Introduction to soergel bimodules

1. Motivation

How to prove the Kazhdan-Lusztig conjecture for the characters of Vermas in the principal black Os?

 $[H(y.0): L(x.0)] = h_{y,x}(4)$

We need to relate Oo and H, the Hecke algebra corresponding to (W,S). However Ko(Oo) = 2/[W] (no q). Ideally we would live to relate Oo to some category of graded (161) modules, whose Grothendicck group could be a 2/[v,v+]-algebra, hopefully H.

 $(\alpha_{s}, \alpha_{t}) = -\cos \frac{\pi}{M_{st}}$

Then S acts on V via $\lambda \mapsto S(\lambda) = \lambda - 2(\lambda, \alpha_0)\alpha_S$

(If (W.S) comes from a Lie algebra, this is the "tautological" representation of the Weyl jump).

definition. The	e Hecke afe b { Ss s c	bra associó Sí sudh	ated to that	(₩, S)	is the un	ital a	ssociati	re al	pebra	H =	- - H(W)	, 042	х г	Z∕[v,	v_']	Zener	steel
• 5°	= (v ⁻¹ -v)S,	, +1 *	guadinatic"	 . (δ _s -ν-!) ((Ss +v) = 0.	. "eis	onv ales	d S. av	 к. У.	1 and -	v Č	• •	•	•		•
· · 5.50	it = St Ss.		braid	• •	• •					٠	• •			• •				•
Note that spec	iclizing to v=1	L one sets	the snorp	olsebra	C[w]	•	• •	•	• •	•	• •	•	•	• •	•	•	• •	•
Two 2/[v,v]-bases :				• •							•	•					•
• Stand	ard: {S _x ×	c∈₩{ (He	ve we take	a reduced	expression	^{••} , <u>×</u> ∶	- S S	, and	defie	_ S _×	. = S,	6	້າ	• •	•	٠		٠
• Kazhd	an-Lusztig: ł	 h. : vewl	decraterize	 d. hu: (, b , =	b;		(.KL)	Wolutian	ی تو م	:= 6 := v	-1 · 5 ÷	δs +	(v-v)	") ext	ended	.multip	lictively
					p*=	8× +	٤ y< ×	hyx ð	 Бу	for so	ome h	1yx € 1	, Z[v]	• •	"degree	. bou	ncl"	•
					ln partic	ler,	bs =	6, + 1	 V, So	that	• •	•	•	• •	•	•	• •	•
xample	W=S3, 5	$= 1s_1 t 4$	 Fau	lact:	• •		.bs =			,+ ∨ *	; = b	š .		• •	•	•		
$b_n = 1$. S _x . S _s	.= .{	d×s S×s -	· · ·	-v)۵.	; · ×	s>x xxx	• •	•	•	• •	•	•		•
$b_s = \delta_s + \delta_t$ $b_t = \delta_t + \delta_t$		• •		• •	• •	•			• •			٠		• •	•	•		٠
	δt 62 + 1 5t	+ v & + v 2			• •	•	• •		• •	0	• •	•	•	• •	•		• •	•
solf-duck	. Sts	e bound	 Mob	s = bebs	• •	•	• •	٠		٠	• •	•	٠	• •	•	٠		٠
$b_{st} = b_s$					• •	•	• •	•	• •	•	• •	•	•	• •	•	•		•
bts bt =	(Sts +V St + V	νδ ₃ + ν ²) (δt +v)			•		•		•		•	•	• •	•	•		•
					• •						• •		٠	• •	•	•		
	<u>Étsét</u> +.v (.	(v~v) o _t	· · · · ·	ist + v, [−] č	•t +.v	dits .	t V.C)£.+V'	: 		• •	•	•	• •	•	•		•
2	Stat + v Su	t +.V&+s+	ν ² δ ₅ + (1	-														
$b_{tst} = b$	ts bt - bt				• •			•		•								
				· ·									·					
																		•

2	5	ore	.0	bim	1		
.	, Oc	۵'	<i>а</i> .	010	COM	S	

let V be the geometric representation of V, and let $R = Sym(1)$ algebra where deg (V) = 2. We can also write $V = R[cos \ s \in S]$ and set Note that we have a natural action WCR.	1) We deg (xs) = 7	view Hhis 2. (Rea	as a Stat	l(Å))
Take a set ICS (such that $W_I = \langle I \rangle$ is finite). We will use the no	tation R	I=R ^W I (sou	netimes dropp	ing brackels)
For instance, if $W=S_2$, $S=154$ Then $R=R[\alpha]$, $S(\alpha)=-\alpha$ and R^S that as R^S -bimodules, $R=R^S$ to R^S and S_N has degree 2, we have an isomorphisms of grad	= R lor ²] hed R ^s -b	. In fact m imodules	L have	· · · ·
$R = R^{s} \oplus R^{s}(-2)$. This holds for any (W,S) after fixing $s \in S$ in this case $R^{s} = R[\alpha s^{2}, \alpha s^{2}]$.		<u>∏</u> Mit)≪s :t≠s		
We still have a map $2: R \rightarrow R^{2}(-2)$ such that $0 \rightarrow R^{2} \rightarrow R \longrightarrow R^{2}(-2) \rightarrow 0$			(inst) &s .	· · ·
<u>Definition</u> For sES the Demarkue operator $\partial_s : R \rightarrow R^{s}(-2)$ is the staded map $1 \mapsto$	<u>f - s(f)</u> α _s	· · · ·	(s. <u> - 5 (j</u>) antim.)
$(\partial_{s}(j_{\alpha,s}), \partial_{s}(j_{1}))$	(njevie : (j,h)→. <u>1</u> 3+	$\frac{1}{2} \alpha_s h$).	· · ·
Lemma (propertico of Demazure operators) (proce only:)				
(1) ∂_s is an R^s - bimode map (2) $s \circ \partial_s = \partial_s$, $\partial_s \circ s = -\partial_s$ (3) $\partial_s^2 = 0$	· · ·	· · ·	· · ·	· · · ·
(4) Twisted Leibniz rule: $\partial_s(f_3) = \partial_s(f_3) + s(f_1) - 2s(g_2)$ (5) $(f_1, g)_{s} = \partial_s(f_3)$ is a perfect pairing $R \times R \rightarrow R^3$ (6) $\partial_3 \partial_4 = \partial_4 \partial_3$			· · ·	
$\frac{1}{100} = \frac{1}{100} = \frac{1}$				
(2) For $j \in \mathbb{R}^{5}$, $s(\partial_{s}(j)) = \frac{s(j)-j}{2} = 2s(j)$. Also, $\partial_{s}(s(j)) = \frac{s(j)-j}{2} = -2s(j)$	 (f)			· · ·
$(3) \partial_{s} _{R^{3}} = 0 \text{and} m(\partial_{s}) = R^{3}(-2) \dots \dots$		• • •		
(4) $\partial_{1}(f_{3}) = f_{3} - s(f_{3}) = f_{3} - s(f_{1})g_{+} + s(f_{1})g_{-} - s(f_{1})s(g_{+}) = g_{1}$	3(1)9 + 1	$s(1)\partial_{s}(s)$		• • •
(i) $R \xrightarrow{\sim} Hom_{R^{s}}(R, R^{3})$?				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

$lnjutive \rightarrow \partial_{s}(f_{3}) = 0 \forall z \Rightarrow \partial_{s}(f) = \partial_{s}(\alpha s f) = 0 \Rightarrow f = 0$
Surjective: let $(2 \cdot R \rightarrow R^3)$. Then the map $h \mapsto \partial_s ((2 \cdot f + \frac{1}{2}s)h)$, and $h \mapsto \partial_s ((2 \cdot f + \frac{1}{2}s)h) = \frac{1}{2}$.
$ds^{+\circ}\hat{g} = \frac{1-t(f)}{1-s} \cdot s(f) - st(f) \cdot ds^{-1} \cdot s(f) + s(f) \cdot $
$(6) m_{st} = 2 =) st = ts =) 2s \partial_{t} \left(1 \right) = \partial_{s} \left(\frac{j - t(j)}{\alpha_{t}} \right) = \cdot \frac{j - t(j)}{\alpha_{t}} - s(j) - s(j) + st(j)}{\alpha_{t}} = \frac{j - t(j)}{\alpha_{t}} - s(j) + s(j) + s(j)}{\alpha_{t}} = \partial_{t} \partial_{s} (j).$
Definition: $\partial_{\mathbf{r}} := \partial_{\mathbf{s}_1} \cdots \partial_{\mathbf{s}_n}$, for $\mathbf{x} = \mathbf{s}_1 \cdots \mathbf{s}_n$ a reduced expression.
Permark: 1249, EW are a basis for the Nil Coxeter algebra associated to (W,S) by tellation)
We restrict our attention to the monoidal category of graded R-bimodules which are fs as left and right R-modules. We will sometimes write of for an
Definition Denote $B_s := R \omega_{R^s} R(4)$. The Bott-Samelson bimodule corresponding to an expression $w = s_1 \dots s_n$ is $BS(w) := B_{s_1} \dots B_{s_n}$
Permarks: · BS(w) = Rops, Rops, Rops, R (1(w)) · The element $Ao_{R^{s_1}} \dots o_{R^{s_1}} R$ (1(w)) · BS(w) BS(v) = BS(w) (x) · B_s = Rops (R^{s} O R^{s}(-2)) (1) = RoppiR^{s}(1) O Rops R^{s}(-1) = R(1) O R(-1). (stortituting on the left tener gives is graded left R-modules the result for right R-modules Propasition Any BS bimadule is graded free as a left (night) R-module. Propasition they are tensor products of free R-modules (see remark). Is
Q: what is the splitting in (*)?
$A: B_{s} = R(101) \oplus R \cdot \frac{1}{2} (\alpha_{s} \otimes 1 + 1 \otimes \alpha_{s})$
$R(1) = R(1) = \frac{\log -1}{2} + \frac{\log +1}{2} + \frac{\log +1}{2} + \frac{\log -1}{2} + $
Some secondition fet . Pi. be the minimal palabolic conceptonding to the simple rest origination. Then Bill acts on Pr XXPr . via.
$(p_1 b_1^{-1}, b_1 p_2 b_2^{-1}, \dots, b_{n+1} p_k b_k^{-1})$
and. Pix-xPart. =. BS., the Butt-Samelion variety. We have an obvious map. BS., -> G/B., whose image is the Shabert variety BWB/B., and this map is a resolution of singularities. Now . B C BS., and . BS(W) = H ^e _B (.BS.)
Definition. A Sourcel bimodule is a direct summand of a finite direct sum of grading shifts of Bott-Samelion bimodules. The category of Sourcel bimodules with morphisms given by maps of graded bimodules is donoted SBim
Alternatively: the (@, E, @, (n))-category sencrated by R, B& Vs. ES
Warning: morphisms in S. Bim have degree O, but in
Fact: S.Bim has the Knell-Schmitt property: every doject decomposes iniquely into finitely many indecomposables.

4. Catesprification
So how does SBinn categorify H? Let us look at indecomposables in some examples.
Example: $W=S_2$, $S=131$ Then R is indecomposable. How about B_s ?
Lamma: If a graded R-bimodule is generated by a single homogeneous element (i.e. $M = RmR$), then M is indecomposable.
Proof: Let $d = deg(m)$. Then $H^d = (RmR)^d = R^*mR^* = Rm$. Now suppose $M = L \oplus D$. Then $H^d = L^d \oplus D^d$, so m lies in one of the two and the other one most be zero. B
Ne can conclude that $B_s = R(1 \circ_{R} 1)R$ is indecomposable.
Here indecomposables? Look at $B_s B_s = R_{\mathcal{R}s} R_{\mathcal{R}s} R_{\mathcal{R}s} R(2)$ = $R_{\mathcal{R}s} (R^3 \oplus R^s(-2)) \mathcal{O}_{\mathcal{R}s} R(2)$ = $R_{\mathcal{R}s} R(2) \oplus R_{\mathcal{R}s} R$
= $B_s(A) \oplus B_s(-1)$ Clearly R and B_s are the only indecomposables up to shift. Spoiler: in the Hecke algebra, $b_s^2 = (v+v^4)b_s$.
Example: $W=S_3$, $S=4s_1t_1$.
So far we have R , B_s , B_t . Now $B_s B_t = R \sigma_{gs} R \sigma_{gt} R (2)$
Claim: Be Be is generated by $1 \ge 1 \ge 1$, and is therefore indecomposable. [This trick will work for any pair set with $m_{se} \neq \infty$]
Proof: It effices to show that the middle R is generated, in other words, that $R^{s} 1 R^{t} = R^{s} + R^{t} = R$. Recall that $R^{s} = IR[\alpha_{s}^{2}, \alpha_{s}, \frac{1}{2}\alpha_{s}], R^{t} = IR[\alpha_{s}^{2}, \alpha_{s}, \frac{1}{2}\alpha_{s}], B$ (This will hold whenever mat $\neq \infty$)
We denote $B_{st} = B_s \cdot B_t$, $B_{ts} = B_t \cdot B_s$. Observe that this proces $B_s \neq B_t$ since B_s^2 is decomposable. while $B_s B_t$ is not. (recall $b_s b_t = b_{st}$)
The next care to look at is $BsBeBs = R \in R \in R \in R(3)$. It has a copy of $R \otimes_{t} R(3) : f \otimes_{s,t} H = f \otimes_{s,t} f \otimes_{s,t} H = f \otimes_{s,t} H =$
We also have a map $\Psi: B_s \longrightarrow B_s B_t B_s$ $1 \neq 1 \longmapsto \frac{1}{2} (1 \neq \alpha_t \neq 1 \neq 1 + 1 \neq \alpha_t) = 1 \neq (\frac{1}{2} (\alpha_t \neq 1 + 1 \neq \alpha_t)) \neq 1$
(learly $lm(\ell) \cap lm(\ell)=0$, and some completion shows $lm(\ell)+lm(\ell)=R \otimes R \otimes R \otimes R(3)$).
It follows that Bots := R& R(3) lies in SBirm since Bobe Bo = Bo Bots (compare to bots = bobebo - bo).
ζ <u>S</u> λ

	· · · · ·		•			• •
Note that what we would call B_{tst} is again $R_{R_{s,e}}^{\infty}R$, so "	Bsts ≌ Otst		•	• • •	• •	· ·
Next, observe that $B_s B_t B_s \simeq B_{sts} \oplus B_s$		• •	٠	• • •	• •	0 0
$B_s B_s B_t \simeq B_s B_t(-1) \oplus B_s B_t(1)$			•		• •	• •
It follows that $B_{st} \neq B_{ts}$!			•	 	· ·	• •
Finally, read that we have a splitting $R = R_s \oplus R_s(-2)$), which	con be r	egavaded	as one	of (R ^{s,t} , R	s) binn
Therefore Brts Bs = R @ R @ R (4)			•			• •
$= R_{\mathcal{Q}}^{\mathfrak{G}} (R_s \oplus R_s(-2)) \mathfrak{G} R (Y)$			•	 	· ·	• •
= $R_{\mathcal{R}_{st}} R(4) \oplus R_{\mathcal{R}_{st}} R(2) = B_{sts}(1) \oplus B_{sts}$	sts (-1)	• •	•	• • •	• •	• •
Therefore Bsts Br = Bsts(1) ⊕ Bsts(-1) = Btst Bt = Bsts	sBt		•			• •
$B_s B_{sts} = B_{sts} (1) \oplus B_{sts} (-1) = B_t B_{tst} = B_t$	Bets		•			• •
sake calculation, other This shows: side		• •	•			• •
• There are no more indecomposables			•			• •
• Bots ≠ the previous ones			•			• •
In summary, there is an indecomposable per element of W, and equalities	s on the flere	t	•		• •	• •
of H are lifted to isomorphisms in SBim.		• •	٠		• •	• •
					• •	
Example: $W = S_2 \times S_2$, $S = \{s_1 \neq j\}$	· · · ·					
Then $R \underset{Rst}{\otimes} R(2) \xrightarrow{N} B_s B_t = R \underset{Rs}{\otimes} R \underset{Rt}{\otimes} R(2)$						
$\Lambda \otimes \Lambda \longrightarrow \Lambda \otimes \Lambda \otimes \Lambda \otimes 1$						
since $R^{s,t} = (REas', at')$ and so given $f \in g \in h$,	we can write	- g -	go + 0	(tg, + ds	 92 mig	· · ·
i.e. j gg ę h= (j+g. + oxegi) g 1 @ (h + oxegi)		• •	^p k ^{s,t}	• • •	• •	• •
	us are	t fall	aus H	rat Bst	= Bts	and .
This gives a well defined map (by uniqueness) which is inverse to the previous therefore. But $B_s = B_{ts} B_s \rightarrow ho$ new indecomp. => $1 R$, B_s , B_t , B_{st} {		· t				
			•			

5. Upshat: Soergel's calegorification theorem

1 1	he split. e OG(SBin	6			rading .	shifts ma	ke it n	to a	4Ev	· L'Vi	azeb	ra i	via.			•		
	nonoidel st	ructure on	J. Sim,	and C) σ													
₿J= . [BC		• •	• • •	• •		• •	• •	•	• •		•		•		•	٠	•	
Soersel's	categorifica	tion theor	en .	• •	• •	• •	• •		• •	•	•		•	•	•	•	•	
							• •	•		•	•			•				
1) There	is a bij	ection 1	W ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	f indecom	pochles	in SBi	n Y/sla	i f t										
	· · ·	• •	₩ \	Bus.														
For a	reduced .	expression	. W.= 3.	·	BN I	is a sumim	and of .	Bs ,	Bsn									
· · ·								•									٠	
) (tex	is, an iso	morphism												•				
		H -	· · ·	[SBim].	• •	• •	•	• •	•								
		13 .	• • •		-Ψ.	• •	• •		• •					•				
		Ь, г	>	[B×]	•••			•						•				
										•								
with	inverse	ch: SB	$\lim_{n \to +} +$	- (cl	n can la	e defned	explic	tly)						٠				
Remark:	the fact	floot	1. (0)	1														
	· · · · · · · · · · · ·	-(**** (CN(DX) =	= p ^X .u	vas Kr	aun as	Soer	gel's	conject	ure		Soer	jel . p	roved	it	999	aln	5
o the de	composition t	tearcin from	n sconetr	= ¹⁰ ; , , , , , , , , , , , , , , , , , , ,	vas Kr alychrais	c proof	Soer. Jor. all	gel <u>'</u> s Gxeter	conject system	ure MS M	~s p	Særð Íblishe	fel . p d m	7014 2014	计	.ºpf Eli	os. t	5 W
s the de scidentally,	composition t this proces	tearism from the post	n geanetic histy conject	= Þ _{× .} u y An ture. (for	vas Kr alydoraig all Co	c proof	Soer for all (o)	gel s (Coxeter	conject system	ure MS W	xs pa	Særz Ibliste	fel . p d rn	7014	it by	.app Elii	os. t	5- Wi
s. the de reidentelly,	composition .t this proces	tearcm from the post	n geanetru linty conject	y. An. ture (for	alybrai all Co	c proul . 	(or.al). (0).	Gxeter	. system	ns . w	ng 2%	,blishe	d cn	20 <u>9</u>	it by	epi Eli	ooliy as.t	5- Wi
n the de reidentelly,	composition .t this proces	tearcm from the post	n geanetru linty conject	y. An. ture (for	alybrai all Co	c proul . 	(or.al). (0).	Gxeter	. system	ns . w	ng 2%	,blishe	d cn	20 <u>9</u>	it by .	app Eli	aly as.t	95 W
s. the de ncidentally,	composition .t this proces	tearcm from the post	n geanetru linty conject	y. An. ture (for	alybrai all Co	c proul . 	(or.al). (0).	Gxeter	. system	ns . w	ng 2%	,blishe	d cn	20 <u>9</u>	it by	e pri Ela	ж.н cs. +	Wi
e the de icidentally,	amparition the this process ark: in the an if most any divident	tearcm from the post	n geanetru linty conject	y. An. ture (for	alybrai all Co	c proul . 	(or.al). (0).	Gxeter	. system	ns . w	ng 2%	,blishe	d cn	20 <u>9</u>	it by	epř Eli	xalız as. +	95 W
the de cidentelly, inal rema momorphis comes ve	comparition this proces ark: in the un ff most ry dividicult	tearen fran the past is talk we is talk we have a state of the talk is talk we have a state of the talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk is talk is ta	n geametry tinty conject 2 essential 45.76 ates def	y An ture (for My pro S the Inny di	aliebraic all Ca red H wever, agramm	hat the proving atrics for	map this h this en	Greter H sener	→ [al m	ns wi SBimi anipul	ng 2%	,blishe	d cn	20 <u>9</u>	it by	9 PF El.	cly cs.t	95 Wi
the de cidentally, inal rema momorphis comes ve	composition .t this proces	tearen fran the past is talk we is talk we have a state of the talk is talk we have a state of the talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk is talk is ta	n geametry tinty conject 2 essential 45.76 ates def	y An ture (for My pro S the Inny di	aliebraic all Ca red H wever, agramm	hat the proving atrics for	map this h this en	Greter H sener	→ [al m	ns wi SBimi anipul	ng 2%	,blishe	d cn	20 <u>9</u>	it by	• • • • • • • • • • • • • • • • • • •	ely 65, t	95 Wi
the de cidentally, inal rema momorphis omes ve	comparition this proces ark: in the un ff most ry dividicult	tearen fran the past is talk we is talk we have a state of the talk is talk we have a state of the talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk we have a state of talk is talk is talk is talk is ta	n geametry tinty conject 2 essential 45.76 ates def	y An ture (for My pro S the Inny di	aliebraic all Ce red H wever, agramm	hat the proving atrics for	map this h this en	Greter H sener	→ [al m	ns wi SBimi anipul	ng 2%	,blishe	d cn	20 <u>9</u>	it by	• • • • • • • • • • • • • • • • • • •	aly as t	95- Wi
the de cidentally, inal rema momorphis omes ve	comparition this proces ark: in the un ff most ry dividicult	the post is talk we is G(2.39 and motiv	n geameter tivity conject e essential VS.tC actes def	y An lure (for S the Inny di	all C all C red t urever, agramm	hat the proving atrics for	for all map this n this ci	Konter H Senter	→ C ad m	95 W BBim anipul	2 p	is a polym	on iel	20)4	it by	**************************************	alr as.t	95 Wi
the de cidontally, inal rema momorphis comes ve	compartion t this proces ark: in th m y mst m difficult	the post is talk we is G(2.39 and motiv	n geameter tivity conject e essential VS.tC actes def	y An lure (for S the Inny di	all C all C red t urever, agramm	hat the proving atrics for	for all map this n this ci	Konter H Senter	→ C ad m	95 W BBim anipul	2 p	is a polym	on iel	20)4	***		ely cs. +	9 5 Wi
inal rem momorphis	compartion t this proces ark: in th m y mst m difficult	the post is talk we is G(2.39 and motiv	n geameter tivity conject e essential VS.tC actes def	y An lure (for S the Inny di	all C all C red t urever, agramm	hat the proving atrics for	for all map this n this ci	Konter H Senter	→ C ad m	95 W BBim anipul	2 p	is a polym	on iel	20)4	it by		ely as.t	W
the de cidentally, inal rema momorphis	compartion t this proces ark: in th m y mst m difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red f wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by		xalız cos.t	W W
the de cidentally, inal rema momorphis	compartion t this proces ark: in th m ff. men ry difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red H wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by			9 5 Wi
the de cidatelly, inal remains inomorphis	compartion t this proces ark: in th m ff. men ry difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red H wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by		xaliy as t	95 Wi
inal rem promorphis	compartion t this proces ark: in th m ff. men ry difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red H wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by		xalız cs.t	95 Wi
o the de recidentally, inal remains comes ve	compartion t this proces ark: in th m ff. men ry difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red H wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by			у .
the de cidentally, inal rema momorphis	compartion t this proces ark: in th m ff. men ry difficult	the post is talk we is Cit 2, 39 and motiv	e essential Vs.tC ates def	y. An lure (for S. Ho hny di	all C all C red H wever, agramm	hat the proving arriss for	map this h this e	Government gennen gennen	-→ [al m	95 W	iting	is a polym	omvel	2 2 2 3	by		xaliy as f	W W