```
    MATH S3027 (SECTION 2)
ORDINARY DIFFERENTIAL EQUATIONS - SUMMER 2019
```


HOMEWORK 10 (DUE AUG 12)

Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.
(1) Find a fundamental set of solutions for

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) \mathbf{x}
$$

Check using the Wronskian that it is indeed a fundamental set.
(2) Find the general solution to

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}+\binom{2 e^{t}}{-e^{t}}
$$

(3) Let \mathbf{A} be an $n \times n$ matrix. Show, using the series definition of the matrix exponential, that

$$
e^{\mathbf{A} t} e^{\mathbf{A} s}=e^{\mathbf{A}(t+s)}
$$

for all real numbers s, t.
(4) Now we use a trick to prove equation (\star) more easily. Show that both

$$
e^{\mathbf{A} t} e^{\mathbf{A} s} \quad \text { and } \quad e^{\mathbf{A}(t+s)}
$$

are (matrix) solutions to the first-order IVP

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=e^{\mathbf{A} s}
$$

where we fix s and treat t as a variable. Explain why this immediately implies (\star) holds for all s, t. (Hint: matrix solutions to IVPs satisfy the same theorems as usual solutions.)
(5) Consider the system

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

where \mathbf{A} has two eigenvalues: $\lambda_{1}=0$ and $\lambda_{2} \neq 0$. Describe all critical points of the system and roughly sketch the phase diagram for the system.

