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FOUR DIMENSIONS



spinor spaces Sy, S5 skew forms ey, e—

= inner product on V=54 ® S_

null vectors ¢ ® ¢

A2V 2 52 @ S2 self-dual/anti-self-dual forms
S2 = Endp Sy = trace zero endomorphisms

Wey!l tensor Si o sS4



LINEAR TWISTOR THEORY



P3 complex projective space

lines in P3 ~ points in Q4 c P>

= Klein quadric = complexified compactified Minkowski space

two points null separated if the lines intersect



points in P3

= null planes (a-planes) in Q%

planes in P3 (~ points in dual projective space)

= null planes (8-planes) in Q%

null geodesic = point contained in a plane



NONLINEAR TWISTOR THEORY



e complex 3-manifold Z

e rational curves Pl c Z

normal bundle O(1) ® O(1)



e complex 3-manifold Z

e rational curves Pl c Z

normal bundle O(1) ® O(1)

e — complete 4-dimensional family M*%
null separation = intersection of curves

Weyl tensor self-dual

e point z € Z = null surface (one family)



INTEGRABLE SYSTEMS



e Riemann surface C, genus g, rank 2 vector bundle E over C
is stable if for each subbundle L C F, deg L < deg E/2.

e fix A2E, moduli space 3¢ — 3-dimensional variety

e F defines Pl-bundle P(E)

equivalence E ~ E® L, L? trivial, finite group Zzg)
2



e F stable, cotangent space of N at [E] &£ HY(C,Endg E ® K)

® € HO9(C,Endg E ® K), tro? € HO(C, K?)

e dmHY(C,Endg E® K) = 3g — 3 =dim HO(C, K?)

e completely integrable system —=

geodesic flows for a 3g — 3-dimensional family of metrics

(Endg E independent of E+— E® L)



e genus g = 2

e NA2FE trivial, moduli space N = P3

e N\2FE odd degree, moduli space = intersection of two quadrics

M.S.Narasimhan & S.Ramanan, Moduli of vector bundles on a
compact Riemann surface, Annals of Maths. 89 19-51 (1969)

P.Newstead, Stable bundles of rank 2 and odd degree over a
curve of genus 2, Topology 7 205-215 (1968)



6

e C genus 2 v =[]z — %) = p(=)
1

a + bx + cx?
e sections of K2 dz?

p(x)

B van Geemen and E Previato : On the Hitchin system, Duke
Math. J. 85 (1996) 659—-683.

K Gawedzki and P Tran-Ngoc-Bich: Self-duality of the Sl
Hitchin integrable system at genus 2, Comm. Math. Phys.
196 (1998) 641-670.



T*P> = {(p,q) : {p,q) = 0,p # 0}/C*
integrable system /
>2

1 o(17)p,
> (c(i7)p, q

dz?
12872 Iy (z —z;)(z —x;)

H(p,q) = —

action of HI(X,Z/2) on M by E—~ LQE
(projective) action o on HO(J!, 20)

o(ij) = o(lz;] — [z4])



INTERSECTION OF TWO QUADRICS



CLASSICAL GEOMETRY



Julius Plucker 1801—-1868 Otto Hesse 1811 — 1874 George Salmon 1819—-1904

Arthur Cayley 1821 — 1895 Arthur Coble 1878—1966



Classical Algebraic Geometry
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quadrics Q1,Q> C P>

~ quadratic forms g1, g> on CO

pencil — 1-parameter family z1q1 + 2595, [21, 25] € P1

singular quadrics: det(z1q1 + 20g2) = 0: six points z; € P1

xr € Q1 NE>. point in each quadric of the pencil



e cach point z € P1, 2z # z, defines a quadric
. and a twistor space P3 of a-planes

. o or p7

e well-defined if we take a double cover C of P branched over
x1,...,xg = curve of genus 2

e planes in singular quadric ~ P3
(spin representations of Spin(6): VT,V —

VT =2V~ restricted to Spin(5))



e M4 = P3-pbundle over C

e r € Q1 N> = point in each quadric of the pencil

— line in each twistor space

Pl-bundle over C, contained in M*%



e M4 = P3-pbundle over C

e r € Q1 N> = point in each quadric of the pencil
— line in each twistor space

— Pl-bundle over C, contained in M*

= P(E)

M.S.Narasimhan & S.Ramanan, Moduli of vector bundles on a
compact Riemann surface, Annals of Maths. 89 19-51 (1969)

P.Newstead, Stable bundles of rank 2 and odd degree over a
curve of genus 2, Topology 7 205-215 (1968)



The Non-Linzar Graviton

summayy

A new approach to gquantized gravitational theory is sugdested.
It is argued by analogy with Maxwell theory - and alsc from a
principle that (physical) gravitons should carry cpace-time
curvature - that a free graviton should be describabl@ kv a com-

plex solution of Einstein's vacura eguations. For a left-handed



Ann. Global Anal. Geom.
Vol. 3, No. 2 (1985), 185-195

THE INTERSECTION OF TWO QUADRICS 1IN PS(C) AS A TWISTOR SPACE

Jacques Hurtubise

A parametrization is constructed for the space Y® of conics in the

intersection of two quadrics in Ps(c) and the study is made of the con-

formal structure of Yc.

Introduction

In [3], Hitchin, classifying Kdhlerian twistor spaces, reduces the
possibilities to four: P3(C), F3(C) (the flags in C3), the intersection
of two quadrics in PS(C) and the double covering of P3(C) branched over

a non singular quartic surface. In the last two cases, however, there
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e twistor space = intersection of quadrics Q1 N Q5 in P>
twistor lines = conics in @1 N Q-

conic = intersection of a plane and a quadric



e twistor space = intersection of quadrics Q1 N Q5 in P>
twistor lines = conics in @1 N Q-

conic = intersection of a plane and a quadric

e pencil of quadrics Q,, z € P1

take an a-plane in @y for some a, intersect with Q1

Q1NE2=Q1NEq= conicin Q1 NQ>



e twistor space = intersection of quadrics Q1 N Q5 in P>
twistor lines = conics in @1 N Q-

conic = intersection of a plane and a quadric

e pencil of quadrics Q,, z € P1

take an a-plane in @y for some a, intersect with Q1

Q1NE2=Q1NEq= conicin Q1 NQ>

e space-time = space of conics = pairs a € C, a-plane in Qq

— P3 pundle over C = M*%



e a point in twistor space = null surface in complex space-time

e a point x € Q1 N Q> = a null surface in M*%

. but z defines the ruled surface P(E) — C in M*

e Prop: These surfaces are null



e conformal structure is defined on an open set in M4

— where the intersection of a plane and a quadric is a non-
singular conic

e complement is where the intersection is a pair of lines

— singular quartic surface in each P3 fibre ...

e ... Kummer surface, covering = space of lines in Q1 N Q>



e there are 4 lines through a generic point = in Q1 N Q>

e a line £ C Qo = null geodesic ~ point in a plane in P3



e there are 4 lines through a generic point = in Q1 N Q>

e a line £ C Qo = null geodesic ~ point in a plane in P3

e € Q1NQoxcl~ pointin a linein a plane in P2



e there are 4 lines through a generic point = in Q1 N Q>

e a line £ C Qo = null geodesic ~ point in a plane in P3

e r c Q1 NQPor,x e’ N@ N z@in a plane in Pg’

e 2 cQ1NQr=P(E) Cc M*

a point in a line = section s: C — P(F) ~ line bundle in E.

= 4 distinguished subbundles in each stable bundle E.



COMPLEX FIBRE BUNDLES AND
RULED SURFACES

By M. F. ATIYAH
[Received 5 August 1954.——Read 25 November 1954]

Introduction
AvtHOUGH much work has been done in the topological theory of fibre

bundles, very little appears to be known on the complex analytic side. In

this paper we propose to study certain types of complex fibre bundle,
showing how they can be classified. The methods we shall employ will be



e represent P(FE) by an extension O — F — L, degL =1

extension class in H1(C, L= 1)

e dmHI(C,L71)=2=dimHY(C,LK) (Serre dual)

projective line P(H1(C,L~1)) isomorphic to dual P(H®(C, LK))



e represent P(FE) by an extension O — F — L, degL =1

extension class in H1(C, L= 1)

e dmHI(C,L71)=2=dimHY(C,LK) (Serre dual)

projective line P(H1(C,L~1)) isomorphic to dual P(H®(C, LK))

e deg LK = 3, s € HO(C, LK) vanishes at p,q,r € C

= extension class = annihilator of s



e represent P(FE) by an extension O — F — L, degL =1

extension class in H1(C, L= 1)

e dmHI(C,L71)=2=dimHY(C,LK) (Serre dual)

projective line P(H1(C,L~1)) isomorphic to dual P(H®(C, LK))

e deg LK = 3, s € HO(C, LK) vanishes at p,q,r € C

= extension class = annihilator of s

e 4 subbundles of E: 7:C — C involution

(p,q,7) ~ (7(p),7(q),7) ~ (P, 7(q),7(r)) ~ (7(p),q,7(r))



e 7:C — Pl unordered triple (w(p),n(q),n(r)) € P!

— symmetric product S3pl = p3

e Q1N Q2 modulo H'(C,Z3) = double covering of P3

branched over six planes (x;,q,7)

e P3 ~ space of cubic polynomials



NETS OF QUADRICS



e genus 2, fix E, trd? e HO(C, K?2):

e 3 quadratic forms on the

3-dimensional space HO(C,Endg E ® K)

e — net of conics



Problem: Given E
1. Find all ® € HY%(C,End, E ® K)
2. Calculate tr 2

3. Classify family of quadrics



e quadratic forms g1, qo,q3 on C3 = H9(C,Endg E ® K)

e discriminant det(z1q1 + 229> + 23¢g3) = 0

cubic curve in P2

e invariant = modulus of elliptic curve



e genus 2, O - F — L

3-dimensional space HO(C,Endg E ® K)

e 2-dimensional space preserving subbundle & HO(C, K)

e 1-dimensional space

b .0 — (F/O)® K = LK defined by divisor p+q+r

= basis for H(C,Endg E ® K)



e Ativah's description of moduli space : cover of S3pl = p3

e generic (p,q,r): {$2,y2722} :
net of conics
/

big diagonal (p,p,q): {w2,y2,yz}

small diagonal (p,p,p): {x?,2xy,y° + 2xz}

branch locus (z;,q,7): {y?+ zz,22,0}

e discriminant cubic = lines



e Ativah's description of moduli space : cover of S3pl = p3

e generic (p,q,7): {CUQ,?JQ,ZQ} :
net of conics
/

big diagonal (p,p,q): {JJQ,yQ,yZ}

small diagonal (p,p,p): {x?,2xy,y° + 2xz}

branch locus (a;,q,7):  {y? + x2,22,0}




GENUS 3



e C curve of genus 3, quartic in P2
moduli space of rank 2 stable bundles, A2E trivial
— quartic hypersurface Q in P’, the Coble quartic

M.S.Narasimhan & S.Ramanan, 2© linear systems on abelian
varieties, Vector bundles and algebraic varieties (Bombay,
1984), 415- 427, Oxford University Press, (1987)

o F=L&L*= Jac(C)/Z>, = Kummer variety C Q

e E— E®L, L € H(C,Z5), Q invariant under Z$-action



e C genus 3, non hyperelliptic = quartic in P2

e sections of K = restriction of sections of ©®(1) on P2
= linear forms on C?’ a1z1 + a>zo + a3z3

3

e sections of K2 = quadratic forms ) @i;ziz;
i,j=1



o trd?: HO(C,Endp EQR K) — HO(C,K?) .... six quadrics in P>

e C.Pauly, Self-duality of Coble’s quartic hypersurface and ap-
plications, Michigan Math. J. 560 (2002) 551-574.

dual variety is also a Coble quartic: moduli space of bundles
F with A2F &£ K

e associate to very stable E a bundle F

with dim HO(C,E ® F) = 4



o trd?: HO(C,Endp EQR K) — HO(C,K?) .... six quadrics in P>

e C.Pauly, Self-duality of Coble’s quartic hypersurface and ap-
plications, Michigan Math. J. 560 (2002) 551-574.

dual variety is also a Coble quartic: moduli space of bundles
F with A2F &£ K

e associate to very stable E a bundle F

with dim HO(C,E ® F) = 4



e sSpinor spaces 54,5 skew forms e ,e_

= inner producton V=5, ® S_

o N2V 2 52 ¢ S§2 self-dual/anti-self-dual forms



e sSpinor spaces 54,5 skew forms e ,e_

= inner producton V=5, ® S_

o N2V 2 52 ¢ S§2 self-dual/anti-self-dual forms

e N\°HY(C,E®Q F) - HY(C,N?(E® F)) —» H%(C,S?E ® K)



e sSpinor spaces 54,5 skew forms e ,e_

= inner producton V=5, ® S_

o N2V 2 52 ¢ S§2 self-dual/anti-self-dual forms

e N\°HY(C,E®Q F) - HY(C,N?(E® F)) —» H%(C,S?E ® K)

S°FE =2 Endg E



e sSpinor spaces 54,5 skew forms e ,e_

= inner producton V=5, ® S_

o N2V 2 52 ¢ S§2 self-dual/anti-self-dual forms

e N\°HY(C,E®Q F) - HY(C,N?(E® F)) —» H%(C,S?E ® K)

S°FE =2 Endg E

e & c HYC,EndgE ® K) is the self-dual part of
a € N2HY(C,EQ F)



e HY(C,E® F), N°E =2 O,\?F 2 K = skew forms
inner product on HY(C, E® F) = C* with values in H°(C, K)

e ® c N°HY(C,EQ F)

tr 2 = induced inner product on self-dual component



e HY(C,E® F), N°E =2 O,\?F 2 K = skew forms
inner product on HY(C, E® F) = C* with values in H°(C, K)

e ® c N°HY(C,EQ F)

tr 2 = induced inner product on self-dual component

e basis vy,...v4 of HY(C,E® F), (v;,v;) € HO(C, K)

o ((viANv2)y,(v3Avg)y) =

~(01,v3)(v2,v8) — (v1,0a) (02, v3) + /det vy, )



((v1 Av2)g, (V3 Avg)y) =

%((vl,v3)(v2,v4) — (v1,v4)(vp,v3) + \/det(viavj)>
.

square root of a quartic polynomial?



((v1 Av2)g, (V3 Avg)y) =

%((vl,v3)(v2,v4) — (v1,v4)(vp,v3) + \/det(viavj)>
.

square root of a quartic polynomial?

e Answer: det(vi,fuj) = p2 modulo the quartic equation of C

e det(v;,v;) = 0 quartic curve X, det(v;,v;) —p? =0 curve C

= X meets C tangentially in 8 points



e moduli space N/H1(C,Z>) = 72-fold cover

of space of tangential quartics (C.Pauly)

e HY(C,E ® F) quadratic form values in H(C,K) = C3

discriminant det Q = det(v;,v;) = 0 = quartic curve X C P?



e moduli space N/H1(C,Z>) = 72-fold cover

of space of tangential quartics (C.Pauly)

e HY(C,E ® F) quadratic form values in H(C,K) = C3

discriminant det Q = det(v;,v;) = 0 = quartic curve X C P?

e e.g. X = four lines = four bitangents to C

for this E, family of quadrics:

v7 — ai(z1y1 + zoy2 +x3y3),  y7 — bi(z1y1 + x2y2 + 23y3)



e four linear forms ¢41,45,03,44

quartic curve C: £10x0304 + p? =

e Syzygetic tetrad of bitangents

(4 x 2 = 8 points on a conic p = 0)

e Thm (Pliicker 1839) Each quartic can be written in the form
01050304 + p° = 0 and in 315 ways.
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28 bitangents

144 (x* + y*) — 225(z2 4+ y2) + 35022y +81 =0
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28 bitangents



Happy birthday, Roger!



