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0 Symmetries

Many mathematical objects and physical systems possess symmetries. A circle stays
the same no matter how it is rotated; a rotation by θ for any angle θ is therefore a
symmetry of the circle. On the other hand, a square stays the same only under rotation
by multiples of π. From this simple example we see that, broadly, symmetries should
be separated into two types.

1. The rotation symmetry of the circle is continuous: one can start with the un-
rotated circle and apply a given rotation by θ in a continuous fashion, without
affecting the circle.

2. The rotation symmetry of the square is discrete: one cannot get from an unro-
tated square to a square rotated by (some multiple of) π in a continuous fashion.

In real life, common continuous symmetries include translations and rotations. Discrete
symmetries are less obvious, but include time reversal (flipping the arrow of time),
charge conjugation (swapping what we call positive vs negative charge), and translations
in lattices (like for crystals/metals). It is important to study both continuous and
discrete symmetries. The study of symmetry, in mathematics, is called representation
theory.

Once we understand the symmetries of an object, the powerful machinery of repre-
sentation theory kicks in and allows us to draw marvelous conclusions about the object
itself. This is especially useful in physics, where often the symmetries are more obvi-
ous/intuitive than whatever conclusions we draw from them.

Example 0.1. The three-dimensional space we live in has translation and rotation
symmetries. Then Noether’s theorem, which we will see later, immediately implies the
conservation of momentum and energy. Together with reflection symmetries, these sym-
metries form what is called the “Euclidean group” of symmetries of three-dimensional
space.

Example 0.2. Three-dimensional space belongs to four-dimensional spacetime. In
spacetime, it turns out there are additional symmetries which mix space and time
called “Lorentz transformations”. The statement that spacetime has these extra sym-
metries is the only postulate underlying the entire theory of special relativity. Putting
the Lorentz transformations together with the usual Euclidean symmetries gives the
“Poincaré group” of symmetries of four-dimensional spacetime.

Note that all these symmetries we just stated are continuous symmetries. Indeed,
because many fundamental objects in physics are continuous objects, many of the inter-
esting applications of representation theory to physics involve continuous symmetries.
However continuous symmetries are more difficult to study than discrete symmetries.
Hence we will begin with discrete symmetries, which are slightly less physically relevant,
in order to familiarize ourselves with the basic objects of representation theory.
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1 Groups

The first step in representation theory is to understand the structure of the set of
symmetries of a given object. This set, which we’ll call G, has some very special
structure, which we’ll discuss abstractly now. First, if g1 and g2 are two symmetries in
G, then

applying g1, then applying g2, is itself a symmetry of the object.

We’ll denote this composite symmetry by g2g1. (In this notation, we apply symmetries
from right to left, e.g. g1 is applied first. This is just a notational choice.) So the
composition g2g1 of two symmetries is still a symmetry, and therefore still belongs to
the set G. Second,

applying a symmetry in reverse is still a symmetry.

In other words, if there is a symmetry g which takes the object from state A to state B,
then there is an inverse symmetry which takes the object from state B back to state A.
We’ll denote this inverse symmetry by g−1. Finally, there is always a trivial symmetry,
obtained by doing nothing to the object. The operation of doing nothing is always a
symmetry, by definition.

Most sets do not have these two interesting structures, but we see that sets of
symmetries always do. So, in order to study symmetries, we give a name to sets with
such structures: they are called groups.

1.1 Definitions and first examples

Definition 1.1. A group G is a set that has a group operation ?. More precisely,
this means that for any two elements a and b in G, we can apply the operation ? to
them to obtain an element a ? b. This operation must satisfy some axioms:

1. there must be an identity element e of G such that e ? x = x for all x;

2. every element x must have an inverse, i.e. an element x−1 such that x ?x−1 = e;

3. (technical) the group operation must be associative, i.e. (a ? b) ? c = a ? (b ? c).

It is common to call the inverse x−1 because we often pretend the group operation is
“multiplication” and refer to the group operation as a “product”.

Many familiar objects that do not necessarily arise from the study of symmetries
have group structures, with various group operations. It is important to note that,
although the notation we use for abstract groups is “multiplicative”, sometimes the
group operation may be addition, or some other operation. So we often write (G, ?) to
mean a group G with the group operation ?, to make it clear what the group operation
is. When it is clear from context, we sometimes just refer to the group as G.
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Example 1.2. The set of integers, called Z, forms a group using addition as the group
operation. (To be precise, we should write (Z,+).) Clearly, given two integers x and y,
their sum x+ y is still an integer.

1. The identity element is 0, because 0 + x = x for any integer x.

2. The operation of addition is associative, because (x+ y) + z = x+ (y + z) for all
integers x, y, z.

3. The inverse of an integer x is the integer −x (which always exists), because x +
(−x) = 0.

Exercise. Show that Z with multiplication as the group operation is not a group. Is it
possible to “fix” Z so that it is?

Exercise. Let Z/n denote the group of integers modulo n, using addition modulo n
as the group operation. In other words, it is the set {0, 1, 2, . . . , n− 2, n− 1} where the
result of the group operation on a and b is the remainder of a+ b upon dividing by n.
Check that Z/n is a group.

Example 1.3. Given an object, its symmetry group is the group of all symmetries
of the object, using composition as the group operation. The identity element e for this
operation is always the symmetry which takes the object and does nothing to it; every
object clearly has such a symmetry. The inverse of a symmetry is the symmetry “in
reverse”.

There are many structural properties which are already illustrated by these exam-
ples. For example, groups whose elements are numbers usually have the following very
special property. It is important to emphasize that most groups, particularly symmetry
groups, do not have this property!

Definition 1.4. A group G is abelian if

x ? y = y ? x

for every x and y in G. We say the group operation is commutative.

We also want to speak about the size of groups, namely how many elements they
contain. It is possible of course for a group to contain infinitely many elements, like Z,
so we usually only talk about the size of finite groups.

Definition 1.5. The number of elements, or cardinality or order, of a group G is
written |G|. We say G is finite or infinite depending on its cardinality.
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1.2 The dihedral group

One simple yet very interesting example of a symmetry group is the symmetry group
of a regular polygon with n (equal) sides. Its symmetry group is called the dihedral
group, and written Dn. To reduce confusion when studying Dn, it is best to label each
corner of the polygon with a number, to keep track of what each symmetry does.

The first step in understanding Dn is to identify some of its elements, and to give
names to them.

1. There are n different symmetries obtained by rotation.
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The first one is the identity element e. If we call the second one r, note that the
other rotations are just compositions of r with itself. So the rotation symmetries
are

e, r, r2, r3, . . . , rn−1.

Note that rn = e, which is the statement that rotating a full 360◦ is the same as
not doing anything. From this we can tell that r−1 = rn−1.

2. There is a symmetry given by flipping the polygon across a fixed axis, which we’ll
take to be the x-axis for simplicity.
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Call this symmetry s. Note that s2 = e, since flipping twice is the same as not
doing anything.

What about flips across other lines? In the same way that all rotations are obtained
by compositions of r, those other flips may be obtained by an appropriate composition
of r and s. For example, for the hexagon, flipping across the line between 2 and 5 is
the same as the composition rsr−1.
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Exercise. Check that rs is not the same symmetry as sr, and therefore conclude that
the dihedral group is not abelian.

Exercise. Check that rs = sr−1. Conclude that rks = sr−k for any integer k.

We can use this last exercise to obtain a full description of the dihedral group as
follows. Suppose we are given a complicated composition of r and s, like

r27srsr8s3.

Any such expression can be simplified into the form rk or srk for some integer k using
the following two steps.

1. Use that rn = e and s2 = e to simplify the exponents.

2. “Move” all the occurrences of s to the front using rks = sr−k.

Example 1.6. Let’s simplify r27srsr8s3 for the hexagon. Since r6 = e and s2 = e, we
get

r27srsr8s3 = r3srsr2s.

Then we move the first s to the front:

(r3s)rsr2s = (sr−3)rsr2s = sr−2sr2s.

Moving the second s now gives

s(r−2s)r2s = s(sr2)r2s = r4s.

Finally, moving the last s gives

r4s = sr−4 = sr2.

So even though we can write down very complicated compositions of rotations and
flips, after simplifying we see that Dn actually only contains 2n elements:

1. n rotations e, r, r2, . . . , rn−1;

2. n rotations-with-a-flip s, rs, r2s, . . . , rn−1s.

This makes a lot of sense, because any symmetry of the n-gon must take the corner
labeled 1 to some position. We can use rotations to place the 1 there. Then we are left
with only two possibilities: either the numbers of corners adjacent to the 1 are already
correct, in which case we have identified the symmetry as rk for some k, or the numbers
are flipped, in which case we apply an extra flip to get srk.

Definition 1.7. Any element in the dihedral group can be written as a composition of
r and s, so we say Dn is generated by r and s. The rules we impose on how multiple
r and s interact are called relations, and we identified three:

rn = e, s2 = e, rs = sr−1.

A full description of Dn is given by a presentation using generators and relations,
written

Dn = 〈r, s | rn = e, s2 = e, rs = sr−1〉.
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1.3 The symmetric group

A more complicated example of a symmetry group is the symmetry group of n indis-
tinguishable objects, e.g. point particles. Such objects may be permuted in any order,
and all permutations are symmetries. We label the objects from 1 to n, in which case
permutations look like

1 2 3 4 5 6  3 2 6 4 1 5

This symmetry group is called the symmetric group, and written Sn. We can imme-
diately note that it consists of n! elements. One way to write elements is to just list the
permuted labels under the original labels, like(

1 2 3 4 5 6
3 2 6 4 1 5

)
for the above example. (We will see however that writing elements like this isn’t the
best way to uncover the hidden structures in Sn.)

We can ask for a generators-and-relations presentation of Sn like we did for Dn, and
the first step is to identify some special kinds of elements and give names to them.

1. For any two labels i and j, we can consider the permutation which swaps i and j
and leaves everything else alone. Such permutations are called transpositions,
and are written (i, j).

2. More generally, given a sequence of labels i1, i2, . . . , im, we can consider the per-
mutation which sends i1 to i2, and i2 to i3, and so on, and im back to i1. Such
permutations are called cycles, and are written (i1, i2 . . . , im). The length of a
cycle is the number of items involved in it.

Theorem 1.8. Sn is generated by transpositions.

Proof. Given any permutation σ in Sn, if we can sort out its items in increasing order
using just transpositions (to get to the identity element e), then the inverse sequence
of transpositions is equal to σ. But sorting is easy: the first transposition should swap
the first element in σ with 1, the second should then swap the second element with 2,
etc.

Exercise (Hard). Show that Sn is actually generated by adjacent transpositions σi =
(i, i+ 1) for 1 ≤ i < n, and that their compositions are governed by the relations

• σ2i = e for all i;

• σiσj = σjσi when |i− j| > 1;

• σiσi+1σi = σi+1σiσi+1 for all i.
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Because of the theorem, it is useful to write elements of Sn as compositions of
transpositions. But this can often become cumbersome to write. Instead, we write
them as compositions of cycles, due to the following exercise.

Exercise. Show that cycles are just shorthand for compositions of transpositions, be-
cause

(i1, i2, . . . , im) = (i1, i2)(i2, i3) · · · (im−1, im).

To decompose a given permutation σ into a product of cycles, it is easiest to start
with the label 1 and write down the sequence 1, σ(1), σ(σ(1)), . . . until we return to 1;
this forms a cycle. Then take the next smallest label not included in this cycle, and
form a new cycle starting with it, and so on. Note that sometimes there will be cycles
of length 1, which we omit writing.

Example 1.9. Consider the permutation σ =

(
1 2 3 4 5 6 7
3 4 1 6 2 5 7

)
in S7.

1. There is a cycle 1→ 3→ 1. This is written (1, 3).

2. The next smallest number not involved in a cycle so far is 2. There is a cycle
2→ 4→ 6→ 5→ 2. This is written (2, 4, 6, 5).

3. The next smallest number not involved in a cycle so far is 7. There is a cycle
7→ 7. This is a length-1 cycle and we do not write it.

4. There are no more labels not involved in a cycle, so we are done.

Hence σ = (1, 3)(2, 4, 6, 5).

Note that it does not matter which order we compose disjoint cycles, i.e. cycles that
involve no common labels. Disjoint cycles commute with each other.

1.4 Homomorphisms

Now we return to discussing groups more abstractly. Given a group G, it is conceptually
helpful to consider its “multiplication” table, where we write down all products of
elements in the group. The convention we will use is to multiply the row element by
the column element, not vice versa.

Example 1.10. The symmetric group S2 (of two objects) has two elements, with the
following multiplication table.

e (1, 2)

e e (1, 2)
(1, 2) (1, 2) e

Example 1.11. The group Z/2 (of integers mod 2) also has two elements, with the
following multiplication table.
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0 1

0 0 1
1 1 0

Note that, in some sense, we’ve written the same multiplication table twice but
with elements renamed. The way to translate between S2 and Z/2 while preserving the
multiplication table is

e↔ 0, (1, 2)↔ 1.

Using this dictionary, the two groups are actually equivalent. This notion of equivalence
is expressed mathematically as follows.

Definition 1.12. Let G and H be two groups, with group operations ?G and ?H . We
say G and H are isomorphic, written

G ∼= H,

if there exists a function f : G→ H which:

1. is a bijection, i.e. a one-to-one correspondence between the elements of the two
sets;

2. is a homomorphism, meaning that

f(a ?G b) = f(a) ?H f(b).

If we view f as a “dictionary” between elements of G and H, being a homomorphism
means that the dictionary is compatible with the group operations in G and H, and
being an isomorphism means the dictionary covers all elements of G and H.

Exercise. Show that D3 is isomorphic to S3.

Exercise. Show that Dn cannot be isomorphic to Sn for n > 3, using cardinality.

Importantly, it is possible for f : G → H to be a homomorphism without being an
isomorphism. One trivial way is to send everything in G to the identity element eH in
H. Then clearly

f(a ?G b) = eH = f(a) ?H f(b).

Example 1.13. Consider the map f : Z/2→ D3 given by

0 7→ e, 1 7→ s.

This is not an isomorphism because Z/2 is much smaller than D3. But it is a homo-
morphism. The most important check is

f(1 + 1) = e = s2 = f(1)f(1).

The existence of this homomorphism means that there is a copy of Z/2 hiding inside
D3.
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Definition 1.14. A subset H ⊂ G which itself is a group is called a subgroup of G.
This is written H ≤ G.

Exercise. Show that, in D3, the elements e, r, r2 form a subgroup isomorphic to Z/3.
On the other hand, show that e, r, sr2 does not form a subgroup. Are there any other
subgroups of D3 that we haven’t found yet?

Suppose we want to specify a homomorphism f : G → H, and G has generators a,
b, and c. Then it is actually enough to specify what f(a), f(b), and f(c) are. This is
because any element in G can be written as some product of a, b, and c, and therefore
e.g.

f(a7b11c−3) = f(a)7f(b)11f(c)−3.

So a homomorphism is fully specified by what it does to generators.

Example 1.15. A homomorphism φ : Z → Z is completely determined by the integer
φ(1). This is because

φ(n) = φ(1 + · · ·+ 1︸ ︷︷ ︸
n times

= φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n times

= nφ(1).

We also speak about generators of a subgroup. For example, the set of even integers
forms a subgroup of Z. It is often written 2Z, because it is generated by the element 2.

1.5 Operations on groups

Whenever we define a type of mathematical object (e.g. a group) along with some notion
of equivalence (e.g. isomorphism of groups), we can start asking about classification.
Namely,

can we classify all the different objects of this type?

If the answer turns out to be yes, then usually the result is that every such object is
built from a small collection of basic building blocks. In our case, this means we require
a way to build a bigger group using two smaller ones.

Definition 1.16. Given two groups G and H, their product G×H is the group whose
elements are pairs (g, h) with g ∈ G and h ∈ H, and group operation given by

(g1, h1) ? (g2, h2) = (g1 ?G g2, h1 ?H h2).

Example 1.17. The group Z/2× Z/2 has elements

{(0, 0), (0, 1), (1, 0), (1, 1)}

and multiplication table
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(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

.

Note that even though it has order 4, it is not isomorphic to Z/4. One way to see this
is that every element in Z/2 × Z/2 becomes zero when added to itself, but this is not
true for every element of Z/4.

Exercise. Show that Z/2× Z/3 is isomorphic to Z/6.

Exercise. Show that Z/n×Z/m is isomorphic to Z/nm whenever gcd(n,m) = 1. Hint:
construct an isomorphism

φ : Z/nm→ Z/n× Z/m

by picking wisely what φ(1) should be.

1.6 Classification

Now we can return to the problem of classifying different types of groups. The simplest
type we can start thinking about are the finite and abelian ones. It is clear that Z/n
and products of Z/n’s are finite abelian groups, while Z (infinite) and S3 (non-abelian)
are not. If we start listing the non-isomorphic finite abelian groups of small order, it
turns out we get

cardinality non-isomorphic groups

1 1
2 Z/2
3 Z/3
4 Z/2× Z/2 and Z/4
5 Z/5
6 Z/2× Z/3
7 Z/7
8 (Z/2)3 and Z/2× Z/4 and Z/8
...

...

.

It is not obvious why they are all products of Z/n’s. In fact this empirical observation
is true in general.

Theorem 1.18 (Classification of finite abelian groups). Any finite abelian group is
isomorphic to

Z/n1 × · · · × Z/nk
for some integers n1, . . . , nk ≥ 2 which are all prime powers.
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Even though this only classifies a very special type of group, the proof of this theorem
is already somewhat intricate, and we will skip it. The complexity of group theory is
evident even in this special case.

We can go further and now ask for a classification of all finite groups, regardless of
whether they are abelian. In the non-abelian case it turns out there are different ways to
“take the product” of two groups, called semidirect products. So trying to decompose a
group G into a product is not the best approach. Instead, we can write a composition
series for G. This is a sequence

1 = H0 / H1 / H2 / · · · / Hn = G

of normal subgroups such that Hi is a largest possible normal subgroup of Hi+1. Equiv-
alently, Hi+1/Hi is a simple group.

Definition 1.19. A group G with no normal subgroups aside from 1 and itself is called
simple.

Finite simple groups are the building blocks for finite (non-abelian) groups. Unlike
the abelian case, where the building blocks have a nice classification, the classification
of finite simple groups involves 18 infinite families and 26 sporadic groups. The classifi-
cation was a major mathematical milestone, “completed” in February 1981 (with some
minor holes that were patched by 2004). The complete proof of the classification spans
over 10,000 pages and is spread out across 500 or so papers. There is a current ongoing
project to simplify and coalesce the proof into a 12-volume series, expected in 2023.
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