Introduction to soergel bimodules

1. Motivation

How to pole the Kaindan-Lusatigconjecture for the characters of Vermas in the prixipal black Oo?

$$
[M(y \cdot 0): L(x \cdot 0)]=h_{y}(1)
$$

We need to rete θ_{0} and H, the Heck algebra conespondiy $t_{0}(W, S)$. However $K_{0}\left(O_{0}\right)=2[\omega]$ (no qu) Ideally we would live to relate θ_{0} to some category. of graded (bi) moles, whore Grothendreck group could be a $\mathbb{Z}\left[v, v^{-1}\right]$-algebra, hopefully H.
 "coinvariont algebra" 'naturally graded!

Now \mathbb{V} is by no means an equivalence, bat it is sufficient to prose the Kazhdan-Lusztig cojectuc! In fact it splices to show that the image of this category under \mathbb{V} (the category of Sergel modules) categoripies the Hecke algebra in such a way that indecomposables categorify the KL basis. (Hor on this at the ad). Then properties of this functor with orr knowledge of category O give a clean proof of KL.
This catejoniliation is an algebraic combinatoric endeavor and it will be our focus today.
2. The Heck algebra

Definition. A Coxeter system. (W, S) is a group and a finite at $S \subset W$ such that. $W=\langle S \mid R\rangle$, where the ret of relations is:

- $s^{2}=1$

V $_{S} \in S$ "quadratic"

- $\underbrace{\text { st s } \ldots}_{m_{0 t}}=\underbrace{\text { stat. }}_{m_{0 c t}}$ EsteS. "braid"

Example: $W=$ Weyl group, $S=$ simple reflections
There is a faithful representation attacked to every. Copter system.
Definition. (Geometric representation): Let $V=\mathbb{R}\left\{\alpha_{s}: S \in S\right\}$, where as are formal variables. Define a form $(-,-)$ on V by

$$
\left(\alpha_{s}, \alpha_{t}\right)=-\cos \frac{\pi}{m_{s t}}
$$

Then S ats on V via $\lambda \mapsto s(\lambda):=\lambda-2\left(\lambda, \alpha_{s}\right) \alpha_{s}$
(If $(W, S$) comes, from a Lie algebra, this is the "tautabogicel" represatation of the. Weyl group).

Delmition. The Heck afebora associated to (W, S) is the unital associative algebra. $H=H(W)$ over $\mathbb{Z}\left[v, v^{-1}\right]$ generated by the symbols $\left\{\delta_{s}: s \in S\right\}$. such that

- $\delta_{0}^{2}=\left(v^{-1}-v\right) \delta_{s}+1$ "quadratic". $\leftarrow\left(\delta_{s}-v^{-1}\right)\left(\delta_{s}+v\right)=0$. "eijgnanales $d \delta_{s}$ are v^{-1} and $-v$
- $\underbrace{\delta_{s} \delta_{t} \cdots}_{m_{s t}}=\underbrace{\delta_{t} \delta_{s} \cdots}_{m_{s t}} \quad$ "braid"

Note that epcicilizing to $v=1$ ore gets the $\delta^{n u p}$ algebra. $\mathbb{C}[W]$
Two $\mathbb{Z}\left[v, v^{-}\right]$-base :

- Standard: $\left\{\delta_{x}: x \in W\right\}$ (Here we tale a reduced expression $\underline{x}=s_{1} \ldots s_{n}$ and defoe $\delta_{x}=\delta_{5}: \ldots \delta_{s_{n}}$

\ln particular, $b_{s}=\delta_{s}+v$, so that
Example $W=S_{3}, \quad S=\{s, t$. Easy fact:

$$
\overline{b_{s}}=\delta_{s}+\left(v-v^{-1}\right)+v^{-1}=b_{s}
$$

$$
b_{1}=1
$$

$$
b_{s}=\delta_{s}+v
$$

$$
b_{t}=\delta_{t}+v
$$

$$
b_{t} b_{s}=\underbrace{\delta_{t} \delta_{s}}+v \delta_{t}+v \delta_{s}+v^{2}
$$

seff-dual degree bound ms $b_{t s}=b_{t} b_{s}$

$$
\begin{aligned}
b_{s t} & =b_{s} b_{t} \\
b_{t s} b_{t} & =\left(\delta_{t s}+v \delta_{t}+v \delta_{s}+v^{2}\right)\left(\delta_{t}+v\right) \\
& =\underbrace{\delta_{t s t}}_{\delta_{t s t}}+v\left(\left(v^{-1}-v\right) \delta_{t}+1\right)+v \delta_{s t}+v^{2} \delta_{t}+v \delta_{t s}+v^{2} \delta_{t}+v^{2} \delta_{s}+v^{3} \\
& =\delta_{t s t}+v \delta_{s t}+v \delta_{t s}+v^{2} \delta_{s}+\left(1+v^{2}\right) \delta_{t}+\left(v+v^{3}\right) \\
\Rightarrow b_{t s t} & =b_{t s} \cdot b_{t}-b_{t}
\end{aligned}
$$

3. Soergel bimoulues

Let V be the geometric representation of V, and let $R=\operatorname{Sym}(V)$. We view this as a graced algebra where $\operatorname{dg}(V)=2$. We can abs carte $V=\mathbb{R}\left[\alpha_{s}: s \in S\right]$ and set $\operatorname{dg}(a s)=2$. (Real version o $U(t h)$) Note that we have a natural action WCR

Take a set ICS (wad tat $W_{I}=\langle I\rangle$ is finite). We will ur the notation $R^{I}=R^{W_{I}}$ (sometimes dipping bracobst)

For instance, if $W=S_{2}, S=\{s\}$. Then $R=\mathbb{R}[\alpha], S(\alpha)=-\alpha$ and $\mathbb{R}^{s}=\mathbb{R}\left[\alpha^{2}\right\}$. In fact ne have that as R^{s}-bimodles, $R=R^{s} \oplus R^{s} \alpha$. Since α_{s} has degree 2 , we have an isomorphism of graded R^{s}-bimodues

$$
R=R^{S} \oplus R^{S}(-2)
$$

This holds for any (W, S) after $f\left(x, y y s \in S\right.$. In this case $R^{3}=\mathbb{R}\left[\alpha_{s}^{2}, \alpha_{t}+\cos \left(\frac{\pi}{m_{s t}}\right) \alpha_{s}: t \neq s\right]$
Ne still have a map $\left.\partial_{s}: R \rightarrow R_{t}+\cos \left(\frac{\pi}{m s t}\right) \alpha_{s}\right)=\alpha_{t}+2 \cos \left(\frac{\pi}{m_{m t}}\right) \alpha_{s}-\cos \left(\frac{\pi}{m}\right)$

$$
S\left(\alpha_{t}+\cos \left(\frac{\pi}{m_{s t}}\right) \alpha_{s}\right)=\alpha_{t}+2 \cos \left(\frac{\pi}{m_{t}}\right) \alpha_{s}-\cos \left(\frac{\pi}{m_{x t}}\right) \alpha_{s}
$$

This holds for any (W, S) after $f\left(x, y y s \in S\right.$. In this case $R^{3}=\mathbb{R}\left[\alpha_{s}^{2}, \alpha_{t}+\right.$
Ne still have a map $\left.\partial_{s}: R \rightarrow R_{t}+\cos \left(\frac{\pi}{m s s}\right) \alpha_{s}\right)=\alpha_{t}+$

Lemma (properties of Demazure operators)
(1) ∂_{s} is an R^{s}-bimodal map.
(2) $s \circ \partial_{s}=\partial_{s}, \quad \partial_{s} \circ s=-\partial_{s}$
(3) $\partial_{s}^{2}=0$
(4) Twisted Leibniz rule: $\partial_{s}(f g)=\partial_{s}(f) g+s(f) \cdot \partial_{s}(g)$
(s) $(f, g)_{s}:=\partial_{s}\left(f_{g}\right)$ is a perfect pairing $R \times R \rightarrow R^{s}$.
(6) $\underbrace{\partial_{s} \partial_{t} \ldots}_{m_{s t}}=\frac{\partial_{t} \partial_{s}}{m_{s t}}$

Proof: (1) For $f \in R^{s}, g \in R, \quad \partial_{s}(f g)=\frac{f g-s(f g)}{\alpha_{s}}=\frac{f g-f s(g)}{\alpha_{s}}=f \partial_{s}(g)$.
(2) For $f \in R^{s}, \quad s\left(\partial_{s}(f)\right)=\frac{s(j)-j}{-\alpha_{s}}=\partial_{s}(f)$. $A_{s o}, \partial_{s}(s(f))=\frac{s(j)-j}{\alpha_{s}}=-\partial_{s}(f)$
(3) $\left.\partial_{s}\right|_{R^{8}}=0$ and $\operatorname{lm}\left(\partial_{4}\right)=R^{s}(-2)$
(4) $\partial_{\delta}(f g)=\frac{f g-\delta(f g)}{\alpha_{s}}=\frac{f g-s(f) g}{\alpha_{s}}+\frac{\delta(f) g-s(f) \delta(g)}{\alpha_{s}}=\partial s(f) g+\delta(f) \partial_{s}(g)$
(s) $R \xrightarrow{\sim} \operatorname{Hom}_{R^{s}}\left(R, R^{3}\right)$?

$$
j \mapsto \quad\left(g \mapsto \theta_{6}(f g)\right)
$$

Infective: $\partial_{s}(f g)=0 . \forall_{j} \Rightarrow \partial_{s}(f)=\partial_{s}(\alpha s f)=0 \Rightarrow f=0$.
Suriective: let. $\varphi: R \rightarrow R^{2}$. Then the map $h \mapsto \partial_{s}\left(\left(\frac{\alpha}{2} f\left(\frac{1}{2} \delta\right) h\right)\right.$. sends $1 \mapsto \partial_{\delta}\left(\frac{c_{2}}{2} \delta+\frac{1}{2} g\right)=f$.

$$
m_{s t}=3 .
$$

Definition: $\partial_{w}:=\partial_{s_{1}} \cdots \partial_{n}$, for $\underline{x}=s_{1} \ldots s_{n}$ a reduced expression
Remark: $\left\{\partial_{w} \xi_{w} \in W\right.$ are a basis for the NPCoxeter algebra associated to (W, S) by definition)
We restrict ar attention to the monodical category of graded R-bimodbes which are If as left and rout R-modes We will sometimes write : for \otimes_{R}.

Definition Denote $B_{s}:=R \otimes_{R} s(1)$. The Bott-Samelson bimodule corresponding to an expression $\underline{w}=s_{1} \ldots . . s_{n}$ is $B S(\underline{\omega})=B_{S_{1}} \ldots B_{S_{n}}$

Remarks: $\cdot B S(\underline{\omega})=R \theta_{R^{s}} R \theta_{R^{s_{2}} \ldots ص_{R^{n-1}}} R(f(\underline{\omega}))$

- The element $1 \theta_{R^{s}} \cdots \theta_{R^{-}}-1$ fives in degree $-P(\underline{\omega})$
- $B S(\underline{u}) \cdot B S(\underline{v})=B S(\underline{a v})$

$$
(*) \cdot B_{s}=R \oplus_{R^{s}}\left(R^{s} \oplus R^{s}(-2)\right)(1)=R \oplus_{R^{s}} R^{s}(1) \oplus R \oplus_{R^{s}} R^{s}(-1)=R(1) \oplus R(-1) .
$$

(substituting on the oft tenor. rives. as graded left R-modules. the real for right R-mo dis)
Proposition. Any BS bimodle is graded free as a left (nit) R-modle.
Prod: they are tensor products of free R-modes (see remark). a

Q: what is the splitting in (*)?

A: $\quad B_{s}=\underbrace{R \cdot \underbrace{(1 \otimes 1)}_{d y-1} \oplus R \cdot \underbrace{\underbrace{2}_{d y}\left(\alpha_{s} \otimes 1+1 \otimes \alpha_{s}\right)}_{R(-1)}}_{R(1)}$.

Some geometric motivation: let. P_{i}. be the minimal paratactic. conesponding. to. The simple root d_{i}. Then B^{k} arts on $P_{1} x \ldots x . P_{k}$. via. $\left(p_{1}, b_{1}^{-1}, b_{1}, p_{2} b_{2}^{-1}, \ldots, b_{k-1} p_{k} b_{k}^{-1}\right)$ and. $P_{1} \times \ldots \times P_{n} / B^{k}=B S_{\underline{w}}$, the Butt-Samelon vanity. We have an obrius mp. $B S_{1 w} \rightarrow G / B$, whore image is. He Shlubeot variety $\overline{B_{\omega} B} / B$, and 'this map is .a resolution of singulev.itics. Now $B \subset B S_{m}$. and. $B S(\omega)=H_{B}^{*}\left(\cdot B S_{\underline{e}}\right)$.

Definition. A Soergel bimodule is a direst summand. of a finite direct sum of grading shifts of Bott-Saumcion bimodles. The category of Seerpel bimodules with morphisms given by maps of graded bimoduks is denoted SBim.

Alternatively: the $(\oplus, \oplus,(\otimes,(n))$-category generated by R, Bs $\forall s \in S$.
Warning: momphisms in. SBimg have degree O, but in . BSBins. they are allowed to have any degree... (omit) Fact: Sim has the Krull-Scomarit, property: every doject decomposes nigel. into finitely. many indecomposables.

$$
\begin{aligned}
& 1 \mapsto \mathcal{L} \\
& \alpha_{s} \mapsto \partial_{3}\left(\frac{1}{2} f+\frac{\alpha_{3}}{2} \xi\right)=g \\
& \alpha s \mapsto g \\
& \text { (6) } m_{s t}=2 \Rightarrow s_{s} t=t s \Rightarrow \partial_{s} \partial_{t}(f)=\partial_{s}\left(\frac{f-t(f)}{\alpha t}\right)=\frac{f-t(f)-s(f)-s t(f)}{\alpha_{t}}=\frac{1-t(j)-s(j)+s t(j)}{\alpha+\alpha_{s}}=\partial_{t} \partial_{s}(f) \text {. }
\end{aligned}
$$

4. Categorfication

So how does Sim categorify H? Let is look at inderomposables in some examples.
Example: $W=S_{2}, S=\{s\}$. Then R is indecomposable. How about B_{s} ?
Lemma: If a graded R-bimodile is generated by a singe homogeneas element (ie. $M=R_{m} R$), then M is incecomposable

Proof: let $d=\operatorname{deg}(m)$. Then $M^{d}=(R m R)^{d}=R^{0} m R^{0}=R_{m}$. Now suppox $M=L \oplus D$. Then $M^{d}=L^{d} \oplus D^{d}$, so m lies none of the two and the other one most be zero. 1

We can conduce that $B_{\delta}=R\left(10_{R}, 1\right) R$ is incecomposable.
More indecomposables? Look at $B_{s} B_{s}=R_{R_{R}} R \theta_{R^{s}} R(2)$

$$
\begin{aligned}
& =R \otimes_{R^{s}}^{k}\left(R^{s} \oplus R^{s}(-2)\right) \otimes_{R^{s}} R(2) \\
& =R \oplus_{R^{s}} R(2) \oplus R \otimes_{R^{s}} R \\
& =B_{s}(1) \oplus B_{s}(-1)
\end{aligned}
$$

Clearly R and Bs are the only indecomposables up to shift. Spoiler: in the Heckle algebra, $b_{s}^{2}=\left(v+v^{-1}\right) b_{s}$.

Example: $W=S_{3}, S=$ hs.t.t.
So far we have R, B_{s}, B_{t}. Now $B_{s} B_{t}=R \sigma_{R^{s}} R \otimes_{R^{t}} R(2)$
Claim: $B_{r} B_{t}$ is generated by 10101 , and is trenfore indecamposable.
Proof: It allies to show that the middle R is generated, in otter words, that $R^{s} \not R^{t}=R^{s}+R^{t}=R$. Recall that $\mathbb{R}^{5}=\mathbb{R}\left[\alpha_{s}^{2}, \alpha_{t}+\frac{1}{2} \alpha_{t}\right], \quad R^{t}=\mathbb{R}\left[\alpha_{t}^{2}, \alpha_{t}+\frac{1}{2} \alpha_{s}\right]$. B

We denote $B_{s t}=B_{s} \cdot B_{t}, B_{t s}=B_{t} \cdot B_{s}$. Observe that this pres $B_{s} \neq B_{t}$ since B_{s}^{2} is decampauble while $B_{s} B_{t}$ is not.
 though it is not clear that $\ln (\varphi)$ is in Bim.

We ali have a mop $\psi: B_{s} \longrightarrow B_{s} B_{t} B_{s}$

Clearly $\operatorname{lm}(\varphi) \cap \operatorname{lm}(\psi)=0$, and some completion shows $\operatorname{lm}(\varphi)+\operatorname{lm}(\psi)=R_{s} R \otimes_{t} R \rho_{s} R(3)$.

Note that what we would call Best is again $R \underset{R_{s, t}}{\otimes} R$ ，so＂Bots．$\cong B_{t s t}$＂．
Next，deserve that $B_{s} B_{t} B_{s} \simeq B_{s t s} \oplus B_{S}$

$$
B_{s} B_{s} B_{t} \simeq B_{s} B_{t}(-1) \oplus B_{s} B_{t}(1)
$$

It polar that $B_{s t} \neq B_{t_{s}}$ ！
Finally，recall that ne have a splitting $R=R_{s} \oplus R_{s}(-2)$ ，which can be regarded as one of $\left(R^{\text {sit }}, R^{s}\right)$ bins Therefore Bris $B_{s}=R \underset{R^{2 t}}{\otimes} R \underset{R^{s}}{\otimes} R(4)$

$$
\begin{aligned}
& =R \otimes_{R^{1^{4}}}\left(R_{s} \oplus R_{s}(-2) \otimes_{R^{s}} R(4)\right. \\
& =R \otimes_{R^{2 k}} R(4) \oplus R \underset{R^{s+1}}{ } R(2)=B_{s t s}(1) \oplus B_{s t s}(-1) .
\end{aligned}
$$

Therefore $B_{s t s} B_{s}=B_{s t s}(1) \oplus B_{s t s}(-1)=B_{t s t} B_{t}=B_{s t t} B_{t}$

This shows：

$$
B_{s} B_{s t s}=B_{s t s}(1) \oplus B_{s t s}(-1)=B_{t} B_{t s t}=B_{t} B_{s t s}
$$

－There are no more indecomporables
－Bort $⿻ 三 丨$ the previous ones
In summary，there is an indecomposable pr element of W ，and equalities on the feed of H are lifted to isomorphisms in SBim．

Example：$W=S_{2} \times S_{2}, S=\{s, t\}$
Then $R \underset{R^{s t t}}{ } R(2) \xrightarrow{\sim} B_{s} B_{t}=R_{R^{s}} R \theta_{R^{t}} R(2)$

$$
1 \otimes_{s, t} \longmapsto 1_{s}^{\otimes} \mathcal{N}_{t} 1
$$

since．$R^{s t}=\mathbb{R}\left[\alpha_{s}^{2}, \alpha_{t}^{2}\right]$ and so given $f \theta_{s} g g_{t} h$ ，we can ante $g=g_{0}+\alpha_{t} g_{1}+\alpha_{s} g_{2}$ miguel

$$
\text { ie } \int_{s} g_{t} h=\left(f+g_{0}+\alpha_{t} g_{1}\right) \otimes_{s} 1 \otimes_{t}\left(h+\alpha_{s} g_{2}\right) \text {. }
$$

This gives a well defined map（by migeness）which is mere to the previous one it follows that $B_{s t}=B_{t s}$ ，and Therefore $B_{s t} B_{s}=B_{t s} B_{s} \rightarrow$ no new indecomp $\Rightarrow\left\{R, B_{s}, B_{t}, B_{s t}\right\}$
5. Upshot: Seergel's categorification theorem

Consider the split Grottendick group of SBim, ie. The abdian gros generated by the symbols $[B]$ for $B \in O b(S B i m)$, subject to $[B]=[B]+\left[B^{\prime}\right]$ whencerer $B=B^{\prime} \oplus B^{\prime \prime}$. This has a ring structure die to the monoidal structure on S Bim, and grading shifts make it into a $\mathbb{Z}\left[v, v^{-1}\right]$-a geber via $v \cdot[B]=[B(1)]$.

Soergel's categorification theorem
(1) There is a bijection $W \longleftrightarrow$ indecomponables in SKim $\} /$ shift

$$
\omega \longmapsto B_{\omega}
$$

For a reduced expression $w=s_{1} \ldots s_{n}, \quad B_{N}$ is a summed of $B_{s}, \cdots B_{s_{n}}$
(2) There is an isomorphism

$$
\begin{aligned}
& H \longrightarrow[\$ \sin]_{\oplus} \\
& b_{x} \longmapsto\left[B_{x}\right]
\end{aligned}
$$

with inverse ch: SKim $\rightarrow H$ (ch can he deflexed explicitly)
Remark: the fact that $c h\left(B_{x}\right)=b_{x}$ was known as Soergel's conjecture. Serge proved it appealing to the decomparition theorem from geometry. An algebraic prowl for all. Cover systems was published in 20.4 by Elias. Whilliamens. Incidentally, this proves the partinty conjecture. (for all Cox der sp lems))

Final remark: in this talk we essentially proved that the map $H \rightarrow[S \text { Bim }]_{0}$ is a homomorphism. If $m_{s t} \in\{2,34 \quad \forall s, t \in S$. However, proving this n general manipulating polpromials becomes very difficult and motivates defining diagrammatics for this atony.

