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What’s an algebraic group

Let k be a field. An algebraic group G is a scheme of finite type
over k together with morphisms of schemes

µ : G×G→ G ι : G→ G

satisfying the group axioms (i.e. a group object in Sch0/k).
Alternatively, to G we associate the functor

G̃ : Alg0
k → Grp

R→ G(R)

= HomSch/k(Spec(R), G)

and every such representable functor is representable by an
algebraic group, which is determined up to isomorphism.
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Some structure theory:

Theorem

Every algebraic group has a natural map G→ Spec(O(G)) whose
kernel is an anti-affine* algebraic group.

Corollary

The rep theory of algebraic groups reduces to the affine case.

Affine algebraic groups/k
O
�

Spec
Hopf algebras/k

Fact: Every affine algebraic group G has a finite dimensional
faithful representation, that is, G ≤ Spec(O(GLn)).
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Linear algebraic groups

In what follows, assume G is also a connected variety.

Definition

Let R(G) be the largest connected solvable normal subgroup
variety of G. We say G is semisimple if R(G) is trivial.

Similarly, G is reductive if Ru(G) is trivial. Split* reductive groups
have maximal tori, Borels, root systems... In fact almost all Lie
theory carries over. For instance:

Theorem (Chevalley)

Split simple algebraic groups ↔ Dynkin diagrams.
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What about the simple modules?

Again {f.d. simples} ↔ {dominant weights}.
However, in char p these are no longer tensor-indecomposable.

Definition

Let Fp be the Frobenius map G 7→ G sends r ∈ G(R) to rp.

For q = pr, define the p-restricted (integral) dominant weights
Λ+
q = {λ ∈ Λ : 0 ≤ 〈λ, α〉 < q} ⊂ Λ+.

For M be a G-module, let M [i] be M with twisted action:
gv := F ip(g)v.
Writing λ = λ0 + λ1p+ ...+ λm−1p

m−1 (λi p-restricted), we have:

Steinberg’s Tensor Product Theorem

L(λ) ∼= L(λ0)⊗k L(λ1)[1] ⊗k ...⊗k L(λm−1)[m−1]
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Example

Let G = SL2 and consider the module S3(V ) = {x3, x2y, xy2, y3}
where V is the natural representation.
This has highest weight 3. Believe that this is L(3).
We show that this equals M = L(1)⊗ L(1)[1], as predicted by
Steinberg.

A submodule of M is of the form L(1)⊗ V (g-submodule).

V = Homg(L(1), L(1)⊗ V )
↪→ Homg(L(1), L(1)⊗ L(1)[1])
= L(1)[1] (as G-modules)

The general case for SL2 follows by induction.

Álvaro L. Mart́ınez The char p story



Introduction and motivation
Some old, some new

Category O?
KL and billiards

Linear algebraic groups
What about the simple modules?
But why bother?

But why bother?

Note that
GFq = {g ∈ G(k) : Fq(g) = g}

is a finite group. The finite groups of this form are called
reductive groups of Lie type  most finite simple groups
Their modular representations are of great interest (local-global
conjectures...).

Restriction Theorem (Brauer-Nesbitt)

For each λ ∈ X+ pr-restricted, L(λ) is simple as a
kGFq -module, and these are pairwise nonisomorphic.

Every kGFq -module arises in this way.
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Example

Modules of A5 over char 2.

A5
∼= SL2(4) so let G = SL2 over k = F2.

2-restricted weights: {0, 1}
The restriction theorem implies:

Simple kA5-modules:

L(0)⊗ L(0)[1]

L(0)⊗ L(1)[1]

L(1)⊗ L(0)[1]

L(1)⊗ L(1)[1]

 

g () (123) (12345) (13524)

φ1 1 1 1 1
φ2a 2 −1 ζ5 + ζ4

5 ζ2
5 + ζ3

5

φ2b 2 −1 ζ2
5 + ζ3

5 ζ5 + ζ4
5

φ4 4 1 −1 −1
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Weyl modules

Question

How to construct L(λ)?

Two ways to define the Weyl module:

Take a Z-form for LC(λ) and set V (λ) = LZ(λ)⊗Z k.
Write λ∗ = −w0λ.

(Dual Weyl module)
Define W (λ) = indGB−k−λ∗ = H0(G/B−,L(λ)), where L(λ)
is the line bundle on the flag variety associated to the
B−-module kλ. Then V (λ) = W (λ∗)∗.

Theorem

L(λ) is the unique simple quotient of V (λ), as well as the unique
simple submodule of W (λ).
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Example

For SL2, W (p) = Sp(V ) = k{xp, xp−1y, ..., yp}. This has a
submodule k{xp, yp} = L(p) = L(1)[p].
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Kempf’s vanishing theorem

Denote H i(λ) = H i(G/B−,L(λ))
As in char 0, the Euler characteristic χ(λ) =

∑
i≥0 chH i(λ) is

given by the Weyl character formula.

Kempf’s vanishing theorem

If i > 0, then H i(λ) = 0.

Moreover H0(λ∗)∗ has the ”Verma universality property” that
gives an embedding V (λ) ↪→ H0(λ∗)∗ so by character comparison
these are isomorphic.
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Rank of the contravariant form

Computing chL(λ) is not hard (one at a time).
In fact dimL(λ)µ = rankp(T |V (λ)µ), the contravariant form.

Example

If G = SLn+1 and λ = λ1 + λn = α1 + ...+ αn, then the weights
are Wλ ∪ {0}. A basis for V (λ)0 is given by
{fα1+...+αifαi+1+...+αnv

+}i=1...n and the contravariant form is 2 1 1 1 1
1 2 1 1
...

. . .
...

1 1 2 1
1 1 ... 1 2

  
 n+1 0 ... 0

0 1
...

...
. . .

0 ... 1


So chL(λ) = chV (λ)− εp,n+1e(0). (Multiples of In+1 lie in sln+1.)
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Alcoves and the linkage principle

Recall the BGG theorem: [M(λ) : L(µ)] 6= 0↔ µ ↑ λ
The affine Weyl group is Wp = W n Φ∨ and the dot action is
defined as

w ·p λ = w(λ+ ρ)− ρ
pα ·p λ = t+ pα

 Infinitesimal block decompositions
Define µ ↑p λ by µ = (sα1 ...sαm) ·p λ

and (sαi ...sαm) ≤ (sαi−1 ...sαm)

Theorem (Strong linkage principle)

[V (λ) : L(µ)] 6= 0↔ µ ↑p λ
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The Steinberg module

Application

Linkage principle =⇒ If λ ∈ C0 then V (λ) = L(λ)

The largest dimensional module in C0 is
St := L((p− 1)λ) = V ((p− 1)λ), of dimension p|Φ

+|.
By Steinberg’s tensor product theorem,
Str := L((pr − 1)λ) = St⊗ St[1] ⊗ ...⊗ St[r−1] = V ((pr − 1)λ)
=⇒ Str is the largest simple module for Gr := GF

r
p .

Str plays a central role in the finite dimensional theory.
Example: if g ∈ Gr is a p′-element then

χStr(g) =

{
|CGr(g)|p, if g is p′

0, otherwise
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Jantzen’s p-sum formula

Analog of Jantzen’s sum formula, and similar technique.

Jantzen’s p-sum formula∑
i>0

chV (λ)i =
∑
α>0

∑
0<cp<〈λ+ρ,α∨〉

νp(cp)χ(sα,cp · λ)

As in the category O case, this gives chL(λ) for all p-restricted λ
but for small rank: A2, B2, C2, G2, A3.
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Translation and reflection functors

In Rep(G) =
⊕

Repλ(G) we can also define translation functors:
T λµ = prλ(L(ν)⊗−) where ν is the dominant weight in the orbit
of λ− µ.
These give equivalences of categories similar to the ones for
category O.

A glimpse into categorification

Consider Rep0(G). For each si choose µ ”on the si-wall” and
define Θi = T 0

ν T
ν
0 . Then taking K0 and identifying [V (w ·p 0)]

with 1⊗ w ∈ sgn⊗ZW ZWp, we get [Θi] = [(1 + si)].
 Rep0(G) categorifies the anti-spherical module for Wp.
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Tilting modules

Definition

A G-module is tilting if it has a Weyl and a dual Weyl filtrations.

Fact: there is one indecomposable tilting T (λ) for each highest
weight λ of Rep0(G).
The problem of finding {chT (λ)} is equivalent to that of finding
{chL(λ)}:

Propostion

Suppose p ≥ 2h− 2. Then if λ is p-restricted

(T (λ̃) : V (µ)) = [V (µ) : L(λ)]

where λ̃ = 2(p− 1)ρ+ w0λ
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Tilting modules

Another similarity between T (λ) and P (λ):

Theorem

Let w = s1...st be a reduced expression. Then λ = w ·p 0 appears
as a summand of Θs1 ...ΘstT (0) (again tilting) with multiplicity 1.
Every other summand T (µ) has µ < λ.
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Rational representations are defined to be finite dimensional.

Weyl module has the role of the Verma module (among other
parallel notions).

Rep(G) 6↔ Rep(g) = Rep(U(g))
Rep(G)↔ Rep(Dist(G))

Definition

Let X be an affine scheme over k, and x ∈ X(k). Define
Distn(X,x) = Homk(OX,x/mn+1

x , k). The algebra of
distributions with support at x is the algebra
Dist(X) :=

⋃
≥0 Distn(X,x).

If G is an algebraic group, Dist(G) := Dist(G, 1)

This is a filtered associative algebra over k.
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Take the origin of the affine line x ∈ A1 = Spec(k[t]]). Then
Distn(X,x) = Homk(k[t](t)/(t)

n, k) = Homk(k[t]/(t)n, k)
This has a basis γr sending tm 7→ δr,m. If char(k) = 0, we can
identify γr = 1

r!(
∂
∂t)

r.
So Dist(A1, x) consists of derivations of any order.

In general the associated graded has pieces (mx/m
2
x)∗, (m2

x/m
3
x)∗...

Fact: the divided powers version of the PBW basis is a -form for
Dist(G).
Problems: Dist(G) is not Noetherian, the center is unknown...
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Humphreys:

“There is no likely analogue of the BGG category for the
hyperalgebra [...] my current understanding is that the char p
theory for G is essentially finite dimensional and requires deep
geometry to resolve.”
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Lusztig’s conjecture

Question

Is there an analog of the KL conjecture?

Let λ = −w ·p 0.
Jantzen’s condition: 〈wρ, α∨0 〉 ≤ p(p− h+ 2), where h is the
Coxeter number*.

Lusztig’s conjecture (1979)

Assume p ≥ h and w as above. Then

chL(λ) =
∑
y≤w

(1)l(w)−l(y)Py,w(1)chV (−y ·p 0)

where Py,w are the KL polynomials.
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p-Kazhdan Lusztig polynomials

For p potentially very large the conjecture was proven by
Andersen-Jantzen-Soergel (1994).
However, the conjecture was proven to be false (even for p
exponential in the rank) in 2016 by Williamson’s landmark paper
Schubert calculus and torsion explosion.

Conjecture (Riche-Williamson, 2018)

Assume p > h. Then (T (w ·p 0) : V (y ·p 0)) = P py,w(1)

They prove it in type A.

Theorem (Riche-Williamson (after work by Achar, Makisumi),
2019)

The above conjecture holds.
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Billiards conjecture

Problem

The p-KL are hard to compute. “This is not the end of the story”

The tilting characters appear to have some deep structure,
according to Lusztig-Williamson (2017), based on some
computations for SL3.

Lusztig-Williamson

“The conjecture can be interpreted as saying these characters are
governed by a discrete dynamical system (”billiards bouncing in
alcoves”)”

https://www.youtube.com/watch?v=Ru0Zys1Vvq4
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Thanks!
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