Equivariant K-theory: lecture 14

Last time:
a convolution algebra

not as algebras.
We compared $K_{G}(Z) \simeq \mathbb{Z}[W \times P]$ as modules for $K_{G}(q t)$. Wert grip. weight lattice $\operatorname{Hom}\left(T, \mathbb{C}^{x}\right)$
Correct alg. stative on $K_{G}(z)$ comes from affine Lie alas:
Def: Ordinary Weyl group: $W=$ group of reflections maxim (tors.

Affine Way group $W^{a}={ }^{\prime}$
idea: $S_{0} S_{i}=$ translation. $\quad+$ additional

$$
\text { idea: } S_{0} S_{i}=\text { translation. affine reflection. }
$$

$$
Q=\text { group of translations. }=W \times Q
$$

Extended affine way group

$$
\left\langle\theta^{v},-\right\rangle+1=0
$$

maximal corot.
in $T^{*} G / B$
Thm: $K_{q \times \mathbb{C}_{q}^{x}}(z)=H_{q}^{a}$ is the affine Hecke algebra.

Historically, inturst in H_{t}^{a} comes from Langlands program:

$$
\mathbb{C}\left[B\left(\mathbb{F}_{q}\right) \backslash G\left(\mathbb{F}_{q}\right) / B\left(\mathbb{F}_{q}\right)\right] \simeq H_{q} \longleftarrow \text { finte Hecke alg. } \quad q^{\text {-defomanition of } \mathbb{Z}[\omega]}
$$

Iwahori subgrap Iwahori
conrolution algebra for $I_{I} d_{I}\left(Q_{P}\right) \mathbb{C}$, which
 contols an equivalence of cateyories

$$
\left.\left.\begin{array}{rl}
\left\{\begin{array}{c}
\text { admisside } \\
\text { genereted } \\
\text { by }\left(Q_{p}\right) \text {-modulus }
\end{array}\right\} & \simeq\{\text { finee vertors }
\end{array}\right\} \longmapsto \text { fin. dim. } H t_{q}^{a}-\text { modules }\right\}
$$

Def: H_{q}^{a} is the $\mathbb{Z}\left[q^{ \pm}\right]$-alg. with genectors

$$
e^{\lambda T_{w}} \quad \begin{gathered}
\lambda \in P \\
\omega \in W
\end{gathered}
$$

and relations:

1. $\left\{T_{w}\right\}_{w \in W}$ geneate a finte Hecke algebra

$$
\begin{aligned}
& \mathbb{Z}[w] \\
& T_{i}^{2}=i d
\end{aligned} \quad H_{q} \quad\left(T_{i}+1\right)\left(T_{i}-q\right)=0
$$

2. $\left\{e^{\lambda}\right\}_{\lambda \in P}$ geneecte commutotive scbalg $\simeq \mathbb{Z}\left[q^{\geq}\right][P]$
3. $\left\{\begin{array}{l}T_{s_{\alpha}} e^{s_{\alpha}(\lambda)} T_{s_{\alpha}}=q e^{\lambda} \\ T_{c} \cdot e^{\lambda}=e^{\lambda} T_{c} .\end{array}\right.$

$$
\begin{aligned}
& \left\langle\alpha^{v}, \lambda\right\rangle=1 \\
& \left\langle\alpha^{2}, \lambda\right\rangle=0
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{lll}
v_{s_{\alpha}} e^{2} & 1 s_{\alpha}=q e & \langle\alpha, \lambda\rangle=1 \\
T_{s_{\alpha}} e^{\lambda} & =e^{\lambda} T_{s_{\alpha}} & \left\langle\alpha^{2}, \lambda\right\rangle=0
\end{array}\right. \\
& T^{2}+(1-q) T-q=0 \Rightarrow T^{-1}=q^{-1} T+\left(q^{-1}-1\right) \\
& \\
&
\end{aligned} \quad \Rightarrow T_{s} e^{s(\lambda)}=q e^{\lambda} T_{s}^{-1}=e^{\lambda} T_{s}+(1-q) e^{\lambda} .
$$

Ex: of Thu when $q=S L_{2}$.

The iso. $\left.K_{4} \times \mathbb{C}_{q}^{x}(z) \simeq 1\right) \in_{q}^{a}$ is given by

$$
\begin{array}{rlr}
-(1+T) & \longleftrightarrow q Q \\
X & \longleftrightarrow & \vartheta_{1}
\end{array}
$$

Check well-defined, ie. check relations:

$$
\text { 1. } \begin{aligned}
2 * 2 & =\pi_{13 *}\left(\theta_{\mathbb{T}^{\prime}} \otimes\left(\Omega_{\mathbb{T}^{\prime}}^{\prime} \otimes \theta_{\mathbb{T}^{\prime}}\right) \Omega_{\mathbb{T}^{\prime}}^{\prime}\right) \\
& =2 \cdot x\left(\mathbb{P}^{\prime}, \Omega_{\mathbb{T}^{\prime}}^{\prime} \otimes\left(\theta_{\mathbb{T}^{\prime}}-q^{-1} T_{\mathbb{T}^{\prime}}\right)\right)
\end{aligned}
$$

\uparrow restriction of Roszul resolution

$$
=2\left(-1-q^{-1}\right)
$$ of $\theta_{T^{\prime}}$ on $T^{*} \mathbb{T}^{\prime}$ to $\mathbb{P}^{1} C$

$$
(T+1)(T-q)=(T+1)^{2}-(T+1)(1+q)
$$

2. $Z \underset{\bar{\pi}}{\longrightarrow} \mathbb{P}^{\prime} \times \mathbb{T}^{*} \mathbb{P}^{\prime} \underset{i}{\longleftrightarrow} \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$

$$
\begin{aligned}
& H H_{q}^{a}=\mathbb{Z}\left[q^{ \pm}\right]\left\langle T, X, X^{-1}\right\rangle \\
& <\begin{array}{l}
(T+1)(T-q)=0 \\
T X^{-1}-X T=(1-q) X
\end{array} \\
& Z=T^{*} \mathbb{P}^{\prime} x_{N} T^{*} \mathbb{P}^{\prime}=\Delta\left(T^{*} \mathbb{T}^{\prime}\right) \bigcup_{\Delta\left(\mathbb{T}^{\prime}\right)}\left(\mathbb{P}^{\prime} \times \mathbb{T}^{\prime}\right) \\
& \text { Let } \theta_{n}:=\left(\Delta\left(T^{*}\right)^{\pi} \rightarrow \Delta\left(\mathbb{P}^{\prime}\right)\right)^{*} \theta(n) \\
& Q:=\frac{\Omega_{\mathbb{P}^{\prime} \times \mathbb{T}^{\prime}}^{\prime} / \mathbb{T}^{\prime}}{{ }_{1 \text { st factor. }}^{\prime}}=\theta_{\mathbb{T}^{\prime}} \otimes \Omega_{\mathbb{P}^{\prime}}^{\prime}
\end{aligned}
$$

Fact. $K_{G \times C_{q}^{x}}(z) \underset{c^{*} \pi_{*}}{\longrightarrow} K_{G \times c_{q}^{x}}\left(\mathbb{T}^{\prime} \times \mathbb{P}^{\prime}\right)$ is injective. (Remening computation: exterise.)

But $H t_{q}^{a}$ is knoun to hare a "polynomial rep."

$$
H_{q}^{a} \& R(T)\left[q^{ \pm}\right]=\operatorname{In}_{1+t}^{1)+t_{z}^{a}} \mathbb{Z}\left[q^{ \pm}\right]
$$

$$
\begin{aligned}
& \text { Demezar-Lusely operators } \\
& T_{s_{\alpha}} \cdot e^{\lambda}:=\frac{e^{\lambda}-e^{s_{\alpha}(\lambda)}}{e^{\alpha}-1}-q \frac{e^{\lambda}-e^{s_{\alpha}(\lambda)+\alpha}}{e^{\alpha}-1}
\end{aligned}
$$

faithel rep. of $1 H_{q}^{a} \quad$ (since fairhal at $q=1$.) (erserice.) (enercise)

Two farthel reps $K_{G \times e q}(z)$

$$
H H_{q}^{q}
$$

$$
\curvearrowright K_{q \times e_{q}^{x}}\left(T^{*} \otimes B\right)
$$ Coacliartion

Suffius to cheek by manval computation that actions of gementors agree.

