```
    MATH S3027 (SECTION 2)
ORDINARY DIFFERENTIAL EQUATIONS - SUMMER 2019
```


HOMEWORK 3 (DUE JUL 18)

Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.
(1) Prove that if $y(x)=u(x)+i v(x)$ is a solution to the equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

then so are $u(x)$ and $v(x)$.
(2) Find a fundamental set y_{1}, y_{2} of real-valued solutions for the equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

Check, using the Wronskian, that y_{1}, y_{2} indeed form a fundamental set of solutions.
(3) Use the method of undetermined coefficients to solve the IVP

$$
y^{\prime \prime}+3 y^{\prime}+2 y=7 \sin x+\cos x, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

Explain your ansatz.
(4) Let α, β be real constants. The following equation is known as the Cauchy-Euler equation:

$$
x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 .
$$

Show that the change of variables

$$
t=\ln x
$$

transforms it into a constant-coefficient equation. Use this to find the general (realvalued) solution to the Cauchy-Euler equation when $\alpha=\beta=1$.
(5) Find the general solution to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0
$$

