
Category O: Properties

All of this information comes from Representations of Semisimple Lie Algebras in the
BGG Category O by James E. Humphreys.

1 Preliminaries/Notation

Let g be a Lie algebra and h a Cartan subalgebra. Let Φ ⊂ h∗ be the root system of g
relative to h, and for any α ∈ Φ define

gα = {x ∈ g : [h, x] = α(h)x for all h ∈ h}

Fixing a simple system ∆ ⊂ Φ gives a Cartan decomposition g = n− ⊕ h ⊕ n, where n =
⊕α>0gα and n− = ⊕α<0gα.

For a U(g)-module M we define

Mλ = {v ∈M |h · v = λ(h)v ∀h ∈ h}

2 What is Category O ?

Definition 1. The BGG category O is the full subcategory of ModU(g) whose objects are
modules such that:

O1. M is a finitely generated U(g)-module

O2. M is h-semisimple (i.e. M is a weight-module: M =
⊕

λ∈h∗ Mλ)

O3. M is locally n-finite: for each v ∈M, the subspace U(n) · v ⊆M is finite dimensional.

An immediate consequence is that all finite dimensional modules are in category O. These
axioms also imply that:

O4. All weight spaces of M are finite dimensional

O5. The set of all weights of M is contained in a finite union of sets of the form λ−Γ, where
λ ∈ h∗ and Γ ⊂ Λr (where Λr is the root lattice) is the semigroup generated by Φ+.

1



2.1 Basic Properties

Theorem 1. Category O satisfies:

a) O is a noetherian category (each M ∈ O is a noetherian U(g)-module).

b) O is closed under submodules, quotients, and finite direct sums.

c) O is an abelian category.

d) If M ∈ O and L ∈ ModU(g) is finite dimensional, then L ⊗M ∈ O (so M 7→ L ⊗M
defines an exact functor O → O)

e) If M ∈ O then M is Z(g)-finite (for each v ∈ M, the span of {z · v|z ∈ Z(g)} is finite
dimensional).

f) If M ∈ O then M is finitely generated as a U(n−)-module.

We will prove Part (d). Let M ∈ O and let L ∈ ModU(g) be finite dimensional. We need
to check the axioms O1−O3.

O1. Let v1, . . . , vn be a basis of L and w1, . . . , wp a generating set for M . Let N be the sub-
module generated by the elements vi⊗wj. Clearly, N ⊂ L⊗M. For the reverse containment,
let v ∈ L. Then for any j, v ⊗ wj ∈ N. Let x ∈ g. Then

x · (v ⊗ wj) = x · v ⊗ wj + v ⊗ x · wj ∈ N

Since L is itself a module, x · v ∈ L, and so v ⊗ x · wj ∈ N. Iteration (since L is finite
dimensional) shows that v⊗u·wj ∈ N for all PBW monomials u ∈ U(g), so that L⊗M ⊂ N.
Thus L⊗M = N, so that L⊗M is a finitely generated U(g)-module.

O2. M is a weight module by O2. Since all finite dimensional modules are weight modules
(Section 0.8) L is too. Therefore L⊗M is a weight module.

O3. By assumption, M is locally n-finite. Being finite dimensional, any subspace of L is also
finite dimensional, so for each v ∈ L⊗M, U(n) · v ⊂ L⊗M is also finite dimensional.

2.2 Highest Weight Modules

Definition 2. Let M ∈ U(g)−Mod. Then v+ ∈ M \ {0} is a maximal vector of weight
λ ∈ h∗ if v+ ∈Mλ and n · v+ = 0.

Definition 3. M ∈ U(g) − Mod is a highest weight module of weight λ is there is a
maximal vector v+ ∈Mλ such that M = U(g) · v+.

Theorem 2a. Highest weight modules are in categoryO. Let M be a highest weight module
of weight λ.

O1. As a U(g)-module, M is generated by v+ for some v+ ∈Mλ.
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O2. We want to show that M is h-semisimple, i.e. that M =
⊕

λ∈h∗ Mλ. We know that M

is spanned by elements of the form yi11 . . . y
im
m · v+, where ij ∈ Z+ for all j. An element of

this form has weight λ −
∑
ijαj (where yj lies in the root space gαj). Weight vectors of

distinct weights are linearly independent, so the commutation relations for h and n− give us
the decomposition M =

⊕
λ∈h∗ Mλ, so that M is h-semisimple.

O3. Let v ∈M. Then for any u ∈ U(n), the weight of u · v is at least that of v. If infinitely
many u ∈ U(n) raised v to the same weight space, that weight space would be infinite
dimensional (note that gα ·Mµ ⊂Mµ+α). This is impossible, so M is locally n-finite.

Theorem 2b. Highest weight modules are indecomposable.

Proof. Each proper submodule of M is a weight module. Since M = U(g) · v+ = U(g) ·Mλ,
any proper submodule of M cannot have λ as a weight. Therefore the sum of all proper
submodules is itself proper, so M has a unique maximal submodule, hence is indecomposable.

Corollary - from Page 17 . Let M 6= 0 ∈ O. Then M has a finite filtration 0 ⊂ M1 ⊂
M2 ⊂ · · · ⊂Mn = M such that each Mi/Mi−1 is a (nonzero) highest weight module.

Proof. By O1, M can be generated by finitely many weight vectors {v1, . . . , vn}. So, using
O3 (i.e. that for any v ∈ M, U(n) · v is finite dimensional) The n-submodule V generated
by {v1, . . . , vn} is also finite dimensional. If dimV = 1, then M is already a highest weight
module. Otherwise, we can induct on dimV. Take v 6= 0 ∈ V a weight vector of weight
λ, such that λ is maximal among all weights of V (we can do this since V was generated
by finitely many weight vectors). M1 := U(g) · v is a submodule of M , and so lies in O.
Furthermore, M := M/M1 also lies in O and is generated by the image V of V under the
same quotient. dimV < dimV, so we can apply the induction hypothesis to M to obtain a
chain of highest weight submodules which we can lift back to M.

3 The Length of Category O
Our next task is to prove that the category is of finite length. To do this, we will begin
by looking closer at the action of Z(g). We know that any M ∈ O is locally finite as a
Z(g)-module (for any v ∈ M, the span of {z · v|z ∈ Z(g)} is finite dimensional). If M is a
highest weight module M = U(g) · v+, of weight λ, then for any z ∈ Z(g) and h ∈ h we have
that

h · (z · v+) = z · (h · v+) (z ∈ Z(g))

= z · (λ(h)v+) (v+ ∈Mλ)

= λ(h)z · v+
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So, z · v+ = χλ(z)v+ for some χλ(z) ∈ C (since dimMλ = 1). Since all elements of M are of
the form u · v+ for some u ∈ U(n−) we also know that

z · (u · v+) = u · (z · v+)

= χλ(z)u · v+

Thus the action of the center completely determines the action on a highest weight module.
For any fixed λ, we will call χλ : Z(g)→ C the central character associated with λ, and more
generally define:

Definition 4. A central character is an algebra homomorphism Z(g)→ C.

We will see shortly that any central character can be written as χλ for some weight λ.
Now, let’s look a little closer at χλ for some fixed λ. By the triangular decomposition,

for any z ∈ Z(g) we can write as a linear combination of PBW monomials, and z · v+ will
depend only on the monomials with factors in h. So, letting

pr :


U(g)→ U(h)

xi, yi 7→ 0

hi 7→ hi

we see that χλ(z) = λ(pr(z)) (where λ ∈ h∗ is extended to an algebra homomorphism
U(h)→ C).

Since
⋂
λ∈h∗ kerλ = 0, the Harish-Chandra homomorphism defined by ξ = pr|Z(g) is

an algebra homomorphism ξ : Z(g)→ U(h).

Definition 5. Let w ∈ W (the Weyl group) and λ ∈ h∗. We define the dot action, a shifted
action of W , by

w · λ = w(λ+ ρ)− ρ

(where ρ = 1
2

∑
λ∈Φ+ λ).

Definition 6. The linkage class of λ is the orbit {w ·λ|w ∈ W} of λ under the dot action.
We say that two elements of the same linkage class are linked.

Definition 7. A weight λ ∈ h∗ is called a regular weight (or dot-regular) if |W ·λ| = |W |.

Definition 8. A singular weight is a weight which is not regular.

For a given λ ∈ h∗, the linkage class of λ has a unique element in C−ρ (where C = {µ ∈
E|〈µ, α∨〉 > 0 ∀α ∈ ∆} is the Weyl chamber.

We define the twisted Harish-Chandra homomorphism as

ψ :

{
Z(g)→ U(h) = S(h)

z 7→ τρ(ξ(z))

Theorem 3. [Harish-Chandra] Let ψ : Z(g) → S(h) = P (h∗) be the twisted Harish-
Chandra homomorphism.
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a) ψ is an isomorphism onto S(h)W ⊂ S(h).

b) ∀λ, µ ∈ h∗, we have χλ = χµ ⇐⇒ ∃w ∈ W such that µ = s · λ (i.e. λ and µ are
W -linked).

c) Every central character χ : Z(g)→ C is of the form χλ for some λ ∈ h∗.

Outline of a proof for (a): We begin by noting that ψ(Z(g)) ⊂ S(h)W . We consider the
algebra of polynomial functions on g considered as a vector space, P (g) ∼= S(g∗). Then the
restriction θ : P (g) → P (h) is an algebra homomorphism. The adjoint group G ⊂ Autg
generated by exp adx for nilpotent x is a Lie group which acts naturally on P (g). Similarly,
W acts on P (h). Chevalley proved that P (g)G ∼= P (h)W via the restriction map θ. Identifying
P (a) with S(a) for a = g, h, we obtain enough information via comparison to ξ so see that
ψ is bijective, hence an isomorphism.

b). We first assume that λ ∈ Λ and that µ, λ are in the same linkage class. Let α ∈ ∆. Then
n := 〈λ, α∨〉 ∈ Z. If n ≥ 0, then M(sα · λ) ↪→ M(λ), so that χλ = χsα·λ = χµ. If n = −1,
then sα · λ = λ and we are done. If n < −1, then letting µ = sα · λ, we obtain

〈µ, α∨〉 = −n− 2 ≥ 0

so by the first case, χλ = χµ. Since W is generated by simple reflections, and linkage is a
transitive relation, by induction on `(w) we obtain that

µ = w · λ =⇒ χλ = χµ

(i.e. if λ, µ lie in the same linkage class, then they induce the same central characters.
Now, We identify h∗ with A`, the affine space over C. We then can identify U(h) = S(h) =

P (h∗) with the algebra of polynomial functions acting on A`, and the integer lattice λ with
Z`. Since Z` is Zariski dense in A`, by the above result we know that χλ = χw·λ for any
λ ∈ h∗.

Now, assume that λ and µ lie in disjoint linkage classes. Let f ∈ P (h∗) be a polynomial
such that f |W (λ+ρ) = 1 and f |W (µ+ρ) = 0. Then, define

g :=
1

|W |
∑
w∈W

wf

g is W -invariant and agrees with f on the specified W -orbits. Using part (a), we can take
any z ∈ ψ−1(g) ⊂ Z(g). Then

χλ(z) = (λ+ ρ)ψ(z) = g(λ) = 1,

but
χµ(z) = (µ+ ρ)ψ(z) = g(µ) = 0

which means χλ 6= χµ.
Therefore, χλ = χµ if and only if λ and µ lie in the same linkage class.
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c). We want to show that every central character χ : Z(g) → C is of the form χλ for some
λ ∈ h∗. Let χ be an arbitrary central character. Via ψ we have that χ corresponds to a
homomorphism ϕ : S(h)W → C. Since the Weyl group is finite, S(h) is an integral extension
of S(h)W . So (via the Going Up Theorem), ϕ extends to a homomorphism ϕ̃ : S(h) → C.
Now, since S(h) = P (h∗), ∃λ ∈ h∗ such that ϕ̃ = evalλ+ρ. This gives us that, for any
z ∈ Z(g),

χ(z) = (λ+ ρ)(ψ(z)) = χλ(z)

as desired.

Theorem 4. Category O is artinian.

Proof. By the Corollary from page 17, it suffices to prove that Verma modules M(λ) are
artinian. Let V :=

∑
w∈W M(λ)w·λ. Note that dimV <∞. LetN ′ ⊂ N (proper containment)

be submodules of M(λ. Then Z(g) acts on N/N ′ by the character χλ. N/N
′ has a maximal

weight vector of some weight µ ≤ λ, so χµ = χλ =⇒ ∃w ∈ W such that µ = w · λ. This
implies that N ∩V 6= 0, and dim(N ∩V ) > dim(N ′∩V ). Therefore any properly descending
chain of submodules of M(λ) terminates in finitely many steps, so O is artinian.

So, the category O is both artinian and noetherian, and hence is of finite length.

4 Subcategories Oχ
Definition 9. Let χ be a central character. We define

Mχ := {v ∈M |(z − χ(z))n · v = 0 for some n > 0 depending on z}

Mχ is a U(g)-submodule of M , and for distinct χ, the corresponding Mχ’s are independent.
We define the subcategory Oχ ⊂ O to be the full subcategory of O which objects M such

that M = Mχ.

Theorem 5. O decomposes into a direct sum

O =
⊕
λ

Oχλ =
⊕

λ∈h∗\(W ·)

Oχλ

Proof. Since Z(g) and U(h) commute, Z(g)(Mµ) ⊂ Mµ. So, Mµ =
⊕

χ(Mµ ∩Mχ). Since
M is generated by finitely many weight vectors, ∃χi such that M =

⊕n
i=1M

χi . By Harish-
Chandra’s theorem, there exist λ1, . . . , λn such that χi = χλi for each i. Since χλ = χµ for
weights in the same linkage class, we can reduce this sum to just the equivalence classes
under the dot action.

Let M1,M2 be simple modules in the cateogry such that there exists a non-split short exact
sequence 0 → Mi → M → Mj → 0, i.e. M1,M2 can be extended nontrivially, then
we say that they are in the same block. If for simple modules M,N there is a sequence
M = M1, . . . ,Mn = N such that adjacent pairs are in the same block, we say that M and
N are in the same block. For an arbitrary module M , we say that M is in a given block if
all of its composition factors are.
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Theorem 6. If λ ∈ Λ, then the subcategory Oχλ is a block of O.

Proof. We need only show that all simple modules L(w · λ) lie in the same block. First,
assume that α ∈ ∆, and assume that µ := sα · λ satisfies µ < λ. We know that there
is a nonzero homomorphism f : M(µ) → N(λ) ⊂ M(λ), which induces an embedding
L(µ) ↪→ M(λ)/f(N) which has quotient L(λ). This is a highest weight module, hence is
indecomposable. So, L(λ) and L(µ) lie in the same block. Iteration over a reduced expression
for w ∈ W gives us the result.
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