MATH UN1101
CALCULUS I (SECTION 5) - SPRING 2019

## HOMEWORK 4 SOLUTIONS

Each part (labeled by letters) of every question is worth 2 points. There are 10 parts, for a total of 20 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.
(1) Differentiate the following functions. State the differentiation rule used at each step. (a) $f(x)=x^{30}-x \sqrt{x}-2^{10}$.

Solution. Use the sum/difference rule to split the problem into simpler pieces.

- Derivative of $x^{30}$ is $30 x^{29}$, by the power rule.
- Derivative of $x \sqrt{x}=x^{3 / 2}$ is $(3 / 2) x^{1 / 2}$, again by the power rule.
- Derivative of $2^{10}$ is 0 , since it is a constant.

By the sum and difference rules, the derivative is

$$
f^{\prime}(x)=30 x^{29}-\frac{3}{2} x^{1 / 2} .
$$

(b)

$$
g(t)=\frac{t+1}{t^{2}-2}
$$

Solution. Use the quotient rule. Let the numerator be $u(t)$ and the denominator be $v(t)$. First, to avoid confusion, compute

$$
u^{\prime}(t)=1, \quad v^{\prime}(t)=2 t
$$

using the power rule (and sum/difference rules). Then the quotient rule says that

$$
g^{\prime}(t)=\frac{u^{\prime}(t) v(t)-u(t) v^{\prime}(t)}{v(t)^{2}}=\frac{1 \cdot\left(t^{2}-2\right)-(t+1) \cdot 2 t}{\left(t^{2}-2\right)^{2}}=\frac{-t^{2}-2 t-2}{\left(t^{2}-2\right)^{2}} .
$$

(c)

$$
h(z)=\frac{A z^{5}+B z^{3}+C / z}{z^{10}}
$$

where $A, B, C$ are constants.
Solution. It is best to simplify this expression first:

$$
h(z)=A z^{-5}+B z^{-7}+C z^{-11}
$$

Now we can directly apply the sum rule to split the problem into simpler pieces.

- Derivative of $A z^{-5}$ is $A$ times the derivative of $z^{-5}$, which by the power rule is $-5 z^{-6}$. So the derivative is $-5 A z^{-6}$.
- Derivative of $B z^{-7}$ is $-7 B z^{-8}$ by the same procedure.
- Derivative of $C z^{-11}$ is $-11 C z^{-12}$ by the same procedure.

By the sum rule, the derivative is

$$
h^{\prime}(z)=-5 A z^{-6}-7 B z^{-8}-11 C z^{-12} .
$$

(d)

$$
F(x)=\left(x-5 x^{3}\right)\left(\frac{2}{x^{2}}+\frac{1}{x^{4}}\right) .
$$

Solution. Again, it is best to simplify this expression first:
$F(x)=\left(x-5 x^{3}\right)\left(2 x^{-2}+x^{-4}\right)=\left(2 x^{-1}+x^{-3}\right)-\left(10 x+5 x^{-1}\right)=-10 x-3 x^{-1}+x^{-3}$.

Differentiate this using the same procedure as in (c), to get

$$
F^{\prime}(x)=-10+3 x^{-2}-3 x^{-4} \text {. }
$$

(e)

$$
f(x)=\frac{1+x g(x)}{\sqrt{x}}
$$

where $g(x)$ is a differentiable function.
Solution. Again, it is best to simplify this expression first:

$$
f(x)=x^{-1 / 2}+x^{1 / 2} g(x) .
$$

Use the sum rule to split it into two pieces.

- The derivative of $x^{-1 / 2}$ is $(-1 / 2) x^{-3 / 2}$, by the power rule.
- Use the product rule for $x^{1 / 2} g(x)$. Its derivative is:

$$
\frac{1}{2} x^{-1 / 2} \cdot g(x)+x^{1 / 2} \cdot g^{\prime}(x)
$$

Putting this together, the sum rule gives

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}+\frac{1}{2} x^{-1 / 2} g(x)+x^{1 / 2} g^{\prime}(x) .
$$

(2) We want a formula for derivatives of functions like $f(x)=(g(x))^{n}$ for integers $n \geq 0$. (a) Let $f_{1}, f_{2}, f_{3}$ be differentiable functions. Use the product rule twice to show that the derivative of their product is

$$
\left(f_{1} f_{2} f_{3}\right)^{\prime}=f_{1}^{\prime} f_{2} f_{3}+f_{1} f_{2}^{\prime} f_{3}+f_{1} f_{2} f_{3}^{\prime}
$$

Solution. Treat $f_{1} f_{2}$ as one function, and $f_{3}$ as another. Applying the product rule this way, we get

$$
\left(f_{1} f_{2} \cdot f_{3}\right)^{\prime}=\left(f_{1} f_{2}\right)^{\prime} f_{3}+\left(f_{1} f_{2}\right) \cdot f_{3}^{\prime}
$$

Use the product rule again to compute $\left(f_{1} f_{2}\right)^{\prime}=f_{1}^{\prime} f_{2}+f_{1} f_{2}^{\prime}$. Plug this back in to get:

$$
\left(f_{1} f_{2} \cdot f_{3}\right)^{\prime}=\left(f_{1}^{\prime} f_{2}+f_{1} f_{2}^{\prime}\right) f_{3}+\left(f_{1} f_{2}\right) \cdot f_{3}^{\prime} .
$$

This is exactly the given formula.
(b) Let $f_{1}, f_{2}, \ldots, f_{n}$ be differentiable functions. Guess a formula for

$$
\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime}
$$

and briefly explain your guess.
Solution. To get general formulas, try specific examples until you see a pattern.

- When $n=2$, the formula is the usual product rule

$$
\left(f_{1} f_{2}\right)^{\prime}=f_{1}^{\prime} f_{2}+f_{1} f_{2}^{\prime}
$$

- When $n=3$, the formula is what we got in (a):

$$
\left(f_{1} f_{2} f_{3}\right)^{\prime}=f_{1}^{\prime} f_{2} f_{3}+f_{1} f_{2}^{\prime} f_{3}+f_{1} f_{2} f_{3}^{\prime} .
$$

- When $n=4$, we repeat the procedure from (a), to get

$$
\left(f_{1} f_{2} f_{3} f_{4}\right)^{\prime}=\left(f_{1} f_{2} f_{3}\right)^{\prime} f_{4}+\left(f_{1} f_{2} f_{3}\right) f_{4}^{\prime} .
$$

But we have a formula for $\left(f_{1} f_{2} f_{3}\right)^{\prime}$. Plugging it in and simplifying, we get

$$
\left(f_{1} f_{2} f_{3} f_{4}\right)^{\prime}=f_{1}^{\prime} f_{2} f_{3} f_{4}+f_{1} f_{2}^{\prime} f_{3} f_{4}+f_{1} f_{2} f_{3}^{\prime} f_{4}+f_{1} f_{2} f_{3} f_{4}^{\prime}
$$

I think the pattern is fairly clear from here. For general $n$, just write down $n$ terms of the form $f_{1} f_{2} f_{3} \cdots f_{n-1} f_{n}$, and in the first term differentiate just $f_{1}$, in the second term differentiate just $f_{2}$, and so on. In other words,

$$
\begin{aligned}
\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime}= & f_{1}^{\prime} f_{2} f_{3} f_{4} \cdots f_{n-1} f_{n} \\
& +f_{1} f_{2}^{\prime} f_{3} f_{4} \cdots f_{n-1} f_{n} \\
& +f_{1} f_{2} f_{3}^{\prime} f_{4} \cdots f_{n-1} f_{n} \\
& +\cdots \\
& +f_{1} f_{2} f_{3} f_{4} \cdots f_{n-1}^{\prime} f_{n} \\
& +f_{1} f_{2} f_{3} f_{4} \cdots f_{n-1} f_{n}^{\prime}
\end{aligned}
$$

(c) In the special case where $f_{1}(x)=f_{2}(x)=\cdots=f_{n}(x)=x$, we know from the power rule that

$$
\left(f_{1}(x) f_{2}(x) \cdots f_{n}(x)\right)^{\prime}=\left(x^{n}\right)^{\prime}=n x^{n-1} .
$$

Check that your guessed formula indeed produces this answer.

Solution. The key point is that when all the $f_{i}$ are equal, every one of those $n$ terms above becomes the same. In particular, for $f_{1}(x)=\cdots=f_{n}(x)=x$, we have $f_{i}^{\prime}(x)=1$ by the power rule, so that

$$
f_{1}^{\prime} f_{2} f_{3} f_{4} \cdots f_{n-1} f_{n}=1 \cdot \underbrace{x \cdot x \cdot x \cdots x \cdot x}_{n-1 \text { times }}=x^{n-1},
$$

and there are $n$ such terms for a total of

$$
\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime}=n \cdot x^{n-1}
$$

as we wanted. (The other terms just multiply the 1 in a different position, which makes no difference.)
(d) In the special case where $f_{1}(x)=f_{2}(x)=\cdots=f_{n}(x)=g(x)$, i.e. are all equal to the same differentiable function $g(x)$, what does your formula produce? In other words, what is the formula for the derivative of $g(x)^{n}$ ?
Solution. Analogously to (c), all of the $n$ terms are still the same. Now they are each:

$$
f_{1}^{\prime} f_{2} f_{3} f_{4} \cdots f_{n-1} f_{n}=g^{\prime}(x) \cdot \underbrace{g(x) g(x) \cdots g(x) g(x)}_{n-1 \text { times }}=g^{\prime}(x) g(x)^{n-1}
$$

There are $n$ such terms, for a total of

$$
\left(g(x)^{n}\right)^{\prime}=n g^{\prime}(x) g(x)^{n-1} \text {. }
$$

(e) Use the formula from (d) to calculate the derivative of $f(x)=\left(3 x^{2}+x-7\right)^{100}$.

Solution. Here $n=100$, with $g(x)=3 x^{2}+x-7$ and therefore $g^{\prime}(x)=6 x+1$ by sum and power rules. Using the formula from (d), we get

$$
f^{\prime}(x)=100 \cdot(6 x+1) \cdot\left(3 x^{2}+x-7\right)^{99} .
$$

