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0 Introduction

The concept of an algebraic equation and its solutions is introduced fairly early in a standard mathematics
curriculum. We first learn how to solve linear equations like 3x + 5 = 2, and then quadratic equations like
x2 − x− 3 = 0. Solutions are numbers x which satisfy the equation.

This story can be upgraded to equations whose unknowns are functions y(x), instead of numbers x. For
example, we could know that a function y satisfies

dy

dx
− y = 0,

and want to solve for the function y. In this case, it is not too hard to guess and check that y(x) = ex is
a solution. The main feature of such equations involving functions is that they usually involve derivatives.
If they did not, then we might as well treat f as a number, i.e. a constant, and go through the steps of
ordinary algebra.

Definition 0.0.1. A differential equation (DE) is an equation relating a function y with its derivatives.

In the same way that ordinary equations becomes harder to solve when there are multiple variables,
differential equations become vastly harder when we consider functions of multiple variables. This is mostly
because the multivariate setting involves partial derivatives.

Definition 0.0.2. An ordinary differential equation (ODE) is a DE where the unknown function y
is a function of a single variable. A partial differential equation (PDE) involves functions of multiple
variables.

Example 0.0.3. The heat equation is a PDE governing the diffusion of some quantity f(x, y, z, t), e.g. heat,
over time:

∂f

∂t
= α

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
.

Here α is a constant which controls the rate of diffusion.

This course is about ODEs, so from now on the unknown function is always of a single variable. Con-
ventionally, the function is denoted y, and it is usually a function of x.

Definition 0.0.4. The order of an ODE is the order of the highest derivative that appears in the equation.

Example 0.0.5. The equation
dy

dx
− 2y4 = x5

is a first-order ODE, whereas the equation

d2y

dx2

dy

dx
sin(x)− ex

(
dy

dx

)4

= 0

is a second-order ODE.

Usual algebraic equations become harder (if not impossible) to solve as the order grows, so it is not
surprising that the theory of ODEs becomes more difficult in higher order. We will start with the theory of
first-order ODEs, and then second-order. Unfortunately, even in these two simplest cases, most such ODEs
will not be “solvable” in a satisfactory sense.

However, as with algebraic equations, once we obtain a solution f of an ODE, it is very easy to check
that f is indeed a solution: just plug it back in. For example, given the first-order ODE

dy

dx
= 2x,

we can easily check that y(x) = x2 is a solution. From calculus we know that y(x) = x2 +C is a solution for
any real number c.
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Definition 0.0.6. Given an ODE, a particular solution is a single function which is a solution of the
ODE, like y = x2. A general solution is an expression which contains all possible solutions of the ODE,
like y = x2 + C.

If we specify an additional constraint on the solution y(x), e.g. that y(0) = 1, then usually we can solve
to get a specific value for c. Such additional constraints are thought of as initial conditions.

Definition 0.0.7. An initial value problem (IVP) is a differential equation with an additional initial
value constraint, e.g. y(0) = 1, on solutions.

We will focus mostly on ODEs without initial conditions, but keep in mind that for every ODE it is
possible to specify initial conditions to make it into an IVP.

1 First-order equations

Definition 1.0.1. A first-order ODE is of the general form

dy

dx
= f(x, y). (1.1)

There are entire books devoted to various fancy techniques and tricks for solving different types of first-
order ODEs, in the same way that there are entire books devoted to solving cubic and quartic polynomial
equations in one variable. This is not the point of the course. We will instead use first-order ODEs to
familiarize ourselves with a collection of fundamental ideas and tools in the theory of ODEs in general, and
then move on.

1.1 Slope fields

Before delving into the theory of first-order equations, it is best to have some visual representation of them
for the sake of intuition. The equation (1.1) says that whatever the function y(x) is, at the point (x, y) it
has slope f(x, y). Since tangent lines approximate functions, we may as well get an idea for what y(x) looks
like by drawing a line of slope f(x, y) at each point (x, y). Such a diagram is called a slope field.

Example 1.1.1. The slope field of the first-order ODE dy/dx = x+ y is as follows.

x

y
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From the slope field, we can “see” different solutions y(x). If we are given an initial condition y(x0) = y0,
we can start at the point (x0, y0) and “follow the lines” in either direction. The resulting curve will be a
solution y(x) satisfying the initial condition, and is called an integral curve. Different initial conditions
result in different solutions/integral curves.

Note that a slope field is not the same thing as a vector field. A slope field is an assignment of a slope
to every point in the plane. A vector field is an assignment of a vector to every point in the plane. The
difference between a slope and a vector is that a vector has a magnitude in addition to a direction. Vector
fields arise in the study of ODEs when we take an integral curve and find a parameterization (x(t), y(t)) of
it. A single integral curve may be parameterized in many different ways; this is a very important point we
will use later. Once we pick a parameterization, we call (x(t), y(t)) a trajectory.

Example 1.1.2. The slope field (and multiple integral curves) for the first-order ODE

dy

dx
= −x

y

looks like the following.

y(0) = 2

y(0) = 1.7

y(0) = 1

x

y

The integral curves are circles x2 + y2 = R2. For a given circle, the standard parameterization is

(x(t), y(t)) = (R cos(t), R sin(t)),

but there are many different parameterizations corresponding to going around the circle at different speeds.

The freedom to parameterize solutions in different ways will be very important later, when we discuss
solutions to general first-order linear ODEs.
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1.2 Linear equations with constant coefficients

Definition 1.2.1. In (1.1), if f(x, y) depends linearly on y, i.e.

dy

dx
= p(x)y + q(x),

then we say the ODE is linear.

Definition 1.2.2. In a linear first-order ODE, if the coefficients p(x) and q(x) are actually independent of
x, then we have a linear first-order ODE with constant coefficients. Its general form is

dy

dx
+ ay = b

for constants a and b.

Example 1.2.3. If we are in the special case that b = 0, then the equation is

dy

dx
+ ay = 0.

This is often called the homogeneous form of the general equation dy/dx + ay = b. Assuming a 6= 0, it
rearranges into

1

y

dy

dx
= −a.

To solve this, we can integrate both sides with respect to x. The lhs is the derivative of ln |y|, and the rhs
is the derivative of −ax+ C, so that

ln |y| = −ax+ C.

Exponentiating both sides yields the general solution

y = ce−ax

where c := ±eC is an arbitrary constant. We will see that the exponential function is pervasive in the theory
of ODEs.

Many people (including the textbook) like to write

1

y
dy = −a dx

and then literally integrate both sides. It is fine to treat the symbols dy and dx this way; we will see what
it really means later.

Example 1.2.4. In the general (non-homogeneous) case

dy

dx
+ ay = b,

one can use a similar procedure to obtain the general solution

y =
b

a
+ ce−ax.
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1.3 Separable equations

The procedure in Example 1.2.3 actually works in more general settings, even for non-linear first-order ODEs.
The key point is being able to separate x’s from y’s.

Definition 1.3.1. In (1.1), if f(x, y) factors as g(x)h(y), i.e. the ODE is

dy

dx
= g(x)h(y)

then we say the ODE is separable. Here g(x) must be independent of y, and h(y) must be independent of
x. Sometimes people let M(x) = g(x) and N(y) = 1/h(y) and write the general form as

N(y)
dy

dx
= M(x) or M(x) dx+N(y) dy = 0.

Example 1.3.2. The first-order ODE
dy

dx
=

x2

1− y2

is separable: g(x) = x2 and h(y) = 1/(1− y2). By moving all the y’s to the lhs, we get

(1− y2)
dy

dx
= x2.

Now we can integrate both sides to get

y − y3

3
=

1

3
x3 + C.

The general solution is therefore −x3 + 3y − y3 = C for an arbitrary constant C.

Example 1.3.3. The first-order ODE
dy

dx
=

x2

x− y2

is not separable, because there is no way to factor the rhs as g(x)h(y). So we cannot solve it by directly
integrating.

Since separable first-order ODEs are our first type of ODEs for which we get interesting solutions and
are fairly straightforward to analyze, we will deal with them very carefully and rigorously. The first tricky
point is the following observation.

1. If for some value y0 we have h(y0) = 0, then the ODE becomes dy/dx = 0 and there is an extra
constant solution given by y = y0.

Example 1.3.4. The first-order ODE
dy

dx
= −2xy2

is separable and, by integrating, has general solution

y =
1

x2 + C
and y = 0.

Note the additional constant solution y = 0, since if y = 0 then the rhs is zero. This solution does not arise
from any finite choice of C, and is, in some sense, the solution obtained in the limit C →∞.

So we see special behavior when the rhs becomes 0. The other extreme is therefore also possible: the rhs
can become ∞ at certain values. Solution functions which “run into” these values break down and become
invalid beyond those values.
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2. Suppose y = f(x) is a solution. If y′(x0) =∞, then the interval of validity of the solution y = f(x)
does not extend beyond x0.

Example 1.3.5. Recall that in example 1.3.2 we got

dy

dx
=

x2

1− y2
=⇒ −x3 + 3y − y3 = C.

Suppose we want a solution function y = f(x) passing through (1, 0), so that C = −1. When y = ±1, the
rhs of the ODE becomes ∞. We can compute that

y = −1 =⇒ x = −1, y = 1 =⇒ x =
3
√

3 ≈ 1.44.

Hence the interval of validity for the solution is (−1, 3
√

3), because x = 1 lies in this interval.

One has to be careful when determining intervals of validity: it is possible the given expression for dy/dx
is continuous everywhere, but the integral curve has an asymptote and goes off to ∞ anyway (cf. (1.2)). We
will not worry too much about these details.

1.4 Existence and uniqueness

We can see already there is a huge difference between linear and non-linear first-order ODEs. At least for
constant-coefficient linear ODEs, the solution exists and is valid for all x, since it is (essentially) just some
exponential function; we do not have to worry about the interval of validity like we did earlier. This is
actually true for all linear ODEs.

Theorem 1.4.1 (Existence and uniqueness for linear first-order ODEs). Consider the IVP

dy

dx
+ p(x)y = q(x), y(x0) = y0.

If p(x) and q(x) are continuous on an open interval x− < x < x+ containing x0, then on the interval
x− < x < x+ there exists a unique solution to the IVP.

This theorem is conceptually very important. Existence assures us that trying to solve the ODE is not
a futile effort, and indicates to us that the only way solutions can break down is when p(x) or q(x) are
discontinuous. Uniqueness means if we can guess/find a solution, we have found the one and only possible
solution and do not have to keep searching for solutions. This is no longer true for higher-order ODEs. For
example, y′′ = −y has the two distinct solutions y = sin(x) and y = cos(x).

It will become clear later why this theorem is true, when we explicitly solve all linear first-order ODEs
via a trick called integrating factors.

On the other hand, solutions to non-linear first-order ODEs may not be valid for all values of x, even
when everything is nice and continuous. For example, one can easily check that a solution to

dy

dx
= 1 + y2, y(0) = 0 (1.2)

is given by the function y = tan(x) and is only valid on (−π/2, π/2). It is also not immediately clear whether
other solutions exist.

Theorem 1.4.2 (Existence and uniqueness for non-linear first-order ODEs). Consider the IVP

dy

dx
= f(x, y), y(x0) = y0.

If f and ∂f/∂y are continuous on a rectangle x− < x < x+, y− < y < y+ containing (x0, y0), then on some
interval x0 − h < x < x0 + h contained in x− < x < x+, there exists a unique solution to the IVP.

In contrast to the linear case, this theorem only assures us of existence and uniqueness locally, i.e. in a
small region around the initial value (x0, y0).
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1.5 Autonomous systems

We will now proceed to solve linear first-order ODEs in general. This requires a small digression.

Definition 1.5.1. In (1.1), if f(x, y) is independent of x, i.e. the ODE is

dy

dx
= f(y),

then we say the ODE is autonomous.

Autonomous equations are particularly common. If we interpret the variable x as time, then f(y) being
time-independent means that the rules governing the system described by the ODE do not change over time.
For example, while the trajectory of a cannonball is a time-dependent function, the physical laws which
dictate the ODE that its trajectory satisfies are time-independent.

One way that autonomous equations arise for us is as follows. To study general first-order ODEs

dy

dx
= f(x, y),

we can alternatively study the autonomous system of ODEs
dy

dt
= M(x, y)

dx

dt
= N(x, y)

(1.3)

where f(x, y) = M(x, y)/N(x, y). Of course any f can be written this way, by taking M = f and N = 1.
If a solution of the original ODE is written as an integral curve, then a solution (x(t), y(t)) to (1.3) is a
parameterization (in t) of such an integral curve.

Historically, people like to write (1.3) as

−M(x, y) dx+N(x, y) dy = 0.

This is an unfortunate choice of notation. We will use this notation to agree with common references
(including our textbook), but it is best to keep (1.3) in mind instead. The upside of this notation is that
gradient vector of the (parameterized) solution passing through (x, y) is given by (−M(x, y), N(x, y)). If we
plot the vectors (N,M), we get the slope field of the ODE but with actual vectors instead of just slopes.

x

y

x

y
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Alternatively, thinking of the ODE as

−M(x, y) +N(x, y)
dy

dx
= 0

is also fine, but this forgets the parameterization (and replaces the vector field with the slope field).

1.6 Exact equations and integrating factors

Suppose we have a first-order ODE

M(x, y) dx+N(x, y) dy = 0

and we recognize that its vector field (M,N) satisfies the following very special property.

Definition 1.6.1. A vector field is exact, or conservative, if it is the gradient

∇ψ =

∂ψ∂x∂ψ
∂y


of some (differentiable) function ψ(x, y). If ψ exists, it is called the scalar potential of the vector field.

Then we have effectively solved the ODE, because

M +N
dy

dx
=
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
ψ(x, y)

and the ODE becomes
d

dx
ψ(x, y) = 0.

This of course has solutions given by the level sets

ψ(x, y) = C

of the scalar potential ψ(x, y).

Example 1.6.2. The first-order ODE

(1 + 2xy2) + (2x2y + 2y)
dy

dx
= 0

is neither separable nor linear. But one can check that

d

dx
(x+ x2y2 + y2) = 1 + 2xy2,

d

dy
(x+ x2y2 + y2) = 2x2y + 2y

so its general solution is x+ x2y2 + y2 = C.

This whole discussion, however, is not practical unless we have a way to test whether a given vector field
(M,N) is exact, and find the scalar potential of an exact vector field. Use the shorthand notation ft := df/dt
and multiple subscripts for multiple derivatives. If (M,N) were exact, then

My = ψxy = ψyx = Nx.

This is a very special property and is definitely not satisfied by arbitrary pairs of functions (M,N). In fact,
it is equivalent to exactness.
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Theorem 1.6.3. Let (M,N) be a vector field. If My = Nx, then (M,N) is exact.

Knowing (M,N) is exact, we can integrate the equation ψx = M to get

ψ =

∫
M(x, y) dx+ C(y)

where the “constant” of integration C(y) is independent of x but can be a non-trivial function of y. Then
we compute ψy = N to solve for C(y).

Example 1.6.4. Return to the earlier example

(M,N) = (1 + 2xy2, 2x2y + 2y).

We can check it is exact by computing My = 4xy = Nx. Integrating M , we get

ψ = x+ x2y2 + C(y).

Then N = ψy = 2x2y + C ′(y) so that C ′(y) = 2y. Hence C(y) = y2. (The constant of integration here is
irrelevant.)

Most first-order ODEs M dx+N dy = 0 are not exact. However they can be made exact via the following
observation. In the rewriting

dy

dx
= f(x, y) 


dy

dt
= M(x, y)

dx

dt
= N(x, y)

we are always free to multiply M(x, y) and N(x, y) by an arbitrary integrating factor µ(x, y) without
changing the original ODE. The new autonomous system

dy

dt
= µ(x, y)M(x, y)

dx

dt
= µ(x, y)N(x, y)

will have the same integral curves as the original one, but with different parameterization (i.e. speed of
trajectories). Equivalently, one writes

µM dx+ µN dy = 0.

The game is to choose the integrating factor q such that the resulting ODE is exact. In general, this is
hard, because the exactness condition is (µM)y = (µN)x, which is the first-order partial differential equation
(PDE)

µyM − µxN + (My −Nx)µ = 0.

This is in general just as hard to solve as the original equation. Since it is a PDE instead of an ODE,
solutions µ may not even be unique. Finding integrating factors in general is hard. However we can find
them in special cases.

Example 1.6.5 (Linear first-order ODEs). In the linear case dy/dx+ p(x)y = q(x), we can take

M = p(x)y − q(x), N = 1

and therefore we should look for µ(x, y) such that

µx = (µM)y = µyM + µp(x).

If we assume µ(x) is actually independent of y, this becomes the equation

µx = µp(x)

10



which has a solution

µ = exp

∫
p(x) dx.

This is the integrating factor for linear first-order ODEs.

In principle one solves linear first-order ODEs in general using this method. In practice, one rarely needs
to do so. However this example does provide essentially the proof of existence of solutions for linear first-
order ODEs, as stated in Theorem 1.4.1. Uniqueness follows from a more careful analysis of the integrating
factor, which in this case is unique up to a choice of constant of integration. To fully prove uniqueness, one
must show this choice does not affect the final solution.

1.7 Changes of variable

Sometimes we can reduce a complicated ODE to the linear or separable case via a change of variables. In
practice, it is more common to do this than to use e.g. integrating factors.

Example 1.7.1. Consider the equation

dy

dx
= 1 +

√
y − x.

The
√
y − x term is very hard to deal with. If we let u := y − x, then the equation becomes

du

dx
=
√
u.

This is now separable. The general solution is u = (x/2 + c)2, i.e. y = x+ (x/2 + c)2.

In this example, the equation became much simpler because it was secretly a function of u = y−x and x
instead of y and x. In general, to identify useful changes of variables, one must ask if the equation is actually
a function of not y but a more complicated combination of y and possibly x. We illustrate this with the
following class of functions.

Definition 1.7.2. A function f(x, y) is homogeneous of degree d if

f(tx, ty) = tdf(x, y), for all t.

Example 1.7.3. If f only involves monomials of degree d, then f is homogeneous of degree d. For example,
there are four monomials in x and y of degree 3, which we can put together into the general form

f(x, y) = a1x
3 + a2x

2y + a3xy
2 + a4y

3

of a homogeneous degree 3 polynomial.

The interesting class of functions are those which are homogeneous of degree zero. This means

f(tx, ty) = f(x, y), for all t. (1.4)

Such functions can arise as the quotient of two homogeneous functions of degree d. The simplest (non-
constant) such functions are

f(x, y) =
x

y
, f(x, y) =

y

x
.

Theorem 1.7.4. If f(x, y) is homogeneous of degree 0, then actually it depends only on y/x only.

Proof. In (1.4), take t = 1/x to get
f(1, y/x) = f(x, y).

Clearly the rhs is a function of y/x only.
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Example 1.7.5. The function

f(x, y) =
3xy2 + 4y3

x3 − 7x2y

is a quotient of two homogeneous functions of degree 3, and is therefore homogeneous of degree 0. By the
theorem, we know it is secretly a function of just V := y/x. So plug in y = xV to get

f(x, y) =
3x3V 2 + 4x3V 3

x3 − 7x3V
=

3V 2 + 4V 3

1− 7V
.

This change of variables for degree-0 homogeneous functions helps us solve first-order ODEs of the form

dy

dx
= f(x, y)

where f is homogeneous of degree 0. Since we have identified y = xV as a good substitution, use it to get

V + x
dV

dx
= f(V ).

This is a separable equation. Rearranging gives

1

f(V )− V
dV

dx
=

1

x
.

Example 1.7.6. Consider the equation
dy

dx
=

2xy

x2 − y2
.

The rhs is homogeneous of degree 0. The substitution y = xV gives

V + x
dV

dx
=

2V

1− V 2
.

Rearranging into separable form yields
1− V 2

V (1 + V 2)

dV

dx
=

1

x
.

To integrate the lhs we must do a partial fraction decomposition:

1− V 2

V (1 + V 2)
=

1

V
− 2V

1 + V 2
.

Then the whole equation integrates to

ln |V | − ln(1 + V 2) = ln |x|+ C.

Equivalently, after exponentiating both sides,

V

1 + V 2
= cx.

Substituting back V = y/x and rearranging gives the general solution

x2 + y2 = cy.
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2 Second-order linear equations

To go beyond first-order ODEs and still have meaningful theory, we must restrict ourselves to linear equations.
In practice, arbitrary ODEs can be well-approximated by linear ones, and it is the linear ODEs which
dominate areas like classical physics.

Definition 2.0.1. A second-order ODE is of the general form

y′′ = f (x, y, y′) . (2.1)

(We switch from writing dy/dx to writing y′ for convenience.) It is linear if f depends linearly on y and
dy/dx, i.e.

f

(
x, y,

dy

dx

)
= g(x)− p(x)

dy

dx
− q(x).

In this case we usually write
y′′ + p(x)y′ + q(x)y = g(x).

As with first-order linear equations, we should begin by considering the associated homogeneous equation

y′′ + p(x)y′ + q(x)y = 0.

2.1 Structure of solutions

First notice that second-order ODEs in general may have more than one solution. For example, y′′ = −y has
solutions y = sin(x) and y = cos(x). This arises because in some sense we have to “integrate twice”, giving
two constants of integration instead of one. This is very different from the first-order case, where existence
and uniqueness guarantees only one solution (up to some constant of integration).

The key property of linear ODEs is as follows. Having two different solutions of a linear equation means
we can use them to generate other solutions in the following way. (This was irrelevant for first-order ODEs.)

Theorem 2.1.1 (Principle of superposition). If y1 and y2 are solutions to a homogeneous linear ODE

y′′ + p(x)y′ + q(x)y = 0,

then so is c1y1 + c2y2 for any constants c1, c2.

Proof. Since we are discussing second-order ODEs, we provide the proof explicitly for second-order linear
ODEs. But the same idea works in general, for arbitrary order. We can just plug c1y1 + c2y2 into the
equation and use that (f + g)′ = f ′ + g′ to get

(c1y1 + c2y2)′′ + p(x)(c1y1 + c2y2)′ + q(x)(c1y1 + c2y2)

= c1 (y′′1 + p(x)y′1 + q(x)y1) + c2 (y′′2 + p(x)y′2 + q(x)y2) = 0.

Linear second-order ODEs also have an existence and uniqueness theorem analogous to that of first-order
ODEs (Theorem 1.4.1). The only modification is that we need two initial conditions instead of one. The
conditions will be of the form

y(x0) = y0, y′(x0) = y′0.

In some sense, the second condition fixes the constant of integration from “integrating once”, and the first
condition fixes the constant of integration from “integrating again”.

Theorem 2.1.2 (Existence and uniqueness for linear second-order ODEs). Consider the IVP

y′′ + p(x)y′ + q(x)y = g(x), y(x0) = y0, y
′(x0) = y′0.

If p(x), q(x), g(x) are continuous on an open interval I containing x0, then on the interval I there exists a
unique solution to the IVP.
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There is one more complication that arises for second-order ODEs. Suppose we have found two solutions
y1 and y2, and would like to solve an IVP with initial conditions

y(x0) = y0, y′(x0) = y′0.

Then superposition tells us we should look for constants c1, c2 such that c1y1 + c2y2 is the solution we want,
i.e. {

c1y1(x0) + c2y2(x0) = y0

c1y
′
1(x0) + c2y

′
2(x0) = y′0.

(2.2)

Here we treat c1, c2 as unknowns, and all other quantities as known (i.e. they are just some constants). From
linear algebra, there exists a solution for c1 and c2 if and only if

det

(
y1(x0) y2(x0)
y′1(x0) y′2(x0)

)
6= 0.

Definition 2.1.3. The determinant

W (y1, y2) := det

(
y1 y2

y′1 y′2

)
= y1y

′
2 − y′1y2

is called the Wronskian. It is a function of x, and one can evaluate it at particular values x = x0:

W (y1, y2)(x0) = y1(x0)y′2(x0)− y′1(x0)y2(x0).

Theorem 2.1.4. Suppose y1 and y2 are two solutions of

y′′ + p(x)y′ + q(x)y = 0.

Then it is always possible to choose c1 and c2 such that the solution

c1y1 + c2y2

satisfies prescribed initial conditions
y(x0) = y0, y′(x0) = y′0

if and only if the Wronskian W (y1, y2) is not zero at x0.

It is possible that W (y1, y2)(x0) = 0 and no solution exists, despite the existence and uniqueness theo-
rem 2.1.2. This may occur if we chose y1 and y2 badly. For example, if y1 = y2 then we are missing another
solution and the general solution will not be just c1y1 + c2y2 = (c1 + c2)y1. The Wronskian of y1 and y2

measures how “independent” they are.

Example 2.1.5. Take the IVP

y′′ − 3y′ + 2y = 0, y(1) = 5, y′(1) = 7.

One can verify directly that y1 = ex and y2 = e2x are both solutions. The principle of superposition therefore
tells us that

c1e
x + c2e

2x

is a solution for any constants c1, c2. The Wronskian is

W (ex, e2x) = det

(
ex e2x

ex 2e2x

)
= 2e3x − e3x = e3x,

which is non-zero at x = 1. Therefore there are constants c1, c2 providing a solution to the IVP. If we had
chosen y1 = ex and y2 = 2ex instead,

W (ex, 2ex)(1) = e1 · (2e1)− e1 · (2e1) = 0,

telling us that y1 and y2 are not independent solutions. This choice of solutions completely misses the
solution e2x.
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The Wronskian provides an easy test for whether a solution of the form c1y1 +c2y2 exists for the IVP, but
does not tell us what exactly c1 and c2 are. To actually find their values we must solve the corresponding
2× 2 system of equations (2.2).

Example 2.1.6. Continuing with the previous example, we want

c1e
1 + c2e

2 = 5

c1e
1 + 2c2e

2 = 7.

Hence c2 = 2e−2 and c1 = 3e−1. The solution to the IVP is therefore

y = 3e−1ex + 2e−2e2x = 3ex−1 + 2e2x−2.

Armed with the Wronskian, we can now explain the form of the general solution to a linear second-order
ODE. One would like to say all solution are of the form c1y1 + c2y2, as long as the two solutions y1 and y2

are “independent”.

Theorem 2.1.7. Suppose y1 and y2 are two solutions of

y′′ + p(x)y′ + q(x)y = 0.

Then all solutions are of the form
c1y1 + c2y2

for some c1, c2 if and only if the Wronskian W (y1, y2) has at least one point where it is non-zero.

Proof. Suppose W (y1, y2)(x0) 6= 0. Let φ be a solution. Look at the IVP with initial conditions

y(x0) = φ(x0), y′(x0) = φ′(x0).

Clearly φ is a solution to the IVP. But by theorem 2.1.4, there exist constants c1 and c2 such that c1y1 +c2y2

is also a solution. Uniqueness of solutions implies φ = c1y1 + c2y2.
Conversely, if W (y1, y2) = 0 everywhere, then we can pick some initial conditions such that (2.2) has no

solutions for c1 and c2. But the IVP with these initial conditions must have a solution φ, by existence of
solutions. Hence φ cannot be written as c1y1 + c2y2 for any c1, c2.

In other words, y1 and y2 are “independent” as long as W (y1, y2) is not the zero function. In this case
we call

c1y1 + c2y2

the general solution, and we say y1, y2 form a fundamental set of solutions.

2.2 Homogeneous equations with constant coefficients

We apply all this theory to the constant-coefficient case, just like for first-order equations:

ay′′ + by′ + cy = 0 (2.3)

for constants a, b, c. A helpful thing to do is to rewrite this ODE in terms of derivative operators, as follows.

Definition 2.2.1. Let D denote the operator which differentiates with respect to x, i.e. for a function f(x),

Df :=
df

dx
.

Then (2.3) can be rewritten as
(aD2 + bD + c)y = 0.
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We can now take the quadratic aD2 + bD + c and factor it into a product of two linear factors. (This is
really a valid thing to do, because the derivative D is a linear operator.) So suppose that

aD2 + bD + c = (D − α1)(D − α2)

for some constants α1 and α2. Then we have effectively reduced the second-order ODE into two first-order
ones: it will have two solutions y1 and y2, given by

(D − α1)y1 = 0, (D − α2)y2 = 0.

From section 1.2, we know the (unique) general solutions are:

y1 = c1e
α1x, y2 = c2e

α2x. (2.4)

Hence the general solution to the original second-order ODE is

y = c1e
α1x + c2e

α2x.

Example 2.2.2. Consider the ODE
y′′ − 3y′ + 2y = 0.

In terms of the derivative operator, this is equivalent to

(D2 − 3D + 2)y = 0.

Clearly D2 − 3D + 2 = (D − 1)(D − 2). Hence the general solution is

y = c1e
x + c2e

2x.

Definition 2.2.3. Sometimes people don’t like writing things in terms of the derivative operator D, and
instead introduce a new variable r and the characteristic equation

ar2 + br + c = 0

associated to the ODE ay′′ + by′ + cy = 0. In this language, we have just seen that if r = α is a solution to
the characteristic equation, then y = eαx is a solution to the ODE.

However, we must be careful. From the previous section, we know it is important to verify that the two
solutions (2.4) we use to form the general solution are actually independent solutions. This may not always
be the case. For example, if the characteristic equation has a double root α1 = α2, then we don’t actually
have two different solutions.

Example 2.2.4. Consider the ODE
y′′ + 4y′ + 4y = 0.

Then we factor D2 + 4D + 4 = (D + 2)2 and get the solutions y1 = e−2x and y2 = e−2x. Clearly these are
not two independent solutions.

From the previous section, we know we can test independence by computing the Wronskian

W (eα1x, eα2x) = det

(
eα1x eα2x

α1e
α1x α2e

α2x

)
= (α2 − α1)e(α2+α2)x.

As expected, it is non-zero when α1 6= α2, and zero in the case of a double root α1 = α2. This means we
need to manufacture some solution other than eα1x somehow.

How do we manufacture this second solution? Let (D − r)2y = 0 be the ODE. The first solution is
y1 = erx. To get the second solution, one way to proceed is to make an ansatz, i.e. an educated guess, that
the second solution is of the form

y2 = v(x)erx (2.5)
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for some function v(x) instead of just a constant. This is just a guess! If it works in the end, we are happy;
if it does not, we go back and try something more clever.

To find what v(x) should be, we plug v(x)erx back into the ODE. This is computationally slightly
complicated, so first we compute

(D − r)(v(x)erx) = (v′(x)erx + rv(x)erx)− rv(x)erx = v′(x)erx.

Applying (D − r) again gives

(D − r)2(v(x)erx) = (v′′(x)erx + rv′(x)erx)− rv′(x)erx = v′′(x)erx.

For this to be equal to 0, we must have v′′(x) = 0. Hence v′(x) = c1 and v(x) = c1x+ c2. A solution of the
form

y = (c1x+ c2)erx

therefore works! Note that c2e
rx is just some multiple of the first solution y1, and the truly new solution is

y2 = xerx.

We should check however that y1 = erx and y2 = xerx are truly independent solutions, using the
Wronskian. Their Wronskian is

W (erx, xerx) = det

(
erx xerx

rerx (1 + rx)erx

)
= (1 + rx)e2rx − rxe2rx = e2rx 6= 0.

Hence y1 = erx and y2 = xerx are a fundamental set of solutions. This is how we deal with the case of
double roots.

To sum up, to solve a constant-coefficient homogeneous linear second-order ODE ay′′ + by′ + cy = 0, we
should find the roots α1, α2 of its characteristic equation ar2 + br + c = 0.

1. If the roots are distinct, a fundamental system of solutions is

y1 = eα1x, y2 = eα2x.

2. If the roots are not distinct, a fundamental system of solutions is

y1 = eα1x, y2 = xeα1x.

The last thing to deal with is that the two solutions α1 and α2 may be complex numbers instead of real
numbers. In this case it is important to remember Euler’s formula

eix = cosx+ i sinx.

Consequently, if we have α = λ+ µi, then

eαx = eλxeiµx = eλx(cosµx+ i sinµx).

Example 2.2.5. Consider the ODE
y′′ + y = 0.

The solutions to its characteristic equation are α1 = i and α2 = −i. Hence the two solutions are

y1 = eix = cosx+ i sinx

y2 = e−ix = cosx− i sinx.
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However this is not exactly desirable, because we started with only real numbers and would like the solutions
as real-valued functions. The trick is to “cancel” out the imaginary parts by looking at y1 ± y2:

y1 + y2 = 2 cosx, y1 − y2 = 2i sinx.

Since constants are irrelevant, this means we can define a new pair of fundamental solutions

ỹ1 = cosx, ỹ2 = sinx.

In general, if a quadratic has complex roots, the two complex roots are conjugate pairs λ±µi. Then the
two solutions will be

y1 = eλx(cosµx+ i sinµx)

y2 = eλx(cosµx− i sinµx)

and the same argument as in the example shows that we can always define a new pair of fundamental
solutions

ỹ1 = eλx cosµx, ỹ2 = eλx sinµx.

2.3 Non-homogeneous equations

Now we return to the general non-homogeneous case

y′′ + p(x)y′ + q(x)y = g(x). (2.6)

Suppose that we have already solved the associated homogeneous equation

y′′ + p(x)y′ + q(x)y = 0

and obtained its general solution c1y1 + c2y2. The previous section describes how to do this when p(x)
and q(x) are constants, i.e. actually independent of x. The following observation allows us to use the
homogeneous case to get solutions for the original ODE.

Theorem 2.3.1. If Y1, Y2 are two solutions of the non-homogeneous equation (2.6), then Y1−Y2 is a solution
of the associated homogeneous equation.

Proof. This is a direct check:

(Y1 − Y2)′′ + p(x)(Y1 − Y2)′ + q(x)(Y1 − Y2)

= (Y ′′1 + p(x)Y ′1 + q(x)Y1)− (Y ′′2 + p(x)Y ′2 + q(x)Y2)

= g(x)− g(x) = 0.

But we know all solutions of the homogeneous equation: they are c1y1 + c2y2. So once we can find a
single solution Y of the original equation, then all other solutions are of the form

Y + c1y1 + c2y2.

Definition 2.3.2. Given a linear second-order ODE as in (2.6), the general solution c1y1 + c2y2 of its
associated homogeneous equation is called the complementary solution. A single solution Y of the actual
ODE is called a particular solution.

It is important to note at this point that a particular solution will never be a solution of the homogeneous
equation. So particular solutions are distinct from the complementary solution.
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Example 2.3.3. Consider the ODE
y′′ − 5y′ + 6y = 2ex.

The complementary solution is c1e
2x + c2e

3x. One can check that a particular solution is y = ex. Hence the
general solution is

y = ex + c1e
2x + c2e

3x.

There are two different ways to find particular solutions that are commonly taught. One way is to simply
make an ansatz, like we did in (2.5). This is known as the method of undetermined coefficients, and
works well when the rhs g(x) is of some particular form.

Example 2.3.4. Consider the non-homogeneous linear ODE

y′′ − 3y′ − 4y = 3e2x.

The rhs is of a very special form: it is (up to constant factors) an exponential. Since exponentials are
indestructible under differentiation, we can make the ansatz that a particular solution is of the form

y = Ae2x

for some constant A. Plugging this into the ODE gives

(4A− 6A− 4A)e2x = 3e2x,

so that A = −1/2. Hence a particular solution is y = −1/2e2x. The general solution is therefore

y = −1

2
e2x + c1e

4x + c2e
−x.

Similarly, if the rhs is some multiple of sinx or cosx, then we should make the ansatz y = A1 sinx +
A2 cosx. Here we must involve cosx because we obtain it upon differentiating sinx. Now we get a 2 × 2
system of equations for A1 and A2 that must be solved. The details in this case reveal no new conceptual
insights, so we omit them.

The other commonly-taught method to find particular solutions is called variation of parameters and
works for arbitrary g(x). However it is made obsolete by the more useful concept of a Green’s function, so
we will not cover it in this course.

2.4 Higher-order linear equations

All the theory we have developed for second-order linear equations carry over analogously to higher-order.
Let’s briefly examine the general higher-order case.

Definition 2.4.1. Let y(n) denote the n-th derivative of y. An n-th order linear ODE is of the form

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = g(x). (2.7)

Since now we must “integrate n times” to get a solution, we expect that to get a unique solution one
must specify n initial conditions

y(x0) = y
(0)
0 , y′(x0) = y

(1)
0 , . . . , y(n−1)(x0) = y

(n−1)
0 (2.8)

where y
(0)
0 , y

(1)
0 , . . . , y

(n−1)
0 are real constants. Then we have the following.

Theorem 2.4.2 (Existence and uniqueness for n-th order linear ODEs). If the functions p0, . . . , pn−1 and
g are continuous on an open interval I, then there exists a unique solution to (2.7) satisfying the initial
conditions (2.8).
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As with the first- and second-order cases, we can consider the associated homogeneous equation

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = 0

and its solutions y1, . . . , yn. The general solution is of the form

c1y1 + · · ·+ cnyn,

and there is again a concept of a Wronskian to check whether there exist constants c1, . . . , cn such that the
solution satisfies a given set of initial conditions.

Definition 2.4.3. The Wronskian W (y1, . . . , yn) is the function given by

W (y1, . . . , yn)(x) := det


y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)

...
...

. . .
...

y
(n−1)
1 (x) y

(n−1)
2 (x) · · · y

(n−1)
n (x)

 . (2.9)

Theorem 2.4.4. In the conditions of (2.4.2), if W (y1, . . . , yn)(x) 6= 0 for at least one x in the open interval
I, then all solutions are of the form c1y1 + · · ·+ cnyn.

In general, one can show that the condition on the Wronskian is equivalent to the condition that the
functions y1, . . . , yn are linearly independent. In the second-order case, this just means y1 and y2 are not
multiples of each other.

For the non-homogeneous case, Theorem 2.3.1 carries over verbatim, and the general solution is the sum
of a particular solution and the complementary solution:

y = Y + c1y1 + · · ·+ cnyn.

Again, for some forms of the rhs g(x), one can make an ansatz for the particular solution and proceed. In
general, the method of Green’s functions is better.

3 Singularities and series solutions

So far we have dealt with ODEs whose solutions are “nice” functions. Most ODEs (even most second-order
lienar ones) have solutions which are not expressible in terms of elementary functions. We must resort to
finding solutions locally around a given point x = x0, expressed as power series. This works well for linear
ODEs.

3.1 Review of power series

Definition 3.1.1. A power series at x = x0 is an infinite sum of the form

∞∑
n=0

an(x− x0)n := lim
N→∞

N∑
n=0

an(x− x0)n. (3.1)

Sometimes we will only want to write the first few terms. We use the big-O notation O((x − x0)N ) to
mean “terms of degree-N or higher”.

For most intents and purposes, power series can be thought of as polynomials “with an infinite number
of terms”. Arithmetic operations and differentiation/integration work as usual. However whenever infinite
sums are involved, one must be careful about convergence issues. While a sum of finitely many numbers is
always well-defined, sums of infinitely many are not always.
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Definition 3.1.2. The power series (3.1) converges at x if the limit on the rhs exists. It converges
absolutely if the series

∞∑
n=0

|an(x− x0)n| =
∞∑
n=0

|an||x− x0|n

converges.

Every power series has a certain range x0− ρ < x < x0 + ρ, which we also write as |x−x0| < ρ, in which
it converges and outside which it does not. This range is called the radius of convergence of the power
series. In the same way that a solution to an ODE may only be valid in a certain region, e.g. Example 1.3.5
and Theorem 1.4.2, a power series is only valid inside its radius of convergence.

Definition 3.1.3. A function f is analytic at x = x0 if in an open interval containing x0, it is equal to a
power series with radius of convergence ρ > 0.

We think of analytic functions as those which can be expanded as power series. If we already know that
a function f is analytic, we can make the ansatz

f(x) =
∞∑
n=0

anx
n

to find its power series. (This ansatz will give a power series expansion around x = 0.) For example, from
the ansatz, f(0) = a0, so we already know the constant term. Higher-order terms are obtained by the
observation that

f (k)(x) =

∞∑
n=k

akk!xn−k

and therefore f (k)(0) = akk!. This results in the Maclaurin series expansion

f(x) =

∞∑
n=0

f (n)(0)

n!
xn.

This is the expansion around x = 0. To get an expansion around x = x0, we must replace xn with (x− x0)n

in the ansatz, to get the more general Taylor series expansion

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n. (3.2)

We see that for a series expansion to exist, at least the function f must be infinitely differentiable. Often
such functions are called smooth.

Example 3.1.4. Let f(x) = ex. Then f (n)(0) = e0 = 1, so we have the series expansion

ex =

∞∑
n=0

1

n!
xn = 1 + x+

x2

2
+
x3

6
+O(x4).

Warning: it is possible for a function to be smooth but not analytic. In other words, even if (3.2) exists
and has a radius of convergence ρ > 0, it may not be equal to the function f . The typical example of such
a function is

f(x) = 1− e−1/x2

,

whose Taylor series has all coefficients equal to zero.
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3.2 Ordinary points

We consider only homogeneous equations because the procedure for non-homogeneous equations is very
similar. For simplicity, we look at the second-order linear case. The goal is to solve them locally around
x = x0.

Definition 3.2.1. Consider the homogeneous second-order linear ODE

P (x)y′′ +Q(x)y′ +R(x)y = 0.

If around x = x0 the functions Q(x)/P (x) and R(x)/P (x) are analytic, then x0 is an ordinary point.
Otherwise it is a singular point. At an ordinary point, we can rewrite the ODE as

y′′ + p(x)y′ + q(x)y = 0, p(x) :=
Q(x)

P (x)
, q(x) :=

R(x)

P (x)
. (3.3)

To find a series solution, it suffices to plug the general form (3.1) into the ODE and solve for the coefficients
{an}. These coefficients will satisfy some recurrence relation, which relates an to am for m < n.

Example 3.2.2. Consider the first-order ODE

y′ − y = 0.

We already know the solution y = cex to this, but instead let’s find a series solution around x = 0. By
uniqueness, the series we get must be equal to y = cex around x = 0, for some c. We have

∞∑
n=0

annx
n−1 −

∞∑
n=0

anx
n = 0.

Hence the coefficient of xn is zero, for every n. Rewrite the first sum so that we can more easily extract this
coefficient

∞∑
n=0

an+1(n+ 1)xn −
∞∑
n=0

anx
n = 0.

It follows that
an+1(n+ 1)− an = 0, n = 0, 1, 2, . . . .

This is a recurrence relation for the coefficients {an}. For example, the first few coefficients are

a1 =
a0

1
= a0, a2 =

a1

2
=
a0

2!
, a3 =

a2

3
=
a0

3!
, . . . .

In general, we can use the recurrence relation to write all the coefficients in terms of a0:

ak =
a0

k!
.

There are no constraints on what a0 is; it plays the role of the constant c. The series solution is

y =

∞∑
n=0

a0

n!
xn = a0e

x,

as expected.

There is a deep relationship between ODEs and recurrence relations. A second-order constant-coefficient
ODE will produce a recurrence involving an+2 (coming from y′′) and an+1 (from y′) and an (from y).
In general, an n-th order constant-coefficient ODE produces an n-th order recurrence. Then we are free
to choose the first n coefficients a0, a1, . . . , an−1; these act as initial conditions and are analogous to the
constants forming the general solution. An easy way to get the i-th solution in a fundamental system of
solutions is to set ai = 1 and all other ak = 0.

22



Example 3.2.3. Consider the second-order linear ODE

y′′ − y = 0.

This produces
∞∑
n=0

ann(n− 1)xn−2 −
∞∑
n=0

anx
n = 0.

Reindexing, we get
∞∑
n=0

an+2(n+ 2)(n+ 1)xn −
∞∑
n=0

anx
n = 0.

For n ≥ 0, we get the recurrence
an+2(n+ 2)(n+ 1)− an = 0.

It follows that

a2 =
a0

2 · 1
, a4 =

a2

4 · 3
=

a0

4 · 3 · 2 · 1
, . . . ,

a3 =
a1

3 · 2
, a5 =

a3

5 · 4
=

a1

5 · 4 · 3 · 2
, . . . .

The general solution is therefore of the form

y = a0

(
1 +

x2

2!
+
x4

4!
+O(x6)

)
+ a1

(
x+

x3

3!
+
x5

5!
+O(x7)

)
.

These two solutions are known as the hyperbolic cosine and sine respectively:

cosh(x) :=

∞∑
n=0

x2n

(2n)!
, sinh(x) :=

∞∑
n=0

x2n+1

(2n+ 1)!
.

If we solve the equation using the characteristic equation, we get the general solution y = c1e
x + c2e

−x.
In terms of this fundamental set,

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

There is a close relation between the hyperbolic trig function and usual trig functions. For example, note
that

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
.

Example 3.2.4. Consider the second-order linear ODE

y′′ − xy = 0

called the Airy equation. Its two solutions are the Airy functions of the first and second kind, neither of
which can be expressed in terms of elementary functions. We get

∞∑
n=0

an+2(n+ 2)(n+ 1)xn −
∞∑
n=1

an−1x
n = 0.

So when n ≥ 1, we get the recurrence

an+2(n+ 2)(n+ 1)− an−1 = 0, n = 1, 2, 3, . . . ,
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and the special equation 2a2 = 0 when n = 0. Note that the non-constant coefficient x in the ODE made
the recurrence third-order. It follows immediately that

a2 = a5 = a8 = · · · = 0.

The other coefficients are slightly more complicated:

a4 =
a1

4 · 3
, a7 =

a4

7 · 6
=

a1

7 · 6 · 4 · 3
, a10 = · · · , . . . ,

a3 =
a0

3 · 2
, a6 =

a3

6 · 5
=

a0

6 · 5 · 3 · 2
, a9 = · · · , . . . .

The general solution is therefore of the form

y = a0

(
1 +

x3

3 · 2
+

x6

6 · 5 · 3 · 2
+O(x9)

)
+ a1

(
x+

x4

4 · 3
+

x7

7 · 6 · 4 · 3
+O(x10)

)
.

These series have no closed form.

However it is not always possible to obtain a nice recurrence for all coefficients. This is because coefficients
may be complicated functions of x, instead of just constants. Then typically one expands the functions into
series, and manually solves for only the first few coefficients in the series solution.

Theorem 3.2.5 (Analyticity of series solutions at ordinary points). If x = x0 is a ordinary point of

P (x)y′′ +Q(x)y′ +R(x)y = 0,

i.e. Q/P and R/P are analytic at x0, then its general solution is

y =

∞∑
n=0

an(x− x0)n = a0y1 + a1y2

where y1, y2 are series solutions analytic at x0 that form a fundamental set of solutions. Moreover their
radius of convergence is at least as large as the minimum of the radii of convergence of Q/P and R/P .

Proof. We omit the proof that y1, y2 must be analytic. We will only check that they form a fundamental set
of solutions, by computing their Wronskian. In general, regardless of the ODE,

y1 = 1 +O(x2), y2 = x+O(x2).

This is because there are never constraints on a0 and a1, and all other terms are O(x2). Then

W (y1, y2) = det

(
1 +O(x2) x+O(x2)
O(x) 1 +O(x)

)
= (1 +O(x2))(1 +O(x))−O(x)(x+O(x2))

= (1 +O(x))−O(x2) = 1 +O(x) 6= 0.

Hence y1, y2 form a fundamental set of solutions.

3.3 Regular singular points

Series solutions around ordinary points are more well-behaved than those around singular points. ODEs
with singular points may have solutions which are not analytic at those points, so series solutions might not
exist there. This may occur for fairly innocuous ODEs. However, for a class of mild singularities, we can
still use the series methods of the previous section, suitably modified.
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Definition 3.3.1. Suppose the ODE P (x)y′′+Q(x)y′+R(x)y = 0 has a singular point x = x0. This means
that Q(x)/P (x) and R(x)/P (x) are not analytic at x = x0 (cf. (3.3)). However if both

lim
x→x0

Q(x)

P (x)
(x− x0), lim

x→x0

R(x)

P (x)
(x− x0)2 (3.4)

exist, then we say x = x0 is a regular singular point and we can still find series solutions. Otherwise it
is an irregular singular point.

In English, (3.4) means that the function Q(x)/P (x) has a pole of order at most one at x = x0, and
R(x)/P (x) a pole of order at most two. For example, a rational function having a pole of order at most n
at x = x0 means it is of the form

g(x)

(x− x0)n

for some function g(x) which is well-defined, i.e. has no pole, at x = x0. (Equivalently, it means that in a
series expansion around x = x0, we must include terms of negative order up to (x− x0)−n.)

Example 3.3.2. Consider the hypergeometric equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0.

The functions x(1 − x) and (c − (a + b + 1)x) and −ab are all polynomials and therefore analytic. So the
only way

Q(x)

P (x)
=
c− (a+ b+ 1)x

x(1− x)
,

R(x)

P (x)
=

−ab
x(1− x)

can fail to be analytic is if x = 0 or x = 1. These are two singular points of the equation.

1. At x = 0, the two functions

Q(x)

P (x)
x =

c− (a+ b+ 1)x

1− x
,

R(x)

P (x)
x2 =

−abx
1− x

are analytic, by expansion using geometric series. So x = 0 is a regular singular point.

2. At x = 1, one can check also that the singularity is regular.

So we have found two regular singular points of the equation, at x = 0, 1.

Example 3.3.3. Consider the Cauchy–Euler equation

x2y′′ + αxy′ + βy = 0. (3.5)

One can check that x = 0 is the only singular point, and it is regular. In some sense the Cauchy–Euler
equation is the simplest ODE with regular singular points. But even in the simplest case

x2y′′ + y = 0

we cannot find any non-trivial series solutions. The lhs is

x2
∞∑
n=0

ann(n− 1)xn−2 +

∞∑
n=0

anx
n = a0 + a1x+

∞∑
n=2

(n(n− 1) + 1)anx
n.

Setting this equal to 0, we get
a0 = a1 = 0, (n(n− 1) + 1)an = 0,
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i.e. all coefficients are zero! Hence the only series solution we can find this way is the trivial solution y = 0.
The general solution is actually

y = c1 cos(ln |x|) + c2 sin(ln |x|).

When x 6= 0 this is analytic and therefore has a valid power series expansion. At x = 0 we run into issues
with the ln |x| terms, and the function is no longer analytic. In general, the ansatz

y = xr, r ∈ C,

solves the Cauchy–Euler equation whenever

r(r − 1) + αr + β = 0.

This is called the associated indicial equation. In the above case, the two solutions for r are complex,
leading to the appearance of sin and cos.

There is a modification of the series method, due to Frobenius, which handles the case of regular singular
points. For convenience, suppose the regular singular point is at x = 0. Then

x
Q(x)

P (x)
= xp(x) :=

∞∑
n=0

pnx
n, x2R(x)

P (x)
= x2q(x) :=

∞∑
n=0

qnx
n

are both analytic and have valid series expansions. We can rewrite

P (x)y′′ +Q(x)y′ +R(x)y = 0  x2y′′ + x(xp(x))y′ + x2q(x)y = 0.

Writing p(x) and q(x) in their series forms, this is equivalently

x2y′′ + x(p0 + p1x+O(x2))y′ + (q0 + q1x+O(x2))y = 0. (3.6)

If all pn = qn = 0 except p0 and q0, this becomes a Cauchy–Euler equation

x2y′′ + p0xy
′ + q0y = 0.

So in some sense the general case is “just” a Cauchy–Euler equation but with power series coefficients
instead of constant coefficients. Hence we should allow modifications to the solution y = xr (where r solves
the indicial equation) by power series:

y = xr
∞∑
n=0

anx
n, (3.7)

where r solves the indicial equation
r(r − 1) + p0r + q0 = 0.

We will call this the Frobenius ansatz. (There will be one for each solution r.) Using this ansatz to find
solutions at a regular singular point is called the Frobenius method.

Example 3.3.4. Consider the hypergeometric equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0.

We would like to find a series solution around the regular singular point x = 0. First rewrite the equation
in the form (3.6), by computing

x
Q(x)

P (x)
=
c− (a+ b+ 1)x

1− x
=

∞∑
n=0

cxn − (a+ b+ 1)

∞∑
n=1

xn = c+O(x)

x2R(x)

P (x)
= − abx

1− x
= 0 +O(x).
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Hence the associated Cauchy–Euler equation is

x2y′′ + cxy′ = 0.

The indicial equation for r is therefore

r(r − 1) + cr = 0  r = 0, 1− c.

So as long as c is not an integer, the two (distinct) Frobenius ansatzes should be

y1 =

∞∑
n=0

anx
n, y2 = x1−c

∞∑
n=0

anx
n.

Note that the first solution y1 is actually a power series, and therefore analytic by general theory. This
solution is generally called the hypergeometric function. Explicitly, the associated recurrence is

(n+ 1)nan+1 − n(n− 1)an + c(n+ 1)an+1 − (a+ b+ 1)nan − aban = 0, n ≥ 0.

Rearranging, this becomes

an+1 =
(n+ a)(n+ b)

(n+ 1)(n+ c)
an, n ≥ 0.

For convenience, we define the rising factorial

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1).

Then from the recurrence, we get

an =
(a)n(b)n
n!(c)n

a0.

Definition 3.3.5. The hypergeometric function is a three-parameter family of functions defined by

2F1(a, b, c;x) :=

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
.

One can check that the other solution of the hypergeometric equation around x = 0 is

x1−c
2F1(1 + a− c, 1 + b− c, 2− c;x).

Hypergeometric functions are generalizations of many special functions. For example,

ln(1 + x) = x · 2F1(1, 1, 2;−x)

arcsin(x) = x · 2F1(1/2, 1/2, 3/2;x2).

Many special families of polynomials also arise in this way: Laguerre polynomials, which appear in the study
of the hydrogen atom; Hermite polynomials, which appear in the study of the harmonic oscillator; Bessel
functions, which appear in the study of heat conduction in rods, etc. We will see in section 3.4 the reason
why hypergeometric functions are so ubiquitous.

Now we plug the Frobenius ansatz (3.7) back into the original equation (3.6) in order to analyze properties
of the solutions. This yields

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

( ∞∑
n=0

an(n+ r)xn+r

)( ∞∑
n=0

pnx
n

)
+

( ∞∑
n=0

anx
n+r

)( ∞∑
n=0

qnx
n

)
= 0.

We need to extract the coefficient of xn+r from all three terms.
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1. The first term is straightforward and gives (n+ r)(n+ r − 1)an.

2. The second term requires us to multiply power series. Power series multiply just like polynomials. The
xn+r term must receive a contribution of xk+r from the first sum and a contribution of xn−k from the
second sum, where k is any integer from 0 to n. So the coefficient of xn+r here is

n∑
k=0

ak(k + r)pn−k = an(n+ r)p0 +

n−1∑
k=0

ak(k + r)pn−k.

3. Similarly, the third term gives

n∑
k=0

akqn−k = anq0 +

n−1∑
k=0

akqn−k.

Putting these together, we get a recurrence. If we put all terms involving an on the lhs and all other terms
on the rhs, the recurrence is

[(n+ r)(n+ r − 1) + p0(n+ r) + q0] an = −
n−1∑
k=0

ak [(k + r)pn−k + qn−k] .

To better understand the structure of this recurrence, recall that

I(r) := r(r − 1) + p0r + q0

is the indicial equation of the associated Cauchy–Euler problem. The recurrence can be rewritten

I(n+ r)an = −
n−1∑
k=0

ak [(k + r)pn−k + qn−k] . (3.8)

In order to solve for an for all n ≥ 1 (in terms of a0), we therefore require that I(r + 1), I(r + 2), . . . are all
non-zero.

Suppose the two roots of the indicial equation are r1 and r2, with r1 ≥ r2. This means I(r1) = I(r2) = 0
and I(x) 6= 0 for all other x. In particular,

I(r1 + 1), I(r1 + 2), . . . 6= 0,

so we can always find a solution using r1. However a problem can arise if r1 − r2 is an integer m. Then

I(r2 +m) = I(r1) = 0,

and so we won’t be able to solve for am using the recurrence (3.8). In particular if r1 = r2 we also have this
problem. The following theorem tells us what ansatz to make (for the second solution) in this situation.

Theorem 3.3.6. When r1 − r2 = m is an integer, a fundamental set of solutions is of the form

y1 = xr1
∞∑
n=0

anx
n, y2 = y1 lnx+ xr2

∞∑
n=0

bnx
n.

Proof. Let y1 = xr1
∑
anx

n be the solution coming from r1. Make the ansatz y2 = v(x)y2 for some function
v(x). If we plug this into the original equation (3.6) and use that y1 is a solution, we find

x2(v′′(x)y1 + 2v′(x)y′1) + xp(x)v′(x)y1 = 0.
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Rearranging, this becomes a first-order homogeneous linear equation for v′(x):

x2y1v
′′(x) + (2x2y′1 + xp(x)y1)v′(x) = 0.

This can be solved using the integrating factor

µ(x) = exp

∫
2x2y′1 + xp(x)y1

x2y1
= exp

∫ (
2y′1
y1

+
p(x)

x

)
= y2

1 exp

∫
p(x)

x
.

Multiplying by µ changes the equation into (v′(x)µ)′ = 0, and therefore the solution (up to constants) is

v′(x) =
1

y2
1

e−
∫
p(x)/x.

We want to write this as a series. Recall y1 = xr1 ỹ1 where ỹ1 is analytic. Then

v′(x) =
1

x2r1 ỹ1
e−

∫
p0/x+p1+O(x) =

1

x2r1+p0 ỹ1
e−p1x+O(x2) =

1

x2r1+p0
O(1).

From the indicial equation we see that r1 + r2 = 1 + p0, so

2r1 + p0 = 1 + r1 − r2 = 1 +m.

Hence when we integrate v′(x) term by term, we get

v(x) = c0x
−m + · · ·+ cm−1x

−1 + cm lnx+ cm+1x+O(x2)

for some constants ci. Importantly, there is a term cm lnx. It follows that

y2 = vy1 = cmy1 lnx+ xr1x−m(analytic).

But r1 −m = r2. Hence indeed y2 is of the claimed form.

Theorem 3.3.7 (Analyticity of Frobenius series solutions at regular singular points). Consider the ODE

x2y′′ + x(xp(x))y′ + x2q(x)y = 0

where x = 0 is a regular singular point. The two solutions arising from the Frobenius method form a
fundamental system of solutions. If ρ is the radius of convergence for power series expansions of xp(x) and
x2q(x), then the general solution has radius of convergence at least ρ.

3.4 Singularities at infinity

So far we have looked at singularities at x = x0 for finite x0. Whether such points are ordinary or singular
points controls the behavior of solutions as x → x0. Similarly, we can also look at the “point” x = ∞.
Whether this is an ordinary or singular point controls the behavior of solutions as x→∞.

In order to investigate behavior at infinity, we need to do a change of variables. If we let

ξ :=
1

x
,

then looking at ξ → 0 is equivalent to looking at x→∞, and we already know what it means to investigate
singularities at zero.

Definition 3.4.1. An ODE has a ordinary/singular point at infinity if, under the change of variables
ξ = 1/x, it has an ordinary/singular point at ξ = 0.
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We must be careful when performing this change of variables. In addition to plugging in x = 1/ξ, we
need to plug in

d

dx
=
dξ

dx

d

dξ
= − 1

x2

d

dξ
= −ξ2 d

dξ
. (3.9)

Higher-order derivatives are obtained by a composition of first-order derivatives, keeping the product rule in
mind, e.g.

d2

dx2
=

d

dx

d

dx
=

(
−ξ2 d

dξ

)(
−ξ2 d

dξ

)
= 2ξ3 d

dξ
+ ξ4 d

2

dξ2
. (3.10)

Example 3.4.2. Consider the hypergeometric equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0.

For the sake of notation, define

Y (ξ) := y

(
1

ξ

)
= y(x),

so that it is clear Y ′ means “derivative with respect to ξ”. We perform the change of variables, using (3.9)
and (3.10):

1

ξ

(
1− 1

ξ

)(
2ξ3Y ′ + ξ4Y ′′

)
+

(
c− a+ b+ 1

ξ

)(
−ξ2Y ′

)
− abY = 0.

Simplifying, we get
ξ2(ξ − 1)Y ′′ + ξ ((2− c)ξ + (a+ b− 1))Y ′ − abY = 0.

This is the hypergeometric equation “at infinity”. In the notation of (3.4), we have

P (ξ) = ξ2(ξ − 1)

Q(ξ) = ξ ((2− c)ξ + (a+ b− 1))

R(ξ) = −ab,

and we are concerned with the functions

Q(ξ)

P (ξ)
=

(2− c)ξ + (a+ b− 1)

ξ(ξ − 1)
,

R(ξ)

P (ξ)
=

−ab
ξ2(ξ − 1)

.

These are not analytic at ξ = 0, so it is a singular point. But

lim
ξ→0

ξ
Q(ξ)

P (ξ)
= 1− a− b, lim

ξ→0
ξ2R(ξ)

P (ξ)
= ab

both exist, so ξ = 0 is a regular singular point.

This example, along with Example 3.3.2, shows us that the hypergeometric equation actually has three
singular points, at x = 0, 1,∞, all of which are regular singular points. In fact, any second-order ODE with
three regular singular points can be converted to the hypergeometric equation via a change of variables.
This is the reason that hypergeometric functions are so ubiquitous; many families of polynomials satisfy
second-order ODEs, which often have three regular singular points (counting ∞). So they can be rewritten
in terms of hypergeometric functions, after some change of variables and possibly some scaling.

Example 3.4.3. Consider the equation

(x− 1)(x− 2)y′′ + αxy′ + βy = 0.

It clearly has regular singular points at x = 1 and x = 2. At x =∞, we get(
1

ξ
− 1

)(
1

ξ
− 2

)(
2ξ3Y ′ + ξ4Y ′′

)
+
α

ξ

(
−ξ2Y ′

)
+ βY = 0.
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Simplifying, we get
(1− ξ)(1− 2ξ)ξ2Y ′′ + (1− ξ)(1− 2ξ)(2− α)ξY ′ + βY = 0.

So ξ = 0, i.e. x = ∞, is another regular singular point. (Note that in the ξ coordinate, ξ = 1 and ξ = 1/2
are also regular singular points, but these correspond to x = 1 and x = 2.) Hence this equation has three
regular singular points,at x = 1, 2,∞. If we do a change of variables

x 7→ u := x− 1,

then in the coordinate u the equation has three regular singular points, at u = 0, 1,∞. Hence it is a
hypergeometric equation, with solution

2F1(a, b, c;u) = 2F1(a, b, c;x− 1)

for some parameters a, b, c. In fact, we can explicitly perform this change of variables, to get

u(u− 1)y′′ + α(u+ 1)y′ + βy = 0.

The parameters a, b, c therefore need to satisfy

−ab = −β, c = −α, −(a+ b+ 1) = −α,

where the minus signs are because we must flip u(u− 1) into u(1− u) by multiplying the whole equation by
−1. For example, if (α, β) = (4, 2), then (a, b, c) = (1, 2, 4) and one solution to the original equation is

y = 2F1(1, 2, 4;x− 1).

In general, given any three distinct points x1, x2, x3 on the real line (with ∞ included), there is a change
of variables that will take these three points to 0, 1,∞ respectively:

x 7→ (x− x1)(x2 − x3)

(x− x3)(x2 − x1)
.

This is called a Möbius transformation. In the example above, we sent (1, 2,∞) 7→ (0, 1,∞) using the
map x 7→ x− 1. We could also choose to send (1,∞, 2) 7→ (0, 1,∞) using the map

x 7→ lim
x2→∞

(x− 1)(x2 − 2)

(x− 2)(x2 − 1)
=
x− 1

x− 2
.

In this new coordinate ũ, the solution will again be a hypergeometric series, with different parameters ã, b̃, c̃.
But in terms of x, it must be equal to the original solution. This is one way to produce non-trivial identities
for hypergeometric series.

3.5 Irregular singular points

Series solutions at irregular singular points are hopeless. The following example illustrates why.

Example 3.5.1. Consider the first-order linear ODE

x2y′ + y = 0.

It has an irregular singular point at x = 0. One checks that the general solution is

y = ce−1/x.

It is impossible to obtain this solution as a series, even using the Frobenius ansatz. This is because

e−1/x = 1− x−1 +
1

2
x−2 +

1

6
x−3 + · · ·

has terms of arbitrarily negative degree, and therefore cannot be written in the form of the Frobenius ansatz
at all. The function e−1/x has an essential singularity at x = 0. This is a “pole of infinite order”.
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The general idea for second-order linear equations y′′ + p(x)y′ + q(x)y = 0 is that

1. a regular singularity at x = 0 corresponds to p(x) = O(x−1) and q(x) = O(x−2);

2. an irregular singularity at x = 0 corresponds to p(x) = O(x−k−1) and q(x) = O(x−2k−2) for some
integer k ≥ 1.

Definition 3.5.2. The integer k is called the rank of the irregular singularity. Equivalently, it is the smallest
integer such that

(x− x0)k+1p(x), (x− x0)2k+2q(x)

are analytic functions at x = x0.

The example suggests that solutions at an irregular singular point of rank k should involve a term
expO((x− x0)−k). Indeed, solutions are of the form

y(x) = ỹ(x) exp

(
ck

(x− x0)k
+

ck−1

(x− x0)k−1
+ · · ·+ c1

x− x0

)
where ỹ(x) is some Frobenius series. Usually the constants ci are determined by analyzing asymptotics near
x = x0, and then the Frobenius ansatz is used. We will not go through this procedure.

Example 3.5.3. An irregular singular point can be viewed as the result of two regular singular points
“colliding”. Consider the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0.

This has a regular singular point x = 0 and an irregular singular point x =∞. It is obtained from the usual
hypergeometric equation by the change of coordinates x̃ := bx and then sending b → ∞. The change of
coordinates produces

x̃

b

b− x̃
b

(b2y′′) +

(
c− (a+ b+ 1)

x̃

b

)
(by′)− aby = 0

since d/dx̃ = b(d/dx). Divide out a factor of b and simplify a little to get

x̃
b− x̃
b

y′′ +

(
c− a+ b+ 1

b
x̃

)
y′ − ay = 0.

In the limit b→∞, both fractions become 1 and we get the confluent hypergeometric equation. The singular
points x = 0,∞ become singular points x̃ = 0,∞, but the singular point x = 1 becomes x̃ = b and tends to
∞ in the limit. It collides with the existing regular singularity to create an irregular singularity at ∞.

Definition 3.5.4. From this analysis, the analytic solution at x = 0 of the confluent hypergeometric equation
must be the series

lim
b→0

2F1

(
a, b, c;

x

b

)
.

This is the confluent hypergeometric series 1F1(a, c;x).

In the same way that any second-order equation with three regular singular points can be transformed
into the hypergeometric equation, any second-order equation with a regular singular point and an irregular
singular point can be transformed into the confluent hypergeometric equation. For example, this is true for
Laguerre polynomials and Bessel functions.
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4 Laplace transform

The Laplace transform is a general tool used to transform differential equations into usual algebraic ones.
It is usually easier to solve the resulting algebraic equation and do run the Laplace transform backward to
get the desired solution to the ODE.

Definition 4.0.1. The Laplace transform of a function f(t) is a new function F (s) of a real variable s.
The usual notation is

L{f(t)} := F (s) :=

∫ ∞
0

e−stf(t) dt. (4.1)

We often call e−st the kernel. Note that this has nothing to do with the concept of kernel from linear
algebra.

Historically, the variable t stood for time, so we often say f(t) is a function in the time domain. By
analogy with Fourier theory, the variable s represents frequency, and so the corresponding F (s) is in the
frequency domain.

Example 4.0.2. The simplest possible function we can plug into the Laplace transform is the constant
function f(t) = 1:

L{1} =

∫ ∞
0

e−st dt = −e
−st

s

∣∣∣∣t=∞
t=0

=
1

s
.

From this, one can directly see that

L{eat} =

∫ ∞
0

e−(s−a)t dt =
1

s− a
.

One has to be careful when taking Laplace transforms of functions which “grow faster” than eat as t→∞.
This is because in those cases, the integral (4.1) may diverge and the Laplace transform may not exist. The
technical condition we need is that

beyond some T , for all t > T we have |f(t)| ≤ Keat for some constants a and K.

This condition is usually abbreviated as f(t) = O(eat), similar to the big-O notation we used for series
in Definition 3.1.1. In English, it means that f(t) grows at most as fast as some constant multiple of the
exponential eat.

Example 4.0.3. All polynomials grow slower than exponentials, so if f(t) is any polynomial of t then
f(t) = O(eat) for any positive a. On the other hand, for example,

et
2

6= O(eat) for any a.

As long as we avoid such fast-growing functions and functions which are not piecewise continuous, the
Laplace transform will always exist. We will not worry about existence much from now on, unless it plays a
crucial role in an argument.

Example 4.0.4. Let f(t) = sin at and g(t) = cos at. Let their Laplace transforms be

F (s) = L{f(t)}, G(s) = L{g(t)}.

We can compute these two Laplace transforms simultaneously:

F (s) =

∫ ∞
0

e−st sin at dt = −e
−st

s
sin at

∣∣∣∣∞
0

+
a

s

∫ ∞
0

e−st cos at dt =
a

s
G(s)

G(s) =

∫ ∞
0

e−st cos at dt = −e
−st

s
cos at

∣∣∣∣∞
0

− a

s

∫ ∞
0

e−st sin at dt =
1

s
− a

s
F (s).

Solving this system of equations for F (s) and G(s) gives

F (s) =
a

s2 + a2
, G(s) =

s

s2 + a2
.
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The usual way to compute Laplace transforms of functions is to know (or look up in a table) common
pieces, and then to use properties of the Laplace transform. This is analogous to how we usually differentiate
functions, by knowing a few common derivatives and applying the sum/product/chain rules. Since we have
graduated from basic calculus, we refer to the “sum rule” as the property of linearity.

Theorem 4.0.5 (Linearity of the Laplace transform). For constants c1, c2 and functions f1, f2,

L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)}.

Example 4.0.6. The Laplace transform of 3e−2t − 7 cos 5t is

3L{e−2t}+ 7L{cos 5t} =
3

s+ 2
− 7s

s2 + 25
.

4.1 Solving IVPs

The utility of the Laplace transform for ODEs lies in part (1) of the following theorem, which tells us how to
find the Laplace transform of y′ once we know the Laplace transform of y. Since the time variable is usually
called t, from now on our ODEs have independent variable t instead of x.

Theorem 4.1.1 (Properties of the Laplace transform (part 1)).

1. (Time derivative) Suppose f(t) = O(eat) for some constant a. Then

L{f ′(t)} = sL{f(t)} − f(0). (4.2)

2. (Frequency derivative) Let L{f(t)} = F (s). Then

L{−tf(t)} = F ′(s). (4.3)

Proof. We only prove (1). Integrating by parts gives

L{f ′(t)} =

∫ ∞
0

e−stf ′(t) dt = e−stf(t)

∣∣∣∣∞
0

+ s

∫ ∞
0

e−stf(t) dt.

Since f(t) = O(eat),
lim
t→∞

|e−stf(t)| ≤ K lim
t→∞

e−(s−a)t = 0.

Hence the first term becomes −f(0), and the second term is sL{f(t)}, and we are done.

Assuming f ′(t) satisfies the same condition as f(t), we can repeatedly apply (4.2). For example,

L{f ′′(t)} = sL{f ′(t)} − f ′(0) = s2L{f(t)} − sf(0)− f ′(0).

In other words, the Laplace transform of any derivative of f(t) can be related to the Laplace transform of
f(t) itself.

Example 4.1.2. Consider the IVP

y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = 0.

Let Y (s) := L{y}. Using the given initial conditions, the Laplace transform of the lhs is

L{y′′} − 3L{y′}+ 2L{y} =
(
s2Y (s)− s− 0

)
− 3 (sY (s)− 1) + 2Y (s) = (s2 − 3s+ 2)Y (s)− (s− 3).

Setting this equal to the rhs L{0} = 0, it follows that

Y (s) =
s− 3

(s− 1)(s− 2)
.

If we can find a function y(t) whose Laplace transform is exactly Y (s), then this function y(t) is the (unique)
solution to the IVP!
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The operation of obtaining the original function y from its Laplace transform Y (s) = L{y} is called the
inverse Laplace transform. We often write

y = L−1{Y (s)}.

Computing inverse Laplace transforms in general is hard, just like integrating arbitrary functions is hard.
But the functions for which we will want the inverse Laplace transform are usually recognizable combinations
of basic pieces, especially if we keep partial fraction decomposition in mind.

Example 4.1.3. Continuing with the previous example, we would like the inverse Laplace transform of

Y (s) =
s− 3

(s− 1)(s− 2)
.

Using partial fractions, we write

Y (s) =
a

s− 1
+

b

s− 2

for some constants a and b which satisfy

a(s− 2) + b(s− 1) = s+ 1  

{
a+ b = 1

−2a− b = −3
.

Solving, a = 2 and b = −1. Hence

Y (s) =
2

s− 1
− 1

s− 2
= 2L{et} − L{e2t}.

Hence L−1{Y (s)} = 2et − e2t. One can check this is the solution to the IVP.

We can summarize the logic behind using the Laplace transform to solve IVPs using the following diagram:

Linear ODE for y(t) Solution y(t)

Algebraic equation for Y (s) Solution Y (s) = L{y(t)}.

hard

Laplace transform L{−}

algebra

inverse Laplace transform L−1{−}

4.2 Piecewise continuous forcing functions

The true power of the Laplace transform arises when the rhs of a (non-homogeneous) linear ODE has
discontinuities. This rhs function is often called the forcing function. Perhaps the ODE models a physical
phenomenon which is abrupt, e.g. flicking on a switch to complete an electrical circuit. The building block
for such discontinuous behavior is the Heaviside step function

x

y

c

uc(t) :=

{
0 t < c

1 t ≥ c.

Any piecewise continuous function can be written in terms of step functions and continuous functions, as
follows.
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1. If we want f(t) on (c,∞), use f(t)uc(t).

2. If we want f(t) on (−∞, c), use f(t)(1− uc(t)).

3. If we want f(t) on (c, d), use f(t)(uc(t)− ud(t)).

Whether or not endpoints are included makes no difference when integrating, so we neglect the difference
between e.g. (c,∞) and [c,∞).

Theorem 4.2.1 (Properties of the Laplace transform (part 2)). Let F (s) = L{f(t)}.

1. (Frequency shift)
L{eatf(t)} = F (s− a). (4.4)

2. (Time shift)
L{uc(t)f(t− c)} = e−csF (s). (4.5)

In particular, if we apply the time shift property (4.5) to the constant function f(t) = 1, we get the
Laplace transform of a single step function:

L{uc(t)} = e−csL{1} =
e−cs

s
.

Example 4.2.2. Consider the IVP
y′ + y = g(t), y(0) = 0

where the forcing function is

g(t) =


0 t < 2

1 2 ≤ t < 5

0 t ≥ 5.

This represents e.g. the charge stored in a capacitor where a constant 1 volt is applied between times t = 2
and t = 5. First note we can rewrite

g(t) = u2(t)− u5(t).

Take the Laplace transform to get

sY (s) + Y (s) =
e−2s − e−5s

s
.

Hence we need to compute the inverse Laplace transform of

Y (s) =
e−2s − e−5s

s(s+ 1)
.

Note that we can use the time shift property (4.5) backward for each of the two terms in the rhs here. So it
suffices to compute the inverse Laplace transform

L−1

{
1

s(s+ 1)

}
= L−1

{
1

s
− 1

s+ 1

}
= 1− e−t,

and then use the time shift property (4.5) to get the solution

y(t) = L−1{Y (s)} = u2(t)(1− e−(t−2))− u5(t)(1− e−(t−5)).

This solution, when graphed, looks like
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In general, piecewise continuous forcing functions often represent a system being “switched on”. A
common situation is a piecewise constant forcing function, like a sum of step functions. The solution will
then have two components:

1. a transient response, which is present for a short time immediately after the system is switched on;

2. a steady-state response, which is the long-term (asymptotic) behavior of the solution.

In the example above, the forcing function caused the capacitor to charge almost up to 1 volt, and then
discharge. This is the transient behavior. After a long time, the capacitor will have total charge approaching
zero, which is the steady-state behavior.

Example 4.2.3. Steady-state behavior need not be constant. The IVP

y′′ + y = u2(t), y(0) = y′(0) = 0

has Laplace transform

s2Y (s) + Y (s) =
e−2s

s
,

and hence the solution is

L−1{Y (s)} = L−1

{
e−2s

s(s2 + 1)

}
= u2(t)(1− cos(t− 2)).

This has oscillatory steady-state behavior.

In the case when the steady-state response is constant, i.e. limt→∞ y(t) exists, we can compute its value
without necessarily finding the solution y. This is possible because the Laplace transform L{y} already
contains this information.

Theorem 4.2.4. Let L{f(t)} = F (s). Assume f is bounded on (0,∞).

1. (Initial value) limt→0 f(t) = lims→∞ sF (s) whenever both limits exist.

2. (Final value) limt→∞ f(t) = lims→0+ sF (s) whenever both limits exist.

Proof. Start with the equation (4.2)
L{f ′(t)} = sF (s)− f(0).

Take the limit s → ∞ of both sides. On the lhs, this limit can be exchanged with the integral. (We ignore
all convergence issues here and assume this is always a valid operation.) So

lim
s→∞

L{f ′(t)} =

∫ ∞
0

lim
s→∞

e−stf ′(t) dt =

∫ ∞
0

0 · f ′(t) dt = 0.
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Hence we get 0 = lims→∞ sF (s)− f(0), which is the statement of the initial value theorem.
For the final value theorem, we start with the same equation and take the limit s → 0+ of both sides.

On the lhs,

lim
s→0+

L{f ′(t)} =

∫ ∞
0

lim
s→0+

e−stf ′(t) dt =

∫ ∞
0

f ′(t) dt = lim
t→∞

f(t)− f(0).

Comparing this to the rhs, we get the statement of the final value theorem.

It is possible that lims→0+ sF (s) exists but limt→∞ f(t) does not. For example, f could have oscillatory
steady-state behavior. In practice, there is a useful condition for the Laplace transform Y (s) to ensure that
the steady-state limit limt→∞ y(t) exists. We state but do not prove it.

Theorem 4.2.5. If all the poles of sF (s) have negative real parts, then limt→∞ f(t) exists.

Example 4.2.6. In Example 4.2.2, we computed that

Y (s) =
e−2s − e−5s

s(s+ 1)
.

This function satisfies the conditions of the theorem, because sY (s) has a single pole at s = −1. So, without
computing the inverse Laplace transform, we know that

lim
t→∞

y(t) = lim
s→0+

sY (s) = lim
s→0+

e−2s − e−5s

s+ 1
= 0.

This agrees with what we get by actually finding y(t) and taking the limit t→∞.

Example 4.2.7. In Example 4.2.3, we computed that

Y (s) =
e−2s

s(s2 + 1)
.

Then sY (s) has two poles, at s = 0± i, which do not have negative real parts. So we are not guaranteed that
limt→∞ f(t) exists, and in fact we know from the earlier example that it does not; the steady-state behavior
is oscillatory. On the other hand,

lim
s→0+

sF (s) = lim
s→0+

e−2s

s2 + 1
= 1.

4.3 Impulsive forcing functions

Another common type of forcing function is impulses: short-time high-magnitude spikes. These are modeled
by functions g(t) which are non-zero only in a small interval (t0, t1), and the total impulse imparted is the
quantity ∫ t1

t0

g(t) dt.

In the same way we build discontinuous functions out of a canonical step function uc(t) which steps up
exactly by 1 unit, we will only consider functions g(t) whose total impulse is 1.

Example 4.3.1. Consider the family of functions

Dτ (t) =

{
1/(2τ) −τ < t < τ

0 otherwise.
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These all have total impulse 1. For small τ , these are good functions for modeling impulses.

x

y

In the limit τ → 0, we get an idealized impulse δ(t). The total impulse is still 1, but we should think that
δ(t) = 0 for every t 6= 0. There is no actual function δ that satisfies these requirements. To be precise, such
an object δ exists only as a distribution, or density function, but not as an actual function. It does not
make sense to ask for the “value” of a density function at a point t; it only makes sense to ask for its value
when integrated over an interval [a, b].

Definition 4.3.2. The Dirac delta function, also known as the unit impulse, is the distribution satis-
fying ∫ b

a

δ(t) dt =

{
1 [a, b] contains 0

0 otherwise.

In particular, for any ε > 0 we have
∫∞
ε
δ(t) dt = 0, and similarly for (−∞,−ε). So we lose nothing by

thinking of δ as a “function” such that

δ(t) = 0 for all t 6= 0.

One can derive many properties of the delta function with arguments like this. However these arguments
and calculations will not be completely mathematically rigorous. In the same way that for improper integrals∫∞
a

we think of “plugging in ∞”, when we work with delta functions we tend to think of them as actual

functions. In reality, for improper integrals there is a limit limA→∞
∫ A
a

hiding in the background. For delta
functions, the analogous thing to keep in mind is

δ(t) = lim
τ→0

Dτ (t).

Example 4.3.3. Let f be any continuous function. Take an interval [a, b] containing 0. Then since δ(t) = 0
except at t = 0, ∫ b

a

f(t)δ(t) dt =

∫ b

a

f(0)δ(t) dt = f(0)

∫ b

a

δ(t) dt = f(0). (4.6)

To really make this calculation precise, we should think about

lim
τ→0

∫ b

a

f(t)Dτ (t) dt,

which we won’t do in detail.
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Note that we can shift the impulse from t = 0 to an arbitrary t = t0 by using δ(t− t0). Usually we will
take t0 > 0. The formula (4.6) yields its Laplace transform:

L{δ(t− t0)} =

∫ ∞
0

e−stδ(t− t0) dt = e−st0 . (4.7)

Example 4.3.4. Consider the IVP from Example 4.2.2, but now with an impulse at t = 2 as forcing
function:

y′ + y = δ(t− 2), y(0) = 0.

Then the Laplace transform is
sY (s) + Y (s) = e−2s,

so that the solution to the IVP is

L−1{Y (s)} = L−1

{
e−2s

s+ 1

}
= u2(t)e−(t−2).

4.4 Convolution and impulse response

Now that we are used to using the Laplace transform to solve IVPs involving complicated forcing functions,
we can ask a very general question: to what extent does the solution actually depend on the forcing function?
We can try leaving the forcing function g(t) unspecified, to see if we can still get some sort of solution which
depends on g(t) in some way.

Example 4.4.1. Consider the IVP

ay′ + by = g(t), y(0) = y0. (4.8)

Let G(s) := L{g(t)} be the Laplace transform of the rhs. Then

a(sY (s)− y0) + bY (s) = G(s).

Rearranging, we can write

Y (s) =
y0

as+ b︸ ︷︷ ︸
Φ(s)

+
G(s)

as+ b︸ ︷︷ ︸
Ψ(s)

.

By linearity, the solution to the original IVP is

y(t) = L−1{Φ(s)}︸ ︷︷ ︸
φ(s)

+L−1{Ψ(s)}︸ ︷︷ ︸
ψ(s)

.

1. Φ(s) is what we would get if we set the forcing function to zero, i.e. solved the associated homogeneous
equation. In other words, φ = L−1{Φ(s)} solves

ay′ + by = 0, y(0) = y0. (4.9)

2. Ψ(s) is what we would get if we set the initial condition to zero. In other words, ψ = L−1{Ψ(s)} solves

ay′ + by = g(t), y(0) = 0.

So Φ(s) is independent of the forcing function g(t), and we should focus only on Ψ(s). In general,

Ψ(s) = H(s)G(s)

where H(s) = (as + b)−1 is a function which is also independent of g(t). Then we would like to be able to
write

ψ = L−1{Ψ(s)} = some function of L−1{H(s)} and g = L−1{G(s)}.
The function H(s) is called the transfer function.
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In other words, we want to know what multiplication of functions in the frequency domain corresponds
to in the time domain. For example, if F (s) = L{f(t)} and G(s) = L{g(t)}, it is certainly not true that

L−1{F (s)G(s)} = f(t)g(t),

since this is already false for f(t) = g(t) = 1, where F (s) = G(s) = 1/s. The actual formula is more subtle.

Theorem 4.4.2. If F (s) = L{f(t)} and G(s) = L{g(t)}, then

F (s)G(s) = L{h(t)}

where the function h is the convolution

h(t) :=

∫ t

0

f(t− τ)g(τ) dτ.

Proof. This is a slightly tricky direct calculation. Note that we can rewrite

F (s)G(s) =

∫ ∞
0

∫ ∞
0

e−s(ζ+τ)f(ζ)g(τ) dζ dτ,

which suggests a change of variables ζ  t := ζ + τ for the inner integral. Then

F (s)G(s) =

∫ ∞
0

∫ ∞
τ

e−stf(t− τ)g(τ) dt dτ.

Now we change the order of integration from dt dτ to dτ dt.

τ

t

 

τ

t

This only changes the bounds of integration and not the integrand:

F (s)G(s) =

∫ ∞
0

∫ t

0

e−stf(t− τ)g(τ) dτ dt.

Pull the e−st out to get

F (s)G(s) =

∫ ∞
0

e−st
(∫ t

0

f(t− τ)g(τ) dτ

)
dt = L{h(t)}.

Definition 4.4.3. We view the convolution of f and g as a new type of product of functions. The resulting
function is usually denoted

(f ∗ g)(t) :=

∫ t

0

f(t− τ)g(τ) dτ.

Example 4.4.4. Now we can continue with Example 4.4.1. Using the convolution product,

L−1{Ψ(s)} = L−1{H(s)G(s)} = h(t) ∗ g(t)
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where h(t) := L−1{H(s)} is the inverse Laplace transform of the transfer function H(s). So once we know
what h(t) is, we are done. In our case,

h(t) = L−1

{
1

as+ b

}
=

1

a
e−

b
a t.

Hence the solution to (4.8) is given by

y(t) = φ(t) + h(t) ∗ g(t)

where φ(t) is the solution of the associated homogeneous equation (4.9) and h(t) is given as above.

In general, we have the following interpretation of h(t). In frequency domain, recall that ψ(t) =
L−1{Ψ(s)} = L−1{H(s)G(s)} is the solution of

ay′ + by = g(t), y(0) = y0.

If we set G(s) = 1, then the solution will be L−1{H(s)} = h(t). In the time domain, (4.7) tells us that

g(t) = L−1{G(s)} = L−1{1} = δ(t).

It follows that the solution to
ay′ + by = δ(t), y(0) = y0

is precisely the function h(t) we wanted.

Definition 4.4.5. The function h(t) is called the impulse response.

All this work yields a very general conceptual framework for handling forcing functions. Given a linear
IVP with forcing function g(t), the solution is given by the following procedure.

1. Find the solution φ to the associated homogeneous equation.

2. Find the impulse response h of the equation, i.e. the solution when g(t) = δ(t).

3. The actual solution is given by
y(t) = φ(t) + h(t) ∗ g(t).

We say that such ODEs are characterized by their impulse response.

5 First-order systems

Now we return to the study of first-order equations, but in systems. In the same way that one can have a
system of algebraic equations, one can have a system of ODEs. We start with first-order systems, which are
the most important case.

Definition 5.0.1. A first-order system of ODEs is a system of equations of the form

x′1 = F1(t, x1, x2, . . . , xn)

x′2 = F2(t, x1, x2, . . . , xn)

...

x′n = Fn(t, x1, x2, . . . , xn).

(5.1)

The associated IVP has initial conditions x(t0) = x0 for each xi.
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First-order systems arise very naturally in the study of ODEs. Given an arbitrary n-th order equation
y(n) = F (t, y, y′, . . . , y(n−1)), define

x1 = y, x2 = y′, x3 = y′′, · · · , xn = y(n−1).

Then the n-th order equation becomes equivalent to the first-order system

x′1 = x2

x′2 = x3

...

x′n−1 = xn

x′n = F (t, x1, x2, . . . , xn).

Initial conditions for the n-th order equation, e.g. y′(0) = y′0, become conditions for the first-order equations,
e.g. x2(0) = y′0. Hence there is a close relation between a first-order system of n ODEs and a single n-th
order ODE. For linear equations, all of the general theory from section 2.4 carries over, as we will see.

Definition 5.0.2. The first-order system (5.1) is a linear system if each Fi(t, x1, x2, . . . , xn) is a linear
function of x1, x2, . . . , xn. In other words, (5.1) takes the form

x′1 = p11(t)x1 + · · ·+ p1n(t)xn + g1(t)

x′2 = p21(t)x1 + · · ·+ p2n(t)xn + g2(t)

...

x′n = pn1(t)x1 + · · ·+ pnn(t)xn + gn(t).

(5.2)

When all the gi are zero, the system is homogeneous.

Theorem 5.0.3 (Existence and uniquness for linear first-order systems). If the functions pij and gi are
continuous on an open interval I containing t0, then there exists a unique solution to (5.2) satisfying the
initial conditions

x1(t0) = x0
1, x2(t0) = x0

2, · · · , xn(t0) = x0
n. (5.3)

It is cumbersome to work with systems of ODEs in this form. A better way is to use the language of
linear algebra, and write everything in terms of matrices and vectors. This is not just for the sake of notation;
tools from linear algebra will prove very helpful in analyzing systems of ODEs.

5.1 Review of linear algebra

We briefly review the most important tools we will need from linear algebra, and introduce some new notation
coming from ODEs.

Definition 5.1.1. Our vectors and matrices consist of functions, and are written

x(t) :=


x1(t)
x2(t)

...
xn(t)

 , A(t) :=

a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)

 .

All relevant concepts are defined on component-wise unless stated otherwise. For example, x is continu-
ous if each component xi is continuous, and derivatives and integrals are defined by differentiating and
integrating each component individually.
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As usual, we use the notation x′ instead of dx/dt whenever there is no ambiguity. In matrix notation,
the general form (5.2) of a linear first-order system of ODEs, with initial conditions (5.3), can be written as

x′(t) = P(t)x(t) + g(t), x(t0) = x0.

The usual rules of calculus work with matrices as well, and can be checked by writing everything out in
components. However since matrices do not commute with each other, i.e. AB 6= BA, one must be careful
about the ordering of terms in usual calculus rules.

Example 5.1.2. We verify the matrix version of the product rule:

d

dt
(AB) = A

dB

dt
+
dA

dt
B. (5.4)

The ij-th component of the lhs is (
d

dt
(AB)

)
ij

=
d

dt

n∑
k=1

AikBkj

by the definition of matrix multiplication. Since the components Aik and Bkj are ordinary functions, we can
proceed with the product rule from ordinary calculus, to get(

d

dt
(AB)

)
ij

=

n∑
k=1

(
AikB

′
kj +A′ikBkj

)
.

Working backward now, the pieces on the rhs are exactly the ij-th components of the rhs in (5.4).

Definition 5.1.3. Let P be a matrix. If a vector v satisfies

Pv = λv

for some constant λ, then we say it is an eigenvector of P with eigenvalue λ. Eigenvalues are solutions
of the characteristic equation (or characteristic polynomial)

det(P− λI) = 0.

If we can form a basis of eigenvectors {v1, . . . ,vn}, usually called an eigenbasis, then in that basis the
matrix P is a diagonal matrix. In equations,

P = S

λ1

. . .

λn

S−1, S :=

v1 · · · vn

 .

In such situations we call P diagonalizable. We like working with diagonalizable matrices because in the
eigenbasis they are diagonal, and diagonal matrices and scalars behave very similarly. Unfortunately, while
most matrices are diagonalizable once we work over the complex numbers, not all of them are.

Example 5.1.4. Consider the two matrices

A =

(
2 0
0 2

)
, B =

(
2 1
0 2

)
.

The first matrix A is already diagonalized, so its eigenbasis is the standard basis

v1 = e1 :=

(
1
0

)
, v2 = e2 :=

(
0
1

)
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consisting of two eigenvectors with eigenvalue 2. The second matrix B is not diagonalized. Its eigenvalues
are the zeros of the characteristic polynomial

det

(
2− λ 1

0 2− λ

)
= (2− λ)2.

So just as with A we expect two eigenvectors of eigenvalue 2. If v = (v1, v2) is such an eigenvector then(
2 1
0 2

)(
v1

v2

)
=

(
2v1

2v2

)
.

The general solution to this system is spanned by the single vector e1. So B only has one actual eigenvector
of eigenvalue 2, even though λ = 2 is a zero of multiplicity two.

So in the case of a shortage of eigenvectors one cannot fully diagonalize a matrix A. However it can be
transformed into a nearly diagonal form called the Jordan form. The Jordan form is block-diagonal, i.e. of
the form

A =


B1

B2

. . .

Bm

 .

The Bi are called Jordan blocks and are of the form

Bi =


λi 1

λi 1
. . .

. . .

λi 1
λi

 ,

where λi is the eigenvalue associated to the Jordan block. The corresponding basis for a Jordan block no
longer consists of eigenvectors: associated to each Jordan block is only one actual eigenvector.

Example 5.1.5. Consider the three matrices2
2

2

 ,

2 1
2

2

 ,

2 1
2 1

2

 .

All three have characteristic polynomial (2− λ)3 = 0, i.e. a single eigenvalue 2 of multiplicity three.

1. The first matrix has three 1×1 Jordan blocks. It therefore has three linearly independent eigenvectors
(and is evidently diagonalizable).

2. The second matrix has a 2 × 2 Jordan block and a 1 × 1 Jordan block. It therefore has two linearly
independent eigenvectors.

3. The third matrix has a single 3 × 3 Jordan block. It therefore has only a single linearly independent
eigenvector.

The question now is what is being used as a basis within each Jordan block. The eigenvalue associated
to a Jordan block has a deficiency of eigenvectors, which is why the block cannot be fully diagonalized.

Definition 5.1.6. Let λ be an eigenvalue of A. A vector v is a generalized eigenvector associated to λ
if

(A− λI)kv = 0

for some positive integer k. The smallest k such that this equation holds for v is called the rank of v.
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Theorem 5.1.7 (Jordan normal form). Every (complex) matrix A can be put into Jordan normal form. An
r × r Jordan block with eigenvalue λ corresponds to a rank-r generalized eigenvector v such that a basis for
that Jordan block is given by

v, (A− λI)v, · · · , (A− λI)r−1v.

Actual eigenvectors are generalized eigenvectors of rank 1. Note that the last vector in this basis is an
actual eigenvector, because if we denote it by w := (A− λI)r−1v, then

(A− λI)w = (A− λI)rv = 0

by the definition of v. This yields a procedure for computing generalized eigenvectors for eigenvalue λ.

1. Find all ordinary eigenvectors v1, . . . ,vk for a given eigenvalue λ.

2. For each ordinary eigenvector vi =: v
(1)
i , solve the equations

(A− λI)v
(2)
i = v

(1)
i , (A− λI)v

(3)
i = v

(2)
i , · · ·

as far as possible, to get a sequence of generalized eigenvectors

v
(1)
i ,v

(2)
i , . . . ,v

(r)
i . (5.5)

Then v
(j)
i is a rank-j generalized eigenvector.

For an r× r Jordan block, its generalized eigenvectors (5.5) form a basis in which the matrix A is in Jordan
form. This means

Av
(1)
i = λv

(1)
i

Av
(2)
i = v

(1)
i + λv

(2)
i

Av
(3)
i = v

(2)
i + λv

(3)
i

...

Av
(r)
i = v

(r−1)
i + λv

(r)
i .

(5.6)

5.2 Homogeneous systems with constant coefficients

In the language of linear algebra, we usually write a system of n first-order equations in the form

x′ = P(t)x + g(t),

for an n×n matrix P(t). An initial condition would be of the form x(t0) = x0. The associated homogeneous
equation is

x′ = P(t)x. (5.7)

Theorem 5.2.1 (Structure of solutions to homogeneous systems). The general solution of (5.7) is of the
form

x = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx(n)(t)

for a fundamental set of solutions x(1)(t), . . . ,x(n)(t).

As we did for first- and second-order ODEs, the simplest case to begin with is when all coefficients are
constants. In the context of systems, this means that in

x′ = Px, (5.8)

the components of the matrix P are all constants, i.e. independent of t. The theory of such constant-
coefficient systems of n ODEs parallels the general theory of single linear n-th order ODEs from section 2.4.

46



Example 5.2.2. Suppose P is a diagonal matrix, i.e. that

P =


p11

p22

. . .

pnn


where all off-diagonal entries are zero. Then the system x′ = Px is decoupled, in the sense that it is now
a collection of first-order equations that have nothing to do with each other:

x′1 = p11x1

...

x′n = pnnxn.

Each equation is the simplest kind of first-order ODE. The general solution is xi(t) = cie
piit.

The idea for solving the general case is to make the ansatz x(t) = veat for some constant a, and some
constant vector v. Plugging this into (5.8) yields

aveat = Pveat.

Since eat 6= 0, we can cancel it from both sides. Then

av = Pv,

i.e. v is an eigenvector for P with eigenvalue a. This should not be surprising: a general P becomes diagonal
in the eigenbasis, and therefore decoupled.

Example 5.2.3. The second-order homogeneous equation y′′ − 3y′ + 2y = 0 is equivalent to a system of 2
first-order equations:

x′ =

(
0 1
−2 3

)
x.

The eigenvalues and eigenvectors of this matrix are

λ1 = 1, v1 =

(
1
1

)
, λ2 = 2, v2 =

(
1
2

)
.

Hence the general solution is given by(
x1

x2

)
= c1e

t

(
1
1

)
+ c2e

2t

(
1
2

)
. (5.9)

We can compare this solution to our earlier one in Example 2.2.2. In the context of the second-order equation,
x1 = y and x2 = y′. So (5.9) says

x1 = y = c1e
t + c2e

2t

x2 = y′ = c1e
t + 2c2e

2t,

which makes sense and agrees with our earlier solution to the second-order equation.

Definition 5.2.4. To test independence of solutions, the Wronskian of n solutions x1, . . . ,xn is

W (x1, . . . ,xn)(t) := det

x1(t) · · · xn(t)

 .
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This is compatible with the previous definition (2.9) for an n-th order ODE, because the i-th derivative
of a solution there becomes the i-th entry of a solution vector here. Note that, in this language, it is clear
that the Wronskian tests linear independence of the solutions, as vectors. However, we notice a problem: not
every matrix P is diagonalizable, so there will not always be n linearly independent eigenvectors to provide
n independent solutions. We saw this phenomenon already in the second-order case, in section 2.2, where
the characteristic equation could have a repeated root. There the two independent solutions were

y1 = eαt, y2 = teαt.

In this case, the resulting matrix P is not diagonalizable. However it can still be put into Jordan form, by
Theorem 5.1.7. Then the following formula yields a fundamental set of solutions; we will see in the next
section where it comes from.

Theorem 5.2.5. Suppose P is a single r×r Jordan block of eigenvalue λ. Let vi be a generalized eigenvector
of rank i, for i = 1, . . . , r. Then the r independent solutions of

x′ = Px

are given by

x(k) = eλt
(

vk + tvk−1 +
t2

2!
vk−2 + · · ·+ tk−1

(k − 1)!
v1

)
(5.10)

for k = 1, . . . , r.

Proof. Using the product rule, compute that

(x(k))′ = λeλt
(

vk + tvk−1 +
t2

2!
vk−2 + · · ·+ tk−1

(k − 1)!
v1

)
+ eλt

(
vk−1 + tvk−2 + · · ·+ tk−2

(k − 2)!
v1

)
= eλt

(
(vk−1 + λvk) + t(vk−2 + λvk−1) + · · ·+ tk−2

(k − 2)!
(v1 + λv2) +

tk−1

(k − 1)!
λv1

)
= eλt

(
Pvk + tPvk−1 + · · ·+ tk−2

(k − 2)!
Pv2 +

tk−1

(k − 1)!
Pv1

)
= Peλt

(
vk + tvk−1 + · · ·+ tk−2

(k − 2)!
v2 +

tk−1

(k − 1)!
v1

)
= Px(k).

Here we used that v1, . . . ,vr form the basis in which P is in Jordan normal form, so that (5.6) holds.

Example 5.2.6. Consider the system

x′ = Px, P :=

(
0 1
−1 2

)
.

Then P has eigenvalue λ = 1 with multiplicity 2, but the only eigenvector is

v1 =

(
1
1

)
.

So we look for a generalized eigenvector v2 arising from this eigenvector, by solving

(P− I)v2 = v1.

One possible solution is

v2 =

(
0
1

)
.
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Then Theorem 5.2.5 tells us that a fundamental set of solutions is

x(1) = etv1 =

(
et

et

)
x(2) = et(v2 + tv1) =

(
tet

et + tet

)
.

This makes sense, because the system actually corresponds to the second-order equation y′′ − 2y′ + y = 0,
for which a fundamental set of solutions is y1 = et and y2 = tet.

Note that generalized eigenvectors are not unique, even up to scaling. For example, in the preceding
example, we could have taken

v2 =

(
−1
0

)
.

The resulting fundamental set of solutions is

x̃(1) =

(
et

et

)
, x̃(2) =

(
−et + tet

tet

)
,

which is also perfectly valid. It is related to the other fundamental set of solutions by

x(1) = x̃(1), x(2) = x̃(2) + x̃(1).

Example 5.2.7. In the case of complex eigenvalues, we extract real-valued solutions in the usual way.
Consider

x′ =

(
−1/2 1
−1 −1/2

)
x.

The eigenvalues and eigenvectors for this system are

λ1 = −1

2
+ i, v1 =

(
1
i

)
, λ2 = −1

2
− i, v2 =

(
1
−i

)
.

Note that eigenvalues being complex conjugates means eigenvectors are also complex conjugates. A funda-
mental set of solutions is therefore

x(1)(t) =

(
1
i

)
e(−1/2+i)t =

(
e−1/2(cos t+ i sin t)
e−1/2(− sin t+ i cos t)

)
x(2)(t) =

(
1
−i

)
e(−1/2−i)t =

(
e−1/2(cos t− i sin t)
e−1/2(− sin t− i cos t)

)
.

These are complex-valued solutions. One can use the usual trick of looking at

1

2
(x(1)(t) + x(2)(t)),

1

2i
(x(1)(t)− x(2)(t)),

but instead, we should use the following more general observation to get real-valued solutions.

Theorem 5.2.8. If x = u(t) + iv(t) is a complex-valued solution to the homogeneous system x′ = Px, then
its real and imaginary parts u(t) and v(t) are real-valued solutions.

Proof. Substituting x = u + iv into the equation,

(u′ −Pu) + i(v′ −Pv) = 0.

A complex number is zero only when both its real and imaginary parts are zero, so

u′ = Pu, v′ = Pv

and both are solutions. But both are also real.
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Example 5.2.9. Continuing with the example, we can separate the real and imaginary parts of x(1)(t) to
get

x(1)(t) =

(
e−1/2 cos t
−e−1/2 sin t

)
+ i

(
e−1/2 sin t
e−1/2 cos t

)
.

Similarly,

x(2)(t) =

(
e−1/2 cos t
−e−1/2 sin t

)
− i
(
e−1/2 sin t
e−1/2 cos t

)
.

The real and imaginary parts of either solution are the same, and form a fundamental set of real-valued
solutions.

5.3 Matrix exponentials

There is a more systematic approach to solutions of homogeneous constant-coefficient linear systems, which
in particular will explain how to obtain the formula (5.10) for general solutions associated to a Jordan block.

Example 5.3.1. Suppose we tried to obtain a series solution for the IVP

x′ = Px, x(0) = x0. (5.11)

Then the ansatz should be

x(t) = x0 + tx1 + t2x2 + · · · =
∞∑
k=0

xkt
k

for unknown vector coefficients xk. Plugging this into the equation gives

∞∑
k=0

kxkt
k−1 −P

∞∑
k=0

xkt
k = 0.

From this we get the recursion

xk =
1

k
Pxk−1, i = 1, 2, . . . .

The solution to this recursion is

xk =
1

k!
Pkx0.

It follows that we can write the solution as

x(t) =

( ∞∑
k=0

Pk

k!
tk

)
x0

by factoring out x0 on the right.

Definition 5.3.2. Let A be a matrix. The matrix exponential eA is the matrix defined by the series

eA :=

∞∑
k=0

Ak

k!
.

Using this notation, the solution to the IVP (5.11) is given by

x(t) = eAtx0.

This should be compared to the series solution in Example 3.2.2, and also to the non-matrix version

y′ = ay, y(0) = y0,

which has solution y(t) = y0e
at. The only problem now is how to compute eAt for the matrix case. One has

to be careful because while scalars are commutative, matrices are not.
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Theorem 5.3.3 (Properties of the matrix exponential). Let A,B be n× n matrices.

1. If A is a diagonal matrix, then

eA =

e
a11

. . .

eann

 .

2. If A = SBS−1 (i.e. a change of basis), then

eA = SeBS−1.

3. If A and B commute, then
eA+B = eAeB.

Proof. We show (2). Since A = SBS−1,

A2 = (SBS−1)(SBS−1) = SB2S−1,

and in general we have Ak = SBkS−1, so that

eA =

∞∑
k=0

SBkS−1

k!
= S

( ∞∑
k=0

Bk

k!

)
S−1 = SeBS−1.

If P is diagonalizable, then we can write P = SDS−1 for a diagonal matrix D. Then we can use (1)
and (2) to compute ePt. If it is not diagonalizable, we use generalized eigenvectors to form S, to put P into
Jordan normal form. When P is a single Jordan block of eigenvalue λ, this means

S−1PS =


λ 1

. . .
. . .

λ 1
λ

 = λI + N

where N is the matrix with 1’s in the first diagonal above the main diagonal. Since λI commutes with any
matrix,

ePt = SeλIteNtS−1. (5.12)

Clearly eλIt = eλtI. It remains to compute eNt.

Theorem 5.3.4. If N is n× n, then Nn = 0. So

eNt = I + Nt+ N2 t
2

2!
+ · · ·+ Nn−1 tn−1

(n− 1)!
=



1 t t2

2 · · · tn−1

(n−1)!

1 t · · · tn−2

(n−2)!

. . .
. . .

...

1 t

1


. (5.13)

Example 5.3.5. Consider the linear system given by

x′ = Px, P =

6 −2 −1
3 1 −1
2 −1 2

 .
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One can check that its Jordan normal form is given by

S−1PS =

3 1 0
0 3 1
0 0 3

 , S =

1 1 1
1 1 0
1 0 2

 .

Working in this basis, we have

S−1ePtS = e3t

1 t t2

2
0 1 t
0 0 1

 .

It follows that

ePt = e3tS

1 t t2

2
0 1 t
0 0 1

S−1 = e3t


t2

2 + 3t+ 1 − t
2

2 − 2t −t
t2

2 + 3t − t
2

2 − 2t+ 1 −t
t2

2 + 2t − t
2

2 − t −t+ 1

 .

General solutions are obtained by letting the initial conditions be arbitrary constants. Hence the general
solution is

x(t) = ePt

c1c2
c3

 .

This means x(t) is c1 times the first column of ePt, plus c2 times the second column of ePt, etc. A fundamental
set of solutions is therefore given by the columns of ePt.

Definition 5.3.6. The matrix ePt is called the fundamental matrix. Its columns form a fundamental set
of solutions.

Using this, we can understand where the formula (5.12) comes from: the r solutions given by that formula
are exactly the r columns in the matrix in (5.13). For example, the formula (5.10) for a fundamental system of
solutions corresponding to a single Jordan block comes from reading off the columns of the matrix exponential
(5.13), keeping in mind that that calculation was done in the Jordan basis (of generalized eigenvectors).

5.4 Non-homogeneous systems

Now we tackle the general non-homogeneous case

x′ = P(t)x + g(t). (5.14)

Theorem 5.4.1. The general solution to (5.14) is

x = v(t) + c1x
(1)(t) + · · ·+ cnx(n)(t)

where v(t) is a specific solution, and c1x
(1)(t) + · · ·+ cnx(n)(t) is the solution of the associated homogeneous

system.

To find the specific solution v(t), possible strategies parallel the strategies we used in the non-system
case in section 2.3; we can use the method of undetermined coefficients for systems, and also variation of
parameters, and even the Laplace transform if we are given an IVP. However, in the case that P is constant,
i.e. independent of t, there is a better approach.

Suppose for simplicity that P can be diagonalized as P = SDS−1. Then we can work in the eigenbasis
to decouple the equations. Concretely this means we define

y := S−1x
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and rewrite the equation (5.14) in terms of y:

Sy′ = PSy + g(t).

Multiplying by S−1 on both sides gives

y′ = S−1PSy + S−1g(t) = Dy + S−1g(t). (5.15)

Since D is diagonal, this system is decoupled and we can solve each individual non-homogeneous first-order
equation using any method we wish. Then the original solution is recovered by

x = Sy.

If P is constant but not diagonalizable, we can put it into Jordan form. Then in (5.15), the resulting
matrix D is in Jordan form instead of being diagonal. The resulting system is not completely decoupled;
each Jordan block looks like

y′1
...

y′n−1

y′n

 =


λ 1

λ
. . .

. . . 1
λ




y1

...
yn−1

yn

+


h1(t)

...
hn−1(t)
hn(t)


where h(t) := S−1g(t). Note however that the last equation in this system

y′n = λyn + hn(t)

is independent of all other yi, and can be solved on its own. Then once we know yn, we can plug it into the
second last equation

y′n−1 = λyn−1 + yn + hn(t),

and solve this on its own. Repeating this procedure until we get to the first equation yields a solution y.

Example 5.4.2. Consider the system

x′1 = 3x1 + 2x2 + 2et

x′2 = −1

2
x1 + x2 + e4t,

so that in matrix form

P =

(
3 2
−1/2 1

)
, g(t) =

(
et

e2t

)
.

One can check that the Jordan normal form of P is

P = SDS−1, D :=

(
2 1
0 2

)
, S :=

(
2 0
−1 1

)
,

so that the associated system (5.15) is

y′ =

(
2 1
0 2

)
y +

(
et

et + e4t

)
.

Hence we should first solve
y′2 − 2y2 = et + e4t.
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This can be done using the method of undetermined coefficients, with the ansatz y2 = Aet + Be4t. The
solution is y2 = −et + (1/2)e4t. Now we plug this in to the first equation, which becomes

y′1 = 2y1 + (−et +
1

2
e4t) + et = 2y1 +

1

2
e4t.

The ansatz y1 = Ae4t yields the solution y1 = (1/4)e4t. Hence a particular solution to the original system is

v = S

(
1
4e

4t

−et + 1
2e

4t

)
=

(
1
2e

4t

−et + 1
4e

4t

)
.

The general solution is therefore

x = v + ePt
(
c1
c2

)
=

(
1
2e

4t + c1e
2t + c2te

2t

−et + 1
4e

4t + c2e
2t.

)

5.5 Phase plane and stability

For a single ODE, we can plot the solution x(t) as a graph to get a visual idea of its behavior. For a
system of ODEs, we should plot the entire vector x(t). This is difficult to understand visually except in low
dimensions, so now we will narrow our focus to systems of two linear first-order equations, i.e. when P(t) is
a 2× 2 matrix.

Definition 5.5.1. The x1x2-plane is the phase plane, and the plot of solutions on it is the phase diagram
of the system of ODEs.

It is enlightening to see, visually, what different kinds of solutions look like for the case of a 2 × 2
constant-coefficient homogeneous system

x′ = Px.

We can classify different types of such systems, by diagonalizing (or putting into Jordan form) the system
and examining the system in that basis. Assume for simplicity that P is full rank, so no eigenvalues are 0.

Example 5.5.2 (Diagonalizable P). Suppose P is diagonalizable, with eigenvalues λ1, λ2. In the eigenbasis,
we may as well think about the phase diagram of the system

x′ =

(
λ1 0
0 λ2

)
x.

Letting (x, y) = (x1, x2), this autonomous system is related to the first-order equation

dy

dx
=
λ2

λ1

y

x

as described in section 1.5. The general solution to this equation is

y = cxλ2/λ1 .

This is the unparameterized versions of solutions to the original system, and therefore will at least tell us
what the integral curves look like. For example, consider λ2/λ1 = 1/2. Then integral curves are y = c

√
x.

1. If (λ1, λ2) = (−2,−1), then the parameterized solution is x = (e−2t, e−t). In this case, trajectories flow
toward the origin as time increases.

2. If (λ2, λ2) = (2, 1), then the parameterized solution is x = (e2t, et). In this case, trajectories flow away
from the origin as time increases.
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The vector field (and some trajectories) of the original system in these two cases is as follows. Note that
everything stays the same except the direction of flow.

x

y

x

y

The origin x = (0, 0) is special in this case. It is an equilibrium, in the sense that a trajectory x(t) which
starts at (0, 0) remains stationary.

Definition 5.5.3. An equilibrium or critical point of a first-order system x′ = F(x) is a point x where

F(x) = 0.

Such a point is:

1. asymptotically stable if all sufficiently nearby points flow toward the critical point;

2. stable if all sufficiently nearby points stay within a bounded region around the critical point;

3. unstable if it is not stable, i.e. if trajectories flow far away from the critical point.

Example 5.5.4. So far we only looked at linear homogeneous systems x′ = Px with P invertible. Then

Px = 0 ⇐⇒ x = 0.

So the origin is the only critical point. If P is not invertible, everything in the kernel of P is a critical point.

Example 5.5.5 (Nodal sources/sinks). Let P be diagonalizable with eigenvalues λ1, λ2 of the same sign.

1. If λ1, λ2 < 0, then all trajectories flow toward the origin, and so the origin is an asymptotically stable
critical point. Such a point is usually called a sink.

2. If λ1, λ2 > 0, then all trajectories flow away from the origin, and so it is an unstable point. Such a
point is usually called a source.

In either case, all trajectories around the critical point behave the same way; such a critical point is a node.

Let v(1),v(2) be the eigenvectors corresponding to the eigenvalues λ1, λ2. Then the phase diagram for
x′ = Px is related to the phase diagrams in the previous Example 5.5.2 by a change of coordinates back to
the original basis from the eigenbasis. For example, the phase diagram for the system where

P = S

(
−2 0
0 −1

)
S−1, S =

v(1) v(2)


looks like the following.
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x

y

~v(1)

~v(2)

Example 5.5.6 (Saddle points). If in Example 5.5.2 the diagonalizable matrix P has two eigenvalues λ1, λ2

of different sign, then the critical point at (0, 0) is not a node anymore. This is because the solution

x = (eλ1t, eλ2t)

has one component flowing away from the origin and another component flowing toward the origin. The
critical point in this case is a saddle point. Note that it is unstable.

x

y

~v(1)

~v(2)

In general, for the diagonalizable case, note that as t → ±∞ one of the solutions veλt will grow faster
than the other. We say the faster-growing solution dominates the slower-growing one. This is reflected in
the phase diagram: as we follow the trajectories forward/backwards, they eventually become parallel to the
relevant eigenvector. For example, for a nodal source, if λ1 > λ2 > 0 then:

1. v(1)eλ1t dominates as t→∞, so eventually trajectories all become parallel to v(1);

2. v(2)eλ2t dominates as t→ −∞, so near the critical point (0, 0) all trajectories become parallel to v(2).
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The same observations hold in general for nodal sinks and saddle points too. However it is not true in all
cases that the steady-state solution tends toward eigenvectors.

Example 5.5.7 (Complex eigenvalues). If P is diagonalizable but has complex eigenvalues λ ± iµ, then
neither eigenvector dominates the other and there is oscillatory behavior in the solutions. In the eigenbasis,
a fundamental set of solutions is

x(1)(t) = eλt
(

cosµt
− sinµt

)
, x(2)(t) = eλt

(
sinµt
cosµt

)
.

When λ = 0, these are parameterized circles; when λ 6= 0, these circles will expand/shrink as t changes, and
form spirals instead.

x

y

~v(1)

~v(2)

x

y

~v(1)

~v(2)

Note that here the critical point is stable but not asymptotically stable.

Example 5.5.8 (Non-diagonalizable P). If P is not diagonalizable, then its Jordan normal form is a single
2× 2 Jordan block. In other words, there is a basis of generalized eigenvectors where the system becomes

x′ =

(
λ 1
0 λ

)
x

with solutions v(1)eλt and eλt(v(1)t+ v(2)). Unfortunately here the associated first-order equation

−λy + (λx+ y)
dy

dx
= 0

has no nice solution, so the integral curves cannot be described using elementary functions. However note
that as t→ ±∞ the term v(1)teλt dominates, so trajectories are parallel to the (only) eigenvector v(1) both
near the origin and also near infinity.
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x

y

~v(1)

~v(2)

The origin here is also a node, and is sometimes called a degenerate node.

A similar kind of analysis can be performed for higher-dimensional systems, especially for diagonaliz-
able systems. For example, for 3 × 3 matrices, having all three positive eigenvalues gives a nodal source
where eventually trajectories become parallel to the eigenvector with largest eigenvalue. However, higher-
dimensional Jordan blocks become more complicated. Nodes can be degenerate in multiple ways, depending
on the number and size of Jordan blocks.

6 Boundary value problems

In the final part of this course, we study a class of differential equations which is more general than IVPs.
Recall that an n-th order IVP (whether with scalar or vector-valued solutions) has initial conditions of the
form

y(t0) = y0, y′(t0) = y′0, · · · , y(n−1)(t0) = y
(n−1)
0 .

Importantly, these initial conditions have all been at the same point, namely the initial point t0. For such
IVPs, we have a very general existence and uniqueness theorem 2.4.2 on an open interval I which contains
the initial point. Often the initial point is the left endpoint of I, especially when the independent variable
t represents time. However, instead of constraining the solution at a single point, we can imagine putting
boundary conditions on solutions in I by constraining how they behave on the boundary of I, i.e. both
endpoints of I.

Definition 6.0.1. An n-th order boundary value problem (BVP) on an interval I = (α, β) is an n-th
order equation with boundary conditions

α0y(α) + α1y
′(α) + · · ·+ αn−1y

(n−1)(α) = 0

β0y(β) + β1y
′(β) + · · ·+ βn−1y

(n−1)(β) = 0.

In principle the rhs could be arbitrary constants yα and yβ , but they can always be made zero after a change
of variables.

The above is the most general boundary condition. In practice, there are only two important kinds of
boundary conditions; most other boundary conditions are combinations of these two.
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1. (Dirichlet boundary condition) Fix the value of the solution at the boundary, i.e. impose

y(α) = 0, y(β) = 0.

This can represent, for example, the behavior of an elastic which is pinned down at two points.

2. (Neumann boundary condition) Fix the rate of change of the solution at the boundary, i.e. impose

y′(α) = 0, y′(β) = 0.

This can represent, for example, the heat distribution in a 1-dimensional rod whose endpoints are being
constantly heated/cooled.

The type of boundary condition on each endpoint may be different, in which case we say the boundary
condition is mixed.

Example 6.0.2. Consider the BVP

y′′ + y = 0, y(0) = y(π) = 0.

This is a Dirichlet boundary condition. Without the boundary condition, the general solution is

ỹ(t) = c1 cos t+ c2 sin t. (6.1)

But then y(0) = c1 and y(π) = c1, so the boundary condition forces c1 = 0 with no constraint on c2. The
solution is therefore y = c sin t for an arbitrary constant c. In particular there are infinitely many solutions.

Example 6.0.3. Consider the BVP

y′′ + y = 0, y′(0) = y′(π) = 0.

This is a Neumann boundary condition. It forces c2 = 0 in the general solution (6.1), and so the solution is
y = c cos t for an arbitrary constant c.

Knowing the general solution to the equation y′′ + y = 0, it is not hard to see that we can produce
boundary conditions such that there are no solutions, one solution, or infinitely many solutions. In general,
establishing existence and/or uniqueness theorems for various classes of BVPs is very difficult.

6.1 Green’s functions

A Green’s function is a more general version of the impulse response, and is used to find solutions to BVPs
whenever they exist. They are constructed out of solutions to the associated homogeneous equation. For
simplicity, in this section we focus on second-order equations.

Definition 6.1.1. On an interval [α, β], consider the second-order equation Dy = g(t) where

D := a(t)
d2

dt2
+ b(t)

d

dt
+ c(t)

is an arbitrary linear second-order differential operator with continuous coefficients a, b, c. (Later we’ll need
to assume a(t) has at most finitely many zeros.) Impose general boundary conditions at α and β:

α0y(α) + α1y
′(α) = 0

β0y(β) + β1y
′(β) = 0.

(6.2)

A Green’s function for the operator D is a solution G(t, s) to the equation

DG(t, s) = δ(t− s)

satisfying the above boundary conditions in the variable t.
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Just like impulse responses, Green’s functions only depend on the homogeneous part of the equation. If
we know G(t, s), then the solution to the original, non-homogeneous equation Dy = g(t) is

y(t) =

∫ β

α

G(t, s)g(s) ds. (6.3)

If G doesn’t actually depend on t and s individually, but rather only depends on their difference t− s, then∫ β
α
G(t− s)g(s) ds is just a convolution, and in this case G is exactly the impulse response. This is true for

IVPs. But for BVPs, G will actually depend on both t and s, instead of just t− s.

Theorem 6.1.2. The function (6.3) solves Dy = g(t) with the prescribed boundary conditions (6.2)

Proof. First we check that it solves the equation Dy = g(t). This is a computation using the delta function:

Dy = D

∫ β

α

G(t, s)g(s) ds =

∫ β

α

DG(t, s)g(s) ds =

∫ β

α

δ(t− s)g(s) ds = g(t).

Next we check that the solution satisfies the boundary conditions (6.2). At t = α,

α0y(α) + α1y
′(α) =

∫ b

a

(
α0G(α, s) + α1

∂G

∂t
(α, s)

)
g(s) ds =

∫ b

a

0 · g(s) ds = 0

because by definition G satisfies the same boundary condition in the t variable. The same thing is true at
t = β.

So we should figure out how to construct Green’s functions. The idea is to impose the boundary conditions
one at a time for the homogeneous equation. This makes sense because for t < s and also t > s we have
δ(t, s) = 0, and therefore we should consider the equation DG(t, s) = 0 on both intervals separately. For
example, on the interval [α, s) we should only impose the boundary condition

α0y(α) + α1y
′(α) = 0. (6.4)

Note that we can write an associated homogeneous IVP

Dy = 0, y(α) = −α1, y
′(α) = α0.

Solutions y will of course also satisfy the boundary condition (6.4). So we have written down an IVP, whose
solution y1 exists and is unique and solves “half” the BVP. Similarly, we can get a solution y2 for the IVP
associated to the boundary condition at t = β. These solutions y1 and y2 are usually independent, i.e. are
not scalar multiples of each other. To understand why this is the case, and also how y1 and y2 combine to
give the Green’s function, we need the following observation.

Theorem 6.1.3. A function u(t) is a solution to

Dy = 0, α0y(α) + α1y
′(α) = 0 (6.5)

if and only if u = cy1 for some constant c.

Proof. If u = cy1 clearly it satisfies the equation. Conversely, if u satisfies the equation, then

0 = α0u(α) + α1u
′(α) = −y′1(α)u(α) + y1(α)u′(α) = W (y1, u)(α).

So u and y1 are not independent solutions, i.e. u = cy1.
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From this theorem we can immediately make two observations. First, as long as y2 doesn’t satisfy the
boundary condition (6.4) at t = α corresponding to y1, they are independent solutions. Second, the Green’s
function G(t, s) itself satisfies the IVP (6.5) associated to y1, and also the IVP associated to y2, and therefore

G(t, s) = A(s)y1(t) for t ∈ [α, s) (6.6)

G(t, s) = B(s)y2(t) for t ∈ (s, β] (6.7)

for some unknown coefficients A(s) and B(s) which are independent of t. To figure out what they are, we
need to consider how these two solutions in different intervals are “glued together” at t = s. In other words,
we need to find how

G(t, s)|t=s± := lim
t→s±

G(t, s)

(and their derivatives) are related to each other.

Theorem 6.1.4. The functions (6.6) and (6.7) should be glued according to the conditions:

1. (continuity at t = s)
G(t, s)|t=s− = G(t, s)|t=s+ ;

2. (jump in derivative at t = s)

∂G(t, s)

∂t

∣∣∣∣
t=s+

− ∂G(t, s)

∂t

∣∣∣∣
t=s−

=
1

a(s)
. (6.8)

Proof. The Green’s function satisfies the second-order equation

∂2G

∂t2
+
b(t)

a(t)

∂G

∂t
+
c(t)

a(t)
G =

1

a(t)
δ(t− s).

We can integrate both sides with respect to t, i.e. apply
∫ t
α

to both sides. Observe the following.

1. Assume a(t) has finitely many zeros, so that for a given s there is some interval I containing t = s on
which a(t) is never zero. Then all coefficients are continuous and bounded on I. We work on I from
now on.

2. On the rhs, we may replace a(t) with a(s) since the delta function is zero everywhere else.

Then the integral gives
∂G

∂t
+ (some continuous functions) =

1

a(s)
us(t).

Continuous functions have the same left-handed and right-handed limits, but the step function us(t) does
not. Taking left/right handed limits of this equation yields (6.8). Integrating this equation again with respect
to t yields

G+ (some continuous function) =
1

a(s)
(t− s)us(t),

and now the rhs is continuous too. Hence G itself is a continuous function.

If we plug (6.6) and (6.7) into these conditions, we get that

A(s)y1(s) = B(s)y2(s)

B(s)y′2(s)−A(s)y′1(s) =
1

a(s)
.
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The solution to this system of equations for A,B is

A(s) =
y2(s)

a(s)W (s)
, B(s) =

y1(s)

a(s)W (s)

where W = W (y1, y2) is the Wronskian. Hence the Green’s function is

G(t, s) =


y1(t)y2(s)

a(s)W (s)
t ≤ s

y2(t)y1(s)

a(s)W (s)
s ≤ t.

(6.9)

The solution (6.3) to the original BVP is

y(t) =

∫ t

α

y2(t)y1(s)

a(s)W (s)
ds+

∫ β

t

y1(t)y2(s)

a(s)W (s)
ds

= y2(t)

∫ t

α

y1(s)

a(s)W (s)
ds+ y1(t)

∫ β

t

y2(s)

a(s)W (s)
ds.

Example 6.1.5. Consider the BVP

y′′ + y = g(x), y(0) = y(π/2) = 0.

To find its Green’s function, we write the associated IVPs for y1, y2:

y′′ + y = 0, y(0) = 0, y′(0) = 1

y′′ + y = 0, y(π/2) = 0, y′(π/2) = 1.

Hence y1 = sin t and y2 = − cos t. Their Wronskian is the constant function W (y1, y2) = 1. It follows that
the Green’s function is

G(t, s) =

{
− sin t cos s t ≤ s
− cos t sin s s ≤ t.

The solution to the original BVP is

y(t) = − cos(t)

∫ t

0

g(s) sin(s) ds− sin(t)

∫ π/2

t

g(s) cos(s) ds.

Green’s functions may not always exist. This is because if the Green’s function exists for a BVP then
(6.3) immediately gives a solution to the BVP, but we know there are BVPs with no solutions. Actually it
is possible that the BVP has a solution yet a Green’s function still does not exist! One way this can happen
is if the two solutions y1 and y2 forming the Green’s function are not actually independent.

Example 6.1.6 (1d Laplacian with Neumann boundary conditions). Consider the BVP

y′′ = 0, y′(−1) = y′(1) = 0.

It clearly has solutions y = c for any constant c. We can try to compute its Green’s function. The associated
IVPs for y1 and y2 are

y′′ = 0, y(−1) = −1, y′(−1) = 0

y′′ = 0, y(1) = −1, y′(1) = 0.
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The solutions are y1 = y2 = −1, which are not independent. Then W (y1, y2) = 0 and the Green’s function
(6.9) is undefined. It is not our construction that is flawed; indeed, we can show that that there cannot be
a Green’s function for this BVP as follows. If G did exist, then∫ 1

−1

∂2

∂t2
G(t, s) dt =

∫ 1

−1

δ(t− s) dt = 1.

On the other hand, by the fundamental theorem of calculus∫ 1

−1

∂2G

∂t2
(t, s) dt =

∂G

∂t
(1, s)− ∂G

∂t
(−1, s).

The boundary conditions for G say that each term on the rhs is 0, a contradiction. If we want to solve this
BVP by Green’s function methods, it turns out the appropriate modification is to look for G satisfying

DG(t, s) = δ(t− s)− 1

2
.

Such a solution exists and is given by

G(t, s) =
|t− s|

2
− t2 + s2

4
.

Green’s functions can even be used when the boundary conditions are at ±∞. This does not give rise to
proper IVPs for y1 and y2, but even so we can find Green’s functions and therefore a solution. Such BVPs
are common in physics, where we often assume that some physical phenomenon (e.g. electic/magnetic fields)
die out and vanish as we approach ±∞.

Example 6.1.7 (1d Helmholtz equation). Consider the BVP

y′′ − k2y = g(t), y(±∞) = 0.

The associated IVPs for y1 and y2, from our construction of G, are

y′′ = 0, y(−∞) = 0, y′(−∞) = 1

y′′ = 0, y(∞) = 0, y′(∞) = 1.

One can check that no solution of the form c1e
kt + c2e

−kt satisfies these IVPs. However we can drop the
conditions on y′; they are superfluous if we just want to satisfy the boundary conditions y(±∞) = 0. Then

y1 = c1e
kt, y2 = c2e

−kt,

and the Green’s function is

G(t, s) =

{
A(s)ekt t ≤ s
B(s)e−kt s ≤ t.

Theorem 6.1.4 gives conditions that A and B must satisfy. Solving,

A(s) = − 1

2k
e−ks, B(s) = − 1

2k
eks.

The entire Green’s function can be written

G(t, s) = − 1

2k
e−k|t−s|,

and so the general solution is

y(t) = − 1

2k

∫ ∞
−∞

g(s)e−k|t−s| ds.

Often, especially in physics, the boundary conditions are implicitly taken to be y(±∞) = 0. Then we
speak about the Green’s function corresponding to the differential operator itself. For example, this example
worked out the Green’s function for the 1d Helmholtz operator.
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