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FOUR DIMENSIONS
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• spinor spaces S+, S� skew forms ✏+, ✏�

) inner product on V = S+ ⌦ S�

• null vectors �⌦  

• ⇤2V ⇠= S2
+ � S2

� self-dual/anti-self-dual forms

• S2
+

⇠= End0 S+ = trace zero endomorphisms

• Weyl tensor S4
+ � S4

�
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LINEAR TWISTOR THEORY
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• P3 complex projective space

• lines in P3
⇠ points in Q4

⇢ P5

= Klein quadric = complexified compactified Minkowski space

• two points null separated if the lines intersect
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• points in P3

• = null planes (↵-planes) in Q4

• planes in P3 (⇠ points in dual projective space)

= null planes (�-planes) in Q4

• null geodesic = point contained in a plane
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NONLINEAR TWISTOR THEORY
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• complex 3-manifold Z

• rational curves P1
⇢ Z

normal bundle O(1)�O(1)

• ) complete 4-dimensional family M4

null separation = intersection of curves

Weyl tensor self-dual

• point z 2 Z ) null surface (one family)
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INTEGRABLE SYSTEMS
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• Riemann surface C, genus g, rank 2 vector bundle E over C

is stable if for each subbundle L ⇢ E, degL < degE/2.

• fix ⇤2E, moduli space 3g � 3-dimensional variety

• E defines P1-bundle P(E)

(equivalence E ⇠ E ⌦ L, L2 trivial, finite group Z2g
2 )
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• E stable, cotangent space of N at [E] ⇠= H0(C,End0E ⌦K)

� 2 H0(C,End0E ⌦K), tr�2
2 H0(C,K2)

• dimH0(C,End0E ⌦K) = 3g � 3 = dimH0(C,K2)

• completely integrable system =

geodesic flows for a 3g � 3-dimensional family of metrics

6

(End0E independent of E 7! E ⌦ L)

144(x4 + y4)� 225(x2 + y2) + 350x2y2 + 81 = 0

Happy birthday, Roger!

• four linear forms `1, `2, `3, `4

quartic curve C: `1`2`3`4 + p2 = 0

• syzygetic tetrad of bitangents

(4⇥ 2 = 8 points on a conic p = 0)

• Thm (Plücker 1839) Each quartic can be written in the form
`1`2`3`4 + p2 = 0 and in 315 ways.
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• M4 = P3-bundle over C

• x 2 Q1 \Q2 = point in each quadric of the pencil

= line in each twistor space

= P1-bundle over C, contained in M4

M.S.Narasimhan & S.Ramanan, Moduli of vector bundles on a

compact Riemann surface, Annals of Maths. 89 19-51 (1969)

P.Newstead, Stable bundles of rank 2 and odd degree over a

curve of genus 2, Topology 7 205-215 (1968)

2

• genus g = 2

• ⇤2E trivial, moduli space N = P3

• ⇤2E odd degree, moduli space = intersection of two quadrics
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EXAMPLE: Gc = SL(2, C) g = 2

B van Geemen and E Previato : On the Hitchin system, Duke
Math. J. 85 (1996) 659–683.

K Gawȩdzki and P Tran-Ngoc-Bich: Self-duality of the SL2

Hitchin integrable system at genus 2, Comm. Math. Phys.
196 (1998) 641–670.

• ⇥ : y2 =
�6

1(x� xi)

• (semi) stable rank 2 bundle E, �2E ⇥= O

5

• C genus 2

y2 =
6Y

1
(x� xi) = p(x)

• sections of K2

a+ bx+ cx2

p(x)
dx2
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• integrable system

H(p, q) = �
1

128�2

�

i⌅=j

⌃⇥(ij)p, q⌥2

(x� xi)(x� xj)
dx2

• action of H1(⇥,Z/2) on M by E ⇧⇤ L⇥ E

• (projective) action ⇥ on H0(J1,2�)

• ⇥(ij) = ⇥([xi]� [xj])

9

T
⇤P3 = {(p, q) : hp, qi = 0, p 6= 0}/C⇤

Moduli space N rank 2 stable bundles V , ⇤2
V fixed

Classical results:

• genus g = 2, even degree N
⇠= P3

• g = 2, odd degree N
⇠= Q1 \Q2 ⇢ P5

• g = 3, quartic curve, even degree N
⇠= Coble quartic in P7
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INTERSECTION OF TWO QUADRICS

1



CLASSICAL GEOMETRY
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Julius Plücker 1801–1868

• twistor space = intersection of quadrics Q1 \Q2 in P5

twistor lines = conics in Q1 \Q2

conic = intersection of a plane and a quadric

• pencil of quadrics Qz, z 2 P1

take an ↵-plane in Qa for some a, intersect with Q1

Q1 \Q2 = Q1 \Qa ) conic in Q1 \Q2

• space-time = space of conics = pairs a 2 C, ↵-plane in Qa

= P3 bundle over C = M4

2

George Salmon 1819–1904

• genus 2, fix E, tr�2
2 H0(C,K2):

• 3 quadratic forms on the

3-dimensional space H0(C,End0E ⌦K)

• = net of conics

2

Arthur Coble 1878–1966

• Atiyah’s description of moduli space : cover of S3P1 = P3

• generic (p, q, r): {x2, y2, z2}

big diagonal (p, p, q): {x2, y2, yz}

small diagonal (p, p, p): {x2,2xy, y2 + 2xz}

branch locus (ai, q, r): {y2 + xz, z2,0}

• genus 3?
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Otto Hesse 1811 — 1874

Arthur Cayley 1821 – 1895

• twistor space complex 3-manifold Z

• rational curves P1
⇢ Z

normal bundle ⇠= O(1)�O(1)

• 4-dimensional family M + conformal structure

• point in Z defines a null surface in M

2
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• quadrics Q1, Q2 ⇢ P5

⇠ quadratic forms q1, q2 on C6

• pencil – 1-parameter family z1q1 + z2q2, [z1, z2] 2 P1

• singular quadrics: det(z1q1 + z2q2) = 0: six points xi 2 P1

• x 2 Q1 \Q2: point in each quadric of the pencil

47



• each point z 2 P1, z 6= xi defines a quadric

... and a twistor space P3 of ↵-planes

.... ↵ or �?

• well-defined if we take a double cover C of P1 branched over
x1, . . . , x6 = curve of genus 2

• planes in singular quadric ⇠ P3

(spin representations of Spin(6): V +, V �

V + ⇠= V � restricted to Spin(5))
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curve of genus 2, Topology 7 205-215 (1968)
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= P(E)

• E stable, cotangent space of N at [E] ⇠= H0(C,End0E ⌦K)
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Ann. Global Anal. Geom.

Vol. 3, No. 2 (1985), 185-195

THE INTERSECTION OF TWO QUADRICS IN P5 (C) AS A TWISTOR SPACE

Jacques Hurtubise

A parametrization is constructed for the space yC of conics in the

intersection of two quadrics in P5 (C) and the study is made of the con-

formal structure of yC

Introduction

In [3], Hitchin, classifying Khlerian twistor spaces, reduces the

possibilities to four: P3(C), F3(C) (the flags in C3), the intersection

of two quadrics in P5 (C) and the double covering of IP3(C) branched over

a non singular quartic surface. In the last two cases, however, there

is a topological obstruction to the whole space being a twistor space;

however, they may still be twistor spaces on an open set, and this is

in fact the case for the intersection X of two quadrics in P5(C).

The purpose of this note, therefore, is to parametrise the space

yC of conics on X, to compute a metric on the space of real conics Y

within the conformal class, and to calculate the Weyl tensor at a point

on Y; this will show that X is, even locally, a different twistor space

from 3 (C) and F3(C).

We remark in passing that this space occurs naturally in several

contexts, notably as the moduli space of stable 2-bundles of odd degree

over a curve of genus 2 [6] and also in the study of geodesic flow on

the ellipsoid in 3 [4].

Ann. Global Anal. Geom.

Vol. 3, No. 2 (1985), 185-195

THE INTERSECTION OF TWO QUADRICS IN P5 (C) AS A TWISTOR SPACE

Jacques Hurtubise

A parametrization is constructed for the space yC of conics in the

intersection of two quadrics in P5 (C) and the study is made of the con-

formal structure of yC

Introduction

In [3], Hitchin, classifying Khlerian twistor spaces, reduces the

possibilities to four: P3(C), F3(C) (the flags in C3), the intersection

of two quadrics in P5 (C) and the double covering of IP3(C) branched over

a non singular quartic surface. In the last two cases, however, there

is a topological obstruction to the whole space being a twistor space;

however, they may still be twistor spaces on an open set, and this is

in fact the case for the intersection X of two quadrics in P5(C).

The purpose of this note, therefore, is to parametrise the space

yC of conics on X, to compute a metric on the space of real conics Y

within the conformal class, and to calculate the Weyl tensor at a point

on Y; this will show that X is, even locally, a different twistor space

from 3 (C) and F3(C).

We remark in passing that this space occurs naturally in several

contexts, notably as the moduli space of stable 2-bundles of odd degree

over a curve of genus 2 [6] and also in the study of geodesic flow on

the ellipsoid in 3 [4].

Ann. Global Anal. Geom.

Vol. 3, No. 2 (1985), 185-195

THE INTERSECTION OF TWO QUADRICS IN P5 (C) AS A TWISTOR SPACE

Jacques Hurtubise

A parametrization is constructed for the space yC of conics in the

intersection of two quadrics in P5 (C) and the study is made of the con-

formal structure of yC

Introduction

In [3], Hitchin, classifying Khlerian twistor spaces, reduces the

possibilities to four: P3(C), F3(C) (the flags in C3), the intersection

of two quadrics in P5 (C) and the double covering of IP3(C) branched over

a non singular quartic surface. In the last two cases, however, there

is a topological obstruction to the whole space being a twistor space;

however, they may still be twistor spaces on an open set, and this is

in fact the case for the intersection X of two quadrics in P5(C).

The purpose of this note, therefore, is to parametrise the space

yC of conics on X, to compute a metric on the space of real conics Y

within the conformal class, and to calculate the Weyl tensor at a point

on Y; this will show that X is, even locally, a different twistor space

from 3 (C) and F3(C).

We remark in passing that this space occurs naturally in several

contexts, notably as the moduli space of stable 2-bundles of odd degree

over a curve of genus 2 [6] and also in the study of geodesic flow on

the ellipsoid in 3 [4].



HURTUBISE

One can obtain the condition for t, s, general by reparametrising

the pencil; essentially, this corresponds to substituting (1 + Xi t)/

(1 + Xi s) for Xi in all the formulae. One then obtains F t(o,s) =
1

t-s Rts(O,T), and so the metric in inhomogeueous coordinateST1, T2, T3, T

(TO = 1):

-V1 q2 3(t)

_~3v (t) 2

-V2 q1 3 (t)T 3

V3q 1 2 (t)T 1T 2 -V2 ql3 (t)

+ (I2 2p2) q1 3 (t) V3 ql 2 (t)' 1

(l+ + 2Plt)q2 3(t) -vq 2 3 (t)r2
_ _ _ 23 _3r___

V2 ql 3 (t) T1 T3 v1q2 3 (t) T2 T3

+-(l + 2 t)q23(t) .r-(3 + 2p3t)q12(t)

+("3 + 2p3t)ql2( t ) 1 (2 + 2p2t)ql 3(t)

0 0

I I

I I
I . I
I 2
I I

I I
t- - - -

21

T 1
)2

I
I o I
I I
I 

where i(t) (1 + \2i-lt)(l + 2it),

qij(t) = qi(t)qj(t)

and P = the quartic of singular planes, in inhomogeneous coordinates

Note how the metric degenerates when the conics degenerate into two lines.

192

I

HURTUBISE

4) The Weyl tensor

We compute the Weyl tensor of our metric at the point (T,t) = (0,0,0,0).

For this, we use geodesic coordinates xi, in which gij =·iij + 0(x2). [2].

Such coordinates are given by

(( 243)

.1 1 2 XX4

(Ul+ 3)
T2 x2 - 2 X2x4

(U14P2)
T3 -x3 2 x34

4(u2+:) 2
t -x 4 + v 3

+ ( 3 -" 2)
v+ X2x3

(u2- z)
+ ( 1 2) 2

V3 
Z1" V1 V2

Computing the curvature, RiJkl, letting (a,b,c) denote a cyclic per-

mutation of (1,2,3), one has:

RiJkl = 0 unless i,J,k,l all different or pairwise equal,

abab vlvv3 3c 2- ('a-Vb)2 + 4(wa + c)(Pb+Vc)

1 2
Rabc4 = 2 8 b- 8PC + 41 Pb 

242112 + b b 0 -22~b2+ b 

Ra4a4 = vlvlv 12(obi) c + 18bUc- 4(b+C) 2 ]
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metric

curvature

• Riemann surface C, genus g, rank 2 vector bundle E over C
is stable if for each subbundle L ⇢ E, degL < degE/2.

• fix ⇤2E, moduli space 3g � 3-dimensional variety

• g = 2, degE odd ) moduli space ⇠= Q1 \Q2

• E defines P1-bundle P(E)

(equivalence E ⇠ E ⌦ L, L2 trivial, finite group Z2g
2 )
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• twistor space = intersection of quadrics Q1 \Q2 in P5

twistor lines = conics in Q1 \Q2

conic = intersection of a plane and a quadric

• pencil of quadrics Qz, z 2 P1

take an ↵-plane in Qa for some a, intersect with Q1

Q1 \Q2 = Q1 \Qa ) conic in Q1 \Q2

• space-time = space of conics = pairs a 2 C, ↵-plane in Qa

= P3 bundle over C = M4
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• a point in twistor space ) null surface in complex space-time

• a point x 2 Q1 \Q2 ) a null surface in M4

... but x defines the ruled surface P(E) ! C in M4

• Prop: These surfaces are null

1



• conformal structure is defined on an open set in M4

– where the intersection of a plane and a quadric is a non-
singular conic

• complement is where the intersection is a pair of lines

= singular quartic surface in each P3 fibre ...

• ... Kummer surface, covering = space of lines in Q1 \Q2

⇠= Jacobian of C

2



• there are 4 lines through a generic point x in Q1 \Q2

• a line ` ⇢ Qa = null geodesic ⇠ point in a plane in P3
a

• x 2 Q1 \Q2, x 2 ` ⇠ point in a line in a plane in P3
a

• x 2 Q1 \Q2 ) P(E) ⇢ M4

a point in a line ) section s : C ! P(E) ⇠ line bundle in E.

) 4 distinguished subbundles in each stable bundle E.
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COMPLEX FIBRE BUNDLES AND
RULED SURFACES

By M. F. ATIYAH
[Received 5 August 1954.—Read 25 November 1954]

Introduction
ALTHOUGH much work has been done in the topological theory of fibre
bundles, very little appears to be known on the complex analytic side. In
this paper we propose to study certain types of complex fibre bundle,
showing how they can be classified. The methods we shall employ will be
based on the theory of stacks, for the full details of which we refer the
reader to (2). We shall, however, recall all the basic definitions and results
in so far as they are necessary for the applications we have in view.

In section I, after making the initial definitions, we derive the classifica-
tion theorem for one-dimensional affine bundles over an algebraic variety
(Theorem 1), and we prove that all such bundles are 'regular' (Theorem 2).
In section II we restrict attention to the case in which the base space is an
algebraic curve. The fibre bundles we consider are then essentially algebraic
ruled surfaces, and our aim is to provide an 'intrinsic' classification for them.
This is simply the classification problem for one-dimensional projective
bundles, and we show how it can be reduced to the study of a curve in
projective space (Theorem 5). For low values of the genus we obtain explicit
solutions of this problem (Theorems 6.0, 6.1, 6.2). Finally in § 5 we give a
brief discussion of tangent bundles. Some points raised by the work of
Hawley are then examined in an Appendix.

I. FIBRE BUNDLES OVER ALGEBRAIC VARIETIES

1. Cohomology theory of stacks
Let X be a compact complex manifold (which we shall later restrict to

be algebraic), and let S be a given category of functions locally defined
on X; here we use the word 'category' in a general sense, not in the technical
sense of Eilenberg and Steenrod (5). For example S might be the category
of locally holomorphic functions, locally meromorphic functions, or locally
holomorphic differential forms. Then cohomology groups HQ(X, S) can be
constructed as follows. Let a be a finite covering of X by open sets {C/J,
Na its nerve (see (5)). If cfl = o-? .̂..̂  is a (/-simplex of Na, we denote by
\cfl\ its support in X, that is the open set Uio n Uit n ... n Uig. We denote
by C9(a, S) the ̂ -cochain group with coefficients in S, a cochain cq being
Proc. London Math. Soc. (3) 5 (1955)



• represent P(E) by an extension O ! E ! L, degL = 1

extension class in H1(C,L�1)

• dimH1(C,L�1) = 2 = dimH0(C,LK) (Serre dual)

projective line P(H1(C,L�1)) isomorphic to dual P(H0(C,LK))

• degLK = 3, s 2 H0(C,LK) vanishes at p, q, r 2 C

• 4 subbundles of E: ⌧ : C ! C involution

(p, q, r) ⇠ (⌧(p), ⌧(q), r) ⇠ (p, ⌧(q), ⌧(r)) ⇠ (⌧(p), q, ⌧(r))
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• ⇡ : C ! P1 unordered triple (⇡(p),⇡(q),⇡(r)) 2 P1

) symmetric product S3P1 = P3

• Q1 \Q2 modulo H1(C,Z2) = double covering of P3

branched over six planes (xi, q, r)

• P3
⇠ space of cubic polynomials

6



NETS OF QUADRICS

1



• genus 2, fix E, tr�2
2 H0(C,K2):

• 3 quadratic forms on the

3-dimensional space H0(C,End0E ⌦K)

• = net of conics

1



Problem: Given E

1. Find all � 2 H0(C,Endo E ⌦K)

2. Calculate tr�2

3. Classify family of quadrics

6



• quadratic forms q1, q2, q3 on C3 = H0(C,End0E ⌦K)

• discriminant det(z1q1 + z2q2 + z3q3) = 0

cubic curve in P2

• invariant = modulus of elliptic curve

6



• genus 2, O ! E ! L

3-dimensional space H0(C,End0E ⌦K)

• 2-dimensional space preserving subbundle ⇠= H0(C,K)

• 1-dimensional space

� : O ! (E/O)⌦K = LK defined by divisor p+ q + r

• generic cubic curve X = 3 lines

net of conics {x2, y2, z2}

4

) basis for H0(C,End0E ⌦K)

• quadratic forms q1, q2, q3 on C3 = H0(C,End0E ⌦K)

• discriminant det(z1q1 + z2q2 + z3q3) = 0

cubic curve in P2

• invariant = modulus of elliptic curve
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• Atiyah’s description of moduli space : cover of S3P1 = P3

• generic (p, q, r): {x2, y2, z2}

big diagonal (p, p, q): {x2, y2, yz}

small diagonal (p, p, p): {x2,2xy, y2 + 2xz}

branch locus (ai, q, r): {y2 + xz, z2,0}
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net of conics

= P(E)

• E stable, cotangent space of N at [E] ⇠= H0(C,End0E ⌦K)

� 2 H0(C,End0E ⌦K), tr�2
2 H0(C,K2)

• dimH0(C,End0E ⌦K) = 3g � 3 = dimH0(C,K2)

• completely integrable system =

geodesic flows for a 3g � 3-dimensional family of metrics
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• Atiyah’s description of moduli space : cover of S3P1 = P3

• generic (p, q, r): {x2, y2, z2}

big diagonal (p, p, q): {x2, y2, yz}

small diagonal (p, p, p): {x2,2xy, y2 + 2xz}

branch locus (xi, q, r): {y2 + xz, z2,0}

• genus 3?

6

• discriminant cubic = lines

• each point z 2 P1, z 6= xi defines a quadric

... and a twistor space P3 of ↵-planes

.... ↵ or �?

• well-defined if we take a double cover C of P1 branched over
x1, . . . , x6 = curve of genus 2

• planes in singular quadric ⇠ P3

(spin representations of Spin(6): V +, V �

V + ⇠= V � restricted to Spin(5))

6
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GENUS 3

1



• C curve of genus 3, quartic in P2

moduli space of rank 2 stable bundles, ⇤2E trivial

= quartic hypersurface Q in P7, the Coble quartic

M.S.Narasimhan & S.Ramanan, 2⇥ linear systems on abelian

varieties, Vector bundles and algebraic varieties (Bombay,
1984), 415- 427, Oxford University Press, (1987)

• E = L� L⇤
) Jac(C)/Z2 = Kummer variety ⇢ Q

• E 7! E ⌦ L, L 2 H1(C,Z2), Q invariant under Z6
2-action

5



• C genus 3, non hyperelliptic ) quartic in P2

• sections of K = restriction of sections of O(1) on P2

= linear forms on C3 a1z1 + a2z2 + a3z3

• sections of K2 = quadratic forms

3X

i,j=1
aijzizj
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• tr�2 : H0(C,End0E⌦K) ! H0(C,K2) .... six quadrics in P5

• C.Pauly, Self-duality of Coble’s quartic hypersurface and ap-

plications, Michigan Math. J. 50 (2002) 551-574.

dual variety is also a Coble quartic: moduli space of bundles
F with ⇤2F ⇠= K

• associate to very stable E a bundle F

with dimH0(C,E ⌦ F ) = 4

• ⇤2E ⇠= O,⇤2F ⇠= K: quadratic form with values in H0(C,K)

= net of quadrics in P3
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• spinor spaces S+, S� skew forms ✏+, ✏�

) inner product on V = S+ ⌦ S�

• ⇤2V ⇠= S2
+ � S2

� self-dual/anti-self-dual forms

• ⇤2H0(C,E ⌦ F ) ! H0(C,⇤2(E ⌦ F )) ! H0(C, S2E ⌦K)

S2E ⇠= End0E

• dim⇤2H0(C,E⌦F ) = 6,dimH0(C,End0E⌦K) = 3g�3 = 6

3
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?

• Claim:

� 2 H0(C,End0E ⌦K) is the self-dual part of

↵ 2 ⇤2H0(C,⇤2(E ⌦ F ))

• tr�2 = induced quadratic form on self-dual 2-forms

(↵+,�+)! =
1

2
[(↵,�)! + (↵ ^ �)]

! = volume form
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• H0(C,E ⌦ F ), ⇤2E ⇠= O,⇤2F ⇠= K ) skew forms

inner product on H0(C,E⌦F ) ⇠= C4 with values in H0(C,K)

• � 2 ⇤2H0(C,E ⌦ F )

tr�2 = induced inner product on self-dual component

• basis v1, . . . v4 of H0(C,E ⌦ F ), (vi, vj) 2 H0(C,K)

• ((v1 ^ v2)+, (v3 ^ v4)+) =

1

2
((v1, v3)(v2, v4)� (v1, v4)(v2, v3) +

q
det(vi, vj))
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• Claim:

� 2 H0(C,End0E ⌦K) is the self-dual part of

↵ 2 ⇤2H0(C,⇤2(E ⌦ F ))

• tr�2 = induced quadratic form on self-dual 2-forms
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! = volume form
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square root of a quartic polynomial?

• Answer: det(vi, vj) = p2 modulo the quartic equation of C

• det(vi, vj) = 0 quartic curve X, det(vi, vj)� p2 = 0 curve C

) X meets C tangentially in 8 points

• (C.Pauly): Q/H1(C,Z2) ! tangential quartics

is generically a degree 72 covering

3



(vi, vj) 2 H0(C,K)

((v1 ^ v2)+, (v3 ^ v4)+) =

1

2
((v1, v3)(v2, v4)� (v1, v4)(v2, v3) +

q
det(vi, vj))

(vi, vj) 2 H0(C,K)

((v1 ^ v2)+, (v3 ^ v4)+) =

1

2
((v1, v3)(v2, v4)� (v1, v4)(v2, v3) +

q
det(vi, vj))

?

• Claim:

� 2 H0(C,End0E ⌦K) is the self-dual part of

↵ 2 ⇤2H0(C,⇤2(E ⌦ F ))

• tr�2 = induced quadratic form on self-dual 2-forms

(↵+,�+) =
1

2
[(↵,�) + (↵ ^ �)!]

! = volume form

2

square root of a quartic polynomial?

• Answer: det(vi, vj) = p2 modulo the quartic equation of C

• det(vi, vj) = 0 quartic curve X, det(vi, vj)� p2 = 0 curve C

) X meets C tangentially in 8 points

• (C.Pauly): Q/H1(C,Z2) ! tangential quartics

is generically a degree 72 covering

3

square root of a quartic polynomial?

• Answer: det(vi, vj) = p2 modulo the quartic equation of C

• det(vi, vj) = 0 quartic curve X, det(vi, vj)� p2 = 0 curve C

) X meets C tangentially in 8 points

• (C.Pauly): Q/H1(C,Z2) ! tangential quartics

is generically a degree 72 covering

3



• moduli space N/H1(C,Z2)
⇠= 72-fold cover

of space of tangential quartics (C.Pauly)

• H0(C,E ⌦ F ) quadratic form values in H0(C,K) ⇠= C3

discriminant detQ = det(vi, vj) = 0 = quartic curve X ⇢ P2

• e.g. X = four lines ) four bitangents to C

for this E, family of quadrics:

x2i � ai(x1y1 + x2y2 + x3y3), y2i � bi(x1y1 + x2y2 + x3y3)
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• four linear forms `1, `2, `3, `4

quartic curve C: `1`2`3`4 + p2 = 0

• syzygetic tetrad of bitangents

(4⇥ 2 = 8 points on a conic p = 0)

• Thm (Plücker 1839) Each quartic can be written in the form
`1`2`3`4 + p2 = 0 and in 315 ways.
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144(x4 + y4)� 225(x2 + y2) + 350x2y2 + 81 = 0

Happy birthday, Roger!
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