HOMEWORK 6 (DUE JUL 29)

Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.
(1) The solutions r_{1}, r_{2} of the indicial equation are called critical exponents at the singularity. Find the critical exponents for each regular singular point in

$$
\left(1-x^{2}\right) y^{\prime \prime}+\sin (x) y^{\prime}+3 y=0
$$

(2) Find the critical exponents of the hypergeometric equation

$$
x(1-x) y^{\prime \prime}+(c-(a+b+1) x) y^{\prime}-a b y=0
$$

for the point at infinity. These exponents will depend on a and b. Explain, in all cases, what the correct Frobenius ansatz is in order to obtain a fundamental set of solutions.
(3) Find the singular points of the Legendre equation (including possibly at ∞)

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n-1) y=0
$$

and determine whether they are regular/irregular. (You can piggyback off your work for the Chebyshev equation in the previous homework.)
(4) The Legendre functions $P_{n}(x)$ are solutions to the Legendre equation. Using problem (3), explain carefully why $P_{n}(x)$ can be written in terms of the hypergeometric function ${ }_{2} F_{1}(a, b, c ; x)$ for some parameters a, b, c, after a change of variables

$$
z=\frac{x-1}{x+1} .
$$

(You don't need to find specifically what a, b, c are.)
(5) Recall that the hypergeometric function ${ }_{2} F_{1}(a, b, c ; x)$ is the analytic solution to the hypergeometric equation around $x=0$. Find its radius of convergence in two ways:
(a) using just the hypergeometric equation and facts about the radius of convergence of series solutions;
(b) using the ratio test on the explicit formula for ${ }_{2} F_{1}$.

