The char $p \ {\rm story}$

Álvaro L. Martínez

October 30, 2020

Linear algebraic groups What about the simple modules? But why bother?

What's an algebraic group

Let k be a field. An algebraic group G is a scheme of finite type over k together with morphisms of schemes

$$\mu: G \times G \to G \quad \iota: G \to G$$

satisfying the group axioms (i.e. a group object in Sch^0/k). Alternatively, to G we associate the functor

(

$$\tilde{G} : \operatorname{Alg}_k^0 \to \operatorname{Grp}$$

 $R \to G(R)$

 $= \operatorname{Hom}_{\operatorname{Sch}/k}(\operatorname{Spec}(R), G)$

and every such representable functor is representable by an algebraic group, which is determined up to isomorphism.

Linear algebraic groups What about the simple modules? But why bother?

Linear algebraic groups

Some structure theory:

Theorem

Every algebraic group has a natural map $G \to \operatorname{Spec}(\mathcal{O}(G))$ whose kernel is an anti-affine* algebraic group.

Corollary

The rep theory of algebraic groups reduces to the affine case.

Affine algebraic groups/
$$k \underset{\text{Spec}}{\overset{\mathcal{O}}{\leftarrow}}$$
 Hopf algebras/ k

Fact: Every affine algebraic group G has a finite dimensional faithful representation, that is, $G \leq \text{Spec}(\mathcal{O}(\text{GL}_n))$.

Linear algebraic groups What about the simple modules? But why bother?

Linear algebraic groups

In what follows, assume G is also a connected variety.

Definition

Let R(G) be the largest connected solvable normal subgroup variety of G. We say G is semisimple if R(G) is trivial.

Similarly, G is reductive if $R_u(G)$ is trivial. Split* reductive groups have maximal tori, Borels, root systems... In fact almost all Lie theory carries over. For instance:

Theorem (Chevalley)

Split simple algebraic groups \leftrightarrow Dynkin diagrams.

Linear algebraic groups What about the simple modules? But why bother?

What about the simple modules?

Again {f.d. simples} \leftrightarrow {dominant weights}. However, in char p these are no longer tensor-indecomposable.

Definition

Let F_p be the Frobenius map $G \mapsto G$ sends $r \in G(R)$ to r^p .

For $q = p^r$, define the *p*-restricted (integral) dominant weights $\Lambda_q^+ = \{\lambda \in \Lambda : 0 \le \langle \lambda, \alpha \rangle < q\} \subset \Lambda^+.$ For M be a G-module, let $M^{[i]}$ be M with twisted action: $gv := F_p^i(g)v.$ Writing $\lambda = \lambda_0 + \lambda_1 p + ... + \lambda_{m-1} p^{m-1}$ (λ_i *p*-restricted), we have:

Steinberg's Tensor Product Theorem

$$L(\lambda) \cong L(\lambda_0) \otimes_k L(\lambda_1)^{[1]} \otimes_k \dots \otimes_k L(\lambda_{m-1})^{[m-1]}$$

Example

Let $G = SL_2$ and consider the module $S^3(V) = \{x^3, x^2y, xy^2, y^3\}$ where V is the natural representation.

This has highest weight 3. Believe that this is L(3). We show that this equals $M = L(1) \otimes L(1)^{[1]}$, as predicted by Steinberg.

• A submodule of M is of the form $L(1) \otimes V$ (g-submodule).

•
$$V = \operatorname{Hom}_{\mathfrak{g}}(L(1), L(1) \otimes V)$$

 $\hookrightarrow \operatorname{Hom}_{\mathfrak{g}}(L(1), L(1) \otimes L(1)^{[1]})$
 $= L(1)^{[1]} \text{ (as } G\text{-modules)} \square$

The general case for SL_2 follows by induction.

Linear algebraic groups What about the simple modules? But why bother?

But why bother?

Note that

$$G^{F_q} = \{g \in G(k) : F_q(g) = g\}$$

is a finite group. The finite groups of this form are called **reductive groups of Lie type** \rightsquigarrow most finite simple groups Their modular representations are of great interest (local-global conjectures...).

Restriction Theorem (Brauer-Nesbitt)

- For each $\lambda \in X^+$ p^r -restricted, $L(\lambda)$ is simple as a kG^{F_q} -module, and these are pairwise nonisomorphic.
- Every kG^{F_q} -module arises in this way.

Example

Modules of A_5 over char 2.

$$A_5 \cong SL_2(4)$$
 so let $G = SL_2$ over $k = \overline{\mathbb{F}_2}$.
2-restricted weights: $\{0, 1\}$
The restriction theorem implies:

Simple kA_5 -modules:

- $L(0) \otimes L(0)^{[1]}$
- $L(0) \otimes L(1)^{[1]}$
- $L(1) \otimes L(0)^{[1]}$
- $L(1) \otimes L(1)^{[1]}$

 Introduction and motivation
 Weyl modules

 Some old, some new
 Kempf's vanishing theorem

 Category O?
 Alcoves and the linkage principle

 KL and billiards
 Jantzen's fomula, translation functors, tilting modules

Weyl modules

Question

How to construct $L(\lambda)$?

Two ways to define the Weyl module:

- Take a \mathbb{Z} -form for $L_{\mathbb{C}}(\lambda)$ and set $V(\lambda) = L_{\mathbb{Z}}(\lambda) \otimes_{\mathbb{Z}} k$. Write $\lambda^* = -w_0 \lambda$.
- (Dual Weyl module) Define $W(\lambda) = \operatorname{ind}_{B^-}^G k_{-\lambda^*} = H^0(G/B^-, \mathcal{L}(\lambda))$, where $\mathcal{L}(\lambda)$ is the line bundle on the flag variety associated to the B^- -module k_{λ} . Then $V(\lambda) = W(\lambda^*)^*$.

Theorem

 $L(\lambda)$ is the unique simple quotient of $V(\lambda),$ as well as the unique simple submodule of $W(\lambda).$

 Introduction and motivation
 Weyl modules

 Some old, some new
 Kempf's vanishing theorem

 Category O?
 Alcoves and the linkage principle

 KL and billiards
 Jantzen's fomula, translation functors, tilting modules

Example

For SL₂, $W(p) = S^p(V) = k\{x^p, x^{p-1}y, ..., y^p\}$. This has a submodule $k\{x^p, y^p\} = L(p) = L(1)^{[p]}$.

Weyl modules Kempf's vanishing theorem Alcoves and the linkage principle Jantzen's fomula, translation functors, tilting modules

Kempf's vanishing theorem

Denote $H^i(\lambda) = H^i(G/B^-, \mathcal{L}(\lambda))$ As in char 0, the Euler characteristic $\chi(\lambda) = \sum_{i \ge 0} ch H^i(\lambda)$ is given by the Weyl character formula.

Kempf's vanishing theorem

If i > 0, then $H^i(\lambda) = 0$.

Moreover $H^0(\lambda^*)^*$ has the "Verma universality property" that gives an embedding $V(\lambda) \hookrightarrow H^0(\lambda^*)^*$ so by character comparison these are isomorphic.

Introduction and motivation Some old, some new Category O? KL and billiards KL and billiards

Rank of the contravariant form

Computing $chL(\lambda)$ is not hard (one at a time). In fact $dimL(\lambda)_{\mu} = \operatorname{rank}_{p}(T|_{V(\lambda)_{\mu}})$, the contravariant form.

Example

If $G = SL_{n+1}$ and $\lambda = \lambda_1 + \lambda_n = \alpha_1 + \ldots + \alpha_n$, then the weights are $W\lambda \cup \{0\}$. A basis for $V(\lambda)_0$ is given by $\{f_{\alpha_1+\ldots+\alpha_i}f_{\alpha_{i+1}+\ldots+\alpha_n}v^+\}_{i=1\ldots n}$ and the contravariant form is

$$\begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ \vdots & \ddots & \vdots \\ 1 & 1 & 2 & 1 \\ 1 & 1 & \dots & 1 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} n+1 & 0 & \dots & 0 \\ 0 & 1 & \vdots \\ \vdots & \ddots \\ 0 & \dots & 1 \end{pmatrix}$$

So $chL(\lambda) = chV(\lambda) - \epsilon_{p,n+1}e(0)$. (Multiples of I_{n+1} lie in \mathfrak{sl}_{n+1} .)

Introduction and motivation Weyl modules Some old, some new Kempf's vanishing theorem Category O? KL and billiards Jantzen's fomula, translation functors, tilting modules

Alcoves and the linkage principle

Recall the BGG theorem: $[M(\lambda): L(\mu)] \neq 0 \leftrightarrow \mu \uparrow \lambda$ The affine Weyl group is $W_p = W \ltimes \Phi^{\lor}$ and the dot action is defined as

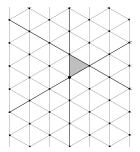
•
$$w \cdot_p \lambda = w(\lambda + \rho) - \rho$$

•
$$p\alpha \cdot_p \lambda = t + p\alpha$$

 $\stackrel{\sim}{\rightarrow} \mbox{ Infinitesimal block decompositions } \label{eq:local_states} \mbox{Define } \mu \uparrow_p \lambda \mbox{ by } \mu = (s_{\alpha_1}...s_{\alpha_m}) \cdot_p \lambda$

and
$$(s_{\alpha_i}...s_{\alpha_m}) \leq (s_{\alpha_{i-1}}...s_{\alpha_m})$$

Theorem (Strong linkage principle) $[V(\lambda): L(\mu)] \neq 0 \leftrightarrow \mu \uparrow_p \lambda$



Introduction and motivation Some old, some new Category 0? KL and billiards KL and billiards KL and billiards

The Steinberg module

Application

Linkage principle \implies If $\lambda \in \overline{C^0}$ then $V(\lambda) = L(\lambda)$

The largest dimensional module in C^0 is $\operatorname{St} := L((p-1)\lambda) = V((p-1)\lambda)$, of dimension $p^{|\Phi^+|}$. By Steinberg's tensor product theorem, $\operatorname{St}_r := L((p^r - 1)\lambda) = \operatorname{St} \otimes \operatorname{St}^{[1]} \otimes \ldots \otimes \operatorname{St}^{[r-1]} = V((p^r - 1)\lambda)$ $\Longrightarrow \operatorname{St}_r$ is the largest simple module for $G_r := G_r^{F_p^r}$. St_r plays a central role in the finite dimensional theory. **Example:** if $g \in G_r$ is a p'-element then

$$\chi_{\mathrm{St}_r}(g) = \begin{cases} |C_{G_r}(g)|_p, & \text{if } g \text{ is } p' \\ 0, & \text{otherwise} \end{cases}$$

Weyl modules Kempf's vanishing theorem Alcoves and the linkage principle Jantzen's fomula, translation functors, tilting modules

Jantzen's *p*-sum formula

Analog of Jantzen's sum formula, and similar technique.

Jantzen's p-sum formula

$$\sum_{i>0} \operatorname{ch} V(\lambda)^i = \sum_{\alpha>0} \sum_{0 < cp < \langle \lambda + \rho, \alpha^{\vee} \rangle} \nu_p(cp) \chi(s_{\alpha, cp} \cdot \lambda)$$

As in the category \mathcal{O} case, this gives $chL(\lambda)$ for all *p*-restricted λ but for small rank: A_2 , B_2 , C_2 , G_2 , A_3 .

Introduction and motivation Some old, some new Category O? KL and billiards KL and billiards

Translation and reflection functors

In $\operatorname{Rep}(G) = \bigoplus \operatorname{Rep}_{\lambda}(G)$ we can also define translation functors: $T_{\mu}^{\lambda} = \operatorname{pr}_{\lambda}(L(\nu) \otimes -)$ where ν is the dominant weight in the orbit of $\lambda - \mu$.

These give equivalences of categories similar to the ones for category $\ensuremath{\mathcal{O}}.$

A glimpse into categorification

Consider $\operatorname{Rep}_0(G)$. For each s_i choose μ "on the s_i -wall" and define $\Theta_i = T_{\nu}^0 T_0^{\nu}$. Then taking K_0 and identifying $[V(w \cdot_p 0)]$ with $1 \otimes w \in sgn \otimes_{\mathbb{Z}W} \mathbb{Z}W_p$, we get $[\Theta_i] = [(1 + s_i)]$. $\rightsquigarrow \operatorname{Rep}_0(G)$ categorifies the anti-spherical module for W_p .
 Introduction and motivation
 Weyl modules

 Some old, some new
 Kempf's vanishing theorem

 Category O?
 Alcoves and the linkage principle

 KL and billiards
 Jantzen's fomula, translation functors, tilting modules

Tilting modules

Definition

A G-module is tilting if it has a Weyl and a dual Weyl filtrations.

Fact: there is one indecomposable tilting $T(\lambda)$ for each highest weight λ of $\operatorname{Rep}_0(G)$. The problem of finding $\{\operatorname{ch} T(\lambda)\}$ is equivalent to that of finding $\{\operatorname{ch} L(\lambda)\}$:

Propostion

Suppose $p \ge 2h - 2$. Then if λ is *p*-restricted

$$(T(\tilde{\lambda}):V(\mu))=[V(\mu):L(\lambda)]$$

where $\tilde{\lambda}=2(p-1)\rho+w_0\lambda$

Introduction and motivation Weyl modules Some old, some new Kempf's vanishing theorem Category O? Alcoves and the linkage principle Jantzen's fomula, translation functors, tilting modules

Tilting modules

Another similarity between $T(\lambda)$ and $P(\lambda)$:

Theorem

Let $w = s_1...s_t$ be a reduced expression. Then $\lambda = w \cdot_p 0$ appears as a summand of $\Theta_{s_1}...\Theta_{s_t}T(0)$ (again tilting) with multiplicity 1. Every other summand $T(\mu)$ has $\mu < \lambda$.

Category \mathcal{O} ?

- Rational representations are defined to be finite dimensional.
- Weyl module has the role of the Verma module (among other parallel notions).
- $\operatorname{Rep}(G) \not\leftrightarrow \operatorname{Rep}(\mathfrak{g}) = \operatorname{Rep}(\mathcal{U}(\mathfrak{g}))$ $\operatorname{Rep}(G) \leftrightarrow \operatorname{Rep}(\operatorname{Dist}(G))$

Definition

Let X be an affine scheme over k, and $x \in X(k)$. Define $\operatorname{Dist}_n(X, x) = \operatorname{Hom}_k(\mathcal{O}_{X,x}/\mathfrak{m}_x^{n+1}, k)$. The **algebra of distributions** with support at x is the algebra $\operatorname{Dist}(X) := \bigcup_{\geq 0} \operatorname{Dist}_n(X, x)$. If G is an algebraic group, $\operatorname{Dist}(G) := \operatorname{Dist}(G, 1)$

This is a filtered associative algebra over k.

Example

Take the origin of the affine line $x \in \mathbb{A}^1 = \operatorname{Spec}(k[t]])$. Then $\operatorname{Dist}_n(X, x) = \operatorname{Hom}_k(k[t]_{(t)}/(t)^n, k) = \operatorname{Hom}_k(k[t]/(t)^n, k)$ This has a basis γ_r sending $t^m \mapsto \delta_{r,m}$. If $\operatorname{char}(k) = 0$, we can identify $\gamma_r = \frac{1}{r!} (\frac{\partial}{\partial t})^r$. So $\operatorname{Dist}(\mathbb{A}^1, x)$ consists of derivations of any order.

In general the associated graded has pieces $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$, $(\mathfrak{m}_x^2/\mathfrak{m}_x^3)^*$... **Fact**: the divided powers version of the PBW basis is a -form for $\operatorname{Dist}(G)$.

Problems: Dist(G) is not Noetherian, the center is unknown...

Humphreys:

"There is no likely analogue of the BGG category for the hyperalgebra [...] my current understanding is that the char p theory for G is essentially finite dimensional and requires deep geometry to resolve."

Character formulae conjectures Billiards conjecture

Lusztig's conjecture

Question

Is there an analog of the KL conjecture?

Let $\lambda = -w \cdot_p 0$.

Jantzen's condition: $\langle w\rho, \alpha_0^{\vee} \rangle \leq p(p-h+2)$, where h is the Coxeter number*.

Lusztig's conjecture (1979)

Assume $p \ge h$ and w as above. Then

$$\operatorname{ch} L(\lambda) = \sum_{y \le w} (1)^{l(w) - l(y)} P_{y,w}(1) \operatorname{ch} V(-y \cdot_p 0)$$

where $P_{y,w}$ are the KL polynomials.

Character formulae conjectures Billiards conjecture

p-Kazhdan Lusztig polynomials

For p potentially very large the conjecture was proven by Andersen-Jantzen-Soergel (1994).

However, the conjecture was proven to be **false** (even for p exponential in the rank) in 2016 by Williamson's landmark paper Schubert calculus and torsion explosion.

Conjecture (Riche-Williamson, 2018)

Assume p > h. Then $(T(w \cdot_p 0) : V(y \cdot_p 0)) = P_{y,w}^p(1)$

They prove it in type A.

Theorem (Riche-Williamson (after work by Achar, Makisumi), 2019)

The above conjecture holds.

Character formulae conjectures Billiards conjecture

Billiards conjecture

Problem

The p-KL are hard to compute. "This is not the end of the story"

The tilting characters appear to have some deep structure, according to Lusztig-Williamson (2017), based on some computations for SL_3 .

Lusztig-Williamson

"The conjecture can be interpreted as saying these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves")"

https://www.youtube.com/watch?v=Ru0Zys1Vvq4

Character formulae conjectures Billiards conjecture

(Main) references

- James E. Humphreys, *Modular representations of finite groups* of Lie type, 2006.
- Jens Carsten Jantzen, *Representations of algebraic groups*, second ed., 2003.
- Ivan Losev, Representation theory: modern introduction, https://gauss.math.yale.edu/~il282/RT/.
- J. S. Milne, *Algebraic groups*, Cambridge University Press, Cambridge, 2017, The theory of group schemes of finite type over a field.

Character formulae conjectures Billiards conjecture

Thanks!