HOMEWORK 5 (DUE JUL 25)

Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.
(1) Around $x=0$, find the general series solution up to $O\left(x^{6}\right)$ to the equation

$$
y^{\prime}-\cos (x) y=0
$$

(2) Consider the Cauchy-Euler equation

$$
x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 .
$$

Suppose that r is a repeated root of indicial equation

$$
I(r):=r(r-1)+\alpha r+\beta=0
$$

i.e. $I^{\prime}(r)=2 r-1+\alpha=0$. Using the ansatz $y=v(x) x^{r}$, show

$$
y_{1}=x^{r}, \quad y_{2}=x^{r} \ln x
$$

is a fundamental set of solutions for $x>0$.
(3) Find the singular points of the Chebyshev equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

Are they regular or irregular? Pick one of them and explain the series ansatz for the general solution around that point. (Don't actually find the solution.)
(4) The Bessel equation (of order one)

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

has a regular singular point at $x=0$. For the solution $r=1$ of the indicial equation, show that the series solution around $x=0$ is

$$
y_{1}=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(n+1)!n!2^{2 n}}
$$

What happens when you try to find a second solution of the form $y_{2}=x^{-1} \sum_{n=0}^{\infty} a_{n} x^{n}$ using the other solution $r=-1$ of the indicial equation?
(5) Consider the equation

$$
x^{3} y^{\prime \prime}+2 x y^{\prime}+y=0
$$

What happens if we try to find a series solution of the form $y=\sum a_{n} x^{n}$ around $x=0$? Why does this happen?

