MATH UN1101

CALCULUS I (SECTION 5) - SPRING 2019

PRACTICE MIDTERM 2 SOLUTIONS

The exam is $\mathbf{7 5}$ minutes. No additional material or calculators are allowed.

- Write your name and UNI clearly on your exam booklet.
- Show your work and reasoning, not just the final answer. Partial credit will be given for correct reasoning, even if the final answer is completely wrong.
- Don't cheat!
- Don't panic!
(1) (10 points) State whether the following are true/false. No explanations necessary.
(a) Since $\sec x=(\cos x)^{-1}$, the derivative of $\sec x$ is $-(\cos x)^{-2}$.

Solution. False. Don't forget the chain rule. The derivative is actually

$$
\frac{d}{d x}(\sec x)=-(\cos x)^{-2} \cdot(-\sin x)
$$

(b) There exists a differentiable function $f(x)$ such that $f^{\prime}(x)<1$ and $f(0)=0$ and $f(2)=2$.
Solution. False. By the mean value theorem, $f(2)-f(0)=f^{\prime}(c)(2-0)<2$, so $f(2)<2$. Intuitively, if the slope of f is always less than 1 , it must grow more slowly than $f(x)=x$, and therefore must be <2 at $x=2$.
(c) The function $\tan (x)$ has an absolute maximum on $[0, \pi / 2)$.

Solution. False. There is a vertical asymptote as $x \rightarrow \pi / 2$, and so an absolute maximum is never achieved.
(d) The function $\tan (x)$ has an absolute minimum on $[0, \pi / 2)$.

Solution. True. The absolute minimum is at $\tan (0)=0$.
(e) If a function f is continuous on an interval $[a, b]$, it must have a critical value in (a, b).
Solution. False. For example, $f(x)=x$ has no critical values at all, on any interval. This example does not contradict the extreme value theorem: the extreme values will always be on the endpoints.
(f) There exists c in the interval $(1,2)$ such that the function

$$
f(x)=x^{3}-x+\cos (\pi / x)
$$

has derivative $f^{\prime}(c)=7$.

Solution. True. Use mean value theorem: $f(1)=-1$ and $f(2)=6$, so there must exist c in $(1,2)$ such that $f^{\prime}(c)$ is equal to the average slope $(6-(-1)) /(2-$ 1) $=7$.
(g) Let $g(x)$ be the inverse function of $f(x)=x e^{x}$ (e.g. $f(g(x))=x$). Then $g^{\prime}(0)=2$.
Solution. False. From a previous homework, or via the chain rule, the derivative of the inverse function $g(x)$ may be calculated as $g^{\prime}(x)=1 / f^{\prime}(g(x))$. We want to compute $g^{\prime}(0)=1 / f^{\prime}(g(0))$. Since $f(0)=0$, it follows that $g(0)=0$. So

$$
g^{\prime}(0)=\frac{1}{f^{\prime}(g(0))}=\frac{1}{f^{\prime}(0)}=\frac{1}{e^{0}+0 \cdot e^{0}}=1 .
$$

(h) $\lim _{x \rightarrow 0} x^{\sqrt{x}}$ does not exist.

Solution. False. First rewrite the limit as

$$
\lim _{x \rightarrow 0} x^{\sqrt{x}}=\exp \left(\lim _{x \rightarrow 0} \sqrt{x} \cdot \ln (x)\right)
$$

This is an indeterminate form, so we first rewrite it as a fraction, and then apply l'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \sqrt{x} \cdot \ln (x)=\lim _{x \rightarrow 0} \frac{\ln (x)}{x^{-1 / 2}}=\lim _{x \rightarrow 0} \frac{1 / x}{-(1 / 2) x^{-3 / 2}}=-2 \lim _{x \rightarrow 0} x^{1 / 2}=0
$$

(i) If $f^{\prime}(c)=0$, then $f(c)$ is either a local maximum or a local minimum.

Solution. False. For example, $f(x)=x^{3}$ satisfies $f^{\prime}(0)=0$, but $x=0$ is neither a local max nor local min.
(j) There exists a function f such that $f(x)>0$ and $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for all x.
Solution. True. The condition $f^{\prime}(x)<0$ means the slope is always negative, and $f^{\prime \prime}(x)>0$ means concave up. It is fairly straightforward to draw such a function: it looks like $f(x)=e^{-x}$.
(2) Compute the derivative $d y / d x$. Write it as a function of just x if possible.
(a) (5 points)

$$
y=\frac{(x+1)^{5}(x-2)^{6}}{\sqrt{2 x-5}}
$$

(Hint: take \ln of both sides.)
Solution. The hint tells us to use logarithmic differentiation. So first ln both sides:

$$
\ln y=5 \ln (x+1)+6 \ln (x-2)-\frac{1}{2} \ln (2 x-5)
$$

Now differentiate both sides, keeping in mind that y depends on x :

$$
\frac{1}{y} \cdot y^{\prime}=\frac{5}{x+1}+\frac{6}{x-2}-\frac{1}{2} \cdot \frac{1}{2 x-5} \cdot 2
$$

Move the y to the right hand side, and substitute in the expression for y, to get:

$$
y^{\prime}=\frac{(x+1)^{5}(x-2)^{6}}{\sqrt{2 x-5}}\left(\frac{5}{x+1}+\frac{6}{x-2}-\frac{1}{2 x-5}\right) .
$$

(b) (5 points)

$$
e^{x y}-y=x
$$

Solution. Use implicit differentiation:

$$
e^{x y} \cdot\left(1 \cdot y+x \cdot y^{\prime}\right)-y^{\prime}=1
$$

Solve for y^{\prime} and rearrange to get

$$
y^{\prime}=\frac{1-y e^{x y}}{x e^{x y}-1} \text {. }
$$

(In principle, we can simplify this further by substituting $x+y=e^{x y}$, but I'm happy if you leave it in this form.)
(3) (5 points) Use linear approximation to give an estimate for $\tan (\pi / 180)$. (Leave $\pi / 180$ alone; no need to calculate its actual value.) If you repeated the same procedure to estimate $\tan (\pi / 90)$, would it be more or less accurate than your estimate for $\tan (\pi / 90)$? Briefly explain.

Solution. Since the derivative of $\tan (x)$ is $\sec ^{2}(x)$, linear approximation says that for x close to 0 ,

$$
\tan (x) \approx \tan (0)+\sec ^{2}(0) \cdot x
$$

We know $\tan (0)=0$ and $\sec ^{2}(0)=1 / \cos ^{2}(0)=1$. So

$$
\tan (\pi / 180) \approx \pi / 180
$$

The estimate would be less accurate for $x=\pi / 90$, because the tangent line approximates the function more and more closely as x approaches the point of tangency. So as we move away from the point of tangency, it becomes less and less accurate in general.
(4) Let $f(x)=x^{4}-4 x^{3}+4 x^{2}-1$.
(a) (5 points) Find the critical points. For each, determine whether it is a local minimum, local maximum, or neither.
Solution. Critical points are determined by setting

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x=4 x\left(x^{2}-3 x^{2}+2\right)=4 x(x-1)(x-2) .
$$

to zero and solving for x. So the critical points are $x=0,1,2$. Use the second derivative test to determine whether these are local maxs/mins. We have

$$
f^{\prime \prime}(x)=12 x^{2}-24 x+8=4\left(3 x^{2}-6 x+2\right) .
$$

(i) Since $f^{\prime \prime}(0)=4 \cdot 2>0, x=0$ is a local min.
(ii) Since $f^{\prime \prime}(1)=4 \cdot-1<0, x=1$ is a local max .
(iii) Since $f^{\prime \prime}(2)=4 \cdot 2>0, \frac{x=2 \text { is a local min }}{3}$.
(b) (5 points) Find the inflection points, and the intervals where f is concave up and concave down.

Solution. Inflection points are where $f^{\prime \prime}(x)=0$. Solve this using the quadratic formula to get the inflection points

$$
x=\frac{6 \pm \sqrt{6^{2}-4 \cdot 3 \cdot 2}}{2 \cdot 3}=1 \pm \frac{\sqrt{3}}{3} .
$$

So we need to see what happens on the intervals $(-\infty, 1-\sqrt{3} / 3)$ and $(1-$ $\sqrt{3} / 3,1+\sqrt{3} / 3)$ and $(1+\sqrt{3} / 3, \infty)$.
(i) Since $f^{\prime \prime}(-10000)>0, f$ is concave up on $(-\infty, 1-\sqrt{3} / 3)$.
(ii) Since $f^{\prime \prime}(1)<0, f$ is concave down on $(1-\sqrt{3} / 3,1+\sqrt{3} / 3)$.
(iii) Since $f^{\prime \prime}(10000)>0, f$ is concave up on $(1+\sqrt{3} / 3, \infty)$.
(c) (3 points) What is the absolute maximum and absolute minimum on the interval $[-1,4]$?

Solution. We already found the critical points $x=0,1,2$, with values

$$
f(0)=-1, \quad f(1)=0, \quad f(2)=16-32+16-1=-1 .
$$

On the endpoints, we have

$$
f(-1)=8, \quad f(4)=4^{4}-4^{4}+4^{3}-1=63
$$

Hence the absolute max is 63 and the absolute min is -1 .
(d) (2 points) Roughly sketch the graph.

Solution. (Not to scale)

(5) (5 points) The area of an equilateral triangle is growing at $30 \mathrm{~cm}^{2} / \mathrm{min}$. How fast are the sides growing when they are exactly $\sqrt{3} \mathrm{~cm}$?

Solution. Let A be the area of the triangle, and s be the side length. We are told $d A / d t=30$ and are asked for $d s / d t$ when $s=\sqrt{3}$. This is a related rates problem. The relationship between A and s is

$$
A=\frac{1}{2} \cdot(\text { base }) \cdot(\text { height })=\frac{1}{2} \cdot s \cdot \frac{\sqrt{3}}{2} s .
$$

Differentiating,

$$
\frac{d A}{d t}=\frac{1}{2} \frac{\sqrt{3}}{2} \cdot 2 s \cdot \frac{d s}{d t}=\frac{\sqrt{3}}{2} \cdot s \frac{d s}{d t}
$$

Hence when $s=\sqrt{3}$, we get

$$
\frac{d s}{d t}=\frac{2}{\sqrt{3} \cdot s} \cdot \frac{d A}{d t}=\frac{2}{3} \cdot 30=20 \mathrm{~cm} / \mathrm{min} .
$$

(6) (5 points) Prove that among all rectangles with the same area A, the one with smallest perimeter is a square. (Hint: let the side lengths be x and y, and minimize the perimeter.)

Solution. Use the hint. The area is $A=x y$ and the perimeter is $P=2 x+2 y$. Substitute $y=A / x$ into this to get the perimeter as a function of just x :

$$
P(x)=2 x+\frac{2 A}{x} .
$$

We want to find the absolute minimum for the perimeter. Solve

$$
0=P^{\prime}(x)=2-2 A x^{-2}
$$

to get that $x=\sqrt{A}$. So $y=A / x=\sqrt{A}$ as well, i.e. both sides are the same length, forming a square.
(For completeness, you should check that this is a local minimum instead of a local maximum. One fast way to do this is via the first derivative test: if $x<\sqrt{A}$, then $P^{\prime}(x)<0$, and if $x>\sqrt{A}$, then $P^{\prime}(x)>0$. So $x=\sqrt{A}$ is indeed a local min.)

