BGG Resolutions for Gmie-dimensional modules [b.1] Det: for L(A), a BGG resolution has the form G-> Cm, C, -> Co-M(A) (U)
Det: for L(x), a BGG resolution has the form
0 → Cm - Cm - , - , - , - , - , - , - , - , - , -
M(wo·h) wew
m = l(wo) = 1 \$+1 Strong B66
M(wo·h) wew Strong B&C- M(h) UL)
C = G (w)M(w·d) (u Ewe w (L(w) = k)
Ewe W (L(w) = k }
Note: cut gorification of Weyl Char. Grands
ch L()? = (-1) (M())
(6.2) Construct something (werk 866)
Thm: le Λ^+ . There is an exact sequence $O \rightarrow M(w_0 \cdot \Lambda) = D_m^{\lambda} \rightarrow D_{m-1}^{\lambda} \rightarrow \cdots \rightarrow D_1^{\lambda} \rightarrow D_0^{\lambda} \rightarrow U(\lambda)$
6~ M(wo-1) = Dm -> Dm -> Dn -> Dn -> (1)
where each D' has a 8Hd. Giraha
w/ M(w.) appearing once for w w/ l(w) k
Sketch:
· start with d=0 (will trum late (mitt later)
· compre of to a not as a by-and
m-dn'l VS & associated modules 14(07/6)
05k4m

· basis of of/6 are orsely of Jimy at no ·weight we negative room & veryth of to on 14 (0/6) are the sums of diffict room · form modules De = 2 (9) Qu(4) 1 (0/8) · Each Du has a std. Albaton by the fact (3.6): M F. & Way) - and , & weight, then T= M(1) am has a fin. Altration will quotients som. to M(1 +y) for yets" occur din My times · 1° (0/6) trivial 6-nol 6 >> Do = M (6) · 1 (g/6) 1-dind ul weight -8 x=2p = 40.0 · Next, think about home DE DE -DE (c.f. weiled 7.7) (= 169) On(8) 140 1 free, left May)-nots 10 9 = te C, = k(07) a -

i (9) 00 corresponding ideal 7: ker & 2-518 08 1: C -> Co dluor) = nr -> ((07) & (v(07) => 16->0 Perut dar d: Ci - Ci-1 Carpen d(uan, 1... nau) = E (-)*ハ いなには スカー・ハルン ハルンハスル + 2 (-1) in ua (n; 2; 7 1 2, 1 ... 12; 1 ... 12, ... 12, ... 12. p=2 d(na 217) > 42 0y - 27 02 - 4 0(2)7 · Relative version for m: 1kg - 1k(g/6) Det - map: nelleg), representatives 3,10, tu = 9 of worth & toj15 Bu : Du - Du-1 on (n @ 3,1..1 5 m) = £ (-1) in (n 2, @ 3,1..13,1... + E (-1) (1) (4 a (2:23/1 ... 3: 1... 3" ... 12) Check interp of choice of representations also can check its enact

define 8: Lo -> 4 augmentation map

of iden: temor of - & L(x)	cooling of L(x) cooling of L(x) cooling exact - or cooling of L(d) or a L(x) or a L(x)
M3(6) N=53 = 654(1)	ω_1 ω_1 ω_2 ω_1 ω_2 ω_3 ω_4 ω_4 ω_5 ω_4
0 -> M(Sxixzaz . 1	ω_{13} ω_{1} ω_{13} $\omega_$
9/6	$f_{12} f_{13} f_{23}$ $\binom{0}{5} \binom{0}{5} \binom{0}{5}$

thm: key*

(1) if Exto(M(x), M(x)) \$0 ye 9*

the 424 but y \$1

(2) AEA+, w, w' & W

if Exto(M(w'.x), M(w.x)) \$70

- wew in Brokent whony in particular L(w) - L(w1) Pti) Recall (Ch3) it 1,704", M highest weight worther of weight of, I fry, Then Ento (M(X), L(X))=0 Est o (MI), M(1) =0 1 170 · Wonsprot 865 (*) 0-M(A) -M -M(n)-0 P(n) -M(n) Lith to P(n) -3 M · in Y a M() worrison (A) would sport · P(y) has set. Albaha 0 - Po cp, c ... cPn = P(m) Pi/Pi-1 ~ M(mi) some mi · B66 kuproun + (M(1): Un)) +0 > 491 -> 47 mi · im Y 1 M () 70 , there is at least one i s.h K(Di)am(A) =0 os M(A) has a honzero subrod, which is a homomorphic inage of Mani) - (MW): Uni)] 20 26th mith, m 94. ~ 791 (2) (1) => w'. x 1 w. x

All of the linked weights for us are regular integral Strong linkage principal (5.2): I regular autidon. [M(m.1): L (w.1)770 00 w/ 4 w Hip inequality > w'> w for regular integral That Result / Guet 1 ... : A EA+ , then weak BGU resolution is in fact a (8mm) BGG resolution then: Dis sport into advect sum of vermen when then above both Botts Then Thm: helt, the sin Mk (n-, L(A))=1 w(w) Pf: By definition, Hu(n-(L(1))=Ext n-(Q, L(1)) Dunling: Ext 3- (a, uk)) = Ext = (((1) ", ())

L(k) * ≈ L(-w₀·k)

Compate PMS: BGG, get resolution of L(1*) by
free U(q-)-moss which one direct sums of
venes of the form M(w.1*)

Ext n. L((1*), G) is the cohom. of the
complex Nomn-(M", G)

(M° = compar with terms & M(w.1*))

For any y- notale M, we can identify nong-(M(6) (M/n-M)* lin mys which When M=M(m), M/n-M = Con as y moss e durk a--> kn tem of the complex trong- (M°, C) = Buch C-wy ? all district - all ways in our complex are zero So Exty- (ILI+), (C) are just thomy-(4; (L) Example : 11,00) n - - C u(y-) = 6 (27 t = trival rep of QC27 12001 : (1) dim non sca) (t, L(n)) = 1 il) din Ert (cz) (t, Un)) =1 (3) din Extre (t, (un)) =0 171 (1) the up of G(2) on U(4) is given by sending n m f. Lin) - din tran coult, llal) is the din of the US willed by F, is lowers weight space - 1 dial

BI CONT is PID > CENT hereditary may											
	9	•	Ent.	(M,	w) =	-0	571	any	fue	mos	MIN
	(2)	. (il o	rls d	enten	rim					