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1. “Wait, what’s mirror symmetry?”
In some types of String Theory, the universe is 10-dimensional.
Four of these dimensions are the standard 3+1 of spacetime, but
the 6 extra are curled up—so small that we can’t detect them—in a
space called a Calabi–Yau (C–Y) threefold. There is a construction

C–Y threefold⇝ physics nonsense ⇝ model of particle physics;

parameters of the universe depend on the geometry of these extra
dimensions. It turns out that two completely distinct C–Ys can give
rise to the same physics; this is the first hint of mirror symmetry.

Mathematically, mirror symmetry is a mysterious duality between
two fields: symplectic geometry (a type of geometry where the fun-
damental notion is area, not length) and algebraic geometry (the
study of spaces which can be described algebraically).

Conjecture. Given a space X which is simultaneously symplec-
tic and algebraic, there should exist a mirror space, such that the
symplectic geometry of X corresponds to the algebraic geome-
try of the mirror, and vice versa.

symplectic geometry symplectic geometry

pof Xq pof its mirrorq

algebraic geometry algebraic geometry

The conjecture has been generalised from C–Y threefolds to a
wide class of spaces, including Fano threefolds, which are a bit
like positively curved C–Y threefolds.

Often the mirror of a space X is another space, but not always.
For example, the mirror of a Fano threefold X should be a space Y

equipped with a function Y Ñ C to the complex numbers.

2. “What’s your project about?”
This summer, I looked at V7, which is a Fano threefold obtained
by blowing up a 6-dimensional space P3 at a point (see FIGURE 5).
The predicted mirror of V7 is the function W : pCˆq3 Ñ C given by

Wpz0, z1, z2q “
1

z0z1z2
` p1 ` z0qp1 ` z1qp1 ` z2q ´ 1.

Project Aim. There exist two data structures called triangulated
categories,

DbFukpWq and DbCohpV7q,

which organise all information about the symplectic geometry
of W and the algebraic geometry of V7, respectively. This project
aimed to prove one side of mirror symmetry by showing

DbFukpWq “ DbCohpV7q.

(I ignored the other side of mirror symmetry, which relates the
algebraic geometry of W with the symplectic geometry of V7.)

3. “How do you even prove something like that?”
A common way to show that two algebraic structures are equal is
by demonstrating that they have matching sets of generators.

Example. Given two vector spaces X and Y, one can find a basis
for each one. If these bases are the same size, then X “ Y.

Example. Given two groups G and H, one can find a generating
set for each one. If they satisfy the same relations, then G “ H.

The information of a triangulated category can be encoded in a
full exceptional collection (FEC), which is a collection of objects

pE1, . . . ,Enq,

together with non-negative whole numbers HpEi,Ejq. In the same
sense as vector spaces and groups, the objects pE1, . . . ,Enq generate
the triangulated category, and the H-numbers act as relations.

Strategy. Find FECs of the same size for DbFukpWq and
DbCohpV7q with matching H-numbers. Just as in the other
examples, we could then conclude DbFukpWq “ DbCohpV7q.

An arbitrary FEC might not have the properties we want. To fix
this, one can obtain new FECs from old ones by ‘braiding’ objects
around each other:

Ei´1 Ei`2Ei`1Ei

Ei´1 TEi
Ei`1 Ei Ei`2

¨ ¨ ¨

¨ ¨ ¨¨ ¨ ¨

¨ ¨ ¨

Any combination of such twisting is called a mutation. Mutating
an FEC will produce one with a different set of H-numbers.

4. “OK, but what’s DbFukpWq?”
The function W describes a family of 4-dimensional spaces, called
the fibres of W and written W´1pλq, each sitting above a complex
number λ P C. The fibre becomes singular (non-smooth) above six
complex numbers tλ1, . . . , λ6u called the critical values of W. For
each of them, take a path γi joining 0 to λi.
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FIGURE 1: Critical values of W, joined to the origin by paths γi.

The fibre of W degenerates along each path γi. Specifically, a
sphere

Li Ă W´1
p0q

collapses—or vanishes—to a point along γi; this is the vanishing
cycle associated to γi.

γi
0 λi

FIGURE 2: The vanishing cycle associated to the path γi.

Warning. This is not a faithful picture! In reality, the fibre is 4-
dimensional, and the vanishing cycle is a 2-dimensional sphere.

Now we can finally say what DbFukpWq is: it’s the triangulated
category with FEC given by

pL1, . . . ,L6q and HpLi,Ljq “ |Li X Lj|.

For example, if L1 and L2 intersect at five points then HpL1,L2q “ 5.
If they don’t intersect at all, then HpL1,L2q “ 0.

FIGURE 3: A crude picture of the vanishing cycles

L1,L2,L3,L4,L5,L6.

From this kind of diagram, one can compute the intersections
Li X Lj, which are the H-numbers of the corresponding FEC.

Mutations in DbFukpWq are described by the following fact.

Theorem (By the work of Seidel). The braided object

TLi
Li`1

is the vanishing cycle associated with the path

γi`1 twisted around γi.

We illustrate this with an example.

FIGURE 4: The old path γ4 is twisted around the straight line γ5.
This has the effect of replacing L4 with a different cycle: TL5

L4.

This means that mutations in DbFukpWq—which are algebraic at
first sight—can just be seen as twisting paths around each other.

5. “What about DbCohpV7q?”

Instead of giving an FEC, it is easier to say what objects DbCohpV7q

contains: all ’twisted functions’ on V7 and its subspaces. For ex-
ample, the set of all functions V7 Ñ C, denoted OV7

, is an object of
DbCohpV7q. It is part of a family of spaces of ‘twisted functions’

. . . ,OV7
p´3q,OV7

p´2q,OV7
p´1q,OV7

,OV7
p1q,OV7

p2q,OV7
p3q, . . .

which are all objects in DbCohpV7q, too.

FIGURE 5: An illustration of V7 (“ P3 blown up at a point p).
Rough idea: force all the lines through p to become parallel, by
replacing p with E “ tall the ‘directions’ pointing out of pu.

Similarly, the collection of (twisted) functions on the subspace E,

. . . ,OEp´2q,OEp´1q,OE,OEp1q,OEp2q, . . .

are also objects of DbCohpV7q. There are many more.

The question is: can we find an FEC in DbCohpV7q?

One of the first FECs discovered in the wild was for DbCohpP3q:
`

OP3,OP3p1q,OP3p2q,OP3p3q
˘

.

Idea. Since V7 is obtained by blowing up P3 at a point, we could
hope it also has a similarly nice set of generators.

To do this, we extend the function f : V7 Ñ P3 (from FIGURE 5) to
a square, and take DbCohp´q of everything.

E V7 DbCohpEq DbCohpV7q

p P3 DbCohppq DbpP3q
i˚

pf|Eq˚ f˚

j˚j

f|E

i

f

Together, the images of f˚ and j˚pf|Eq˚ do not generate the whole of
DbCohpV7q. We need to add in a few twisted versions of the latter:

j˚pOEp´kq b pf|Eq
˚
p´qq : DbCohppq Ñ DbCohpV7q

for k “ 1, 2. Using the FEC for P3, we get the following.

Proposition. The collection

σ “
`

OEp´2q, OEp´1q, OV7
, f˚OP3p1q, f˚OP3p2q, f˚OP3p3q

˘

is a FEC in DbCohpV7q.

6. “That’s wonderful, but what about the aim?”
All this reduces the Project Aim to finding a set of paths to tλiu,
and a mutation of σ, such that the resulting FECs in DbFukpWq and
DbCohpV7q have the same H-numbers. This is easier for P2 blown
up at a point, where the diagram (compare FIGURE 3) is simpler.
I tried by hand for a while; maybe you can write a program?
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