# Mirror symmetry for V7

Andres Klene (klene@maths.ox.ac.uk) Supervised by Prof. Jason Lotay



#### **1.** "Wait, what's mirror symmetry?"

In some types of String Theory, the universe is 10-dimensional. Four of these dimensions are the standard 3+1 of spacetime, but the 6 extra are curled up—so small that we can't detect them—in a space called a <u>Calabi–Yau (C–Y) threefold</u>. There is a construction

C–Y threefold  $\rightsquigarrow$  physics nonsense  $\mid \rightsquigarrow$  model of particle physics;

parameters of the universe depend on the geometry of these extra dimensions. It turns out that two completely distinct C–Ys can give rise to the same physics; this is the first hint of mirror symmetry.

Mathematically, mirror symmetry is a mysterious duality between two fields: symplectic geometry (a type of geometry where the fundamental notion is <u>area</u>, not length) and <u>algebraic geometry</u> (the study of spaces which can be described algebraically).

#### **4.** "OK, but what's $D^bFuk(W)$ ?"

The function *W* describes a family of 4-dimensional spaces, called the <u>fibres of W</u> and written  $W^{-1}(\lambda)$ , each sitting above a complex number  $\lambda \in \mathbb{C}$ . The fibre becomes singular (non-smooth) above six complex numbers  $\{\lambda_1, \ldots, \lambda_6\}$  called the <u>critical values of W</u>. For each of them, take a path  $\gamma_i$  joining 0 to  $\lambda_i$ .





FIGURE 4: The old path  $\gamma_4$  is twisted around the straight line  $\gamma_5$ . This has the effect of replacing  $L_4$  with a different cycle:  $T_{L_5}L_4$ .

**Conjecture.** Given a space X which is simultaneously symplectic and algebraic, there should exist a mirror space, such that the symplectic geometry of X corresponds to the algebraic geometry of the mirror, and vice versa.



The conjecture has been generalised from C–Y threefolds to a wide class of spaces, including <u>Fano threefolds</u>, which are a bit like positively curved C–Y threefolds.

Often the mirror of a space X is another space, but not always. For example, the mirror of a Fano threefold X should be a space Y equipped with a function  $Y \to \mathbb{C}$  to the complex numbers.

## 2. "What's your project about?"

This summer, I looked at V<sub>7</sub>, which is a Fano threefold obtained by <u>blowing up</u> a 6-dimensional space  $\mathbb{P}^3$  at a point (see FIGURE 5). The predicted mirror of V<sub>7</sub> is the function  $W: (\mathbb{C}^{\times})^3 \to \mathbb{C}$  given by

$$W(z_0, z_1, z_2) = \frac{1}{z_0 z_1 z_2} + (1 + z_0)(1 + z_1)(1 + z_2) - 1.$$

FIGURE 1: Critical values of *W*, joined to the origin by paths  $\gamma_i$ .

The fibre of W degenerates along each path  $\gamma_i$ . Specifically, a sphere

 $L_i \subset W^{-1}(0)$ 

collapses—or <u>vanishes</u>—to a point along  $\gamma_i$ ; this is the vanishing cycle associated to  $\gamma_i$ .



This means that mutations in  $D^{b}Fuk(W)$ —which are algebraic at first sight—can just be seen as twisting paths around each other.

## 5. "What about $D^bCoh(V_7)$ ?"

Instead of giving an FEC, it is easier to say what objects  $D^{b}Coh(V_{7})$ contains: all 'twisted functions' on V<sub>7</sub> and its subspaces. For example, the set of all functions  $V_7 \to \mathbb{C}$ , denoted  $\mathcal{O}_{V_7}$ , is an object of  $D^{b}Coh(V_{7})$ . It is part of a family of spaces of 'twisted functions'

...,  $\mathfrak{O}_{V_7}(-3)$ ,  $\mathfrak{O}_{V_7}(-2)$ ,  $\mathfrak{O}_{V_7}(-1)$ ,  $\mathfrak{O}_{V_7}$ ,  $\mathfrak{O}_{V_7}(1)$ ,  $\mathfrak{O}_{V_7}(2)$ ,  $\mathfrak{O}_{V_7}(3)$ , ...

which are all objects in  $D^{b}Coh(V_{7})$ , too.



**Project Aim.** There exist two data structures called <u>triangulated</u> <u>categories</u>,

 $D^{b}Fuk(W)$  and  $D^{b}Coh(V_{7})$ ,

which organise all information about the symplectic geometry of W and the algebraic geometry of V<sub>7</sub>, respectively. This project aimed to prove one side of mirror symmetry by showing

 $D^{b}Fuk(W) = D^{b}Coh(V_{7}).$ 

(I ignored the other side of mirror symmetry, which relates the algebraic geometry of *W* with the symplectic geometry of V<sub>7</sub>.)

# **3.** "How do you even prove something like that?"

A common way to show that two algebraic structures are equal is by demonstrating that they have matching sets of generators.

**Example.** Given two vector spaces X and Y, one can find a <u>basis</u> for each one. If these bases are the same size, then X = Y.

**Example.** Given two groups G and H, one can find a generating <u>set</u> for each one. If they satisfy the same relations, then G = H.

The information of a triangulated category can be encoded in a <u>full exceptional collection (FEC)</u>, which is a collection of objects

 $(E_1, ..., E_n),$ 

together with non-negative whole numbers  $\mathcal{H}(E_i, E_i)$ . In the same sense as vector spaces and groups, the objects  $(E_1, \ldots, E_n)$  generate the triangulated category, and the *H*-numbers act as relations.

FIGURE 2: The vanishing cycle associated to the path  $\gamma_i$ .

Warning. This is not a faithful picture! In reality, the fibre is 4dimensional, and the vanishing cycle is a 2-dimensional sphere.

Now we can finally say what  $D^{b}Fuk(W)$  is: it's the triangulated category with FEC given by

 $(L_1,\ldots,L_6)$  and  $\mathcal{H}(L_i,L_j) = |L_i \cap L_j|.$ 

For example, if L<sub>1</sub> and L<sub>2</sub> intersect at five points then  $\mathcal{H}(L_1, L_2) = 5$ . If they don't intersect at all, then  $\mathcal{H}(L_1, L_2) = 0$ .



FIGURE 5: An illustration of  $V_7$  (=  $\mathbb{P}^3$  blown up at a point p). Rough idea: force all the lines through p to become parallel, by replacing p with  $E = \{all the 'directions' pointing out of p\}.$ 

Similarly, the collection of (twisted) functions on the subspace E,

 $\ldots, \mathfrak{O}_{\mathsf{E}}(-2), \mathfrak{O}_{\mathsf{E}}(-1), \mathfrak{O}_{\mathsf{E}}, \mathfrak{O}_{\mathsf{E}}(1), \mathfrak{O}_{\mathsf{E}}(2), \ldots$ 

are also objects of  $D^bCoh(V_7)$ . There are many more.

The question is: can we find an FEC in  $D^{b}Coh(V_{7})$ ?

One of the first FECs discovered in the wild was for  $D^bCoh(\mathbb{P}^3)$ :

 $(\mathcal{O}_{\mathbb{P}^3}, \mathcal{O}_{\mathbb{P}^3}(1), \mathcal{O}_{\mathbb{P}^3}(2), \mathcal{O}_{\mathbb{P}^3}(3)).$ 

**Idea.** Since  $V_7$  is obtained by blowing up  $\mathbb{P}^3$  at a point, we could hope it also has a similarly nice set of generators.

To do this, we extend the function  $f: V_7 \to \mathbb{P}^3$  (from FIGURE 5) to a square, and take  $D^{b}Coh(-)$  of everything.



Together, the images of  $f^*$  and  $j_*(f|_E)^*$  <u>do not generate</u> the whole of  $D^{b}Coh(V_{7})$ . We need to add in a few twisted versions of the latter:

**Strategy.** Find FECs of the same size for  $D^bFuk(W)$  and  $D^{b}Coh(V_{7})$  with matching  $\mathcal{H}$ -numbers. Just as in the other examples, we could then conclude  $D^bFuk(W) = D^bCoh(V_7)$ .

An arbitrary FEC might not have the properties we want. To fix this, one can obtain new FECs from old ones by 'braiding' objects around each other:



Any combination of such twisting is called a <u>mutation</u>. Mutating an FEC will produce one with a different set of  $\mathcal{H}$ -numbers.

FIGURE 3: A crude picture of the vanishing cycles

#### $L_1, L_2, L_3, L_4, L_5, L_6.$

From this kind of diagram, one can compute the intersections  $L_i \cap L_j$ , which are the  $\mathcal{H}$ -numbers of the corresponding FEC.

Mutations in  $D^{b}Fuk(W)$  are described by the following fact.

**Theorem** (By the work of Seidel). The braided object

 $T_{L_i}L_{i+1}$ 

is the vanishing cycle associated with the path

 $\gamma_{i+1}$  twisted around  $\gamma_i$ .

We illustrate this with an example.

 $j_*(\mathcal{O}_F(-k) \otimes (f|_F)^*(-)): D^bCoh(p) \to D^bCoh(V_7)$ 

for k = 1, 2. Using the FEC for  $\mathbb{P}^3$ , we get the following.

**Proposition.** The collection

 $\sigma = (\mathcal{O}_{\mathsf{E}}(-2), \mathcal{O}_{\mathsf{E}}(-1), \mathcal{O}_{V_{7}}, f^{*}\mathcal{O}_{\mathbb{P}^{3}}(1), f^{*}\mathcal{O}_{\mathbb{P}^{3}}(2), f^{*}\mathcal{O}_{\mathbb{P}^{3}}(3))$ 

is a FEC in  $D^{b}Coh(V_{7})$ .

### 6. "That's wonderful, but what about the aim?"

All this reduces the **Project Aim** to finding a set of paths to  $\{\lambda_i\}$ , and a mutation of  $\sigma$ , such that the resulting FECs in D<sup>b</sup>Fuk(W) and  $D^{b}Coh(V_{7})$  have the same  $\mathcal{H}$ -numbers. This is easier for  $\mathbb{P}^{2}$  blown up at a point, where the diagram (compare FIGURE 3) is simpler. I tried by hand for a while; maybe <u>you</u> can write a program?

Thanks to the EPSRC for supporting this project; to Jason Lotay for his patient supervision; to Guillem Cazassus for his help with the funding application; to all my friends at Oxford who made the summer fly.