefficient case.

Definition 11.1. U(z) is a fundamental solution if

M(z)U(z) = U(qz)M(0).

There exists a unique U(z) = 1 + O(z), by the same argument as for differential equations. Plug in
1 +∑ znUn to get

M(0)Un = qnUnM(0) +⋯.

Since we assumed M(0) does not depend on q, then qn is not an eigenvalue. So

(AdM(0) − qn)Un = ⋯

has a unique solution. In fact, this argument shows that U(z) converges in some ∣z∣ < ε.
A new feature: U(z) is meromorphic in C. This is like the gamma function Γ(s + 1) = sΓ(s): once we

prove it exists for sufficiently large s, then it meromorphically continues to the rest of the plane. If we assume
∣q∣ < 1, then we can extend ∣z∣ < ε to e.g. ∣z∣ < εq−1.

1. If we have a pole of M at z, then it will propagate to a sequence of poles q−kz of U(z).

2. If we have a zero detM(z) = 0 of M , then it will propagate to a sequence of poles of U−1.

Then we can ask what happens with monodromy. If we assume the equation is regular at ∞, i.e.
M(∞) ∈ GL(N), then we have the exact same situation at ∞, with U∞. The poles of U−1

∞ will be in the
opposite geometric progression.

Definition 11.2. The monodromy is

Mon(z; q) ∶= U−1
∞ (z; q)U0(z; q).

This is a meromorphic function, and we can ask what happens if we shift by q:

Mon(qz; q) =M(∞)MonM(0)−1.

So Mon(z; q) is some section of a bundle over an elliptic curve, i.e. some elliptic function. For q = 1 + ε, we
write M(z) = 1 + εM̄(z), and the equation converges to

z
d

dz
Ψ(z) = M̄(z)Ψ(z),

which has actual monodromy. We can ask what happens to Mon(z; q) as ε → 0 (for a fixed z). It will be
the ratio of two solutions: the transport of solutions from 0 to ∞ through z. On the elliptic base, we are
shrinking one of the cycles. In the central fiber, we get a picture like in the Tate elliptic curve: countably
many copies of P1. The point is that the asymptotics of elliptic functions in this limit is piecewise-constant
on each copy of P1.
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Example 11.3 (Elliptic function). Speaking of elliptic functions, we should have an example to keep in
mind. Look at the q-difference equation

f(qz) = 1 − az
1 − bz

f(z).

Then we have

f(z) = f(qz) 1 − bz
1 − az

= f(0)
∞
∏
n=0

1 − qnbz
1 − qnaz

= f(0) (bz)∞
(az)∞

.

Here M(0) = 1 and M(∞) = a/b. If we rewrite the same equation at ∞, we get

f∞(z) ∝ (q/az)∞
(q/bz)∞

.

The monodromy will be the ratio of the two:

Mon = (q/bz)∞(bz)∞
(q/az)∞(az)∞

.

This starts looking good, because a theta function we would like to be

θ(z) ∶= “∏
n∈Z

(1 − qnz)′′.

(We can’t actually do this, otherwise we would get a non-trivial regular function on a proper variety.) We
salvage this by

θ(z) ∶= (z)∞(q/z)∞.

So the monodromy is

Mon = θ(bz)
θ(az)

.

In general, any 1 × 1 equation has q-difference operator of the form

∏
1 − aiz
1 − biz

,

and in general the monodromy will be of the form

Mon =∏
θ(biz)
θ(aiz)

.

In general, writing monodromy like this is not necessarily helpful. It is a transcendental problem, just
like with differential equations. However there are features of q-difference equations which can make the
problem easier.

For a system of q-difference equations, a deep theorem of Deligne says the following. Take a variety X
with some holonomic D-module on it, with singularities. (In the analytic world, this is just a system of
differential equations.) The theorem says something about when it is regular. In one variable,

z
d

dz
Ψ(z) =M(z)Ψ(z),

and an algebraic geometer would write

d

dz
Ψ(z) = 1

z
M(z)Ψ(z)
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and say there is a first-order pole. An invariant way of saying this is that solutions grow as ∥Ψ(z)∥ ≤ ∣1/z∣C ,
where C comes from the eigenvalues of the operator. Deligne’s deep theorem says that it’s enough to check
regularity on generic points of each divisor.

However this is absolutely false for q-difference equations, even in the 1 × 1 case. Take P1 × P1 with
coordinates a and z, and look at the system of q-difference equations

f(qz, a) = af(z, a)
f(z, qa) = zf(z, a).

We already looked at this; a solution is

f(z) ∼ exp
lna ln z

ln q
.

This grows at most polynomially as we approach a generic point of any divisor. But if we approach one of
the intersections, e.g. (0,0), then we get exponential growth. The problem is that the operator a and z are
finite and invertible only away from these corners.

A more interesting example is q-hypergeometric functions, coming from the q-difference equation for
T ∗P1. In general, we can do it for T ∗PN . The functions are

fi(z) =
∞
∑
d=0

zd
N

∏
j=0

(h̵aj/ai)d
(qaj/ai)d

where (x)d ∶= (1−x)⋯(1−qd−1x). The way to see this solves a nice q-difference equation is left as an exercise.
For these to all solve the same equations, we need a prefactor

fi(z) = exp( ln z lnai
ln q

)
∞
∑
d=0

zd
N

∏
j=0

(h̵aj/ai)d
(qaj/ai)d

.

The picture is for the coordinates z ∈ Pic(X) ⊗C× and ai ∈ Pic(X∨) ⊗C× is

ai

z .

The equation is regular everywhere except the point (z, a) = (0,0). This is because the spectrum of M(0) is
weights of line bundles on fixed points, and there is some bilinear expression

fixed points→ Pic(X∨) ⊗A∨.

So we see why Deligne’s theorem fails. In general, for

Ψ(qz, a) =M(z, a)Ψ(z, a)
Ψ(z, qa) = S(z, a)Ψ(z, a),

the system is regular in each group of variables but not jointly. (It is not immediate that they are regular in
each group of variables; some work is involved.) Poles in a accumulate near 0, but there is always a region
z ∈ [0, ε] where there are no poles.

In the 3d mirror symmetry picture, we therefore have two kinds of solutions Ψz and Ψa, and they have
different properties for poles in a vs poles in z. This is actually good, because then

P ∶= (Ψa)−1Ψz
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is a matrix of elliptic functions called the pole subtraction matrix. This is actually a computable matrix:
it is triangular with respect to the order of growth of the bilinear pairing elogai log z/ log q. So among all
solutions, there will be one distinguished ordering giving a solution f1 regular in all directions. For example,
for the q-hypergeometric function, take ∣a1∣ ≫ ∣a2∣ ≫ ⋯ ≫ ∣aN ∣. Now for f2, we will get one part which has
poles, and we can compute an elliptic function with those prescribed poles to cancel it. This is purely local
and algorithmic.

How does this constrain the monodromy? The monodromy is the question of going from a solution Ψz=0

to Ψz=∞. Instead, look at Ψa=0 and Ψa=∞. But clearly we have a diagram

Ψz=0 Ψz=∞

Ψa=0.

Mon

P P

Lets look at where these things live. At ∞ we get some flop of X, because z ∈ Pic(X)⊗C×. At a = 0, we get
the fixed locus KT (Xa). Hence there is a commutative square

KT (X) MonÐÐÐÐ→ KT (Xflop)

P
Õ×××

P
Õ×××

KT (Xa) Mona=0ÐÐÐÐ→ KT (Xflop).

If fixed points are isolated, the monodromy is a matrix of elliptic functions and we get a Gauss factorization
of it. The map P ∶KT (Xa) →KT (X) should remind us of stable envelopes of some kind.

Theorem 11.4. This P is the stable envelope in elliptic cohomology.

Inside X ×XA is the important attracting correspondence

Attr ∶= {(x, y) ∶ y = lim
a→some infty

a ⋅ x}.

Stable envelopes are an improved version

Attr + corrections

acting on cohomology, K-theory, elliptic cohomology, etc. A cycle automatically acts on cohomology, and if
we can put a sheaf on it then it acts on K-theory. With elliptic cohomology there is a whole other story. We
declare all this data to be a morphism in some category where the objects are the respective cohomology
groups. This has fairly rich structure. For example, it could be that

XA = ⊔Xi ×Xj ,

in which case we get something like a tensor structure. (This is how, abstractly, we make these cohomology
groups modules over quantum groups.)

Note that we don’t just get one map from this construction: we get as many as there are infinities in
A. For example, for P1, we get two maps, and the difference between them is some kind of braiding in the
category. In this picture, the monodromy becomes a tensor isomorphism between the categories for X and
Xflop.

What is elliptic cohomology? It sounds rather abstract but is actually quite concrete. Look at varieties
without odd cohomology, Then the equivariant elliptic cohomology EllT (⋅) is a functor taking values in
schemes finite over

EllT (pt) = T /qcochar.

What does this scheme look like? The fiber over an element t ∈ EllT (pt) is the ordinary cohomology

H∗(Xsubgrp of T )

where the subgroup is ⋂χ(t)=1 kerχ. Very concretely, it is SpecKT (X)/q.
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Example 11.5. Let X = P2 with action T ∶= diag(1, a−1, a−2). Then SpecKT (X) has relation (1 − x)(1 −
a−1x)(1 − a−2x), so in the fundamental region mod q we get

H∗(P2)

H∗(P1 ⊔ pt)

Then the stable envelope is the unique section of some sheaf

EllT (X) ×EllT (XA)

defined by triangularity and automorphy.

12 Zijun (May 09): 3d mirror symmetry and elliptic stable en-
velopes

In usual GIT, we have X �G = Xs/G (under mild assumptions). Abelianization is the comparison of this
with X � T =Xs/T . Be careful: the stability conditions for G and T may be different. We therefore have a
square:

XG-stable/T jÐÐÐÐ→ XT -stable/T

π
×××Ö

XG-stable/G
In general,

H∗(X �G) = H
∗(X � T )W

Ann(e)
.

Given α ∈H∗(X �G), an element γ ∈H∗(X � T ) is called a lift if

π∗α = j∗γ.

In good cases, the lift always exists, e.g. when X satisfies Kirwan surjectivity. There is a formula

∫
X�G

α = ∫
X�T

γ ∪ ∏
α roots

c1(Lα).

The factor comes from the G/T -fibration π,
This carries over to the holomorphic symplectic setting. Let (X,ω) have a G-action and T ⊂ G. Let

µ∶X → g∗ be the moment map for the G-action. The holomorphic symplectic quotient is

Y ∶= µ−1
G (0) �θ G = µ−1(0)G-stable/G.

The abelian quotient is
Y ab ∶= µ−1

T (0)T -stable/G.

The relation between µT and µG is the projection:

µT ∶X
µGÐ→ g∗ → t∗.
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So in this setting we have a similar square:

µ−1
G (0)G-stable/T openÐÐÐÐ→ µ−1

G (0)T -stable/T closedÐÐÐÐ→ µ−1
T (0)/T

π
×××Ö

µ−1
G (0)G-stable/G

.

The fibration π is still a G/T fibration, so there will still be a factor ∏α roots c1(Lα). The open embedding
will not contribute anything new, but the closed embedding will introduce an Euler class of a normal bundle.
So in this case,

∫
Y
α = ∫

Y ab
γ ∪ ∏

α roots

c1(Lα)(h̵ − c1(Lα)).

Note that the additional classes are symplectically dual. All this carries into K-theory as well.
This induced map between cohomologies of Y and Y ab does not necessarily commute with stable en-

velopes. Aganagic–Okounkov have a different map. Work with the hyperkähler structure instead:

Y = µ−1
C (0) ∩ µ−1

R (θ)/GR.

Then we have a square

µ−1
G,C(0) ∩ µ−1

G,R(θ)/TR
j+ÐÐÐÐ→ µ−1

G,C(b⊥) �θ T
j−ÐÐÐÐ→ Y ab

π
×××Ö
Y

.

This induces a map

H∗(Y ab)
π∗○j∗+○(j−,∗)

−1

ÐÐÐÐÐÐÐÐ→H∗(Y ).

Aganagic–Okounkov prove that this map commutes with stable envelopes. The difference between this
diagram and the preceding one is in the intermediate terms. For example, π here is a GR/TR ≅ G/B
fibration, but in the earlier diagram it was a G/T fibration.

Let’s look at the sequence for the Grassmannian:

Y = T ∗ Gr(k,n) = {(i, j) ∶ ij = 0, rank j = k}.

On the other hand,
Y ab = (T ∗Pn−1)k = {(i, j) ∶ i`j` = 0, j` ≠ 0 ∀1 ≤ ` ≤ k}.

The diagram is

{(i, j) ∶ ij = 0 rank j = k}/T {(i, j) ∶ ij = 0, j` ≠ 0 ∀`}/T {(i, j) ∶ i`j` = 0, j` ≠ 0 ∀`}

{(i, j) ∶ ij = 0, rank j = k}/G.

Recall our formula for the stable envelope on T ∗ Gr(k,n). If p ∈ T ∗ Gr(k,n)T , then

Stab(p) = Symy1,...,yn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∏k
`=1

⎛
⎝∏i<p`

θ(y`uih̵−1)
⎞
⎠
θ(y`upiz−1h̵(⋯))
θ(z−1h̵(⋯)) ∏

i>p`
θ(y−1

` u
−1
i )

∏1≤i<j≤k θ(yi/yj)θ(h̵yi/yj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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The boxed part is actually the stable envelope for T ∗Pn−1. The theta function part can be viewed as the
“Kähler part”. The product ∏k

`=1 comes from there being k copies of T ∗Pn−1. Finally, the denominator
comes from the ∏α roots c1(Lα)(h̵ − c1(Lα)) part of abelianization.

Abelianization in this case has the nice property that pre-images of fixed points are actually still points,
not positive-dimensional varieties. Let’s think about

X = Hilbn(C2).

Then fixed points have a quiver description

XT =

0 ν−a
⋯

ν−1

1

ν0 ν1 ν2

⋯
νb 0

.

The pre-image π−1(x) of this point x is therefore the abelianization of this quiver variety. Do a dimension
count on

T ∗(
b−1

⊕
i=−a

Hom(Vi, Vi+1) ⊕Hom(C, V0)) ��T =
b

∏
i=−a

(C∗)νi

and the gauge group to see that the dimension is in general > 0. What are the fixed points of a hypertoric
variety? Write the quotient as T ∗M ��(C∗)∣ν∣. Then

M ≅ C2N ∋ (x1, . . . , xN , y1, . . . , yN)

and fixed points must have some non-zero values in the first N coordinates. In other words, we have exactly
N maps between the nodes, and all others are zero. If we draw a tree in our partition, each edge of the tree
will represent a map. A tree has N − 1 edges. Along with the single framing map C→ V0, in total there are
N edges, specifying N non-zero maps in T ∗M .

The compatibility of stable envelopes with abelianization gives

H∗(x)
π∗j

∗

+
(j−,∗)−1←ÐÐÐÐÐÐÐ H∗(π−1(x))

Stab
×××Ö

Stab
×××Ö

H∗(Hilb) ←ÐÐÐÐ H∗(Hilbab).

The (C∗)2 acting on Hilb is not the largest torus. In particular, it fixes the entire abelianized fixed loci
π−1(x). The goal is to find the Stab on the lhs. The first step is to lift 1 ∈ H∗(x) to H∗(π−1(x)), and this
produces a sum over trees, of the form

∑
p trees

Stab(p).

This is not a sum over all trees, because we have to choose some lift of 1. For example, in the Grassmannian
case, we had a choice of k! lifts. In addition, when we lift from x to π−1(x), we have another freedom to
choose a (C∗)M -fixed point on π−1(x), where (C∗)M is an enlargement of (C∗)2. This is encoded in the
condition on trees that we cannot have corners like

.
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