Mirror symmetry for V_{7}

Andres Klene (klene@maths. ox. ac.uk) Supervised by Prof. Jason Lotay

"Wait, what's mirror symmetry?

In some types of String Theory, the universe is 10-dimensional. Four of these dimensions are the standard $3+1$ of spacetime, but the 6 extra are curled up-so small that we can't detect them-in a space called a Calabi-Yau (C-Y) threefold. There is a construction

C-Y threefold \rightsquigarrow physics nonsense \rightsquigarrow model of particle physics;
parameters of the universe depend on the geometry of these extra dimensions. It turns out that two completely distinct $\mathrm{C}-\mathrm{Ys}$ can give rise to the same physics; this is the first hint of mirror symmetry.

Mathematically, mirror symmetry is a mysterious duality between two fields: symplectic geometry (a type of geometry where the fundamental notion is area, not length) and algebraic geometry (the study of spaces which can be described algebraically).
Conjecture. Given a space X which is simultaneously symplectic and algebraic, there should exist a mirror space, such that the symplectic geometry of X corresponds to the algebraic geometry of the mirror, and vice versa.
symplectic geometry
symplectic geometry
(of X)
algebraic geometry
 (of its mirror)
algebraic geometry
The conjecture has been generalised from C-Y threefolds to a wide class of spaces, including Fano threefolds, which are a bit like positively curved $\mathrm{C}-\mathrm{Y}$ threefolds.

Often the mirror of a space X is another space, but not always. For example, the mirror of a Fano threefold X should be a space Y equipped with a function $Y \rightarrow \mathbb{C}$ to the complex numbers.

This summer, I looked at V_{7}, which is a Fano threefold obtained by blowing up a 6-dimensional space \mathbb{P}^{3} at a point (see Figure 5) The predicted mirror of V_{7} is the function $W:\left(\mathbb{C}^{\times}\right)^{3} \rightarrow \mathbb{C}$ given by

$$
W\left(z_{0}, z_{1}, z_{2}\right)=\frac{1}{z_{0} z_{1} z_{2}}+\left(1+z_{0}\right)\left(1+z_{1}\right)\left(1+z_{2}\right)-1
$$

Project Aim. There exist two data structures called triangulated categories,

$$
\mathrm{D}^{\mathrm{b}} \operatorname{Fuk}(\mathrm{~W}) \text { and } \mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{~V}_{7}\right)
$$

which organise all information about the symplectic geometry of W and the algebraic geometry of V_{7}, respectively. This project aimed to prove one side of mirror symmetry by showing

$D^{\mathrm{b}} \mathrm{Fuk}(W)=\mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{V}_{7}\right)$.

(I ignored the other side of mirror symmetry, which relates the algebraic geometry of W with the symplectic geometry of V_{7}.)
3. "How do you even prove something like that?" by demonstrating that they have matching sets of generators.

Example. Given two vector spaces X and Y, one can find a basis for each one. If these bases are the same size, then $X=Y$.

Example. Given two groups G and H , one can find a generating set for each one. If they satisfy the same relations, then $\mathrm{G}=\mathrm{H}$.
The information of a triangulated category can be encoded in a full exceptional collection (FEC), which is a collection of objects

$\left(E_{1}, \ldots, E_{n}\right)$,

together with non-negative whole numbers $\mathcal{H}\left(\mathrm{E}_{\mathfrak{i}}, \mathrm{E}_{\mathfrak{j}}\right)$. In the same sense as vector spaces and groups, the objects $\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right)$ generate the triangulated category, and the \mathcal{H}-numbers act as relations.
Strategy. Find FECs of the same size for $D^{b} F u k(W)$ and $\mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{V}_{7}\right)$ with matching \mathcal{H}-numbers. Just as in the other examples, we could then conclude $D^{b} \operatorname{Fuk}(W)=D^{b} \operatorname{Coh}\left(V_{7}\right)$.
An arbitrary FEC might not have the properties we want. To fix this, one can obtain new FECs from old ones by 'braiding' objects around each other:
$\underbrace{E_{i-1}}_{E_{i-1}}{\underset{T_{E_{i}}}{ } E_{i+1} \quad E_{E_{i}}^{E_{i+1}}}_{E_{i+2}}^{E_{i+2}}$

Any combination of such twisting is called a mutation. Mutating an FEC will produce one with a different set of \mathcal{H}-numbers.

4. "OK, but what's D ${ }^{\text {b }}$ Fuk(W)?

The function W describes a family of 4-dimensional spaces, called the fibres of W and written $W^{-1}(\lambda)$, each sitting above a complex number $\lambda \in \mathbb{C}$. The fibre becomes singular (non-smooth) above six complex numbers $\left\{\lambda_{1}, \ldots, \lambda_{6}\right\}$ called the critical values of W. For each of them, take a path γ_{i} joining 0 to λ_{i}.

Figure 1: Critical values of W, joined to the origin by paths γ_{i}.
The fibre of W degenerates along each path γ_{i}. Specifically, a sphere
$\mathrm{L}_{\mathfrak{i}} \subset \mathrm{W}^{-1}(0)$
collapses-or vanishes-to a point along γ_{i}; this is the vanishing cycle associated to γ_{i}.

Figure 2: The vanishing cycle associated to the path γ_{i}.
Warning. This is not a faithful picture! In reality, the fibre is 4dimensional, and the vanishing cycle is a 2-dimensional sphere

Now we can finally say what $D^{b} F u k(W)$ is: it's the triangulated category with FEC given by

$$
\left(\mathrm{L}_{1}, \ldots, \mathrm{~L}_{6}\right) \quad \text { and } \quad \mathcal{H}\left(\mathrm{L}_{\mathfrak{i}}, \mathrm{L}_{\mathfrak{j}}\right)=\left|\mathrm{L}_{\mathfrak{i}} \cap \mathrm{L}_{\mathfrak{j}}\right| .
$$

For example, if L_{1} and L_{2} intersect at five points then $\mathcal{H}\left(L_{1}, L_{2}\right)=5$. If they don't intersect at all, then $\mathcal{H}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)=0$.

FIGURE 3: A crude picture of the vanishing cycles
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}$.
From this kind of diagram, one can compute the intersections $L_{i} \cap L_{j}$, which are the \mathcal{H}-numbers of the corresponding FEC.

Mutations in D^{b} Fuk (W) are described by the following fact.
Theorem (By the work of Seidel). The braided object
$\mathrm{T}_{\mathrm{L}_{\mathrm{i}}} \mathrm{L}_{i+1}$
is the vanishing cycle associated with the path
γ_{i+1} twisted around γ_{i}.

We illustrate this with an example.

Figure 4: The old path γ_{4} is twisted around the straight line γ_{5}. This has the effect of replacing L_{4} with a different cycle: $\mathrm{T}_{\mathrm{L}_{5}} \mathrm{~L}_{4}$.

This means that mutations in $D^{b} F u k(W)$-which are algebraic at first sight-can just be seen as twisting paths around each other.

Instead of giving an FEC, it is easier to say what objects $\mathrm{D}^{\mathrm{b}} \mathrm{Coh}\left(\mathrm{V}_{7}\right)$ contains: all 'twisted functions' on V_{7} and its subspaces. For ex ample, the set of all functions $V_{7} \rightarrow \mathbb{C}$, denoted $\mathcal{O}_{V_{7}}$, is an object of $\mathrm{D}^{\mathrm{b}} \mathrm{Coh}\left(\mathrm{V}_{7}\right)$. It is part of a family of spaces of 'twisted functions'
$, \mathcal{O}_{\mathrm{V}_{7}}(-3), \mathcal{O}_{\mathrm{V}_{7}}(-2), \mathcal{O}_{\mathrm{V}_{7}}(-1), \mathcal{O}_{\mathrm{V}_{7}}, \mathcal{O}_{\mathrm{V}_{7}}(1), \mathcal{O}_{\mathrm{V}_{7}}(2), \mathcal{O}_{\mathrm{V}_{7}}(3),$.
which are all objects in $\mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{V}_{7}\right)$, too.

FIGURE 5: An illustration of $V_{7}\left(=\mathbb{P}^{3}\right.$ blown up at a point p). Rough idea: force all the lines through p to become parallel, by replacing p with $E=\{$ all the 'directions' pointing out of $p\}$.

Similarly, the collection of (twisted) functions on the subspace E,
$, \mathcal{O}_{\mathrm{E}}(-2), \mathcal{O}_{\mathrm{E}}(-1), \mathcal{O}_{\mathrm{E}}, \mathcal{O}_{\mathrm{E}}(1), \mathcal{O}_{\mathrm{E}}(2),$.
are also objects of $\mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{V}_{7}\right)$. There are many more.
The question is: can we find an FEC in $D^{b} \operatorname{Coh}\left(\mathrm{~V}_{7}\right)$?
One of the first FECs discovered in the wild was for $D^{b} \operatorname{Coh}\left(\mathbb{P}^{3}\right)$:

$$
\left(\mathcal{O}_{\mathbb{P}^{3}}, \mathcal{O}_{\mathbb{P}^{3}}(1), \mathcal{O}_{\mathbb{P}^{3}}(2), \mathcal{O}_{\mathbb{P}^{3}}(3)\right)
$$

Idea. Since V_{7} is obtained by blowing up \mathbb{P}^{3} at a point, we could hope it also has a similarly nice set of generators.

To do this, we extend the function $f: V_{7} \rightarrow \mathbb{P}^{3}$ (from Figure 5) to a square, and take $\mathrm{D}^{\mathrm{b}} \mathrm{Coh}(-)$ of everything.

Together, the images of f^{*} and $j_{*}\left(\left.f\right|_{E}\right)^{*}$ do not generate the whole of $\mathrm{D}^{\mathrm{b}} \mathrm{Coh}\left(\mathrm{V}_{7}\right)$. We need to add in a few twisted versions of the latter:

$$
\mathfrak{j}_{*}\left(\mathcal{O}_{\mathrm{E}}(-\mathrm{k}) \otimes\left(\left.\mathrm{f}\right|_{\mathrm{E}}\right)^{*}(-)\right): \mathrm{D}^{\mathrm{b}} \operatorname{Coh}(\mathrm{p}) \rightarrow \mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{~V}_{7}\right)
$$

for $k=1,2$. Using the FEC for \mathbb{P}^{3}, we get the following.

6. "That's wonderful, but what about the aim?" and a mutation of σ, such that the resulting FECs in $D^{b} \operatorname{Fuk}(W)$ and $\mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(\mathrm{V}_{7}\right)$ have the same \mathcal{H}-numbers. This is easier for \mathbb{P}^{2} blown up at a point, where the diagram (compare FIGURE 3) is simpler. I tried by hand for a while; maybe you can write a program?
