BGG Resolutions for Ginte-dimensional modules
16.1

Det: for $L(A)$, a $B G G$ resoluction has the form

$m=l\left(\omega_{0}\right)=\left|\Phi^{+}\right|$
$T_{\text {Strong }} B \in G$

$$
\begin{aligned}
C_{k}= & \underset{w \in W_{1}(w)}{G} M(w \cdot d) \\
& \{w \in W \mid l(w)=k\}
\end{aligned}
$$

Nore: cutgoritization of Weyt Char. Gormule

$$
\left.\operatorname{ch} L(\lambda)=\sum_{\omega<w^{(s)}}(-1)^{l(\omega)} \operatorname{ch}(M \times d)\right)
$$

16.2 Construct something (weat BGG)

Thm: $\lambda \in \Lambda^{+}$. There is an exact iequencer

$$
0 \rightarrow M\left(\omega_{0}-\lambda\right)=D_{m}^{\lambda} \rightarrow D_{m-1}^{\lambda} \rightarrow \ldots \rightarrow D_{1}^{\lambda} \rightarrow D_{0}^{\lambda} \rightarrow((\lambda)
$$

where each D_{k}^{λ} has a std. Girratin $M^{\prime \prime}(\lambda) \quad \begin{gathered}b \\ 0\end{gathered}$ $w / M(\omega \cdot \lambda)$ appeanis once for wol $l(\omega) k$

Sketch:

- staut with $\lambda=0$ (will manolate (omitt later)
- conorier g/t $\approx \eta^{-}$as a $-j$-mag $m \cdot d i n ' l$ vs $\&$ ascoviated modules $1^{k}(q / 6)$ $0 \leq k _m$
- basis of g / b are cosect of $\mathrm{y}, \ldots, \mathrm{gat} \in \eta^{-}$ - weights ane negative soons

1 weisuts of b an $\Lambda^{k}(o g / b)$ are the sums of dirpict roses

- form modulles

$$
\left.D_{k}=u(g) \quad u(s) \Lambda^{k} \operatorname{cog} / b\right)
$$

- Eack D_{k} has a stt. Glinatian b the fact (3.W): M f-d $u(o j)$-and, d weisht,
then $T=M(A) a M$
hasi a Gin. Gitratios wirl quotients som. to $M(\lambda+\eta)$ for $\eta \in \boldsymbol{y}^{\prime \prime}$
occur din M as timen
- $\left.n^{\circ} \lg / b\right)$ trinial b-nod 6

$$
\rightarrow D_{0}=M(0)
$$

- $\left.1^{m} \lg / b\right)$ 1-dimed ul weight

$$
-\sum_{a>0} \alpha=2 p=w_{0} \cdot 0
$$

- Nent, thisk about homs

$$
\begin{aligned}
& \partial_{k}: D_{k} \rightarrow D_{k-1} \\
& \varepsilon: M(0) \rightarrow C(0)
\end{aligned}
$$

(c.f. Weibel 7.7)

$$
C_{k}=u(g) \otimes_{n(r)} \Lambda^{k} \sigma_{\rho}
$$

\uparrow free, left $\left.U_{(y)}\right)$-nos

$$
1^{0} y_{y}=k \quad C_{1}=k\left(0_{7}\right) a y
$$

defince $\varepsilon: C_{0} \rightarrow t /$ angmentation map

$$
i(\eta) \mapsto 0
$$

correrpousing idenl $7=$ ker ε

$$
\begin{aligned}
& d: c_{1} \rightarrow C_{0} \\
& d(k \bullet x)=n x \\
& \rightarrow \quad c_{1}(07) \xrightarrow{\text { L-sided }} C_{u}(0) \xrightarrow{\varepsilon} k \rightarrow 0
\end{aligned}
$$

Texact

$$
\begin{aligned}
& d \geqslant 2 \quad d=C_{i} \rightarrow C_{i-1} \\
& d\left(k u x_{1} \wedge \ldots \wedge x_{k}\right)= \\
& \sum_{i=1}^{4}(-1)^{k n} k x_{i} \propto x_{1} \wedge \cdots \wedge \hat{k}_{i} \wedge \cdots \wedge x_{k} \\
& +\sum_{i=j}(-1)^{i n} \mu a\left(x_{i} x_{j}\right] \cap x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge \hat{x}_{1} \ldots \wedge x_{k} \\
& p=2 \quad d(u a x 1 y)=4 x \otimes y-n y<x-n a<x y 7
\end{aligned}
$$

- Relutive versom for m : $1^{k} y \mapsto 1^{k}(g / b)$

Def. map : $n \in U(g)$, vepretantation $z_{1}, \ldots, z_{u} \in \eta$ of cores $\xi_{i} \in \mathcal{J} 1 \xi$

$$
\begin{aligned}
& \partial_{k}: D_{k} \rightarrow D_{k-1} \\
& \left.\left.\partial k(n \propto\}, \wedge \ldots \cap\}_{k}\right)=\sum_{i=1}^{k}(-1)^{i \pi}\left(n z_{i} \propto\right\}, \wedge \ldots \wedge \xi_{i} \hat{\eta}_{i n}\right)
\end{aligned}
$$

coset
Check: indep of chaice of representations also can check its enaut
$\leqslant \int_{p}^{p} D_{k}$ is Utoo carge": cut oft punts norin θ^{\prime}
nfol L(0) $\rightarrow L(d)$
iden: tempor ressunam of $L(\lambda)$
$-L(\lambda)$ is exuct \rightarrow ressim

- L(λ) is eauct \Rightarrow rerolinion of L(d)

$$
D_{k}^{\lambda}=\left(D_{k}^{0} Q L(\downarrow)\right)^{x_{k}}
$$

$$
\begin{aligned}
& \mu_{3}(\mathbb{C}) \\
& W-s_{3}=(s_{\left.s_{\alpha_{21}}\right)} \alpha_{\alpha_{23}} \underbrace{}_{(\lambda+\rho)} \omega_{\alpha_{12}}^{\omega_{\alpha_{23}}} \\
& \left.S_{\alpha_{1} \alpha_{2} \alpha_{3}}(\lambda+\rho)-\rho\right) \\
& 0 \rightarrow M\left(S_{\alpha_{1} \alpha_{2} \alpha_{3}} \cdot \lambda\right) \rightarrow M\left(s_{\alpha_{12}} s_{\alpha_{23}} \cdot \lambda\right) \oplus M\left(s_{\alpha_{23} \alpha_{12}} \cdot \lambda\right) \\
& \left.\rightarrow M\left(s_{\alpha_{12} \cdot \lambda}\right) \odot M\left(s_{\alpha_{23}} \cdot \lambda\right) \rightarrow \mu(\lambda) \rightarrow L \lambda\right) \rightarrow 0 \\
& { }_{9}{ }^{l b} \quad f_{12} \quad f_{13} \quad f_{23} \\
& \left(\begin{array}{lll}
11 & 0 \\
0 & 0 \\
1 & 0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

6.5 Some stuef alour Ent

Thm: $\lambda \in \boldsymbol{G}^{*}$
(1) if $\operatorname{Ext}_{0}(M(3), M(\lambda)) \neq 0 \quad y \in \xi^{*}$ then yフd but yod
(2) $\lambda \in \Lambda^{+}, w, w^{\prime} \in w$ if Exto $\sigma\left(M\left(\omega^{l} \cdot \lambda\right), M(\omega \cdot \lambda)\right) \neq 0$
" w< c ${ }^{1}$ in Brabal ardeny in partiuctar $l(\omega)$ - $l\left(\omega^{\prime}\right)$
Pfi) Recall (Ch3) it $\lambda, 7 \in \xi^{*}, M$ higherr wersst moshle A wergut $17, \lambda A M_{1}$, then

$$
\begin{aligned}
& E n t_{0}(M(\lambda), L(\lambda))=0 \\
& E \sim t_{0}(M(\lambda), M(\lambda)=0 \\
\Rightarrow & \lambda \neq \sim
\end{aligned}
$$

- nomspor ses
$(k) O M(A) \rightarrow M \rightarrow M(n) \rightarrow 0$
$P\left(n_{n}\right) \rightarrow M\left(n_{3}\right) \quad l h_{n}$ to $P\left(n_{3}\right) \xrightarrow{Y} M$
- im $\ddots \cap M(\lambda)$ arivinal (A) would spor)
- $P\left(n_{1}\right)$ has sitd. Gitration

$$
\begin{aligned}
& 0=P_{0} \subset P_{1} \subset \ldots \subset P_{n}=P(\eta) \\
& P_{i} / P_{i-1} \cong M\left(\eta_{i}\right) \text { sons Mi }
\end{aligned}
$$

- BGG ruprouit $(M(d): L(M)) \neq 0 \Rightarrow y 9 d$

$$
\rightarrow \quad 39 \mathrm{mi}
$$

- $\operatorname{in} \varphi \cap M(d) \neq 0$, thare is at learr one i sit $\varphi\left(D_{i}\right) \cap M(\lambda)=0$
$\rightarrow M(A)$ has a nonzewo subnot, which is a homomonphic inage of $M\left(m_{i}\right)$

$$
\Rightarrow\left(M(D):\left(m_{m_{i}}\right)\right] \neq 0
$$

(2) $(1) \Rightarrow w^{\prime} \cdot x$ Tw $\cdot \lambda$

All of the linked weights for at are regather integral Strong linkage principal (5.2): λ regular antidon.

$$
\left[M(w \cdot \lambda): L\left(w^{\prime} \cdot \lambda\right)\right]=0 \Leftrightarrow w^{\prime} \leq \omega
$$

flip inequalion $\Rightarrow \omega^{\prime}>\omega$ for reguen integral
Thu / Result / fact / ...:
$\lambda \in \Lambda^{+}$, then weak $B G C$ reosuntion is in fut s a (sin my) $B \in G$ ressiman

Then: $D_{k}{ }^{\prime}$'s grot into indirect sum of veromes when then above lost

SB6t1s The
Than: $\lambda \in \Lambda^{+}$, then $\operatorname{din} A^{k}\left(\eta^{-}, L(A)\right)=\left|\omega^{(k)}\right|$ Pf: B_{y} definition, $\eta^{k}\left(\eta^{-}, L(1)\right)=E$ at $\eta^{k}(\mathbb{C}, L(A))$
 isy-mos

$$
L(\lambda)^{*} \cong L\left(-\omega_{0} \cdot \lambda\right)
$$

${ }^{4}$
Compute RNSS: $\mathbb{E G G}$, get reosmatin of $L\left(d^{*}\right)$ is free $u(\eta-)$-amos which are direct sums of verses of the form $\mu\left(\omega \cdot d^{*}\right)$
Eat $x^{*}\left(L\left(\lambda^{*}\right),<\right)$ is the condom. of the complex $\mathrm{Nom}_{n^{-}}\left(M^{*}, C\right)$

$$
\left(M^{*}=\text { camper with term } \oplus_{\omega \in w^{k}} M\left(\omega \cdot d^{*}\right)\right)
$$

For am η^{--}module M, we con identify

$$
\operatorname{Hom}_{\eta^{-}}(M, \mathbb{C}) \leftrightarrow(M / \eta-\mu)^{*}
$$

$$
\lim _{\ln \rightarrow M_{\eta}} P_{\eta} \operatorname{wnin}_{1}
$$

When $M=M(M), M / \eta-M \cong C_{n}$ as ξ-mass $\&$ dual $\mathbb{C}-n$
$\Rightarrow k^{n}$ tum of the complex tron- (M, G)

$$
\equiv 0_{\omega \in W^{(k)}} \mathbb{C}_{-v \cdot \lambda^{*}} P_{\text {all dismiss }}
$$

\rightarrow all mays in our complex e are zero So Ext $\eta^{k}\left(L\left(\lambda^{*}\right), C\right)$ are just tom $\eta^{-}(M ; \mathbb{C})$

Example: $A l_{2}(Q)$

$$
\begin{aligned}
& \eta^{-}=\mathbb{C} \\
& u\left(\eta^{-}\right)=\mathbb{C}[x] \\
& t=\text { trinal } \operatorname{rep} \text { of } \mathbb{C}(x)
\end{aligned}
$$

Boat : (1) dim Nom $\underset{(x)}{ }(t, L(n))=1$
(L) $\left.\operatorname{din}^{\operatorname{ELt}}{ }_{(c(x)}^{\prime}\left(t_{,}, U_{n}\right)\right)=1$
(3) $\left.\operatorname{din} E x t_{6(x)}\left(t_{1}, U_{n}\right)\right)=0 \quad i>1$
(1) the rep of $\sigma(x)$ on $l(n)$ is given y subj $x \mapsto f . L(n)$
\rightarrow din tron $\left(c_{x}\right)(t, L(n))$ is the din of the us killed bo f, ie. lowers wright space $\Rightarrow 2$ 'dian'l

E $1 \mathbb{C}(x)$ is $P(D>C[x]$ heresitary ning ro $E_{N} t^{\prime \prime}(M, N)=0 \quad i>1$ ans fue $\operatorname{mos} M_{1} N$
(2)? Lie als entemions

