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1 Motivation and overview

The ambitwistor string was formulated by Mason and Skinner in [1]. Its tree amplitudes
successfully reproduce the formulas for bosonic scattering amplitudes developed by Cachazo,
He, and Yuan [2–4]. It is hoped that the ambitwistor string may also be useful for computing
loop amplitudes and scattering amplitudes on non-trivial backgrounds. Since the ambitwistor
string makes manifest the perturbative double copy (relating gauge and gravity amplitudes),
it is hoped that the ambitwistor string on non-trivial backgrounds could lead to a formulation
of a non-perturbative double copy. This report presents work towards both of these aims.

There has been some recent progress in the study of non-trivial backgrounds for the am-
bitwistor string. In 2014, Adamo, Casali, and Skinner [5] showed that the quantum consis-
tency of the string imposes the supergravity equations for the background. More recently, a
concrete ambitwistorial computation of a three-point amplitude on a non-trivial plane wave
background was carried out in [6], following earlier work in [7]. This calculation uses the origi-
nal formulation of the ambitwistor string. An alternative formulation is available in which the
supergravity equations are realised classically, and not through quantum consistency. This is
the pure spinor ambitwistor string first proposed by Berkovits [8]. It is related to Berkovits’
formulation of the superstring [9]. In the same way that the ambitwistor string may be re-
garded as the infinite tension limit of the RNS superstring, the pure spinor version may be
regarded as an infinite tension limit of the pure spinor superstring. The relation between the
two formulations is the subject of some ongoing work by Berkovits [10, 11]. The pure spinor
ambitwistor string has been shown to give the correct field theory amplitudes at tree level [12].
Adamo and Casali have offered evidence suggesting that it also gives the correct amplitudes
at one loop [13]. Moreover, the pure spinor ambitwistor string gives rise to the supergravity
equations at the classical level as consistency of the constraints [14]. The heterotic version has
been shown to give the super Yang-Mills equations [15]. These results are based on the work
by Berkovits and Howe in 2001 demonstrating that the supergravity and super Yang-Mills
equations follow from the pure spinor superstring [16]. The emergence of the supergravity
constraints at the classical level suggests that there is a classical ambitwistor construction
of the supergravity equations making use of pure spinors. This would be analogous to the
ambitwistor construction for super Yang-Mills equations in four dimensions [17, 18]. In 1986,
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Witten proposed that the ten dimensional super Yang-Mills and supergravity equations fol-
low from an ambitwistor construction [19]. However, only the super Yang-Mills statement
was fully proved (in refs. [19, 20]) and the supergravity construction remains incomplete. In
Part 1 of this essay we show that there is an extended version of ambitwistor space which
can be used to derive the super Yang-Mills and supergravity equations in ten dimensions.1

The main interest of this work concerns the ‘double copy’ relating gauge theory and gravity
amplitudes. This goes back to work by Bern, Cachazo, and Johansson [21] who formulated
this relationship for tree amplitudes. Their work has a natural translation in the pure spinor
superstring [22]. Some authors have suggested nonlinear examples of the double copy—which
is to say, they find a dictionary between classical general relativity spacetimes and copies of
classical Yang-Mills solutions. See ref. [23]. Since pure spinor ambitwistor space provides a
classical construction of sueprgravity and super-Yang-Mills solutions in ten dimensions, it is
possible to use our formulation of the classical equations to see how the double copy translates
to a non-linear statement.2

The second aim of this essay is to discuss work that relates to the Ramond sector of the
ambitwistor string and higher loop amplitudes. Immediately following the formulation of the
ambitwistor string, Adamo, Casali and Skinner conjectured that the genus one amplitudes of
the ambitwistor string are field theory loop amplitudes [5]. A partial proof of their conjecture
in the case that all external states are bosonic was given in [24], with some further work on
two loops in [25]. To complete the proof in [24], one needs to know the contribution that arises
due to fermions in the loop. Some work towards this end was recently carried out in [26]. We
make the connection in section 8.4, in Part 2 of this essay. Part 2 is concerned more generally
with computing new correlators in the ambitwistor string involving the Ramond sector. We
produce new formulas for correlators in dimension 4 and 6. We find that these do not give
rise to formulas for amplitudes. It is hoped that more can be said in 10 dimensions, especially
for the case of four fermions—which may lead us to a proof that the ambitwistor string gives
correct 2-loop amplitudes. Many of our computations make use of earlier work by Schlotterer,
Stieberger and Hartl in 2009 and 2010 [27–29]. Their work concerns superstring amplitudes
and they embarked on a programme to compute higher point correlators involving Ramond
insertions at arbitrary genus—with the motivation that these correlators are important for
phenomenological particle physics. We adapt their work to our aims, giving complete proofs
where references are otherwise unavailable. We also make use of some results in Lie polynomial
theory to write our formulas in a manifestly Lie algebraic form. We conclude Part 2 with a
discussion of how our formulas might be applied to higher loop and higher point amplitudes
in the ambitwistor string.

Part One—pure spinors

The ambitwistor space of a complex manifold is the space of (complex) null geodesics. We be-
gin, in section 2, with a review of key results about ambitwistor spaces and, in four dimensions,
its relation to gauge theory. Section 2 concludes with a discussion of D = 4 super Yang-Mills
from the ambitwistorial viewpoint. The main focus of Part 1 is super Yang-Mills and super-
gravity in ten dimensions. We give an ambitwistorial construction for the super Yang-Mills
equations in section 3, and likewise for type IIB supergravity in section 4. These results are

1A number of homological results remain to be proved, as we explain in section 4.3. If these conjectures can
be substantiated, we hope to show that the extended version of ambitwistor space can always be constructed,
at least locally, for curved superspacetimes.

2It is dubious whether this is in any way interesting, and I have not burdened this report with any discussion
of my calculations relating to this.
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based on an extended version of ambitwistor space that we call pure spinor ambitwistor space.
We conclude in section 4.3 by conjecturing that it is possible to give a local existence result
for pure spinor ambitwistor space, by analogy with Le Brun’s result for ambitwistor space.

2 Ambitwistor space

We can understand the local structure of ambitwistor space A by describing its tangent spaces.
The tangent spaces to A can be identified with Jacobi fields in the following way. Let (M, g)
be a complex manifold and consider some geodesic l. It has some tangent vector field K
satisfying ∇KK = 0. We can obtain nearby geodesics by choosing a Jacobi field J , which
satisfies [K,J ] = 0 on l. At a particular point p ∈ l we can specify the field J by choosing two
vectors, J(p) and J̇(p) (this is initial data for the Jacobi equation). The Jacobi fields on l can
be regarded as the tangent vectors to the space of geodesics at l. However, the Jacobi fields
corresponding to

J(p) = K, J̇(p) = 0 and J(p) = 0, J̇(p) = K

merely amount to reparametrisations of l. So the space of geodesics, when it exists, has
expected dimension 2 dimM−2. We may represent the tangent vectors by choosing J(p), J̇(p)
orthogonal and not parallel to K. There is a natural 1-form, ω, on the tangent space, which
resembles the Wronskian. For any two Jacobi fields J1, J2, we can, at any point p on l, evaluate

ω(J1, J2) = J̇1 · J2(p)− J1 · J̇2(p). (1)

One easily verifies that the right hand side does not depend on our choice of p ∈ l (by Jacobi’s
equation). If we constrain l to be null, K ·K = 0, we obtain a neighbouring null geodesic if
J̇(p)2 = 0. So the space of null geodesics has expected dimension 2 dimM − 3.

Theorem 1. (Le Brun) Let M be a complex manifold and p ∈M a point. There exists some
neighbourhood U of p such that the space of (null) geodesics in U is itself a Hausdorff complex
manifold of the expected dimension.3

The space of null geodesics is called ambitwistor space. In section 2.1 we give examples for
flat space times. Our discussion of the relationship with gauge theory begins in section 2.3,
and we conclude by discussing super Yang-Mills in section 2.6.

2.1 Examples

In principle, A could be given as the symplectic quotient of T ∗M by the constraint P 2 = 0.
However, for flat space we can give instructive global presentations of A using spinors and flag
varieties. Let Mn be n-dimensional affine space over C with the obvious quadratic form. Write
An for the associated ambitwistor space. We begin with some low dimensional examples.

2.1.1 Three dimensions

In three dimensions, a null vector k satisfies

k2
1 + k2

2 + k2
3 = 0,

3Le Brun first proved this in his thesis [30] and later elaborated his work in ref. [31].
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which is best solved using spinors. Indeed, all null vectors can be written as ka = σaαβλ
αλβ

for some λα, unique up to a sign. Here λα belongs to the two dimensional spin representation
of so(3) and σaαβ are the Pauli matrices. A null geodesic is then of the form

l =
{
xαβ0 + tλαλβ|t ∈ C

}
⊂M.

Notice that l is the solution to the equation

µα = xαβλβ,

if we choose µα = xαβ0 λβ. The spinor µα does not depend on our choice of a base point x0 on
l. It follows that A3 is given by the pairs (µα, λβ), up to a projective scaling. In other words,
the ambitwistor space is A3 = CP3, which has dimension 2 × 3 − 3 = 3, as anticipated.4 We
can equip this with a symplectic form

ω = dλα ∧ dµα. (2)

The reason we choose this symplectic form—and not, say, the Kähler form on CP3—is that it
is equivalent to equation (1).5

2.1.2 Four dimensions

In four dimensions, a null vector can be decomposed as kaγa
αα̇ = λ̃αλα̇, unique up to a scaling.

To parameterise the null rays, we can repeat the trick we used in three dimensions. The chiral
structure of the spin representations proves to be only a minor complication. The solutions to

µα = xαβ̇λβ̇ form a null 2-plane, {xαβ̇0 + παλβ̇| ∀πα}. Likewise, the solutions to µ̃β̇ = xαβ̇λ̃α

form a null 2-plane, {xαβ̇1 + λ̃απ̃β̇| ∀π̃β̇}.6 It is clear that if these two planes intersect for some
choice of π, π̃, then they intersect in a null line with tangent vector λ̃αλα̇. The two planes
intersect if there exist π, π̃ such that

xαβ̇0 − x
αβ̇
1 + παλβ̇ − λ̃απ̃β̇ = 0.

Since the chiral spin representations are only two dimensional, such a π and π̃ exist iff

Q = µαλ̃α − λα̇µ̃α̇ = 0. (3)

This defines a quadric in CP3 × CP3. Conversely, every null line can be obtained as the

intersection of two such planes. The null ray through xαβ̇0 with momentum λ̃αλβ̇ corresponds

to the intersection of the planes (xαβ̇0 λβ̇, λβ̇) and (xαβ̇0 λ̃α, λ̃α). It follows that A4 is the quadric

Q = 0 in CP3 × CP3, which has dimension 2× 4− 3 = 5. It has a symplectic form

ω = dλ̃α ∧ dµα + dµ̃α̇ ∧ dλα̇.

This is again identical with equation (1).

4This example is discussed by Le Brun in ref. [32].
5The translation is straightforward. We identify

ka = σaαβλαλβ and µα = xa0σ
aαβλβ .

A variation in the geodesic is specified by δxa0 = Ja and δka = J̇a. This is related to the spinors µα and λα by

δµa = Jaσaαβλβ , J̇a = 2σaαβλ(αδλβ).

It follows that
δ1λα δ2µ

α = J̇1 · J2,
and this shows that equation (2) is the same as equation (1).

6Penrose called these α and β planes. They are distinguished in the Grassmannian of null planes by
belonging to distinct SO(4) orbits—see below.
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2.1.3 Six dimensions

In six dimensions, the two chiral spin representations are isomorphic and the chiral gamma
matrix γαβa is antisymmetric. A null vector has form εαβγδλγ λ̃δ, though this is not unique. To
parameterise the null rays we can again consider µα = xαβλβ, as in three dimensions. However,
this has a solution iff µαλα = 0, since xαβ is skew. The solution is a null 3-plane with tangents
of the form εαβγδπγλδ. Likewise, consider a second null 3-plane defined by µ̃α = xαβλ̃β. Again,
we must impose µ̃αλ̃α = 0. If the two planes intersect, they do so in a null ray with tangent
εαβγδλγ λ̃δ. Following the same argument as in four dimensions, they intersect if

Q = µαλ̃α + λαµ̃
α = 0.

So, if µαλα = 0, µ̃αλ̃α = 0, and Q = 0, the two planes intersect in a null ray. But the null
ray is not uniquely represented by the two null planes. If a null ray through x0 with tangent
εαβγδλγ λ̃δ is contained in the α-plane (µα, λα), it is also contained in the plane

(µα + txαβ0 λ̃β, λα + tλ̃α),

for all t. With respect to the symplectic form

ω = dµα ∧ dλ̃α + dµ̃α ∧ dλα,

this shift in µα and λα is generated by the Hamiltonian µ̃αλ̃α. Likewise for µαλα. So A6 is
obtained as a symplectic reduction of CP7 × CP7 by the Hamiltonians µ̃αλ̃α, µαλα, and Q.
The first two Hamiltonians reduce the dimension from 14 by two each. Q only reduces the
dimension by one since the Hamiltonian vector field associated to Q is just the difference of the
two Eulerian vector fields which we have already reduced by when passing to the projective
spaces CP7. The symplectic reduction by these Hamiltonians thus has dimension 14− 5 = 9,
as expected.

2.1.4 Eight dimensions

In eight dimensions, the two chiral spin representations have dimension eight, and there are
symmetric inner products εαβ and εα̇β̇ on each chiral representation. The gamma matrices
satisfy

γ(a
αα̇γb)α

β̇ = gabε
α̇β̇, (4)

where g is the Euclidean metric on M . In fact, analogous identities can be obtained by
permuting the roles of the indices. As in lower dimensions, a spinor λα̇ defines a plane with
tangents ka = γaαα̇π

αλα̇. However, this plane is totally null only if λα̇λα̇ = 0, by equation
(4). In this case, λα̇ defines a null 4-plane. Such a λα̇ is called a pure spinor, and the space of
projective pure spinors can be identified with null planes of maximal dimension. (See appendix
A.2.) The incidence relation is now

µα = xαα̇λ
α̇,

and µα is a pure spinor, as follows from equation (4). If x0 is a solution, the space of solutions
is a null 4-plane of the form xa0 + γaαα̇π

αλα̇, for all πα. However, the incidence relation has a
solution only if

µαλα̇γa
αα̇ = 0. (5)

Together with the purity of λα̇ and µα, this condition means that (µα, λ
α̇) is a pure SO(10)

spinor. Likewise, the dual relation w̃α̇ = xαα̇λ̃α gives rise to a null 4-plane, provided that

λ̃αw̃α̇γa
αα̇ = 0. (6)
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If the two null planes intersect, they do so in a null ray. The intersection condition is again the
quadric analogous to equation (3). The space of two projective SO(10) pure spinors satisfying
Q = 0 has dimension 19, as compared with dimA8 = 13. The reason for the discrepancy is
that a null vector ka is not uniquely written as γaαα̇λ̃

αλα̇. We may add to λα̇ any spinor of the
form γαα̇a laλ̃α. The space of spinors with this form has dimension 4 or, projectively, 3. With
respect to the symplectic form, these translations are generated by equation (5). Likewise,
equation (6) generates the analogous translations in λ̃α. The symplectic reduction by these
constraints then gives A8, with dimension 13.

2.2 Grassmannians

As we saw in the previous section, the spinorial presentation of An becomes unwieldy in higher
dimensions for two reasons. The first reason is purity. In dimension 2n, we have been imposing
that the pairs (µ, λ) are pure spinors for SO(2n+2). (A pure spinor for SO(2n+2) is called a
‘twistor’ for M2n.) However, in the spinorial representation, a pure spinor must satisfy many
constraints. The second reason is the little group. The representation of a null vector k as
λλ̃ is not unique in dimensions greater than 2. This is manageable in low dimensions, where
the orbits of the little group have low dimensions, but not in higher dimensions. We can solve
both problems at once by working directly with the null planes represented by pure spinors.
In this section, we will explain this approach in four dimensions, before giving its generalising
to all even dimensions. The Grassmannian approach to four dimensions will be used again in
section 2.6 in our discussion of super Yang-Mills. The generalisation to all even dimensions is
somewhat technical, and may be skipped.

Four dimensions

Earlier, we constructed A4 as a quadric in CP3×CP3. We can identify A4 with the flag variety
F (1, 3; 4) of (1,3)-flags in a four dimensional vector space. To make this clear, introduce
homogeneous coordinates vi, wi for CP3. Then A4 is the quadric v ·w = 0 in CP3 ×CP3. But
v ·w is the Plücker relation for the embedding the flag variety F (1, 3; 4) into the Grassmannians
Gr(1; 4)×Gr(3; 4). This is because Gr(1; 4) is isomorphic to CP3 where a ray with tangent vi

is sent to the point [vi]. Similarly, Gr(3; 4) is isomorphic to CP3 where a plane with normal wi

is sent to the point [wi]. Then the ray is contained in the plane iff v · w = 0. In fact, we can
never obtain the lines vi = (µα, 0) for finite xαα̇ from the incidence relation. So A is only an
open subset of F (1, 3; 4). Alternatively, F (1, 3; 4) is a natural compactification of A. On the
other hand, the Euclidean space M4 can be identified with an open subset of Gr(2, 4), which
we might call compactified Euclidean space, M c

4 . This identification leads to the fibrations

A4 ⊂ F (1, 3; 4)← F (1, 2, 3; 4)→ Gr(2; 4) ⊃M4, (7)

which we make use of in sections 2.4 and 2.5. Let us now explain the identification of M4 with
a subset of Gr(2, 4). Generally, the Grassmannian Gr(r, d), which has dimension r(d−r), may
be covered by patches associated to dimension d−r subspaces. This is completely analogous to
the covering of CPd by inhomogeneous coordinate patches. Given a subspace S of dimension
d− r, choose a basis e1, ..., ed so that S is the span of e1, ..., ed−r. Then we may consider the
open subset of planes in Gr(2, 4) which are transversal to S. These take the form[

1d−r
X

]
∈ Gr(r, d),
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where X is an r×d−r matrix. The corresponding subspace is the column span of this matrix.
In our particular case, take r = 2 and d = 4. Then one patch of Gr(2, 4) may be written as[

12

xαα̇

]
,

and the xαα̇ can be identified here with coordinates on M4. Indeed, in these coordinates,
the construction of the tautological bundle over Gr(2, 4) shows that we may identify it with
the unprimed chiral spinor bundle on M4. The Grassmannian Gr(2, 4) admits an embedding
into P

(
∧2C4

)
= CP5. If zi are homogeneous coordinates for CP5, the Plücker relation is

q(z) = z1z2 + z3z4 + z5z6 = 0. On the open set z6 6= 0, we recover zi/z6, with 1 ≤ i ≤ 4,
as coordinates on M4.7 So we may view M c

4 as the null rays in CP5 with respect to q, which
we denote as Gr0(1, 6). Likewise, we can consider null planes Gr0(2, 6), and so on. In fact,
suppose Z1, Z2 ∈ Gr0(1, 6) are two points in a null plane in Gr0(2, 6). If Zi corresponds to the
point xi in M4, then one finds that q(x1−x2) = 0.8 So x1 and x2 are null separated in M4 and
x1 + t(x1 − x2) is a null geodesic in M4. Conversely, given a null geodesic, we obtain such a
plane in Gr0(2, 6) by taking two points, X1 and X2, on the null ray and taking the null plane
associated to X1 ∧X2. So Ac4 = Gr0(2, 6). We can present an alternative double fibration

A4 ⊂ Gr0(2, 6)← F 0(1, 2; 6)→ Gr0(1, 6) ⊃M4.

This looks markedly different from equation (7). Earlier, we identified A4 with F (1, 3; 4),
whereas now we are identifying it with Gr0(2, 6). The translation between Gr0(2, 6) and
F (1, 3; 4) is spinorial. A plane in Gr0(2, 6) is the same as a simple 2-form X ∧ Y on V = C6.
The even forms in

∧
V can be identified with Spin(6). Choosing a decomposition V = W⊕W ∗,

the irreducible representation of the Clifford algebra is
∧
W , which has dimension 8. The

irreducible chiral spin representations are the even and odd forms in
∧
W , which we denote by

S±6 . These are each four dimensional. The associated representations of Spin(6) are denoted
γ and γ̃. Then γ(X ∧ Y ) is an endomorphism of S+

6 . Since X and Y are both null, the image
of γ(X ∧ Y ) is a 1-dimensional ray in S±6 . Doing the same for γ̃, and identifying S−6 as the
dual of S+

6 , we recover the presentation A4 = F (1, 3; 4).

All even dimensions

The approach we have sketched to four dimensions was generalised to higher dimensions by
Harnad and Schnider. [33] Since the construction is not quite captured by the example of A4,
we will briefly present their result.

Theorem 2. (i) The ambitwistor space A2n for M2n is an open subset of the isotropic Grass-
mannian, Gr0(2, 2n + 2). We may present A2n and M2n as fibrations of an isotropic flag
variety,

A2n ⊂ Gr0(2, 2n+ 2)← F 0(1, 2; 2n+ 2)→ Gr0(1, 2n+ 2) ⊃M2n.

(ii) For n > 2 we have the further identification

A2n ⊂ Gr0(2, 2n+ 2) = Gr0(S2n−2, S
+
2n+2),

given by (a generalisation of) the Cartan map.9

7These are related to the usual ones by z1/z6 = x1 + ix2, and so on, such that q(x) = (x1)2 + (x2)2 + ....
8Since Z1 + tZ2 is null for all t, we find that, writing Zi = (zai , z

5
i , z

6
i ),

q(zi) + z5i z
6
i = 0 and 2q(z1, z2) + z51z

6
2 + z61z

5
2 = 0.

Combining these gives x21 + x22 − 2x1 · x2 = 0, where xai = zai /z
6
i .

9The generalisation is due to Hanard and Schnider.
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The first part of the theorem proceeds as in our discussion of A4 with no changes. The second
part requires some explanation. The Cartan map identifies maximal null planes with projective
pure spinors. Take again V with dimension 2n+ 2, and a decomposition V = W ⊕W ∗ so that
the quadratic form on V is

q : (W ⊕W ∗)× (W ⊕W ∗)→ C : (w1, w
′
1), (w2, w

′
2) 7→ w′1(w2) + w′2(w1).

The structure of Gr0(n+1, 2n+2) depends on n+1 mod 2. When n+1 is odd, Gr0(n+1, 2n+2)
decomposes into two SO(2n + 2) orbits. When n + 1 is even, Gr0(n + 1, 2n + 2) is itself an
SO(2n+2) orbit. To see this, consider the orbits of W and W ∗ under SO(2n+2). The matrix
J exchanging W and W ∗ has determinants det J = n+ 1. Let us fix n+ 1 odd. We denote the
disjoint orbits of W and W ∗ by Gr+(n+ 1, 2n+ 2) and Gr−(n+ 1, 2n+ 2). The Cartan map
takes a null plane X ∈ Gr+(n+1, 2n+2) to the image of γ(X), which is a 1-dimensional ray in
Λ+

2n+2. By choosing an ordering of the coordinates, we can obtain a canonical ray S+
2 ⊂ S

+
2n+2

which is the spin representation of the subgroup Spin(2) ⊂ Spin(2n + 2) corresponding to
the ‘first two coordinates’. In fact, let us choose S+

2 so that S+
2 = [γ(W )]. Next, we use that

γ is equivariant with respect to Spin(2n + 2). The ray [γ(X)] ⊂ S+
2n+2 is thus connected to

S+
2 ⊂ S+

2n+2 under Spin(2n + 2) since X is connected to W under SO(2n + 2). This might
appear somewhat tautological! But this is Cartan’s result. Cartan (via Chevalley) called the
space of rays connected to S+

2 the projective pure spinors,

Gr0(S+
2 ;S+

2n+2).

Since Cartan’s map identifies this space with the space of n + 1-dimensional null planes, it
has dimension n(n + 1)/2. (See appendix A.2.) We can generalise Cartan’s map to other
isotropic Grassmannians besides Gr0(n + 1, 2n + 2). We define Gr0(S2n−2, S

+
2n+2) to be the

2n−1-dimensional subspaces in S+
2n+2 connected to S±2n−2 by Spin(2n+ 2). Then, in the same

way as for the pure spinors, we can identify a null plane X ∧ Y ∈ Gr0(2, 2n + 2) with the
image of γ(X ∧ Y ) in S+

2n+2.

2.3 Double fibrations

There is an intimate relationship between the Yang-Mills equations and the ambitwistor space
in four dimensions. We return to this in section 2.4 after developing some prerequisites. As
mentioned earlier, both A4 and M4 can be presented as fibrations of F = F (1, 2, 3; 4). F
can also be identified with the total space of the projective spinor bundles (PS ⊕ PS̃)M or,
equivalently, with the bundle of null quadrics in the projective tangent space PT0M . For a
general complex manifold M , there is no reason to expect that the null geodesics will define a
fibration of PT0M . However, by Le Brun’s theorem, this is always possible locally. So consider
any double fibration (of complex analytic spaces)

A
p←−− F q−−→M. (8)

It is sometimes possible to construct vector bundles on M from vector bundles on A.10 Given
a locally free sheaf Ẽ on A we can obtain a locally free sheaf on M if p∗Ẽ, restricted to q−1(x),
is free for all points x ∈ M .11 This means that E = q∗p

∗Ẽ exists, and Ex is given by the
global sections of p∗Ẽ restricted to q−1(x). Note also that Ẽ and E (as vector bundles) have
the same rank. Finally, we can give E a connection ∇ induced by the vertical connection

∇v : p∗Ẽ → p∗Ẽ ⊗ Ω1F/A,

10This construction is a mild generalisation of an idea given by Ward for twistor space.
11We will identify a vector bundle E with its locally free sheaf of germs, O(E), which we denote by E.
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where Ω1F/A are the vertical forms with respect to p. In order for this to give a connection
on E, we need that q∗Ω

1F/A ' Ω1M is an isomorphism. If, in addition, the fibres of p are
simply connected and the fibres of q are compact, we will call the double fibration good.

Theorem 3. If the fibration, equation (8), is good, there is an equivalence between vector
bundles on A (whose pullbacks are trivial on the fibres of q) and vector bundles with connection
on M (whose pullbacks have trivial curvature and monodromy on the fibres of p).12

Remark. The requirement that the bundles on M have trivial curvature becomes vacuous when
the fibres of p are one-dimensional, as they are in the case that A is the space of null rays.

Remark. The construction is not symmetric. We obtain a bundle with connection (E,∇) on
M from a bundle Ẽ on A. There is no reason to expect the same to work in the opposite
direction. The origin of the asymmetry is that the fibres of q are compact (e.g. quadrics in
the projective tangent bundle), whereas the fibres of p are non-compact (e.g. null rays).

Given a good double fibration, the cohomology on A can be related to groups on M . The key
fact which gives this result is that p∗Ẽ ⊗ Ω•F/A with differential ∇F/A is a resolution of the

inverse image sheaf p−1Ẽ. In other words, the following sequence is exact:

0→ p−1Ẽ → p∗Ẽ
∇v−−→ p∗Ẽ ⊗ Ω1F/A→ 0. (9)

The associated exact sequence in cohomology gives

...→ Hk−1(F, p−1Ẽ)→ Hk−1(F, p∗Ẽ)→ Hk−1(F, p∗Ẽ ⊗ Ω1F/A)
δ−→ Hk(F, p−1Ẽ)→ ... (10)

In good circumstances, the connecting homomorphism δ gives rise to explicit isomorphisms
between Hk(A, Ẽ) and groups on M , in which case we call δ the Penrose transform. The
relation to cohomology on M is given by the Leray spectral sequence, which ‘usually’ gives13

H i(F, S) = H0(M,Riq∗S).

Likewise, the relation to cohomology on A is given by

H i(F, p−1Ẽ) = H i(A,E),

which follows by the same argument, since p−1 is adjoint to p∗. Concrete examples of the
Penrose transform are given in section 2.5.

2.4 Yang-Mills in four dimensions

We now return to four dimensions and very briefly mention the following result for Yang-
Mills. Suppose that Ẽ and (E,∇) is a pair of bundles on A4 and M4 constructed by Theorem
3. The relation to the Yang-Mills equation follows by putting S̃ = End(Ẽ) ⊗ Ik/Ik+1 in the
long exact sequence, equation (10), where I is the ideal sheaf of A as a quadric in Gr(1)×Gr(3).

12The original reference is [34].
13The full statement is that Hi(M,Rjq∗S) abuts to Hi+j(F, S). If we have Hi(M,Rjq∗S) = 0 for all i > 0,

then we need do no calculations and the result follows. The sheaves Riq∗S are modelled on the pre-sheaves
Hi(q−1(U), S).
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Theorem 4. (Manin14) The bundle Ẽ has a unique extension to the second formal neighbour-
hood of A. The obstruction to a third order extension is given by ∇ ? F , regarded as a class
in

H2(A,End(Ẽ)⊗ I3/I4) ' ker(∇) ⊂ H0(M,Ω3
M ⊗ EndE).

The isomorphisms in the theorem follow essentially from equation (10). However, some key
identifications—such as R2q∗p

∗(I1/I2) = Ω2
M—rely on the presentation of F as F (1, 2, 3; 4).

For this reason, the cohomological construction has not been extended to any more general
cases. We note that Witten gave a concrete derivation of this result in ref. [17].

2.5 Penrose transform

We conclude our discussion of bosonic ambitwistor space in four dimensions by revisiting the
exact sequence given in equation (2.5). For certain choices of Ẽ, the associated long exact
sequence gives isomorphisms which are known as ‘Penrose transforms’. In this section we will
compute examples of these isomorphisms. We begin with some definitions. Let O(a, b) be the
sheaf whose sections are functions on A regarded as a quadric in CP3×CP3 with homogeneity
(a, b). We write O(a, b)F = p∗O(a, b) for the pull back bundle: its sections are functions on
(PS⊕PS̃)M with homogeneity (a, b). We may identify Ω1F/A with O(1, 1)F (a vertical p-form
can be identified with a function homogeneous in P of weight p). Notice that the fibres of
F →M are CP1 ⊕ CP1. We will make crucial use of the fact that

H0(CP1,O) = C, Hk(CP1,O(n)) = 0, for all n ≥ 0, k ≥ 1. (11)

We also use that H0(CP1,O(k)) is given by the k-homogeneous functions on CP1 which we
represent by symmetric spinor tensors: i.e. φα1...αk represents the function φα1...αkλ

α1 ...λαk , if
λα are homogenous coordinates on PS. Given all this, the exact sequence reads

0→ p−1O(a, b)→ O(a, b)F
∇v−−→ O(a+ 1, b+ 1)F → 0.

We identify ∇v with λαλ̃α̇∇αα̇. For a = 0, b = 0, we find a long exact sequence

...→ H0(M,R0q∗O(a, b)F )
∇v−−−→ H0(M,R0q∗O(a+ 1, b+ 1)F )→ H1(A,O(a, b))

→ H0(M,R1q∗OF (a, b))
∇v−−−→ H0(M,R1q∗OF (a+ 1, b+ 1))→ (12)

We would like to know more about the sheaves Riq∗OF (a, b) appearing in this sequence. These
are the sheaves modelled on the pre-sheaves H i(q−1(U),OF (a, b)). So, looking at the stalks,
we are reduced to computing H i(CP1×CP1,O(a, b)F ) which has a Künneth decomposition as

Hn(CP1 × CP1,O(a, b)F ) =

n⊕
i=0

H i(CP1,O(a))⊗Hn−i(CP1,O(b)).

We now set about computing H1(A,O(a, b)).

2.5.1 Computation of H1(A,O(a, b)) for a ≥ 0 and b ≥ 0

If a ≥ 0 and b ≥ 0, the fourth group appearing in equation (12) vanishes (using the Künneth
formula and equation (11)). So, in this case

H1(A,O(a, b)) = coker∇v ⊂ H0(M,R0q∗O(a+ 1, b+ 1)F ).

14See Buchdahl’s paper for a clear exposition. [35] The theorem is given in section 2.4 of his paper.
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To be explicit, the stalks of the sheaf on the right-hand-side are(
R0q∗O(a+ 1, b+ 1)F

)
x

= H0(CP1,O(a+ 1))⊗H0(CP1,O(b+ 1)).

The sections of these groups are the degree a + 1 and degree b + 1 polynomials, respectively.
So H1(A,O(a, b)) is represented by symmetric spinor fields of the form

φ(α1...αa+1)
(β̇1...β̇b+1)(x),

modulo the image of ∇v, which is given by fields of the form

∇(α1

(β̇1φα2...αa+1)
β̇2...β̇b+1).

When a = b, we may instead identify these as a + 1-forms modulo exact a + 1-forms. In any
case, we conclude that
Proposition. For a ≥ 0 and b ≥ 0,

H1(A,O(a, b)) '
{spinor fields φ(α1...αa+1)

(β̇1...β̇b+1)}

{exact spinor fields ∇(α1

(β̇1ψα2...αa+1)
β̇2...β̇b+1)}

.

It is instructive to explicitly write down the isomorphism appearing in the proposition. This
amounts to implementing the long exact sequence homomorphism. We use the fourier decom-
position of fields on spacetime and consider a single mode,

φk(x) = a(α1...αa+1)(β̇1...β̇b+1)λ
α1 ...λαa+1 λ̃β̇1 ...λ̃β̇b+1eik·X ∈ H0(M,R0q∗O(a+ 1, b+ 1)F ),

where a is a constant tensor with respect of X. The pre-image of this mode under ∇v is clearly

αk(x) =
a(λ, ..., λ̃, ...)

iλ/kλ̃
eik·X .

The connecting homomorphism is then explicitly given by

φk(x) 7→ ∂̄αk = 2πδ̄(k · P )a(λ, ..., λ̃, ...)eik·X ∈ H1(A,O(a, b)),

where we have written λ/kλ̃ as k · P and we use that

δ̄(k · P ) =
1

2πi
∂̄

1

k · P
.

2.5.2 Computation of H1(A,O(a, b)) for a ≥ 0 and b ≤ −2

When a ≤ −2 or b ≤ −2 the second group in equation (12) vanishes because O(k)CP1 has no
global sections if k ≤ −2. It follows that H1(A,O(a, b)) can be written in terms of the fourth
and fifth groups in the long exact sequence:

H1(A,O(a, b)) = ker∇v ⊂ H0(M,R1q∗OF (a, b)).

Assuming that a ≥ 0, the Künneth decomposition gives(
R1q∗O(a, b)F

)
x

= H0(CP1,O(a))⊗H1(CP1,O(b)).

Now we use Serre duality, which gives

H1(CP1,O(−k)) = H0(CP1,O(−k)∗ ⊗K) = H0(CP1,O(k − 2)).

11



Then we can identify the sections of R1q∗O(a, b)F with symmetric spinor fields having a α
indices and −b− 2 β̇ indices. We are interested in the kernel of

∇v : H0(M,R1q∗OF (a, b))→ H0(M,R1q∗OF (a+ 1, b+ 1)).

In terms of our representation with spin fields, the group on the right has a+ 1 α indices and
−b− 3 β̇ indices. So ∇v acts as

φ(α1...αa)(β̇1...β̇−b−2) 7→ ∇(α1

β̇1φα2...αa+1)(β̇1...β̇−b−2).

We thus identify H1(A,O(a, b)), with a ≥ 0 and b ≤ −2 with spinor fields satisfying

∇(α1

β̇1φα2...αa+1)(β̇1...β̇−b−2) = 0.

This is not a dynamical field equation, since φ has (a+ 1)(−b− 1) components, while we are
imposing only a+ 2 first order equations on these components. This is to be contrasted with
the construction of fields satisfying the wave equation using the analogous methods for the
twistorial fibration.

2.6 Super Yang-Mills

The prominent role of formal neighbourhoods in section 2.4 suggests supersymmetry.15 In
fact, everything we have said so far can be related to a result for N = 3 super Yang-Mills.
In four dimensions, the superspace M4|N of type (N,N) is Π(S ⊕ S′)M , where S and S′ are
the primed and unprimed spinor bundles on M4. We can also present M4|N as a flag variety.

Recall that M4 is an open subset of Gr(2; 4). In place of C4, we may consider C4|N . (This is
the base manifold C4 with functions Sym•C[x1, ..., x4]⊗Asym•C[θ1, ..., θN ].) The superspace
M4|N can then be presented as an open subset of the flag variety F (2|0, 2|N ; 4|N). To see
this, recall that there is a coordinate patch of Gr(2; 4) for which subspaces correspond to the
matrices [

12

xαα̇

]
,

where the columns span the subspace. Likewise, a flag of type 2|0 ⊂ 2|N is given by the
columns of a matrix 12×2 02×N

xαα̇ θ̃α̇i
θαj 1N×N

 . (13)

The first two columns span a 2|0 subspace, while all columns span a 2|N subspace. We identify
M4|N as the subset of F (2|0, 2|N ; 4|N) given by matrices of this form.16 A null geodesic through

xa with tangent λαλ̃α̇ lifts to a super null geodesic of dimension 1|2N . The super null geodesic
through xa|θαj , θ̃α̇i with tangent λαλ̃α̇ comprises points of the form

xa + tka | θαj + φjλ
α, θ̃α̇i + ψiλ̃

α̇.

All this data fits into a flag. The matrix, equation (13), can be enlarged to form λα 12×2 02×N 02×1

xαα̇λ̃α xαα̇ θ̃α̇i λ̃α̇

θαj λα θαj 1N×N θ̃α̇i λ̃α̇

 .
15The coordinate rings of formal neighbourhoods can be considered to have ‘odd coordinates’. The textbook

example is the formal neighbourhood of a point Spec(C) ↪→ Spec (C[x]) which is given by Spec
(
C[x]/x2

)
. Now

x is an odd coordinate, squaring to zero, in the coordinate ring of the first neighbourhood of Spec(C).
16Notice that we have been lead to introduce N pairs of odd-degree spinors as coordinates, as in the con-

ventional description. This is implicit, for instance, in Chapter 4 of Wess and Bagger’s book. [WessBagger]
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The new column on the left represents a 1|0 subspace inside the 2|0 subspace. The new column
on the right enlarges the 2|N subspace to a 3|N subspace. The flag spanned by the first and
last columns is not altered if we add λαλ̃α̇ to xαα̇. Nor if we add λα to any θαj or λ̃α̇ to any

θ̃α̇i . The full flag 1|0 ⊂ 2|0 ⊂ 2|N ⊂ 3|N contains too much information, since it determines
both a super null ray and a point on the ray. So, forgetting the particular point, we obtain
super ambitwistor space, Ã4|N , as the flag variety F (1|0, 3|N ; 4|N), which fits into the double
fibration

F (1|0, 3|N ; 4|N)
p←−− F (1|0, 2|0, 2|N, 3|N ; 4|N)

q−−→ F (2|0, 2|N ; 4|N). (14)

The fibres of p project, via q, to super null rays in M4|N . By construction the tangent vectors
to this distribution of super null rays are

λαλ̃α̇eαα̇, λαejα, and λ̃α̇eiα̇,

where the frame vectors

eαα̇ =
∂

∂xαα̇
, ejα =

∂

∂θαj
− θ̃α̇ j ∂

∂xαα̇
, eiα̇ =

∂

∂θ̃α̇i

satisfy
[ejα, e

i
α̇] = δijeαα̇.

Given a vector bundle Ẽ on M4|N with connection ∇, we see that p∗q
∗Ẽ exists if Ẽ is integrable

on the distribution of super null lines. Let ∇iα = ∇(eiα), and so on. Then Ẽ is integrable if,

[λα∇iα, λ̃α̇∇
j
α̇] = δijλαλ̃α̇∇αα̇,

while everything else commutes. These are the constraints for D = 4 super Yang-Mills. It
is known that if N = 3, these constraints are precisely equivalent to the field equations. In
other words, for N = 3 super Yang-Mills, the field equations are equivalent to the integrability
of Ẽ with respect to the double fibration of super null rays, equation (14). The N = 3 is
significant for the following reason. The flag space F (1|0, 3|N ; 4|N) admits an embedding
into Gr(1|N ; 4|N)×Gr(3|N, 4|N). If vi|ξaα and wi|χαa are homogeneous coordinates for these
Grassmannians, then the Flag space is the quadric viwi + ξ · χ = 0. But, for N = 3 we
have (ξ · χ)4 = 0. It follows that the even-degree functions on F (1|0, 3|N ; 4|N) are simply the
functions on the third order neighbourhood of F (1, 3; 4) ⊂ Gr(1; 4) × Gr(3; 4). In this way,
our result for super Yang-Mills implies the Yang-Mills result given in section 2.4.

3 A classical construction for N = 1 super Yang-Mills

In this section we derive the D = 10 super Yang-Mills equation from an integrability condition
analogous to the one we encountered in four dimensions in section 2.6. N = 1 super spacetime
M̃ is modelled on one chiral spinor bundle: M̃ = ΠSM . Given a bundle Ẽ with connection
∇ and curvature F , the SYM Lagrangian, found by Brink, Schwarz, and Scherk [36] is

L = tr

(
−1

4
FmnF

mn +
i

2
ψ̄ /∇ψ

)
,

which gives rise to the Yang-Mills and Dirac equations,

∇aFab +
1

2
Γaαβψ

αψβ = 0 and Γaαβ∇aψβ = 0.
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Now choose a frame on M̃ such that

[eα, eβ] = 2Γaαβea,

and let ∇α = ∇(eµ), and so on. Then it can be shown that the super Yang-Mills equations
are equivalent to the constraint equation17

[∇α,∇β] = 2ΓaαβDa.

We emphasise here that brackets, [ , ], are to be regarded as graded commutators. In the
present instance, since both of the derivatives are odd, the brackets denote an anti-commutator.
A consequence of this is that, for any pure spinor λα,

[λα∇α, λβ∇β] = 0. (16)

This means that a super Yang-Mills connection is integrable on lines in M̃ tangent to pure
spinors. The idea of our construction is to impose a condition of this kind on the Yang-Mills
bundle obtained by pulling back to the ambitwistor space of M̂ . We will see that this is
equivalent to the ordinary super Yang-Mills constraints in section 3.2. Following this, we give
a number of homological computations which relate the Q-cohomology of functions on M̂ to
sheaf cohomology groups on ambitwistor space.

3.1 Pure spinor ambitwistor space

We now construct an extended version of ambitwistor space. In the following section, we will
demonstrate its relationship to N = 1 super Yang-Mills. The idea is to add to M̃ a bundle of
pure spinors. So consider a bosonic spinor bundle S → M̃ . We will take a symplectic approach
(similar to [37]). Consider, then, the total space of its cotangent bundle T ∗SM̃ which has a
natural symplectic 2-form,

ω = dPM ∧ dZM + dwα ∧ dλα,

where λ is a coordinate on the fibres of S and ZM = (Xm, θµ) are local coordinates on M̂ .
We denote the pseudo-Poisson bracket associated to ω by [ , ]. There is a connection ∇ on S
and we write, for example,

∇λα = dλα + dZMΩMβ
αλβ

See appendix B for conventions. In order to describe covariant derivatives as Poisson brackets
we introduce

DM = PM − ΩMα
βλαwβ

so that, for example,
[DM , Vαλ

α] = (∇MVα)λα.

We will constrain the spinors λ to be pure. To impose purity we introduce the constraints

Km =
1

2
λγmλ,

which, as hamiltonians, generate

[Km, wα] = γmαβλ
β.

17Given that the connection satisfies the constraint, Witten showed in [19] that one can construct

λα =
1

10
ΓaαβFaβ , (15)

such that λα solves the Yang-Mills and Dirac equations. The converse direction was proved by Harnard and
Schnider. [20]
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So we should regard wα as defined only up to the addition of /V λ, for any V . After imposing
purity we obtain a space which we call F = T ∗S0M̂ . We now describe super-null-geodesics
that we lift (from T ∗M̂) to F such that the fermionic translations are tangent to the pure
spinor λ. In the total space F , these have dimension (1|1) and are generated by one bosonic
and one fermionic hamiltonian:

H =
1

2
PaPbη

ab, and Q = λαEMα DM .

For flat superspace these generate

[H, ZM ] = ηabPaE
M
b

[Q, ZM ] = λαEMα , [Q, wα] = EMα PM .

The hamiltonians are in involution since

[Q,Q] = KmPm,

while all other Poisson brackets vanish. We call the reduction of F by H the pure-spinor
ambitwistor space Aps. We regard it as being a super manifold equiped with the fermionic
derivation [Q, ]. This derivation plays a key role in imposing the super Yang-Mills equations.

3.2 Integrability

In section 2.6, we described how the D = 4 super Yang-Mills constraints arise from the
condition that a super Yang-Mills bundle on superspacetime M4|N can be pulled back to give
a bundle on super ambitwistor space A4|N . In this section, we do the same thing for ten

dimensional super spacetime M̃ and pure spinor ambitwistor space Aps. Let E be a super
Yang-Mills bundle on M̂ with connection ∇ and Lie group G. We will leave the Lie bracket
implicit in our expressions.18 Since Aps can be presented as the reduction of T ∗S0M̂ by
constraints Q and H, the pull back of the bundle E to T ∗S0M̂ will push forward to Aps if the
curvature of ∇ vanishes on the pure spinor null rays. So we consider

Q′ = λαEMα (DM +AM ) ,

and impose
[Q′,Q′] = 0, (17)

which is just the constraint, equation (16), that we encountered earlier. The constraints coming
from [Q′,H] are too restrictive, and we consider instead the ansatze

H′ = 1

2
P 2 + P ·A+WαPα + Uβαλ

αwα.

The relation
[Q′,H′] = 0, (18)

can be expanded to give

0 =
(
Fα

a + Tαβ
aW β

)
λαPa +

(
∇αW β − Uαβ

)
λαdβ +∇γUαβλγλαwβ.

18If so desired, it could be made explicit through the introduction of fields JI whose Poisson brackets satisfy
the Lie algebra relations—mimicking what is done in the heterotic string.
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The third term vanishes if the second term vanishes, by the Bianchi identity. So, for flat
superspace, the SYM equations are

Fαβλ
αλβ = 0, Faα = γaαβW

β, ∇αW β = Uα
β.

We see that Wα (a superfield) contains the spinor satisfying the Dirac and Yang-Mills equa-
tions, equation (15). Given a solution to the first of these equations, the second two equations
subsequently determine the super Yang-Mills superfields, W and U . So, by our opening dis-
cussion, the super Yang-Mills equations are equivalent to equations (17) and (18). We may
state this as a pseudo-theorem.

Proposition. A bundle E is super Yang-Mills if its pull back Ẽ to Aps satisfies [Q′,Q′] = 0.

The condition (18) shows that Q′ defines a derivation on Aps upon quotienting by [H′, ].
However, the interpretation of [H′, ] remains somewhat unclear—see the discussion in section
3.4

3.3 Penrose transform

We would like to relate the cohomology on Aps to groups defined on M . On the correspondence

space F we can define sheaves O(n)
[m]
F whose sections are functions of degree n,m in the fibres

of q. In other words, a section has weight n in P and weight m in λ. For fixed n, we have a
short exact sequence of complexes,

0→ O(n)
[•]
A → O(n)

[•]
F
H−→ O(n+ 1)

[•]
F → 0,

where the vertical derivatives are given by the action of Q. The complexes of sheaves, O(n)
[•]
F ,

are exact.19 This proves useful for the following reason. We have the following diagram, with
exact columns,

. . . . . .

. . . O(0)[0] O(1)[0] 0

. . . O(0)[1] O(1)[1] 0

. . . . . .

19 Let λ̄ be a spinor such such λ · λ̄ = 1, and suppose that g ∈ O(n)
[m+1]
F is Q-closed. Using a Fourier

decomposition, we restrict to the case that g is a momentum eigenstate with momentum k. In this case, Q acts
as

Q = λα
∂

∂θα
+ k · ψ, where ψm = λαθβγmαβ .

We claim that there exists h ∈ O(n)
[m]
F such that Qh = g. Indeed, since Qg = 0, we have

λ · ∂θg + k · ψg = 0.

Given that λ · λ̄ = 1, we then solve Qh = g by

h = λ̄ · θ g.
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So, given a Q-closed function U1 ∈ O(0)
[1]
F , this diagram shows that there exists some V 0 ∈

O(1)
[0]
F such that QV 0 = HU1. In practice, this relation can indeed be solved for momentum

eigenstates (see below). As a Q-cohomology class, U1 is defined only up to the addition of
Q-exact forms. So the class [U1] defines a class [V 0] in the cokernel of H. That is, we identify

H1
Q(F,O(0)F ) ' coker(H) ⊂ H0(F,O(1)F ).

Here, H i
Q(F,O(n)F ) = kerQ/imQ, where kerQ ⊂ O(n)

[i]
F . On the other hand, the long exact

sequence

0→ O(n)A → O(n)F
H−→ O(n+ 1)F → 0,

gives an isomorphism

H1(A,O(0)) ' coker(H) ⊂ H0(F,O(1)F ).

This isomorphism is derived in precisely the same fashion as described in section 2.5.1. (The
key result is that H1(V,O(1)) = 0, where V is the quadric P 2 = 0 in the projective space
CPD.) So, we find an isomorphism

ι : H1
Q(F,O(0)F )→ H1(A,O(0)).

In what remains of this section, we describe this isomorphism explicitly. We begin on the right

hand side with a Q-cohomology class [U1] represented by some function in O(0)
[1]
F ,

U1 = aαλ
α.

Here, a can be regarded as a 1-form on M̂ (or, if you prefer, a ‘superfield’). (We regard it
as taking values in g, though we suppress this in the formulas.) The requirement that U1 is
Q-closed (QU1 = 0) is the following linearised background-coupled super-Yang-Mills equation

∇(αaβ)λ
αλβ = 0. (19)

Now we would like to find a function V 0 ∈ O(1)
[0]
F representing the class [V 0] ∈ coker(H). We

will take the following ansatze for V 0 (recalling the results we found in the previous subsection)

V 0 = amP
m + wαPα + uβαλ

αwβ.

Here a,w, and u are forms—or ‘superfields’—on M̂ . We impose the relation QV 0 = HU1,
which will hold provided that the following equations are satisifed

∇[αam] = γmαβw
β, ∇αwβ + uβα = 0, and ∇αuγβλ

αλβ = 0. (20)

These are the linearised super-Yang-Mills equations. In principle, given an explicit choice of
aα, we could determine all of am, w

α, and uβα from the linearised equations—equations (19)
and (20)—appearing here. For instance, suppose that aα is a momentum eigenstate with
momentum k. Then the final step of the isomorphism gives the Dolbeault representative

ι(U1) = δ̄(k · P )V 0 ∈ H1(A,O(0)).

As a by-product of the construction, we notice that this class [ι(U1)] is Q-closed. It is not,
however, a representative of a Q cohomology class—since the isomorphism does not permit us
to add to ι(U1) any Q-exact (0, 1)-form. We have thus derived the following.

Proposition. The presentation above defines a homomorphism

ι : H1
Q(F,O(0)F )→ H1(A,O(0)),

such that the image of ι is closed under the action of Q on O(0)
[0]
A . In terms of fields on space-

time, this establishes a correspondence between Q-closed classes in H1(A,O(0)) and linearised
super-Yang-Mills fields.
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3.4 Discussion

In section 3.2 we formulated D = 10 super-Yang-Mills as an integrability condition on super-
symmetric ambitwistor space. We used this to find, in section 3.3, a new Penrose transform
relating H1(A,O(0)) to linearised super-Yang-Mills fields on spacetime. An important ques-
tion concerns the construction in section 3.2. There we saw that it was important to consider
the quotient of the correspondence space F by the derivation [H′, ], where H′ is a deformation
of the hamiltonian H = P 2/2. We do not have a good geometric understanding of [H′, ]. In
Ward’s original construction for bosonic ambitwistor space, a modification of H is not needed.
I believe the modified H appears naturally in our present context on the grounds that M̂
is a supermanifold—but the details are unclear. To this end, it might be helpful to answer
the following questions. These do not directly involve the pure spinor bundle we have been
discussing, but are interesting in their own right and do not appear to be answered in the
literature.20

i. Show that the supermanifold A obtained by quotienting F = T ∗0 M̂ by [H, ] is not split.

ii. Relate the splitting obstruction groups of A to spacetime fields on M̂ (i.e. an abstract
penrose transform).

iii. Compute all the cohomology groups of A with values in sheaves of homogeneous functions
on the fibres of F → M̂ .

The benefit of these questions is that they can be precisely formulated—and one expects that
work along these lines would clarify my earlier questions as well.

4 A classical construction for IIB supergravity

We now turn to type IIB supergravity. In this section we find that the constraints for IIB
supergravity are equivalent to integrability for a twice extended ambitwistor space. A similar
result holds for IIA, though these calculations are not sufficiently different to warrant a separate
discussion. For clarity, we work exclusively with IIB. Similar to our results in section 3, the
idea is to consider two auxiliary bundles of pure spinors. The IIB constraints were first given
in [39] and were rederived, in a slightly different form, from the pure spinor superstring in [16].
The constraints we find match those given in [16]. To begin, lets describe the pure spinor
ambitwistor space—analogous to section 3.1. Consider two spin bundles of the same chiral
representation on superspace, (S⊕ S)M̂ . On the cotangent bundle we take a symplectic form

ω = dPMdZM + dwαdλα + dwα̂dλα̂.

We emphasise here that ZM denotes local coordinates of type (10|16, 16). That is, ZM =
(xm, θα, θ̂α̇). We introduce two pure spinor translations,

Q = λαEMα dM and Q̂ = λα̂EMα̂ dM .

Here, dM implements covariant derivatives under the Poisson bracket and is given by

dM = PM − ΩMα
βλαwβ − ΩMα̂

β̂λα̂wβ̂.

When the connection is curved we find

[dM , dN ] = RγMN
δλγwδ + R̂δ̂γ̂MNλ

γ̂wδ̂.

20Though relevant results appear in Eastwood and LeBrun. [38]
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When convenient we abbreviate

RMN ≡ RγMN
δλγwδ, and R̂MN ≡ R̂δ̂γ̂MNλ

γ̂wδ̂.

Given this, we compute

[Q,Q] = λαλβ
(
Tαβ

MdM +Rαβ + R̂αβ

)
.

Likewise,

[Q, Q̂] = λαλβ̂
(
Tαβ̂

MdM +Rαβ̂ + R̂αβ̂

)
.

The vanishing of these two Poisson brackets gives the following integrability constraints

Tαβ
Mλαλβ, Rαβλ

αλβ, R̂αβλ
αλβ, Tαβ̂

MdM , Rαβ̂, R̂αβ̂. (21)

The curved massless constraint is

H =
1

2
P 2 =

1

2
PMPNE

M
m E

N
n η

mn.

We demand that this is involution with Q (and similarly with Q̂).

[Q,H] = Tαm
nλαPmPn + Tmα

βλαPmdβ + Tmα
β̂λαPmdβ̂ −Rmαλ

αPm − R̂mαλαPm.

This yields a number of constraints:

Tα(mn), Tmα
β, Tmα

β̂, Rmαλ
α, R̂mαλ

α. (22)

As it stands, we have obtained the N = 2 supergravity constraints truncated by setting the
3-form H and all the superfields to zero. Except for the first constraint, all of these will be
modified once we deform Q and H to include superfields and the B-field.

4.1 IIB as integrability

We now seek to recover the non-linear supergravity constraints from integrability equations.
We will consider an ansatse for deformed constraints Q′, Q̂′,H′, by adding terms of the ap-
propriate weights. The fields that appear in these terms will turn out to be the supergravity
superfields. We take a 2-form B-field to be given, and, in fact, the relations we find may be
considered to ‘descend’ from the B-field, as we explain at the end. Since the computations
are cumbersome, we do no more than summarise the results. As our ansatse for the deformed
constraints we take

Q′ = Q+ V 1,0, Q̂′ = Q̂′ + V 0,1, H′ = H+ V 0,0,

where the new terms take the form

V 0,0 = Pαα̂dαdα̂ + Cα
βγ̂λαwβdγ̂ + Sαα̂

ββ̂λαλα̂wβwβ̂

+ Pαβ̂Bβ̂mdαP
m + Cα

βγ̂Bγ̂mλ
αwβP

m + hatted,

and,

V 0,1 = Bmα̂P
mλα̂ + Pαβ̂Bβ̂α̂dαλ

α̂ + Cα
βγ̂Bγ̂α̂λ

αwβλ
α̂.
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The function V 1,0 is similar to V 0,1. We impose that the deformed constraints Poisson com-
mute. Consider first [Q̂′,H′] = 0. We find that the terms involving Pαα̂dαλ

βPm combine to
impose

Tα̂β̂m +Hα̂β̂m = 0.

Similarly,
Tα̂βm −Hα̂βm = 0,

follows from looking at Pαα̂dαλ
βPm. The coefficient of PmλαDβ gives

Tmα
β + Tαα̂mP

βα̂,

which modifies the Tmα
β constraint that we obtained in the previous section. We can take a

derivative to find (using the Bianchi identity)

Rmαλ
α + Tαα̂mCβ

γα̂λβwγ ,

which also follows from the coefficient of Pλλw in [Q̂′,H′] = 0. The superfield equations of
motion (see appendiix C for an explicit list) follow from [Q̂′,H′] = 0 by imposing Q-closure
of the four terms in V 0,0 that do not involve the B-field. Next, we turn our attention to
[Q̂′, Q̂′] = 0, which earlier yielded the integrability constraints (22). The torsion constraint is
now modified. For instance,

Tαβ
γ̂ − 1

2
HαβγP

γγ̂ .

We also have the derivatives of these (which can be found from the Bianchi identity and the
superfield equations). Finally, the relation [Q̂′, Q̂′] = 0 implies that QV 0,1 = Q̂V 1,0. Indeed,
defining

V 1,1 = Bαα̂λ
αλα̂,

we see that QV 0,1 = HV 1,1, or Q̂V 1,0 = HV 1,1, are equivalent to the constraints

HαβMλ
αλβ, and Hαα̂M .

The equations given here, together with the superfield equations in appendix C, are the IIB
constraints given by [16]. So we arrive at the following pseudo-theorem.

Proposition. The IIB supergravity constraints are equivalent to the nonlinear descent of the
class V 1,1 associated to the B-field. (By which we mean, the relations QV 0,1 = HV 1,1 and
Q̂V 1,0 = HV 1,1, together with the involutivity of all the Q′, Q̂′,H′.)

This is similar to the manner in which the super-Yang-Mills equations arose from the class
associated to A. The fundamental structure in both cases is the extended superspace and the
integrability of null, pure-spinor lines.

4.2 Penrose transform

We would now like to relate cohomology classes on Aps to fields appearing on superspacetime.
In order to this, we can use many of the results we first derived in section 3.3. The main
difference is that we now have two derivatives Q and Q̂ which descend to the bundles defined
on ambitwistor space. On the total space F , we can define bundles O(n)[i,j], whose sections
have weight i in λ and j in λ̂. Given this, precisely the same reasoning as in section 3.3 suffices
to show that, on the one hand,

H i+1
Q (F,O(n)

[•,j]
F ) ' cokerH ⊂ H0(F,O(n+ 1)

[i,j]
F ),
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and, in addition,

H1(A,O(n)[i,j]) ' cokerH ⊂ H0(F,O(n+ 1)
[i,j]
F ).

(There are similar isomorphisms for the Q̂ cohomology classes.) These two isomorphisms
include two very interesting cases. In this section we will discuss two groups. The first is

H1
Q(F,O(1)[•0]).

Classes, U1, in this group correspond to linearised variations of the supergravity vierbein. We
can regard U1 as a linearised variation of Q. The second group we consider is

H2
Q(F,O(0)[•2]),

whose classes correspond to linearised variations of the supergravity 4-form potential. In sum,
we have the following proposition.

Proposition. We have homomorphisms

ι1 : H1
Q(F,O(1)[•0])→ H1(A,O(1)[0,0]) and ι2 : H2

Q(F,O(0)[•2])→ H1(A,O(0)[1,2]),

such that the image of ι is Q-closed. In terms of linearised fields, this establishes a correspon-
dence between

i. H1(A,O(1)[0,0]) and linearised variations of the vierbein,

ii. H1(A,O(0)[1,2]) and linearised variations of the 4-form potential.

Let us now describe ι1 explicitly. A variation, H, of the veirbein gives a variation of Q,

U1 = λα(Hm
α Pm +Hβ

αPβ + Ωα + hatted)

Imposing that U1 is Q-closed is equivalent to imposing the linearised integrability equations
on H. These equations are given explicitly in appendix C). We would like to find ι1(U1). The

first step is to find the function V 0 ∈ H0(F,O(n + 1)
[i,j]
F ) which is in the cokernel of H. The

function is related to a representative of U1 by the relation

[Q, V 0] = [H, U1]. (23)

To solve this, consider an ansatze for V 0,

V 0 = P aP bHab + P aHα
a Pα + P aΩa + Pαα̂PαPα̂ + ĈαPα + Cα̂Pα̂ + S

The caligraphic letters are arbitrary superfields that we will determine shortly. Notice that
our choice is highly motivated by the non-linear construction given in the previous section.
Given this ansatze, equation (23) expands to give the following expression,

QV 0 −HV 1 = λαPmPn
(
∇[αHm]n + γbαα̂H

α̂
a

)
+ λαP aDβ

(
∇[αH

β
a] − Ωaα

β + γaαβ̂P
ββ̂
)

+ λαP aDβ̂

(
∇[αH

β̂
a]

)
+ λαP aλβwγ

(
∇[αΩa]β

γ + γaαγ̂Cβγγ̂
)

+ λαP aλβ̂wγ̂

(
∇[αΩa]β̂

γ̂
)

+ λαPβPβ̂

(
∇αPββ̂ + Cαββ̂

)
+ λαλβwγPγ̂

(
∇αCβγγ̂

)
+ λαλβ̂wγ̂Pγ

(
∇αCβ̂

γ̂γ + Sαβ̂
γγ̂
)

+ λα
(
∇αSββ̂

γγ̂
)
λβwγλ

β̂wγ̂
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Each term appearing in this expression corresponds to a linearised supergravity equation.
The derivation of the linearised supergravity equations is carried out in appendix C. We see,
therefore, that the caligraphic letters P, C,S, must be taken to correspond with the linearised
supergravity superfields. Given this, equation (23) is satisfied identically and we have found
our desired function V 0. Assuming that U1 is a momentum eigenstate of momentum k, the
final part of the isomorphism is easily implemented and gives

ι1(U1) = δ̄(k · P )V 0.

This is, once again, closely related to the vertex operators of the pure spinor ambitwistor
string. We now describe the second isomorphism, ι2. We begin with a class

U2,2 ∈ H2
Q(F,O(0)[•,2]),

which is naturally associated to any variation b of the 4-form potential. That is,

U2,2 = bαβα̂β̂λ
αλβλα̂λβ̂.

This is Q-closed because the only non-vanishing fermionic component of the 5-form field
strength H = db is

Habcαα̂ = (γabc)αα̂. (24)

Implementing the first step of ι2, we notice that the function

V 1,2 = baαα̂β̂P
aλαλα̂λβ̂,

satisfies the relation
[Q, V 1,2] = [H, V 2,2].

Once again, this holds because of the constraint, equation (24), on the field strength H. Then,
if U2,2 is a momentum eigenstate with momentum k,

ι2(U2,2) = δ̄(k · P )V 1,2.

There is similarly a hatted version of this map.

4.3 Discussion

A possible application of the results given in this section is to find an ambitwistor interpretation
of D = 4, N = 8 supergravity. By dimensional reduction, the field equations of type IIB
supergravity give N = 8 supergravity in four dimensions. There is no ambitwistor construction
for the N = 8 supergravity constraints. An approach along these lines can be taken for N = 4
super Yang-Mills as a reduction of D = 10, N = 1 super Yang-Mills. The ambitwistorial
construction for this reduction is described in great detail in [20]. Moreover, in a somewhat
different direction, there may be other applications of the pure spinor construction to the
ambitwistor string programme. For instance, in the pure spinor ambitwistor string, the vertex
operators factorise neatly into two parts—realising the perturbative double copy structure of
gauge and gravity theories. It may be possible to realise a classical, non-perturbative version
of this supersymmetric double copy. However, besides these two applications of our results, it
would be good to answer the following three questions.

i. What are the cohomology groups Hk(A,O(n)[i,j]) for all n, i, j, k?

ii. Does deformation theory guarantee the existence of the pure spinor ambitwistor space
in small regions of superspacetime? Is it possible to establish that the correspondence is
stable under deformations?

22



iii. What is the homological interpretation of the relation
〈
λ3θ5

〉
= 1, which has proved so

important in the program to compute tree amplitude in the pure spinor superstring?

Let us finish by discussing the second question in greater detail. First, we will recall Le Brun’s
theorem for the bosonic case—recall theorem 1, given at the beginning of section 2. His key
argument proceeds as follows. Take the fibration

A
q←−− F p−−→M,

where F is the bundle of null quadrics over M , and let Qx ⊂ A be the direct image of p−1(x)
under q. Then, if N is the normal bundle to Qx in A, a computation (proposition 1.6.1 in Le
Brun’s thesis [30]) establishes that

H1(Qx,O(N)) = 0, and dimH0(Qx,O(N)) = n,

where n is the dimension of M . By deformation theory, this establishes that Qx fits into a
dimension n family of quadrics which we may regard as being parameterised by x ∈ M . We
should like to know if the same is true in the supersymmetric setting. Moreover, in the bosonic
case, Le Brun gave an additional argument which shows that a family of spacetimes M gives
rise to a corresponding family of ambitwistor spaces. He also established a correspondence
between conformal metrics on M and contact structures on A. In the supersymmetric case,
we should first like to establish the analogy of Le Brun’s first result.21 For the construction
of Aps, M is a supermanifold, but the fibres of p are still bosonic. The fibres are given by the
cartesian product of two isotropic grassmannians,

p−1(x) ' Gr0(1, 2n)×Gr0(n+ 1, 2n+ 2),

where the first factor is the projective quadric of null directions and the second factor is the
space of pure spinors. The normal bundle N will now have both bosonic and fermionic parts,
and we conjecture that (for the N = 1 case)

dimH1(Qx,O(N)) = 0, and dimH0(Qx,O(N)) = 2n | 2
n
2
−1,

where Qx is the image of p−1(x) under q. This would establish that the submanifolds Qx
embedded in Aps form a family of the same dimension as M . Work to this effect is ongoing.
The most tractable case is when M is a split super-manifold, in which case we can regard it
as a bosonic manifold with an exterior algebra of functions on the spin bundle.

Part Two—spin fields

Spin fields were introduced to the RNS superstring formalism by Freed, Martinec, and Shenker
[41] in order to include the Ramond sector of the superstring in a vertex operator formalism.
This approach to the superstring carries over to the ambitwistor string. For instance, a grav-
itino insertion can be represented by a Ramond vertex operator

V =
(
ξαSα e

−φ
2

)(
ε · ψ̃

)
eik·X .

Here, ξα is a polarisation and Sα is the spin field. φ is a free boson, and e−φ/2 is fermionic
ghost in bosonised form. The ψ̃µ are free fermions such that the bilinears ψ̃[µψ̃ν] form a current
algebra for so(D). All of these fields are described in more detail in section 5. We have written

21Somewhat analogous work to this effect was carried out for D = 11 supergravity in ref. [40].
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V in a factorised form, and will focus only on the first factor. The corresponding fixed bosonic
factor is

ε · ψ e−φ.

Then—postponing details until later—the standard OPEs for these fields gives a correlator〈(
ξα1 Sα e

−φ
2

)(
ξα2 Sα e

−φ
2

)(
ε · ψe−φ

)〉
=

(ξ1ε ξ2)

σ12σ23σ31
.

After accounting for conformal invariance on the worldsheet, this correlator gives rise to the
correct three-point amplitude for supergravity.22 To compute the correlator one needs to know
that, for instance,

〈SαSβψµ〉 =
γµαβ

(σ12)
3
4 (σ23)

1
4 (σ31)

1
2

.

This formula admits easy generalisations to arbitrarily many ψµ and to other dimensions. In
section 8, we use these generalised formulae to verify the ambitwistor string prescription for
1-loop supergravity amplitudes. More ambitiously, one could hope to provide closed formulas
for the correlators of any number of Ramond and Neveu-Schwarz vertex operators in the am-
bitwistor string. This is difficult in ten dimensions for reasons similar to those we encountered
in section 2.1. Namely, the dimension of the spin representations grows very quickly compared
to the fundamental representation of so(D). Nevertheless, we solve the problem in four dimen-
sions—see section 6—and in six dimensions—see section 7. The key interest of these formulas
is that they are manifestly gauge invariant with respect to shifts of the polarisation data (i.e.
under ε 7→ ε + k, where k is the momentum). Conjectured applications of these results are
given in section 9. We begin in section 5 by constructing the spin fields explicitly, which we
hope clarifies their otherwise mysterious OPEs. In particular, we derive the relations that we
later rely on in sections 6 to 8.

5 Spin Fields

In this section we construct the spin fields, which realise the spin representations of so(D) in
their OPEs. This is closely related to the construction of current algebras on the worldsheet
for the so(D) Lie algebra, and this is where we begin. Throughout this section we specialise
to even dimensions and write D = 2n. Let ψµ be D free fermions with the OPEs

ψµ(z)ψν(0) ∼ δµν

z
. (25)

One finds that the bilinears Jµν =: ψµψν : define a current algebra for so(2n) of level 1.23 We
can express this result in a manner that mimicks the Cartan basis for so(2n). Let ε1, ..., εn
be a basis for the dual h∗ of a Cartan subalgebra h ⊂ so(2n), so that the roots have weights
±εi ± εj . To each of these we associate the following worldsheet fermions

f±εi =
1√
2

(
ψ2i−1 ∓ iψ2i

)
. (26)

22There is a ‘missing half’ corresponding to the ε·ψ̃ appearing V: but we do not show this since the amplitude
factorises completely.

23That is to say, they have the following OPEs

Jµ1ν1(z)Jµ2ν2(0) ∼ k δ
µ1µ2δν1ν2

z2
+
δµ1µ2Jν1ν2 − δµ1ν2Jν1µ2 − (ν1µ2)

z
,

with k = 1, and the numerator for the 1/z term is the usual Lie bracket relation.
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Notice that the only non trivial OPEs are of the form

f+εi(z)f−εi(0) ∼ 1

z
.

Then, associated to every root weight, we can associate the composite field

E±εi±εj =: f±εif±εj : .

These have OPEs which realise the ‘raising’ and ‘lowering’ relations in the sense that, e.g.,

E+εi+εj (z)E−εi+εk(0) ∼ 1

z
E+εi+εk .

On the other hand, we also have, e.g.,

E+εi+εj (z)E−εi−εj (0) ∼ − 1

z2
+

1

z

(
J2i−1,2i + J2j−1,2j

)
.

So we identify the worldsheet fields J2i−1,2i with a basis for the Cartan subalgebra, H i.

5.1 Bosonisation and the spin fields

The spin fields are, heuristically, the ‘square root’ of the fermions f±εi . The reason that they
are called spin fields is that their OPEs with ψµ realise the spin representation of so(2n). In
order to take the ‘square root’ of the fermions f±εi , we first put them in bosonised form. In
place of f±εi we could write

e±φi ,

for some free boson fields φi. By construction, these obey the same OPEs, equation (26), as
before. However, they do not have the correct fermionic statistics because e±φi commutes with
e±φj whereas f±εi anti-commutes with f±εj . To recover the correct statistics we can add a
factor of

ci = (−1)n1+...+ni−1 or ci = e±iπ(n1+...+ni−1).

Here, the nj are number operators and we can give these explicitly as

ni =
1

2πi

∮
∂φi.

On account of the number operators, cie
±φi and cje

±φj anti-commute. So we identify

f±εi = cie
±φi .

We can take the square root of this, but not without an ambiguity in ci due to the branching
of the exponential. The most general choice is

SAi = eAiφieıπ
∑n
j=1 AiMijnj ,

where Ai is ±1/2 and Mij is a matrix of signs with all zeroes on and above the diagonal. A basis
for the spin representation in D dimensions can be identified with the vectors A = (A1, ..., An)
with each Ai being ±1/2. Then we define the spin fields to be

SA =

n∏
i=1

SAi .
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Now we ask, what is the OPE of ψµ with SA? We can write

ψ2j =
i√
2

(
f+εj − f−εj

)
and ψ2j−1 =

1√
2

(
f+εj + f−εj

)
.

So, for instance, the OPE of ψ2j−1 with e±φi/2 gives

ψ2j−1(z)e±φi/2(0) ∼ 1√
2

1√
z
e∓φi/2.

In other words, the effect of ψ2j−1 on SA is to flip a sign in A. Likewise, ψ2j flips a sign in A
and gives a factor of i in addition. Reasoning in this way, we conclude that

ψµ(z)SA(0) ∼ 1√
2

1√
z

(Γµ)AB S
B(0),

for some matrices (Γµ)AB with complex entries. Recalling the ψψ OPE, equation (25), we have
that

(ΓµΓµ + ΓµΓµ)AB = 2δµνδAB,

and so these are gamma matrices for so(2n).

5.2 Properties by dimension

Just as the action of ψµ flips a sign of A in SA, the bilinears ψ[µψν] flip two signs. We may
thus decompose the SA into the two chiral representations: Sα and Sα̇ where A = α has an
even number of minus signs and A = α̇ has an odd number. Since ψµ flips one sign, we have

ψµ(z)Sα =
1√
2

1√
z

(Γµ)α
β̇
Sβ̇(0). (27)

The properties of the chiral representations depend on the dimension mod 4. Consider first
D = 0 mod 4. Then, in the OPE of SαSβ the most singular term occurs if α = −β. This is
possible because, in D = 0 mod 4, α and β are D/2 vectors with an even number of minus
signs and an even number of plus signs. Using the definition of Sα we find

Sα(z)Sβ(0) ∼ z−
D
8 Cαβ + ....

where
Cαβ = δα+βe

−iπα·M ·α.

We identify Cαβ with the inner product on the chiral representations, or ‘charge conjugation
matrix’. This relation could be used to determine the matrix M in accordance with some
convention for Cαβ. Using this, and performing contractions on equation (27), we find

Sα(z)Sβ̇(0) ∼ 1√
2
z−

D−4
8 (γµC)αβ̇ ψµ(0) + ....

Now we consider D = 2 mod 4. In this dimension, α, β are D/2 vectors with an even number
of minus signs and an odd number of plus signs. This means that α + β can never be zero,
whereas α+ β̇ can. So, proceeding as before, we find

Sα(z)Sβ̇(0) ∼∼ z−
D
8 Cαβ̇ + ...,

where
Cαβ̇ = δα+β̇e

−iπα·M ·α.
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Moreover, combining this with (27),

Sα(z)Sβ(0) =
1√
2
z−

D−4
8 (γµC)αβ ψµ(0) + ...

These are the relations first derived in [41]. This concludes our construction of the spin fields
and their OPEs.

5.3 Relations between dimensions

The spin fields for all even dimensions are related to each other in the following sense. Given
that SA are the spin fields for so(2n), we may fix An = +1/2. Then (A1, ..., An−1) can be
regarded as an index for so(2n − 2) spin fields. To arrive at the correct OPEs we could set
φn = 0, which alters all the OPEs by a factor of z1/4. However, we cannot remove the number
operator nn from the coefficient,

eıπ
∑n
j=1 AiMijnj .

An example of particular interest is the relation of D = 10 to D = 4 and D = 6. We can write
A = (a1, a2, α1, α2, α3), such that a and α are indices for so(4) and so(6) spinors. The D = 10
spin field may then be partially factorised as

SA = SaSαeiπ
∑5
i=3

∑2
j=1 αiMijnj .

We have used that Mij is zero on and above the diagonal. So the D = 10 correlators do
not factorise as a simple product of D = 4 and D = 6 correlators. Nevertheless, the lower
dimensional results should be related to the D = 10 result by dimensional reduction. In
particular, fixing α = (1/2, 1/2, /12) and setting φ3, φ4, φ5 to zero, we obtain the D = 4 spin
fields from the D = 10 spin fields. The additional factor of

e
iπ
2

∑5
i=3

∑2
j=1Mijnj

may be absorbed into the definition of the D = 4 matrix Cαβ.

6 Four dimensions

In this section we study correlators of the spin field CFT associated to dimension four. We
find formulas for the correlators of arbitrarily many spin fields and so(4) currents (the Jµν

appearing earlier). There are some constraints on the number of spin fields appearing, as we
discuss. Perhaps the most interesting aspect of our formulas is that they can be summed in
such a way which makes them manifestly Lie theoretic. What this means is explained in section
6.3. Our formulas could be contracted with momenta and polarisations. By themselves, they
are insufficient to compute amplitudes. In particular, the formulas are not rational functions
of the worldsheet positions, which means that they cannot be used as integrands in the CHY
formula. However, they have the attractive property that they are manifestly gauge invariant.
We derive our new formulas in section 6.2, following a review in section 6.1 of a previous result.

6.1 Spin field correlators

We first specialise the OPEs derived in section 5 to four dimensions. The OPE of two unprimed
spin fields is

SαSβ ∼ z−
1
4 εαβ,
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and likewise for Sα̇Sβ̇. The OPE Sα(z)Sβ̇(0) is not singular in D = 4, and so the spin
correlators factorise into two parts according to chirality. Moreover, Wick’s theorem gives
immediately that 〈

2M∏
i=1

Sαi(σi)

〉
=

(−1)M

2MM !

∑
ρ∈G2M

|ρ|
M∏
i=1

εαρ(2i−1)αρ(2i)
√
σρ(2i−1)ρ(2i)

. (28)

Here |ρ| is the sign of the permutation ρ. In this way, all the D = 4 spin correlators are
easily computed. The terms in the sum are in direct correspondence with undirected chords
between 2M points on a circle. This formula has been vastly simplified by Schlotterer, Hartl,
and Stieberger. [27] They claim that equation (28) may be rewritten as〈

M∏
i=1

Sαi(σi)Sβi(τi)

〉
= (−1)MW

1
2

∑
ρ∈GM

|ρ|
M∏
i=1

εαiβρ(i)
σi − τρ(i)

, (29)

where

W =

∏M
i,j=1(σi − τj)∏
m<n σmnτmn

.

Notice that this coincides with the previous formula for M = 1. The new formula has only
M ! terms, each of which is in direct correspondence with a permutation on M points. As SHS
point out, the terms appearing here are an over-complete basis since (1/2, 0)⊗(2M) contains
only

(2M)!

M !(M + 1)!

scalars, which is strictly less than M ! for M > 2. It remains to prove the formula. This can
be done inductively, and amounts to showing that their formula correctly factorises near the
singularities where two points collide. There are two cases: (i) two σ’s or two τ ’s collide, and
(ii) a σ collides with a τ . Let’s do case (i). Without loss of generality, consider σ12 → 0. Fix
a permutation ρ. Let ρ′ be the permutation obtained by swapping ρ(1) and ρ(2). Notice that
|ρ| = |ρ′| since ρ′ is obtained from ρ by an even number of flips. The key relation is

εα1,βρ(1)εα2,βρ(2) + εα1,βρ′(1)εα2,βρ′(2) = εα1,α2εβρ(1),βρ(2) . (30)

It is on the basis of this identity that the formula factorises. We strip away a factor of

〈Sα1(σ1)Sα2(σ2)〉 = −εα1α2√
σ12

.

This done, what remains is

(−1)M−1W
1
2
∗

∑
ρ∈GM/Z2

|ρ|
εβρ(1)βρ(2)
τρ(1)ρ(2)

M∏
i=3

εαiβρ(i)
σi − τρ(i)

,

where

W∗ =

∏
(σ1 − τj)2∏
(σ1 − σj)2

∏
(τρ(1) − σj)2∏
(τρ(1) − τj)2

×Wred.

To complete the factorisation computation, we must take the limit of, say, τ1 → σ1. (We could
choose any other τ for this.) Notice that in this limit the factor W∗ is only nonvanishing if
ρ(1) = 1. So we restrict to those ρ satisfying ρ(1) = 1. Wred then becomes the W factor
for the remaining 2M − 2 spin fields. In this way, we recover the original expression but for
2M − 2 spin fields. Case (ii) remains. However, this case is more straightforward and the
details appear on page 16 of [27]. Together, these cases establish the result by induction.
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6.2 Mixed NS and R correlators

We now employ the previous formula, equation (29), to derive new formulas for the correlators
of NS and R insertions. Unfixed NS insertions will be constructed from ψ(z)ψ(w) with z → w,
fixed NS insertions from ψ(0), and fixed R insertions from Sα(0). As we have seen, the
nonvanishing spin correlators in D = 4 involve Flh LH fields and Frh RH fields where Flh =
Frh = 0 mod 2. The spin fields can be contracted using

ψµ(0) = − lim
z→0

1√
2
σµαα̇Sα(z)Sα̇(0). (31)

Every such contraction decreases Flh and Frh by one. We see that no matter how many
contractions we perform, we always have Flh = Frh mod 2. There are, in general, two cases:
Flh = 0 mod 2 and Flh = 1 mod 2. For the first case we will consider the correlator of N
integrated NS insertions with Flh = 2m left-handed R insertions and Frh = 2m′ right-handed.
As an example of the second case we will consider N integrated NS insertions with one fixed
NS insertion.

6.2.1 F = 0 mod 2

Using the results from the previous section, we have the following spin correlator in the general
case,〈

N+M∏
i=1

Sαi(σi)Sβi(σ̃i)

N+M ′∏
j=1

Sα̇i(τi)Sβ̇i(τ̃i)

〉

= (−1)MW
1
2 W̃

1
2

(∑
|a|

N+M∏
i=1

εαiβa(i)
σi − σ̃a(i)

)(∑
|b|

N+M ′∏
i=1

εα̇iβ̇b(i)
σi − σ̃b(i)

)
.

Using equation (31), we find the following mixed correlator,

I =

〈
N∏
i=1

ψµi(zi)ψ
νi(zi)

M∏
j=N+1

Sαi(σi)Sβi(σi)

M ′∏
k=N+1

Sα̇i(τi)Sβ̇i(τ̃i)

〉

= lim
(−1)M−N

2N
W

1
2 W̃

1
2

∑
|a||b|

N+M∏
i=N+1

εαiβa(i)
σi − σ̃a(i)

N+M ′∏
i=N+1

εα̇iβ̇b(i)
σi − σ̃b(i)

N∏
i=1

σµiβa(i)β̇b(i)σ
νiβiβ̇i

(σi − σ̃a(i))(τi − σ̃b(i))
.

Here, we are taking the limit σi, τi → zi and σ̃i, τ̃i → zi for all i = 1, ..., N . In this limit, we
find that the prefactors become

W →
N∏
i=1

(zi − zi)Wred and W̃ →
N∏
i=1

(zi − zi)W̃red,

where Wred is identical to the original expression for W , but restricted to i = N + 1, ...,M .
It follows that the only permutations which give a nonvanishing contribution in this limit are
those which set either a(i) = i or b(i) = i, but not both, for each i = 1, ..., N .24 For any such
nonvanishing permutation, the formula becomes a product of cycles. Some possible cycles are

24Permutations which set a(i) = b(i) = i also vanish since this amounts to performing the contraction ki · εi.
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Figure 1: Some topologies for N = 3, M = 2, M ′ = 2. The asterisks are left and right-handed
Ramond insertions. The bullets are NS insertions. The left-handed Ramond insertions appear
to the left of the bosons, and the right-handed appear to the right.

shown in Figure 1, for the case N = 3, M = 2, M ′ = 2. Finally, by contracting with particle
field strengths Fµiνii we obtain the following cycle formula for the correlator,

I = (−1)M−NW
1
2
redW̃

1
2
red

∑
|ρ|

M∏
i=1

(εF[ai])αiβl(i)
σ[ai]

M ′∏
j=1

(εF[bi])α̇iβ̇r(i)
σ[bi]

∏
k=1

tr(F(ci))

σ(ci)
,

where ρ has a cycle decomposition as (ai)(bi)(ci). I have adopted a notation so that (ai)
begins with αi, (bi) with α̇i and (ci) is a closed cycle among the bosons. The summands
can be grouped according to the maps i 7→ l(i) and i 7→ r(i) which are permutations of the
left and right-handed fermions that respect the division into halves. Particularly interesting
about these formulas is that the fermions of each chirality are further divided into two halves.
The final result does not depend on this arbitrary division. This is a consequence of the
Fierz identity, equation (30), as we showed in the proof of Hartl-Schlotterer’s spin correlator
formula. This gives rise to higher point consequences of the Fierz identities, which we illustrate
graphically in figure 2 for the case N = 1, M = 4, M ′ = 0.

* *

* *

b

* *

* *

b+ =

* *

* *

b

* *

* *

b+

Figure 2: The manifestation of the Fierz identities for the case N = 1, M = 4, M ′ = 0. On
the left, the fermions of each type are split vertically. On the right, the fermions of each type
are split horizontally.

6.2.2 F = 1 mod 2

The effect of adding one fixed NS insertion is to provide a ‘bridge’ between the left-handed
and right-handed fermions. To see how this works, suppose we combine the two spin fields
located at σ1 and τ1. In the cycle representation of the correlator, we get the following new
type of term

(...Fa1(2)Fa1(1)EFb1(1)Fb1(2)...)βf(1)β̇g(1)
pt−1(zf(1), ..., zg(1))

,

where E is the polarisation vector of the fixed insertion. The rest of the formula remains
largely unchanged. Once again, the higher Fierz identities substantially reduce the number
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Figure 3: The manifestation of the Fierz identities for the case N = 1, M = 1, M ′ = 3.

of summands. For instance, of the M ′ right-handed fermions, one can choose an arbitrary
(M ′ − 1)/2 subset which is never permitted to join the chain containing E . Any two choices
are equivalent, leading to many interesting relations. An example for N = 1, M = 1, M ′ = 3
is given in figure 3.

6.3 Shuffles

The formulas we have derived in this section involve the field strengths Fi. These are so(D)
Lie algebra elements. However, the products of field strengths that appear in the sums are
not themselves so(D) Lie algebra elements. In this section, we show that our formulas can be
written manifestly in terms of Lie algebra elements. We begin by recalling some basic results
about Lie polynomials. Generally, given some symbols {X1, ..., Xn}, the free Lie algebra is the
Lie algebra formally generated by these symbols. In concrete terms, its elements are formed
by taking all possible Lie bracketings of the symbols. It is a sub-algebra of the free algebra
generated by all possible words formed from the symbols. An element of the free algebra
is like a polynomial in non-commuting variables. An element of the free algebra is called a
Lie polynomial if it belongs to the free Lie algebra. For instance, consider a homogeneous
polynomial of degree s,

F =
∑
α∈Gs

c(α)Xα1 ....Xαs .

The following theorem then determines a sufficient condition for F to be a Lie polynomial.

Theorem 5. (Ree [42]) If the coefficients c(α) obey the shuffle identity, then F is a Lie
polynomial.

For two ordered disjoint set a, b, the set of shuffles is denoted a� b. It comprises all orderings
of a ∪ b that preserve the ordering of a and b repsectively. Then the ‘shuffle identity’ referred
to in the theorem is the statement that ∑

ω∈a�b
c(ω) = 0,

for all disjoint non-trivial partitions a, b of {1, ..., s}. Given that F is a Lie polynomial, we can
apply the following theorem to write F in a way that makes it manifestly Lie. We introduce
the following notation for consecutive right-sided Lie bracketings,

[1, 2, ..., s] = [[ ... [[[1, 2], 3], 4], ... ], s].

Then let [F ] denote the polynomial obtained from F be replacing every word Xa...Xb with its
Lie bracketing, [Xa, ..., Xb].

Theorem 6. (Dynkin-Specht-Wever) A homogeneous polynomial F of degree s is Lie iff [F ] =
sF .25

25See, e.g., the book by Reutenauer on Free Lie Algebras for this result. [43]
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Now we return to the new formulas that we have derived in this section. It is shown in
appendix D that both the broken Parke-Taylor factors, pt(α), and the Parke-Taylor factors
with one position fixed, PT (∗, α), satisfy the shuffle identity. Combining the previous two
theorems then allows us to write our correlator formulas in a way that is manifestly Lie. For
instance, we have encountered the term

(Fα(1) ... Fα(k)ε)αβ

σ[a,α,b]
.

Here α and β are the spinor indices associated to the fermions at σa, σb. Since we sum over
all permutations α, we can use Dynkin-Specht-Wever to replace this term with

1

k

(
[Fα(1), ... , Fα(k)]ε

)
αβ̇

σ[a,α,b]
. (32)

inside the sum. Likewise, consider the term

tr
(
Fα(1) ... Fα(k)

)
σ(α)

.

By cyclic invariance we can always move, say, F1 to the first position. Then, in the permutation
sum, we may replace this with

k

k − 1

tr
(
F1[Fα(2), ... , Fα(k)]

)
σ(α)

. (33)

In the first case, equation (32) is a natural pairing 〈u, Lv〉 where L ∈ so(D) is the Lie algebra
element formed by the field strengths. v is a spinor polarisations in the chiral spinor represen-
tation and u is a spinor polarisation in the dual representation. Likewise, equation (33) is also
such a pairing except that now L ∈ so(D) is taken to act of the fundamental representation of
so(D) and its dual. Here u and v are given by the polarisation and momentum vectors of F1.

7 Six dimensions

Having investigated four dimensions in the previous sections, there are several reasons to
investigate six. One reason is that we are interested in the spin field CFT for ten dimensions,
and SO(10) spinors can be realised as tensor products and direct sums of SO(4) and SO(6)
spinors. However, six dimensions is interesting for its own sake. For instance, the bi-adjoint
scalar theory is conformally invariant in six dimensions, and its amplitudes can be computed
using the ambitwistor string. [44] In this section, we derive formulas for six dimensions which
are as exhaustive as those we found in four. We present the new formulas in section 7.2,
following a review of the earlier results on spin field correlators in section 7.1

7.1 Spin field correlators

For six dimensions, the spin fields have the following OPEs,

Sα(z)Sβ(0) ∼ z−
3
4 δβα,

Sα(z)Sβ(0) ∼ 1√
2
z−

1
4 (γµC)αβ ψµ(0).
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(This follows directly from section 5.2.) Hartl and Schlotterer [27] present a formula for all
non-vanishing spin correlators in D = 6. In this section, I comment on its proof. We will use
it to obtain new results in the next section. Their formula is〈

N∏
i=1

Sαi(σi)S
βi(σ̃i)

〉
= W 1/4

∑
ρ

|ρ|
N∏
i=1

δαi
βρ(i)

σi − σ̃ρ(i)
,

where, as before,

W =

∏N
i,j=1(σi − σ̃j)∏N
i<j σij σ̃ij

.

The formula clearly holds for N = 1, since the relevant OPE in D = 6 is

Sα(z)Sβ(0) ∼ z−
3
4 δα

β.

To prove the formula, we need only consider the singularities for σi − σ̃j → 0. This is much
simpler than the D = 4 case. It suffices to consider i = N , j = N (due to permutation
symmetry). Then the key observation is that, in this singular limit,

W → (σn − σ̃n)

∏N−1
i,j=1(σi − σ̃j)∏N−1
i<j σij σ̃ij

∏N−1
i=1 (σi − σ̃N )(σN − σ̃i)∏N−1
i=1 (σi − σN )(σ̃N − σ̃i)

.

It suffices to notice that∏N−1
i=1 (σi − σ̃N )(σN − σ̃i)∏N−1
i=1 (σi − σN )(σ̃N − σ̃i)

= 1 +O(σn − σ̃n),

and this completes the proof.

7.2 Mixed NS and R correlators

We perform contractions on Hartl-Schlotterer’s formula to obtain closed formulas for mixed
correlators. Compared to our counting in section 6, D = 6 is simpler. There is no longer a
chiral division of the fermions. We can have any even number of R insertions in the same
representation. Finally, we recall that the D = 6 OPEs give, for instance,

ψµ(0) = + lim
z→0

2−
3
2 z

1
4
(
C−1γ̄µ

)αβ
Sα(z)Sβ(0). (34)

We use this to perform the contractions. We will consider the case of N bosons and 2M
fermions in the same representation. As we will see, it is necessary for M of the bosons to
be fixed NS insertions, while the remaining N −M are unfixed. To arrive at our formula for
this mixed correlator, we will begin with the Hartl-Schlotterer formula for 2N spin fields of
each type. Contracting the first 2(N −M) of these and taking appropriate limits gives the
following formula which I obtained in CFC section 6,

I =

〈
N−M∏
i=1

F iµiνiψ
µi(zi)ψ

νi(zi)

2M∏
j=1

Sαj (σj)S
β̇j (σ̃j)

〉

= 2N−M

(∏
i,j(σi − σ̃j)∏
i<j σij σ̃ij

) 1
4 ∑
ρ∈GN+M

|ρ|
2M∏
i=1

Cαi β̇ρ(i)
σi − σ̃ρ(i)

N−M∏
i=1

(
C−1Fi C

)
β̇i

β̇ρ(2M+i)

zi − σ̃ρ(2M+i)
,
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where it is understood that σ̃2M+i = zi for 1 ≤ i ≤ N −M . We proceed further by taking the
limit in which σ2i−1, σ2i → yi, and using (34). Contracting with some polarisation data we
are, on the LHS, computing

I =

〈
N−M∏
i=1

F iµiνiψ
µi(zi)ψ

νi(zi)
2M∏
j=1

Sβ̇j (σ̃j)
M∏
k=1

Ek · ψ(yk)

〉
.

We find, on the RHS,26

∑
ρ∈GN+M

|ρ|
N−M∏
i=1

(
C−1Fi C

)
β̇i

β̇ρ(2M+i)

zi − σ̃ρ(2M+i)

M∏
i=1

(Ei C)β̇ρ(2i−1)β̇ρ(2i)

(yi − σ̃ρ(2i−1))(yi − σ̃ρ(2i))
,

where

W =

∏M
i=1

∏2M
j=1(yi − σ̃j)1/2∏

i≤j σ̃
1/4
ij

∏M
i<j yij

.

We have dropped the distracting powers of 2. Fix a permutation ρ. The corresponding
summand is a product of two types of cycles: closed cycles containing only bosons and open
cycles connecting two fermions. The index structure imposes that

i. every closed cycle contains no fixed bosons,

ii. every open cycle contains an odd number of fixed bosons.

A counting argument then establishes the ‘one fixed boson lemma’: every fermion chain con-
tains one and only one Ei. Moreover, we claim that a fermion chain only contributes when its
Ei is at the beginning or end of the chain.27 Given these results, the contributing topologies
at low points are shown in figure 4. This leads us also to a cycle representation of the formula,

I = (−1)MW
∑
ρ

|ρ|
∏
i

ξl(i)EF... Cξr(i)
σ[ai]

∏
j

trF(bi)

σ(bi)
.

26From this calculation we see that we could not have introduced further integrated vertex operators without
encountering singularities that cannot be removed—except perhaps by bubbling off some of the Sα̇ spin fields.

27Our claim is that if E appears in the middle of a fermion chain in a particular summand this will not
contribute to the final result of the permutation sum. We use,

1

[1234]
+

1

[1324]
=

σ14

[124][134]
.

We also need to recall that (γC) and (γ2C) are anti-symmetric in D = 6, while (γ3C) is symmetric. In the
middle of the fermion chain we have, for some fixed permutation, the term

(...)
F1F2E3F4

[1234][32]
(...).

We can consider also the term obtained from this by swapping 2 and 3. This gives a relative sign and we find,
inside the permutation sum,

(...)

[
F1F2E3F4

[1234][32]
− F1E3F2F4

[1324][23]

]
(...).

The spinorial indices can be rearranged such that F1E3F2F4 = F1F2E3F4 and F1F2E3F4 = F4F2E3F1. The
bracketed expression is then

1

[32]

σ14

[124][134]
F1F2E3F4.

Exchanging 1 and 4 does not change the order of the permutation since it takes 6 flips to swap 1 and 4. Then
we can add the corresponding summands. That is, we consider

X(...1234...) −X(...1324...) +X(...4231...) −X(...4321...),

where Xρ is the summand associated to ρ. The antisymmetry of σ14/[124][134] then shows that this vanishes.
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Figure 4: Contributing topologies at low points

Here we have introduced polarisation spinors ξi for the fermions. Just as in four dimensions,
we can use the properties of the Parke-Taylor factors to infer that the permutation sums give
Lie algebra elements inside the traces. Since the results in section 6.3 can easily be adapted
to the present case we do not describe this in any further detail.

8 Ten dimensions

In ten dimensions, it is expected that the ambitwistor string gives the correct amplitudes at
loop level. In this section, we find formulas for correlators involving two spin fields. These for-
mulas are immediately useful: they can be used to find tree level amplitudes with one fermion
line. Moreover, they allow us to directly verify that 1-loop prescription for the ambitwistor
string amplitudes. In section 8.1 we review known results for the two spin field correlator.
We relate this to an ambitwistor string correlator in section 8.2, and rewrite the integrand in
section 8.3 to be manifestly gauge invariant. Finally, in section 8.4, we study the connection
to the 1 loop amplitude formulas.

8.1 Two spin fields

We begin by giving the specialisation of our formulas in section 5.2 to ten dimensions. The
OPEs are now

Sα(z)Sβ̇(0) ∼ z−
5
4Cαβ̇,

Sα(z)Sβ(0) ∼ 1√
2
z−

3
4 (γµC)αβ ψµ(0).

Härtl and Schlotterer [27] give a formula for the correlator of two spin fields with arbitrarily
many fermions ψµ in ten dimensions. They gave their result for arbitrary genus, but, for
simplicity, we will state and prove it genus zero. Their formula is〈

Sα(σa)Sβ(σb)
2n−1∏
i=1

ψµi(σi)

〉
=

1√
2

1

(σab)
D−4
8

2n−1∏
i=1

1
√
σiaσib

×n−1∑
s=0

σsab
2s

∑
ρ∈G∗2n−1

|ρ|(Γµρ1 ...Γµρ2s+1C)αβ

n−s−1∏
j=1

ηµ∗,µ∗+1

σ∗,∗+1
σ∗,aσ∗+1,b

 . (35)

The appearance of an odd number of ψ’s and an odd number of Γ matrices will become clear
shortly—it is a consequence of the two spin fields having the same chirality. We will treat the
opposite chirality case shortly. In the rightmost product, we have introduced an abbreviation:
‘∗’ is short for ρ(2(s+ j)) and ‘∗+ 1’ for ρ(2(s+ j) + 1). Finally, the permutation group G∗2n−1

that appears in the formula is the quotient of G2n−1 by the subgroup generated by

i. permutations of the indices of the Γ matrices,

ii. permutations of the ordering of the η pairings,

35



iii. flips of the indices on the factors of η.

The formula may seem unweildy, but it is easily verified. It is certainly correct for n = 1 where

〈Sα(σa)Sβ(σb)ψ
µ(σ1)〉 =

1√
2

1

σ
3/4
ab σ

1/2
1a σ

1/2
1b

(γµC)αβ .

The proof then proceeds by induction. Assuming the formula is correct for n− 1, the pole at
σij = 0 in equation (35) is given by〈

Sα(σa)Sβ(σb)

2n−1∏
i=1

ψµi(σi)

〉
' ηµiµj

σij

〈
Sα(σa)Sβ(σb)

2n−1∏
k 6=i,j

ψµk(σk)

〉
+ ...

Moreover, the pole at σab = 0 is given by〈
Sα(σa)Sβ(σb)

2n−1∏
i=1

ψµi(σi)

〉
' 1√

2
(σab)

−D−4
8 (γµC)αβ

〈
ψµ(σa)

2n−1∏
i=1

ψµi(σi)

〉
.

To see this, observe that the all ψ correlator follows by Wick’s theorem. The formula is〈
2n∏
i=1

ψµi(σi)

〉
=
∑
ρ∈G∗2n

sgn(ρ)

n∏
i=1

ηµ∗,µ∗+1

σ∗,∗+1
.

To complete the proof, one must also consider the poles at σai = 0 and σbi = 0. However,
recall the OPE, equation (??), of Sα and ψµ. To verify equation (35), we must also give a
formula for the opposite chirality case. Indeed, taking the σbi = 0 pole of (35), we arrive at a
conjecture,〈

Sα(σa)S
β(σb)

2n−2∏
i=1

ψµi(σi)

〉
=

1

(σab)
D−4
8

2n−2∏
i=1

1
√
σiaσib

×n−1∑
s=0

σsab
2s

∑
ρ∈G∗2n−1

|ρ|(Γµρ1 ...Γµρ2sC)α
β̇
n−s−1∏
j=1

ηµ∗,µ∗+1

σ∗,∗+1
σ∗,aσ∗+1,b

 . (36)

The proof by induction then establishes (35) and (36) simultaneously. Assuming, for instance,
that (35) holds for n− 1, we find that (36) has the correct pole〈

Sα(σa)S
β(σb)

2n−2∏
i=1

ψµi(σi)

〉
=

1√
2

(σjb)
− 1

2 (γµj )βγ

〈
Sα(σa)Sγ(σb)

2n−2∏
i 6=j

ψµi(σi)

〉
.

The other poles are similar and this concludes the proof of both formulas.

8.2 CHY integrand

To arrive at the CHY integrand computed by the ambitwistor string, we first contract the
µi indices in equation (35) with polarisations and momenta. To be precise, we consider the
product (

n−1∏
i=1

εi · ψ(σ2i−1)ki · ψ(σ2i)

)
ε2n−1 · ψ(σ2n−1).
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We also contract SαSβ with spinor polarisations ξαa ξ
β
b . Next we consider the limit σ2i−1,2i = 0

(for 1 ≤ i ≤ n − 1). We do not receive a contribution from singular terms in this limit since
εi · ki = 0. We must also add the ghost contribution,〈

e−φa/2e−φb/2e−φn
〉

=
1

(σab)
1
4 (σna)

1
2 (σbn)

1
2

.

If we generically denote the polarisations and momenta by a collection of vectors vi, then the
correlator gives the following CHY integrand

I =
1√
2

1

σab

1

σnaσnb

n−1∏
i=1

1

σ2i,aσ2i,b
×

lim
σ2i−1,2i→0

n−1∑
s=0

σsab
2s

∑
ρ∈G∗2n−1

|ρ|(ξa/vρ(1).../vρ(2s+1)Cξb)
n−s−1∏
j=1

v∗ · v∗+1

σ∗,∗+1
σ∗,aσ∗+1,b

 . (37)

As we expect for a CHY integrand, I is a rational function of the insertion points. One
disadvantage of this presentation of the correlator is that it is not manifestly gauge invariant
(under εi 7→ εi + ki). Nevertheless, it will be useful to us in section 8.4. In particular, notice
that it has a pole at σab = 0.

8.3 A gauge invariant formula

As we discussed in section 6, it may be possible to regard the CHY formula as the unique
gauge invariant possibility. It is, therefore, enlightening to consider manifestly gauge invariant
presentations of the CHY formula and the closely related integrands that we have been de-
riving. In this section, we briefly present a manifestly gauge invariant version of the formula,
equation (37), presented in the previous section. We do not give its derivation, since it is not
important to our main aim in this section—which is to relate the two spin field correlator to
loop amplitudes. The manifestly gauge invariant formula is

I =
∑

α⊂{1...n}

(−1)m√
2

(ξaFα(1)...Fα(m)γ
µC ξb)

σ(a,α(1),...,α(m),b)

∂

∂εµ
Pf(M [bn]).

If so desired, the product of field strengths can be replaced with the total Lie bracket of the
field strengths (see section 6.3). Though I derived this formula from the same OPE relations,
I do not have a direct algebraic proof demonstrating that it is equal to equation 37. What is
certainly true is that both formulas for I have the same pole at σab = 0. Indeed, the pole is
given by

I =
1√
2

1

σab
(ξaγ

µCξb)
∂

∂εµ
Pf(M [bn]).

We mention this here because it will be useful in the following section.

8.4 The forward limit and the degenerating torus

In this section we study the forward limit of the two spin field correlators. In the forward limit
we take ka+kb → 0. Our motivation for this is that the ambitwistor string integrands for loop
amplitudes can be obtained from the forward limits of tree-level correlators. By taking the
forward limit of the two Ramond insertions, we will thereby obtain the fermion contribution
to a 1-loop amplitude with all external particles being bosons. On its own, the forward limit of
the integrand is singular. But, as we will see, this singularity cancels precisely the singularity
that arises from bosons running in the loop.
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8.4.1 The singular part

He and Yuan studied the solutions to the scattering equations in the forward limit. If we set
ka + kb = τq, with τ → 0, then they found that there are (n− 2)! solutions for which σab ∼ τ
and (n− 2)! solutions for which σab ∼ τ2. We call these the singular solutions. The correlator
for two spin fields does have a pole in σab. This was a key part of the proof we gave in section
8.1. As we mentioned in section 8.3, the pole of the integrand, including ghosts, is

I =
1

σab
Pf′
(
M [bn](b, 1, ..., n)

)
,

where M [bn] is a CHY matrix with the momenta for b and n removed. The polarisation of b is
εµ = (ξaγ

µCξb)/
√

2. The Pfaffian is linear in the polarisation, and so we can write

I =
1

σab

1√
2

(ξaγ
µCξb)

∂

∂εµ
Pf′
(
M [bn](b, 1, ..., n)

)
.

To obtain the contribution to the loop amplitude we set ξa = ξb and sum over a basis of
polarisation states. Let us now compare with the contribution from bosons in the loop. To
begin, consider n+ 2 bosons. The corresponding integrand is the CHY pfaffian

J = Pf′
(
M [an](a, b, 1, ..., n)

)
.

Using the expansion of the Pfaffian we see that it has a pole in σab given by

J =
1

σab
εa · εb Pf′

(
M [b+n,n](b, 1, ..., n)

)
+ ...

Removing b + n from M leaves only the momentum, call it lµ, associated to b. So we could
just as well write this as

J =
1

σab
εa · εb lµ

∂

∂εµ
Pf′(M [bn](b, 1, ..., n)).

To obtain the loop contribution we set εa = εb and sum over a basis of polarisation states. We
see that the boson contribution cancels the fermion contribution if

1√
2

∑
ξ

(ξγµCξ) = lµ
∑
ε

ε · ε. (38)

We will assume a normalisation so that this relation holds. Finally, we derive a brief corollary
of this. In D = 10, the only p-forms that have symmetric index structure αβ are the 1-form
and the 5-form:

C−1γ̄µαβ and C−1γ̄5αβ.

(The 3-form has the same index structure, but is antisymmetric.) On these grounds, one must
have ∑

h

ξαξβ = Aµ C−1γ̄µαβ +BabcdeC−1γ̄abcdeαβ,

for some p-forms A and B. However, comparing with equation (38), we see that

Aµ =

√
2

2D/2−1
lµ
∑
ε

ε · ε.

If we normalise the boson polarisation sum so that
∑
ε · ε = 2−(D−3)/2 we find that∑

h

ξαξβ = lµ C−1γ̄µαβ +BabcdeC−1γ̄abcdeαβ. (39)

We will use this in the following section.
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8.4.2 Relation to degenerating torus

We expect that the forward limit of our integrand I is related to the integrand one would obtain
from the ambitwistor string at genus 1. (Following, in particular, reference [24].) Taking our
expression equation (37) for the integrand, we find that

∑
ξ

I = lim
σ2i−1,2i→0

1√
2

1

σab

1

σnaσnb

2n−2∏
i=1

1
√
σiaσib

×

n−1∑
s=0

σsab
2s

∑
ρ∈G∗2n−1

|ρ|tr(/vρ(1).../vρ(2s+1)
/̄l)

n−s−1∏
j=1

v∗ · v∗+1

σ∗,∗+1
σ∗,aσ∗+1,b

+ .... (40)

We have used equation (39) and moved the pre-factor back inside the limit. There is a second
term involving the 5-form Babcde which appears in equation (39). We focus on the first term for
now. Following Roehrig and Skinner (who did a similar case), the summands in this formula
can be identified with Pfaffians. We write

/vρ(1)/̄vρ(2).../vρ(2s+1)
/̄l =

1

2
(1 + Γ11)/vρ(1)/vρ(2).../vρ(2s+1)

/l ,

where the /v appearing on the right hand side are formed using the full gamma matrices. The
factor of (1 + Γ11)/2 is the projection onto the chiral part. The trace can be written in terms
of pfaffians as

tr(/v1..../v2s+2) = 25Pf(V ) tr(/v1..../v2s+2Γ11) =
25

9!!

∫
d10ΨPf(A),

where
Vij = vi · vjsgn(i− j) Aij = vi · vjsgn(i− j) + vi ·Ψvj ·Ψ.

The integral over Ψ is a Grassmann integral, with Ψ odd. Rearranging equation (40) we have

∑
ξ

I = lim
σ2i−1,2i→0

1√
2

2−(n−1) 1

σ2
ab

σab
σnaσnb

2n−2∏
i=1

√
σab
σiaσib

×

n−1∑
s=0

∑
ρ∈G∗2n−1

|ρ|tr(/vρ(1).../vρ(2s+1)
/̄l)

n−s−1∏
j=1

2v∗ · v∗+1
σ∗,aσ∗+1,b

σ∗,∗+1σab

+ .... (41)

The sum given here in parantheses may be recast as a sum over pfaffians. To do this, we will
write l = v2n. Then

(...) =
∑

α⊂{1,...,2n}

sgn(α, αc)25Pf(Vij)ij∈αPf(Mij)ij∈αc + ...,

where the elipsis is the analogous term involving the matrix A. The pfaffians combine according
to ∑

α⊂{1,...,2n}

sgn(α, αc)Pf(Vij)ij∈αPf(Mij)ij∈αc = Pf(V +M),

which follows from the definition of the Pfaffian, expanding the right hand side. The entire
expression may thus be written as∑

ξ

I = lim
σ2i−1,2i→0

23

√
2

1

σ2
ab

√
σab

σnaσnb

(
Pf(X) +

1

9!!

∫
d10ΨPf(Y )

)
+ five-form term,
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where

Xij =

√
σab
σiaσib

√
σab

σjaσjb

(
1

2
sgn(i− j) +

σiaσjb
σijσab

)
vi · vj .

and Y is the analogous matrix formed from A. (Notice that we have absorbed a factor of
2−(n+1) into the matrix entires.) We can rearrange Xij so that

Xij = vi · vjS(i, j),

where

S(i, j) =
1

σij

1

2

(√
σibσja
σiaσjb

+

√
σjbσia
σjaσib

)
.

In this form, S(i, j) is the Szegö kernel for the torus in the degenerating limit (for two of
the four possible spin structures). See for example equation (2.33) of [24], where the spin
structures that give rise to this limit are labelled α = 1, 2—where these are associated to the
Ramond contribution at 1-loop. In this way,

∑
ξ I (less the five-form term) can be understood

to arise from the Ramond sector of the ambitwistor string at one loop, in the degenerating
limit. (See especially section 3.2 of [24] for a discussion of the Ramond contribution to a 1-loop
amplitude with all external states bosonic.)

9 Prospects

The most immediate prospect for the work described in Part 2 is a proof of the 1-loop formula
conjectured first in [5] and partially proved in [24]. (It is not clear what role the five-form
term will play in such a proof—and this will require some clarification.) Recently, formulas
for the correlators for two spin fields on a genus one worldsheet were studied by Schlotterer
and Lee in [45]. Their formulas might be useful for us. Taking the degenerating limit of the
worldsheet, and the forward limit of the two Ramond insertions might allow us to use their
formulas to prove the 2-loop ambitwistor string conjecture, studied in [25].

The other prospect for the work in Part 2 concerns the correlators involving both Ramond-
type and Neveu-Schwarz insertions. In sections 6 and 7 we presented new formulas for these
correlators—though only for the spin fields associated to four and six dimensions. At present,
we have been unable to relate these interesting formulas to amplitudes. However, if the
correlators discussed in section 6 can be related to a dimensional reduction of the D = 10
ambitwistor string, we may arrive at formulas for D = 4 super Yang-Mills and supergravity
tree amplitudes. These are already known, so this would be an excellent check that the Ramond
sector of the ambitwistor string is giving the correct amplitudes at tree level. The D = 4 and
D = 6 formulas are not, by themselves, sufficient to produce D = 10 formulas for the reason
described in section 5.3. Namely, the D = 10 spin fields do not fully factorise into two parts.
Nevertheless, the D = 4 and D = 6 formulas constrain what the D = 10 correlators can be,
since the later should dimensionally reduce to the former.

A Spinors and purity

In this appendix we review results about the spin representations and pure spinors. We mention
the general theory only in passing, and focus instead on mentioning specific cases which are
used in the main text.
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A.1 Some properties by dimension

For reasons discussed in section 5.2, the properties of the chiral spin representations vary with
dimension modulo 4. When D = 0 mod 4 there are forms on S+ and S−, which we write as

Cαβ and Cα̇β̇. When D = 2 mod 4, S+ and S− are dual to each other, and we write C β̇α and

Cβα̇ for the pairing. In D = 0 mod 8, Cαβ and Cα̇β̇ are symmetric, while when D = 4 mod 8,

they are anti-symmetric.28 Moreover, the p-forms γαβ(p) are symmetric when D− 2p = 0 mod 8

and antisymmetric when D − 2p = 4 mod 8. If D − 2p = 6 mod 8, γαβ̇(p) = −γβ̇α(p) is odd under

exchange of the indices, while if D− 2p = 2 mod 8, it is even.29 Combining these observations
we comment on two particular cases. First, in D = 6,

(γaC)αβ and (γabcC)αβ

are the only matrices with this index structure and they are both symmetric. Second, in
D = 10,

(γaC)αβ and (γabcdeC)αβ

are symmetric while
(γabcC)αβ

is skew. Generally, the chiral spin representations for 2n dimensions can be constructed as
direct sums of the chiral representations for 2n− 2. Finally, one particular case is of interest.
Namely, the spin(10) group can be broken to a spin(4) × spin(6) subgroup, and the chiral
10 dimensional spinors decomposed as tensor products of 4 and 6 dimensional spinors. If
we write the 10 dimensional chiral spinor λA as (λαi , λ

jβ̇) under this decomposition, then the
corresponding 10 dimensional gamma matrices may be written as30

γαβ̇(iβ)(jγ̇) = δijδ
α
β δ

β̇
γ̇ , γkl(iβ)(jγ) =

1

2
εβγ

(
δki δ

l
j − (kl)

)
, and γkl

(iβ̇)(jγ̇)
=

1

2
εijklεβ̇γ̇ ,

where the pair αβ̇ refers to spinor coordinates on C4 and kl to coordinates on C6.

A.2 Pure spinors

The space of pure spinors in 2n dimensions is the space of null n-planes in C2n (with some
quadratic form) or, equivalently, the space of complex structures on C2n. From the first
definition, we see that the space of pure spinors has dimension n(n−1)/2. (We may decompose
C2n = W ⊕W ∗ so that the quadratic form is written in the form viwi for coordinates (v, w).
Then a maximal null plane is given by a choice of skew n×n matrix Xij such that wi = Xijv

j

is the equation of the plane in V .31) The second definition is equivalent to the first. The
space of complex structures is SO(2n)/U(n), which we identify with a choice of coordinates
v = Az+Bz̄ (in terms of some coordinates z, z̄ already given), defined up to A ∼ UA,B ∼ UB
where UU∗ = 1.32 The rows of the matrix [AB] define an n-plane in C2n. It is null with respect
to the metric dzidz̄i. Associated to a null n-plane is an n-form ω. Given this, we may consider
the image of γabcdeωabcde, which is one dimensional since the plane is null. Conversely, given
a spinor λα, we can consider the decomposition of the bilinear λαλβ into p-forms. If the
bilinear only has a 5-form component, then λ defines a totally null 5-plane. This turns out

28See [46] section 6.5.
29All this is described in Appendix A of [47].
30See equation 5.10 of [20].
31Appendix A of [47].
32An explicit discussion is given in the appendix to [48].
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to be a correspondence and it was first described by Cartan. Such spinors are called pure.
For example, in eight dimensions λα is pure if λαλβCαβ = 0. In ten dimensions, λα is pure if
λαγaαβλ

β = 0. In twelve dimensions, λγabλ = 0 is sufficient. [49] In general one demands that
contractions of the bilinear with the projections

Pαβγδ = γabcd... γ
βγδ

abcd... γ

all vanish, except in degree n. We now give some examples of how the purity condition can be
related between different dimensions. For instance, a pair of SO(6) spinors (wα, λ

α) is pure as
an SO(8) spinor if wαλ

α = 0. Likewise, a pair of SO(8) spinors (wα, λ
α̇) is pure as an SO(10)

spinor if wαλα̇γ
αα̇
a = 0. Finally, using the decomposition of SO(10) spinors described in the

previous section, a 10 dimensional chiral spinor λA written as (λαi , λ
jβ̇) is pure if

λiαλα̇i = 0, λiαλjα = 0, λiα̇λjα̇ = 0.

B Physics conventions for superspace

Our conventions for super-geometry are those used in the physics literature. We give examples
of how these conventions relate to the calculation of Poisson brackets. Local coordinates on
a supermanifold are a collection of even and odd functions, xm, θµ, that we will collectively
denote ZM : the middle of the alphabet—M,m,µ,...—will be used to denote local coordinate
indices. We denote the degree in the Z2 grading by | • |. The super Grassmann algebra is
generated by dZM where the wedge product is graded according to

dZM ∧ dZN = −(−1)|M ||N |dZN ∧ dZM .

For the differential, d, the convention used by [50] is that

d(dZM ...φM...) = dZM ...dZP∂PφM....

A derivation D (of pure degree) on the Grassmann algebra respects the grading;

D(ab) = Dab+ (−1)|D||a|aDb.

For instance, we have a basis of even, ∂m = ∂/∂xm, and odd, ∂θ = ∂/∂θα, vector fields which
are derivations. We also have the odd derivation ∂/∂dxm and the even derivation ∂/∂dθα.
A vector field V can be written V = VM∂M . Then V is a derivation on the Grassmann
algebra given by [51]

V = VM ∂

∂dZM
.

For example, the Eulerian vector field becomes

V = λα
∂

∂dλα
− wα

∂

∂dwα
,

such that, with the appropriate sign rules,

V ω = −d(λαwα).

The coordinate basis is inconvenient, even in flat space, so we define basis 1-forms EA =
dZMEAM , where E takes values in the Lie algebra of the super Lorentz group: the beginning
of the alphabet—A, a, α, ...—will be used to denote these Lie algebra indices. Notice that
|EAM | = |A| + |M | so that only Eαm and Eaµ are odd. The inverse vierbein, EMA , allows us
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to define dA = EMA ∂M so that d = eAdA. We introduce connection 1-forms Ω = dZMΩM

taking values in endomorphisms of the Lie algebra. For example, ∇V B = dV B + ΩA
BV A is

the covariant derivative on Lorentz vectors. In flat space, Ω = 0, but the vierbein is not trivial
since we take

dea =
1

2
eα ∧ eβγaαβ, deα = 0. (42)

A more opaque way to write this is

ea = δamdxm + dθαθβγaαβ/2 eα = δαµdθµ.

For a super 1-form A with values in g, the field strength is F = dA+[A∧A], with conventions
as above. The torsion and curvature of ∇ are

T = dE + E ∧ Ω, R = dΩ + Ω ∧ Ω,

where we understand the Lie algebra endomorphisms to act from the right. We can define
components of T as TA = eB ∧eCTBCA/2. For example, (42) shows that in flat space the only
non-zero torsion components are

Tαβ
a = γaαβ.

In general, the torsion components arise in Poisson brackets involving the fields DM which
implement covariant derivatives. We have

λβ[Dβ, E
M
α λ

α]DM −DM [EMβ λ
β, Dα]λα = Tαβ

MλαλβDM .

This is how the torsion components arise in the Poisson bracket [Q,Q].

C Linearised equations for IIB

We consider perturbations of the flat space vierbein
0
E,

EAM =
0
EM

A +
0
EM

BHA
B .

The torsion, T = dE + E ∧ Ω, recieves a first order contribution

1
TAB

C =
0
∇[AH

C
B] +

1
Ω[AB]

C +
0
TAB

DHC
D +HD

[A

0
TD|B]

C .

See also equation 3.13 of [39]. This is almost all we need. For example, the non-linear
supergravity constraint Tα(ab) = 0 becomes, in this linearised expansion,

Tα(ab) −−→ 0 = ∇[αHa]b + γbαβ̂H
β̂
a + (a↔ b), (43)

where we use that the only flat space torsion is
0
Tαβ̂

a = γaαβ̂. We now linearise the other
torsion constraints.

Tαa
β + Tαγ̂aP

βγ̂ −−→ 0 = ∇[αH
β
a] − Ωaα

β + γaαγ̂P
βγ̂ , (44)

Tαa
β̂ − TαγaP γβ̂ −−→ 0 = ∇[αH

β̂
a] (45)

Tαγ̂
β −−→ 0 = ∇[αH

β
γ̂] + γaαγ̂H

β
a + Ωγ̂α

β. (46)

Tαβ
γ̂ − 1

2
HαβγP

γγ̂ −−→ 0 = ∇[αH
γ̂
β] (47)
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The 3-form H is zero for the flat background and so HαβγP
γγ̂ does not contribute at first

order. Equations (43)-(47) are all the torsion constraints that we need.33 We now turn to the
equations involving derivatives of the supergravity superfields. We linearise each of these as
follows,

∇αP γβ̂ − TαργP ρβ̂ + Cα
γβ̂ −−→ 0 = ∇αP γβ̂ + Cα

γβ̂ (48)

λαλβ
(
∇αCβδγ̂ −RακβδP κγ̂

)
−−→ 0 = λαλβ∇αCβδγ̂ , (49)

∇αCγ̂ δ̂ρ − TαβρCγ̂ δ̂β +Rαβ̂γ̂
δ̂P ρβ̂ + Sαγ̂

ρδ̂ −−→ 0 = ∇αCγ̂ δ̂ρ + Sαγ̂
ρδ̂ (50)

λαλβ
(
∇αSβγ̂ρδ̂ −Rακ̂γ̂ δ̂Cβρκ̂ −RακγρCγ̂ δ̂κ

)
−−→ 0 = λαλβ∇αSβγ̂ρδ̂. (51)

The superfields P,C, Ĉ, U on the right hand side are to be understood as the first order varia-
tion around a background where all superfields vanish. Finally, each of the torsion constraints
implies a constraint on the curvature using the Bianchi identity dT = R. We will only need
the curvature versions of (43) and (44), which are

Rcαβ
γ + Tαδ̂cCβ

γδ̂ −−→ 0 = ∇[cΩα]β
γ + γcαα̂Cβ

γα̂ (52)

Rcαβ̂
γ̂ + TαδcCβ̂

γ̂δ̂ −−→ 0 = ∇[cΩα]β̂
γ̂ . (53)

To expand R we use the definition R = dΩ + Ω ∧ Ω. Since Ω = 0 for the flat background,
R = dΩ to first order. We have also used (48).

D Shuffles and Lie polynomials

In this section we prove two results which are first used in section 6.3 in the main text. The
first proof is merely a translation from that which appears following pg. 40 in reference [52].
The second proof adapts the idea to a new case that we need in the main text.

Theorem 7. The broken Parke-Taylor factors satisfy the shuffle identity,∑
α�β

pt(ω) = 0,

where it is understood that the sum is over all ω ∈ α� β.

Proof. The result holds for |ω| = 2 and |ω| = 3. We proceed by induction. The key observation
is that α� β can be decomposed into two sets. This is because every element of α� β must
end with either the last letter in α or the last letter in β. Let |α| = a and |β| = b be the orders
of α and β. Then

α� β = (α� β−1, βb) ∪ (α−1 � β, αa).

We can iterate this decomposition to obtain an expansion∑
α�β

pt(ω) =
∑

(α�β−2,βb−1,βb)

pt(ω) +
∑

(α−1�β−1,αa,βb)

pt(ω)

+
∑

(α−1�β−1,βb,αa)

pt(ω) +
∑

(α−2�β,αa−1,αa)

pt(ω).

33For instance, we are missing Tαβa + Hαβa, but this is not needed to impose our linearised relations. We
will see this constraint appearing in the non-linear version of this descent.
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Using the inductive hypothesis we can combine these into two sums. This is because, for
example,

(α� β−2, βb−1) ∪ (α−1 � β−2, αa) = (α� β−1).

We also use
pt(1, ...,m) = pt(1, ...,m− 1)pt(m− 1,m).

Then

∑
α�β

pt(ω) =

 ∑
(α−1�β−1,αa)

pt(γ)

 (pt(αa, βb)− pt(βb−1, βb))

+

 ∑
(α−1�β−1,βb)

pt(γ)

 (pt(βb, αa)− pt(αa−1, αa)) .

Repeating this expansion, and then combining terms using the inductive hypothesis we obtain

∑
α�β

pt(ω) =

 ∑
(α−2�β−1,αa−1)

pt(γ)

C,

where

C = pt(αa, αa−1, βb) + pt(αa−1, αa, βb) + pt(αa−1, βb, αa)

− pt(αa, βb−1, βb)− pt(βb−1, αa, βb)− pt(βb−1, βb, αa).

The shuffle identity for |ω| = 3 then shows that C = 0.

Theorem 8. The Parke-Taylor factors PT (∗, 1, 2, ..., n) with one point fixed obey the shuffle
identity.

Proof. The key relation is that

PT (∗, 1, ..., n) = PT (∗, 1, ..., n− 1)Ωn−1,n,

where
Ωn−1,n =

σ∗,n−1

σ∗,nσn−1,n
.

Just as in the previous proof, one expands the shuffle sum to find

∑
α�β

PT (∗, ω) =

 ∑
(α−2�β−1,αa−1)

PT (∗, γ)

C,

where C has the form

C = (ΩcaΩab + ΩcbΩba − ΩcbΩca)− (ΩdaΩab − ΩdaΩdb + ΩdbΩba) .

An explicit expansion shows that both of the bracketed terms appearing here vanish indepen-
dently.
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