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1. “Wait, what’s mirror symmetry?”

In some types of String Theory, the universe is 10-dimensional.
Four of these dimensions are the standard 3+1 of spacetime, but
the 6 extra are curled up—so small that we can’t detect them—in a
space called a Calabi—Yau (C=Y) threefold. There is a construction

C-Y threefold ~~ | physics nonsense ~+ model of particle physics;

parameters of the universe depend on the geometry of these extra
dimensions. It turns out that two completely distinct C-Ys can give
rise to the same physics; this is the first hint of mirror symmetry.

Mathematically, mirror symmetry is a mysterious duality between
two fields: symplectic geometry (a type of geometry where the fun-
damental notion is area, not length) and algebraic geometry (the
study of spaces which can be described algebraically).

Conjecture. Given a space X which is simultaneously symplec-
tic and algebraic, there should exist a mirror space, such that the
symplectic geometry of X corresponds to the algebraic geome-
try of the mirror, and vice versa.

symplectic geometry symplectic geometry

(of X) >/<(of its mirror)

algebraic geometry algebraic geometry

The conjecture has been generalised from C-Y threefolds to a
wide class of spaces, including Fano threefolds, which are a bit
like positively curved C-Y threefolds.

Often the mirror of a space X is another space, but not always.
For example, the mirror of a Fano threefold X should be a space Y
equipped with a function Y — C to the complex numbers.

2. “What’s your project about?”

This summer, I looked at V7, which is a Fano threefold obtained
by blowing up a 6-dimensional space IP3 at a point (see FIGURE 5).

The predicted mirror of V7 is the function W: (C*)3 — C given by
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W(zy,21,27) = + (1+2z9)(1 +27)(1 +2p) — 1.

Project Aim. There exist two data structures called triangulated
categories,

DPFuk(W) and D"Coh(V5),

which organise all information about the symplectic geometry
of W and the algebraic geometry of V7, respectively. This project
aimed to prove one side of mirror symmetry by showing

DPFuk(W) = DPCoh(V5).

(I ignored the other side of mirror symmetry, which relates the
algebraic geometry of W with the symplectic geometry of V7.)

3. “How do you even prove something like that?”

A common way to show that two algebraic structures are equal is
by demonstrating that they have matching sets of generators.

Example. Given two vector spaces X and Y, one can find a basis
for each one. If these bases are the same size, then X =Y.

Example. Given two groups G and H, one can find a generating
set for each one. If they satisfy the same relations, then G = H.

The information of a triangulated category can be encoded in a
full exceptional collection (FEC), which is a collection of objects

(El, . .,En),

together with non-negative whole numbers F((E;, E;). In the same
sense as vector spaces and groups, the objects (Eq, ..., En) generate
the triangulated category, and the H{-numbers act as relations.

Strategy. Find FECs of the same size for DPFuk(W) and
DPCoh(V) with matching H-numbers. Just as in the other

examples, we could then conclude DPFuk(W) = DPCoh(V5).

An arbitrary FEC might not have the properties we want. To fix
this, one can obtain new FECs from old ones by ‘braiding” objects
around each other:

Ei 1 Eq Eit1 Eito
e
/\
Ei 1 TgRin E; Eii2

Any combination of such twisting is called a mutation. Mutating
an FEC will produce one with a different set of H-numbers.
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4. “OK, but what’s DPFuk(W)?”

The function W describes a family of 4-dimensional spaces, called
the fibres of W and written W—1(X), each sitting above a complex
number A € C. The fibre becomes singular (non-smooth) above six
complex numbers {Aq,...,Ag} called the critical values of W. For
each of them, take a path y; joining 0 to A;.

FIGURE 1: Critical values of W, joined to the origin by paths ;.

The fibre of W degenerates along each path y;. Specifically, a
sphere

L, « W 1(0)

collapses—or vanishes—to a point along ;; this is the vanishing

cycle associated to ;.
0 o

FIGURE 2: The vanishing cycle associated to the path ;.

Warning. This is not a faithful picture! In reality, the fibre is 4-
dimensional, and the vanishing cycle is a 2-dimensional sphere.

Now we can finally say what D°Fuk(W) is: it’s the triangulated

category with FEC given by
(L1/'°'/L6) and J‘C(Li,l_j) = “_10]_]‘

For example, if 1 and L, intersect at five points then (L, L,) = 5.
If they don’t intersect at all, then J((L, Ly) = 0.

FIGURE 3: A crude picture of the vanishing cycles
L1, -, L3, Ly, Ls, L.

From this kind of diagram, one can compute the intersections
L; n L, which are the H-numbers of the corresponding FEC.

Mutations in DPFuk(W) are described by the following fact.

Theorem (By the work of Seidel). The braided object

T L

is the vanishing cycle associated with the path

Yit1 twisted around ;.

We illustrate this with an example.

FIGURE 4: The old path vy, is twisted around the straight line ys.
This has the effect of replacing [, with a different cycle: T} [ ,.

This means that mutations in DPFuk(W)—which are algebraic at
first sight—can just be seen as twisting paths around each other.

5. “What about D®Coh(V;)?”

Instead of giving an FEC, it is easier to say what objects D®Coh(V)
contains: all “twisted functions” on Vy and its subspaces. For ex-
ample, the set of all functions V; — C, denoted Oy, is an object of

D®Coh(V5). It is part of a family of spaces of ‘twisted functions’

.o, 0v,(=3), Ov,(=2), Oy, (—1), Ov,, Oy, (1), O, (2), Oy, (3), - ..

which are all objects in DPCoh(V5), too.

FIGURE 5: An illustration of V7 (= IP3 blown up at a point p).
Rough idea: force all the lines through p to become parallel, by
replacing p with E = {all the ‘directions’ pointing out of p}.

Similarly, the collection of (twisted) functions on the subspace E,

o Op(=2), 0p(=1), O, O (1), O (2), . ..

are also objects of DPCoh(V5). There are many more.

The question is: can we find an FEC in D°Coh(V5)?

One of the first FECs discovered in the wild was for DPCoh(IP3):

((9][)3, Ops(1), Ops(2), Ops (3))

Idea. Since V7 is obtained by blowing up IP3 at a point, we could
hope it also has a similarly nice set of generators.

To do this, we extend the function f: V; — P3 (from FIGURE 5) to
a square, and take D°Coh(—) of everything.

E—L 5V, DPCoh(E) —2— DPCoh(V5)
fle lf ]\(fE)* ]\f*
p et P8 DPCoh(p) —— DP(P3)

Together, the images of f* and j.(f|g)* do not generate the whole of
DPCoh(V5). We need to add in a few twisted versions of the latter:

j+(OE(~k) ® (flg)*(=)): D°Coh(p) — D°Coh(Vy)
for k = 1,2. Using the FEC for IP3, we get the following.

Proposition. The collection

o= ((9]:_(—2), Oe(-1), (9\/7, f*olps(l),f*O]ps(Z), f*olp3(3))

is a FEC in D°Coh(V5).

6. “That’s wonderful, but what about the aim?”

All this reduces the Project Aim to finding a set of paths to {A;},
and a mutation of o, such that the resulting FECs in D°Fuk(W) and
DPCoh(V5) have the same H-numbers. This is easier for IP? blown
up at a point, where the diagram (compare FIGURE 3) is simpler.

I tried by hand for a while; maybe you can write a program?
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