Category \mathcal{O} : Properties

All of this information comes from Representations of Semisimple Lie Algebras in the $B G G$ Category \mathcal{O} by James E. Humphreys.

1 Preliminaries/Notation

Let \mathfrak{g} be a Lie algebra and \mathfrak{h} a Cartan subalgebra. Let $\Phi \subset \mathfrak{h}^{*}$ be the root system of \mathfrak{g} relative to \mathfrak{h}, and for any $\alpha \in \Phi$ define

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \text { for all } h \in \mathfrak{h}\}
$$

Fixing a simple system $\Delta \subset \Phi$ gives a Cartan decomposition $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus n$, where $\mathfrak{n}=$ $\oplus_{\alpha>0} \mathfrak{g}_{\alpha}$ and $\mathfrak{n}^{-}=\oplus_{\alpha<0} \mathfrak{g}_{\alpha}$.

For a $U(\mathfrak{g})$-module M we define

$$
M_{\lambda}=\{v \in M \mid h \cdot v=\lambda(h) v \forall h \in \mathfrak{h}\}
$$

2 What is Category \mathcal{O} ?

Definition 1. The BGG category \mathcal{O} is the full subcategory of $\operatorname{Mod} U(\mathfrak{g})$ whose objects are modules such that:
$\mathcal{O} 1 . M$ is a finitely generated $U(\mathfrak{g})$-module
O2. M is \mathfrak{h}-semisimple (i.e. M is a weight-module: $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$)
O3. M is locally \mathfrak{n}-finite: for each $v \in M$, the subspace $U(\mathfrak{n}) \cdot v \subseteq M$ is finite dimensional.
An immediate consequence is that all finite dimensional modules are in category \mathcal{O}. These axioms also imply that:
\mathcal{O}. All weight spaces of M are finite dimensional
$\mathcal{O} 5$. The set of all weights of Mis contained in a finite union of sets of the form $\lambda-\Gamma$, where $\lambda \in \mathfrak{h}^{*}$ and $\Gamma \subset \Lambda_{r}$ (where Λ_{r} is the root lattice) is the semigroup generated by Φ^{+}.

2.1 Basic Properties

Theorem 1. Category \mathcal{O} satisfies:
a) \mathcal{O} is a noetherian category (each $M \in \mathcal{O}$ is a noetherian $U(\mathfrak{g})$-module).
b) \mathcal{O} is closed under submodules, quotients, and finite direct sums.
c) \mathcal{O} is an abelian category.
d) If $M \in \mathcal{O}$ and $L \in \operatorname{Mod} U(\mathfrak{g})$ is finite dimensional, then $L \otimes M \in \mathcal{O}$ (so $M \mapsto L \otimes M$ defines an exact functor $\mathcal{O} \rightarrow \mathcal{O}$)
e) If $M \in \mathcal{O}$ then M is $Z(\mathfrak{g})$-finite (for each $v \in M$, the span of $\{z \cdot v \mid z \in Z(\mathfrak{g})\}$ is finite dimensional).
f) If $M \in \mathcal{O}$ then M is finitely generated as a $U\left(\mathfrak{n}^{-}\right)$-module.

We will prove Part (d). Let $M \in \mathcal{O}$ and let $L \in \operatorname{Mod} U(\mathfrak{g})$ be finite dimensional. We need to check the axioms $\mathcal{O} 1-\mathcal{O} 3$.
$\mathcal{O} 1$. Let v_{1}, \ldots, v_{n} be a basis of L and w_{1}, \ldots, w_{p} a generating set for M. Let N be the submodule generated by the elements $v_{i} \otimes w_{j}$. Clearly, $N \subset L \otimes M$. For the reverse containment, let $v \in L$. Then for any $j, v \otimes w_{j} \in N$. Let $x \in \mathfrak{g}$. Then

$$
x \cdot\left(v \otimes w_{j}\right)=x \cdot v \otimes w_{j}+v \otimes x \cdot w_{j} \in N
$$

Since L is itself a module, $x \cdot v \in L$, and so $v \otimes x \cdot w_{j} \in N$. Iteration (since L is finite dimensional) shows that $v \otimes u \cdot w_{j} \in N$ for all PBW monomials $u \in U(\mathfrak{g})$, so that $L \otimes M \subset N$. Thus $L \otimes M=N$, so that $L \otimes M$ is a finitely generated $U(\mathfrak{g})$-module.
$\mathcal{O} 2 . M$ is a weight module by $\mathcal{O} 2$. Since all finite dimensional modules are weight modules (Section 0.8) L is too. Therefore $L \otimes M$ is a weight module.
$\mathcal{O} 3$. By assumption, M is locally \mathfrak{n}-finite. Being finite dimensional, any subspace of L is also finite dimensional, so for each $v \in L \otimes M, U(\mathfrak{n}) \cdot v \subset L \otimes M$ is also finite dimensional.

2.2 Highest Weight Modules

Definition 2. Let $M \in U(\mathfrak{g})-\operatorname{Mod}$. Then $v^{+} \in M \backslash\{0\}$ is a maximal vector of weight $\lambda \in \mathfrak{h}^{*}$ if $v^{+} \in M_{\lambda}$ and $\mathfrak{n} \cdot v^{+}=0$.

Definition 3. $M \in U(\mathfrak{g})-$ Mod is a highest weight module of weight λ is there is a maximal vector $v^{+} \in M_{\lambda}$ such that $M=U(\mathfrak{g}) \cdot v^{+}$.

Theorem 2a. Highest weight modules are in category \mathcal{O}. Let M be a highest weight module of weight λ.
$\mathcal{O} 1$. As a $U(\mathfrak{g})$-module, M is generated by v^{+}for some $v^{+} \in M_{\lambda}$.
\mathcal{O} 2. We want to show that M is \mathfrak{h}-semisimple, i.e. that $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$. We know that M is spanned by elements of the form $y_{1}^{i_{1}} \ldots y_{m}^{i_{m}} \cdot v^{+}$, where $i_{j} \in \mathbb{Z}^{+}$for all j. An element of this form has weight $\lambda-\sum i_{j} \alpha_{j}$ (where y_{j} lies in the root space $\mathfrak{g}_{\alpha_{j}}$). Weight vectors of distinct weights are linearly independent, so the commutation relations for \mathfrak{h} and \mathfrak{n}^{-}give us the decomposition $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$, so that M is \mathfrak{h}-semisimple.
$\mathcal{O} 3$. Let $v \in M$. Then for any $u \in U(\mathfrak{n})$, the weight of $u \cdot v$ is at least that of v. If infinitely many $u \in U(\mathfrak{n})$ raised v to the same weight space, that weight space would be infinite dimensional (note that $\mathfrak{g}_{\alpha} \cdot M_{\mu} \subset M_{\mu+\alpha}$). This is impossible, so M is locally \mathfrak{n}-finite.

Theorem 2b. Highest weight modules are indecomposable.
Proof. Each proper submodule of M is a weight module. Since $M=U(\mathfrak{g}) \cdot v^{+}=U(\mathfrak{g}) \cdot M_{\lambda}$, any proper submodule of M cannot have λ as a weight. Therefore the sum of all proper submodules is itself proper, so M has a unique maximal submodule, hence is indecomposable.

Corollary - from Page 17 . Let $M \neq 0 \in \mathcal{O}$. Then M has a finite filtration $0 \subset M_{1} \subset$ $M_{2} \subset \cdots \subset M_{n}=M$ such that each M_{i} / M_{i-1} is a (nonzero) highest weight module.

Proof. By $\mathcal{O} 1, M$ can be generated by finitely many weight vectors $\left\{v_{1}, \ldots, v_{n}\right\}$. So, using $\mathcal{O} 3$ (i.e. that for any $v \in M, U(\mathfrak{n}) \cdot v$ is finite dimensional) The \mathfrak{n}-submodule V generated by $\left\{v_{1}, \ldots, v_{n}\right\}$ is also finite dimensional. If $\operatorname{dim} V=1$, then M is already a highest weight module. Otherwise, we can induct on $\operatorname{dim} V$. Take $v \neq 0 \in V$ a weight vector of weight λ, such that λ is maximal among all weights of V (we can do this since V was generated by finitely many weight vectors). $M_{1}:=U(\mathfrak{g}) \cdot v$ is a submodule of M, and so lies in \mathcal{O}. Furthermore, $\bar{M}:=M / M_{1}$ also lies in \mathcal{O} and is generated by the image \bar{V} of V under the same quotient. $\operatorname{dim} \bar{V}<\operatorname{dim} V$, so we can apply the induction hypothesis to \bar{M} to obtain a chain of highest weight submodules which we can lift back to M.

3 The Length of Category \mathcal{O}

Our next task is to prove that the category is of finite length. To do this, we will begin by looking closer at the action of $Z(\mathfrak{g})$. We know that any $M \in \mathcal{O}$ is locally finite as a $Z(\mathfrak{g})$-module (for any $v \in M$, the span of $\{z \cdot v \mid z \in Z(\mathfrak{g})\}$ is finite dimensional). If M is a highest weight module $M=U(\mathfrak{g}) \cdot v^{+}$, of weight λ, then for any $z \in Z(\mathfrak{g})$ and $h \in \mathfrak{h}$ we have that

$$
\begin{aligned}
h \cdot\left(z \cdot v^{+}\right) & =z \cdot\left(h \cdot v^{+}\right) & & (z \in Z(\mathfrak{g})) \\
& =z \cdot\left(\lambda(h) v^{+}\right) & & \left(v^{+} \in M_{\lambda}\right) \\
& =\lambda(h) z \cdot v^{+} & &
\end{aligned}
$$

So, $z \cdot v^{+}=\chi_{\lambda}(z) v^{+}$for some $\chi_{\lambda}(z) \in \mathbb{C}\left(\right.$ since $\left.\operatorname{dim} M_{\lambda}=1\right)$. Since all elements of M are of the form $u \cdot v^{+}$for some $u \in U\left(\mathfrak{n}^{-}\right)$we also know that

$$
\begin{aligned}
z \cdot\left(u \cdot v^{+}\right) & =u \cdot\left(z \cdot v^{+}\right) \\
& =\chi_{\lambda}(z) u \cdot v^{+}
\end{aligned}
$$

Thus the action of the center completely determines the action on a highest weight module. For any fixed λ, we will call $\chi_{\lambda}: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ the central character associated with λ, and more generally define:

Definition 4. A central character is an algebra homomorphism $Z(\mathfrak{g}) \rightarrow \mathbb{C}$.
We will see shortly that any central character can be written as χ_{λ} for some weight λ.
Now, let's look a little closer at χ_{λ} for some fixed λ. By the triangular decomposition, for any $z \in Z(\mathfrak{g})$ we can write as a linear combination of PBW monomials, and $z \cdot v^{+}$will depend only on the monomials with factors in \mathfrak{h}. So, letting

$$
p r:\left\{\begin{array}{l}
U(\mathfrak{g}) \rightarrow U(\mathfrak{h}) \\
x_{i}, y_{i} \mapsto 0 \\
h_{i} \mapsto h_{i}
\end{array}\right.
$$

we see that $\chi_{\lambda}(z)=\lambda\left(\operatorname{pr}(z)\right.$) (where $\lambda \in \mathfrak{h}^{*}$ is extended to an algebra homomorphism $U(\mathfrak{h}) \rightarrow \mathbb{C})$.

Since $\bigcap_{\lambda \in \mathfrak{h}^{*}} \operatorname{ker} \lambda=0$, the Harish-Chandra homomorphism defined by $\xi=\left.p r\right|_{Z(\mathfrak{g})}$ is an algebra homomorphism $\xi: Z(\mathfrak{g}) \rightarrow U(\mathfrak{h})$.

Definition 5. Let $w \in W$ (the Weyl group) and $\lambda \in \mathfrak{h}^{*}$. We define the dot action, a shifted action of W, by

$$
w \cdot \lambda=w(\lambda+\rho)-\rho
$$

(where $\rho=\frac{1}{2} \sum_{\lambda \in \Phi^{+}} \lambda$).
Definition 6. The linkage class of λ is the orbit $\{w \cdot \lambda \mid w \in W\}$ of λ under the dot action. We say that two elements of the same linkage class are linked.

Definition 7. A weight $\lambda \in \mathfrak{h}^{*}$ is called a regular weight (or dot-regular) if $|W \cdot \lambda|=|W|$.
Definition 8. A singular weight is a weight which is not regular.
For a given $\lambda \in \mathfrak{h}^{*}$, the linkage class of λ has a unique element in $\bar{C}-\rho$ (where $C=\{\mu \in$ $\left.E \mid\left\langle\mu, \alpha^{\vee}\right\rangle>0 \forall \alpha \in \Delta\right\}$ is the Weyl chamber.

We define the twisted Harish-Chandra homomorphism as

$$
\psi:\left\{\begin{array}{l}
Z(\mathfrak{g}) \rightarrow U(\mathfrak{h})=S(\mathfrak{h}) \\
z \mapsto \tau_{\rho}(\xi(z))
\end{array}\right.
$$

Theorem 3. [Harish-Chandra] Let $\psi: Z(\mathfrak{g}) \rightarrow S(\mathfrak{h})=P\left(\mathfrak{h}^{*}\right)$ be the twisted HarishChandra homomorphism.
a) ψ is an isomorphism onto $S(\mathfrak{h})^{W} \subset S(\mathfrak{h})$.
b) $\forall \lambda, \mu \in \mathfrak{h}^{*}$, we have $\chi_{\lambda}=\chi_{\mu} \Longleftrightarrow \exists w \in W$ such that $\mu=s \cdot \lambda$ (i.e. λ and μ are W-linked).
c) Every central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is of the form χ_{λ} for some $\lambda \in \mathfrak{h}^{*}$.

Outline of a proof for (a): We begin by noting that $\psi(Z(\mathfrak{g})) \subset S(\mathfrak{h})^{W}$. We consider the algebra of polynomial functions on \mathfrak{g} considered as a vector space, $P(\mathfrak{g}) \cong S\left(\mathfrak{g}^{*}\right)$. Then the restriction $\theta: P(\mathfrak{g}) \rightarrow P(\mathfrak{h})$ is an algebra homomorphism. The adjoint group $G \subset A u t \mathfrak{g}$ generated by exp ad x for nilpotent x is a Lie group which acts naturally on $P(\mathfrak{g})$. Similarly, W acts on $P(\mathfrak{h})$. Chevalley proved that $P(\mathfrak{g})^{G} \cong P(\mathfrak{h})^{W}$ via the restriction map θ. Identifying $P(\mathfrak{a})$ with $S(\mathfrak{a})$ for $\mathfrak{a}=\mathfrak{g}, \mathfrak{h}$, we obtain enough information via comparison to ξ so see that ψ is bijective, hence an isomorphism.
b). We first assume that $\lambda \in \Lambda$ and that μ, λ are in the same linkage class. Let $\alpha \in \Delta$. Then $n:=\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}$. If $n \geq 0$, then $M\left(s_{\alpha} \cdot \lambda\right) \hookrightarrow M(\lambda)$, so that $\chi_{\lambda}=\chi_{s_{\alpha} \cdot \lambda}=\chi_{\mu}$. If $n=-1$, then $s_{\alpha} \cdot \lambda=\lambda$ and we are done. If $n<-1$, then letting $\mu=s_{\alpha} \cdot \lambda$, we obtain

$$
\left\langle\mu, \alpha^{\vee}\right\rangle=-n-2 \geq 0
$$

so by the first case, $\chi_{\lambda}=\chi_{\mu}$. Since W is generated by simple reflections, and linkage is a transitive relation, by induction on $\ell(w)$ we obtain that

$$
\mu=w \cdot \lambda \Longrightarrow \chi_{\lambda}=\chi_{\mu}
$$

(i.e. if λ, μ lie in the same linkage class, then they induce the same central characters.

Now, We identify \mathfrak{h}^{*} with \mathbb{A}^{ℓ}, the affine space over \mathbb{C}. We then can identify $U(\mathfrak{h})=S(\mathfrak{h})=$ $P\left(\mathfrak{h}^{*}\right)$ with the algebra of polynomial functions acting on \mathbb{A}^{ℓ}, and the integer lattice λ with \mathbb{Z}^{ℓ}. Since \mathbb{Z}^{ℓ} is Zariski dense in \mathbb{A}^{ℓ}, by the above result we know that $\chi_{\lambda}=\chi_{w \cdot \lambda}$ for any $\lambda \in \mathfrak{h}^{*}$.

Now, assume that λ and μ lie in disjoint linkage classes. Let $f \in P\left(\mathfrak{h}^{*}\right)$ be a polynomial such that $\left.f\right|_{W(\lambda+\rho)}=1$ and $\left.f\right|_{W(\mu+\rho)}=0$. Then, define

$$
g:=\frac{1}{|W|} \sum_{w \in W} w f
$$

g is W-invariant and agrees with f on the specified W-orbits. Using part (a), we can take any $z \in \psi^{-1}(g) \subset Z(\mathfrak{g})$. Then

$$
\chi_{\lambda}(z)=(\lambda+\rho) \psi(z)=g(\lambda)=1
$$

but

$$
\chi_{\mu}(z)=(\mu+\rho) \psi(z)=g(\mu)=0
$$

which means $\chi_{\lambda} \neq \chi_{\mu}$.
Therefore, $\chi_{\lambda}=\chi_{\mu}$ if and only if λ and μ lie in the same linkage class.
c). We want to show that every central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is of the form χ_{λ} for some $\lambda \in \mathfrak{h}^{*}$. Let χ be an arbitrary central character. Via ψ we have that χ corresponds to a homomorphism $\varphi: S(\mathfrak{h})^{W} \rightarrow \mathbb{C}$. Since the Weyl group is finite, $S(\mathfrak{h})$ is an integral extension of $S(\mathfrak{h})^{W}$. So (via the Going Up Theorem), φ extends to a homomorphism $\tilde{\varphi}: S(\mathfrak{h}) \rightarrow \mathbb{C}$. Now, since $S(\mathfrak{h})=P\left(\mathfrak{h}^{*}\right), \exists \lambda \in \mathfrak{h}^{*}$ such that $\tilde{\varphi}=\operatorname{eval}_{\lambda+\rho}$. This gives us that, for any $z \in Z(\mathfrak{g})$,

$$
\chi(z)=(\lambda+\rho)(\psi(z))=\chi_{\lambda}(z)
$$

as desired.
Theorem 4. Category \mathcal{O} is artinian.
Proof. By the Corollary from page 17 , it suffices to prove that Verma modules $M(\lambda)$ are artinian. Let $V:=\sum_{w \in W} M(\lambda)_{w \cdot \lambda}$. Note that $\operatorname{dim} V<\infty$. Let $N^{\prime} \subset N$ (proper containment) be submodules of $M\left(\lambda\right.$. Then $Z(\mathfrak{g})$ acts on N / N^{\prime} by the character $\chi_{\lambda} . N / N^{\prime}$ has a maximal weight vector of some weight $\mu \leq \lambda$, so $\chi_{\mu}=\chi_{\lambda} \Longrightarrow \exists w \in W$ such that $\mu=w \cdot \lambda$. This implies that $N \cap V \neq 0$, and $\operatorname{dim}(N \cap V)>\operatorname{dim}\left(N^{\prime} \cap V\right)$. Therefore any properly descending chain of submodules of $M(\lambda)$ terminates in finitely many steps, so \mathcal{O} is artinian.

So, the category \mathcal{O} is both artinian and noetherian, and hence is of finite length.

4 Subcategories \mathcal{O}_{χ}

Definition 9. Let χ be a central character. We define

$$
M^{\chi}:=\left\{v \in M \mid(z-\chi(z))^{n} \cdot v=0 \text { for some } n>0 \text { depending on } z\right\}
$$

M^{χ} is a $U(\mathfrak{g})$-submodule of M, and for distinct χ, the corresponding M^{χ} 's are independent.
We define the subcategory $\mathcal{O}_{\chi} \subset \mathcal{O}$ to be the full subcategory of \mathcal{O} which objects M such that $M=M^{\chi}$.

Theorem 5. \mathcal{O} decomposes into a direct sum

$$
\mathcal{O}=\bigoplus_{\lambda} O_{\chi_{\lambda}}=\bigoplus_{\lambda \in \mathfrak{h}^{*} \backslash(W \cdot)} \mathcal{O}_{\chi_{\lambda}}
$$

Proof. Since $Z(\mathfrak{g})$ and $U(\mathfrak{h})$ commute, $Z(\mathfrak{g})\left(M_{\mu}\right) \subset M_{\mu}$. So, $M_{\mu}=\bigoplus_{\chi}\left(M_{\mu} \cap M^{\chi}\right)$. Since M is generated by finitely many weight vectors, $\exists \chi_{i}$ such that $M=\bigoplus_{i=1}^{n} M^{\chi_{i}}$. By HarishChandra's theorem, there exist $\lambda_{1}, \ldots, \lambda_{n}$ such that $\chi_{i}=\chi_{\lambda_{i}}$ for each i. Since $\chi_{\lambda}=\chi_{\mu}$ for weights in the same linkage class, we can reduce this sum to just the equivalence classes under the dot action.

Let M_{1}, M_{2} be simple modules in the cateogry such that there exists a non-split short exact sequence $0 \rightarrow M_{i} \rightarrow M \rightarrow M_{j} \rightarrow 0$, i.e. M_{1}, M_{2} can be extended nontrivially, then we say that they are in the same block. If for simple modules M, N there is a sequence $M=M_{1}, \ldots, M_{n}=N$ such that adjacent pairs are in the same block, we say that M and N are in the same block. For an arbitrary module M, we say that M is in a given block if all of its composition factors are.

Theorem 6. If $\lambda \in \Lambda$, then the subcategory $\mathcal{O}_{\chi_{\lambda}}$ is a block of \mathcal{O}.
Proof. We need only show that all simple modules $L(w \cdot \lambda)$ lie in the same block. First, assume that $\alpha \in \Delta$, and assume that $\mu:=s_{\alpha} \cdot \lambda$ satisfies $\mu<\lambda$. We know that there is a nonzero homomorphism $f: M(\mu) \rightarrow N(\lambda) \subset M(\lambda)$, which induces an embedding $L(\mu) \hookrightarrow M(\lambda) / f(N)$ which has quotient $L(\lambda)$. This is a highest weight module, hence is indecomposable. So, $L(\lambda)$ and $L(\mu)$ lie in the same block. Iteration over a reduced expression for $w \in W$ gives us the result.

