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1 Introduction

The goal of these two classes is to describe the construction of Einstein metrics with negative
sectional curvature which are not locally symmetric by Hamenstddt—Jackel [3] (in dimension
n > 4) on a class of compact manifolds constructed by Gromov-Thurston [2], building upon
earlier work of Fine-Premoselli [1] (in dimension 4). More precisely, we have the following
theorem:

Theorem 1.1. For any n > 4 there exists infinitely many pairwise non-homeomorphic smooth
closed Riemannian manifolds (X, g) of dimension n satisfying:

(i) Ricg = —(n —1)g.
(it) secqy < 0.
(#ii) g is not locally homogeneous.

Moreover, if n = 4 the manifolds X do not admit any locally homogeneous Einstein metrics,
and if n > 5 they do not admit a locally symmetric Einstein metric.

In a sense, these are Einstein manifolds which have “nothing special” (no special holonomy
or high degree of symmetries, even locally). This rules out the possibility of constructing them
explicitly. Instead, the idea (which is classical for constructing solutions of nonlinear geometric
PDEs) is use a gluing-perturbation method. Schematically this involves three steps:

Step 1: Build a countable family (X7, g;) of Einstein manifolds which have sec,, < —¢ < 0 and
| Ricg, +(n—1)g;|| = 0 as i — oco. This is done by gluing different Einstein metrics (constructed
using for instance homegeneity or cohomogeneity one methods) together.

Step 2: Show that g; can be deformed to a nearby Einstein metric §;; if g; is close enough to
g; (say in the C?%-sense) then the negativity of the sectional curvature is preserved, as will be
other properties of the sectional curvature which will imply that the metric cannot be locally
homogeneous.

Step 3: Find obstructions to the existence of locally symmetric Einstein metrics on X;. These
considerations usually have a more topological flavour.



Before explaining how each of these steps work, let me give a word of warning about branched
covers. If M and X are two n-manifolds and ¥ C X is a submanifold of codimension 2, we will
say that a continuous map X — M is a covering map of degree [ ramified along ¥ if

1. m: X\7n~}(2) = M\X is a smooth covering map of degree .
2. m: 7 }(¥) = ¥ is a diffeomorphism.

But we do not require that m be a smooth map globally. The reason is the following issue.
Consider the map 7’ : C — C, z ~— z!. This is a globally smooth branched cover of C with
branching locus ¥ = {0}. The problem with this covering map is that dn vanishes at z = 0,
and hence the pull-back on any Riemannian metric (or indeed any other tensor) on C by =«
degenerates at z = 0: for instance 7*|dz|? = 12|z|?(!~V|dz|?. But if one instead considers the
map 7 : C — C, z + 2!/|2|!, which is a branched cover of degree [ ramified at 0 but not a smooth
map, then the pull-back of a Riemannian metric on C is a singular metric with cone angle 27l
at z = 0; e.g. 7*|dz|? = dr? + [2r2d6? in polar coordinates (r,6) € (0,00) x R/(27Z).

2 Topological construction

Definition 2.1. A hyperbolic manifold of dimension n > 3 is a complete Riemannian manifold
(M, g) with constant sectional curvature sec, = —1.

It follows from the classification of space-forms that the universal cover (M, g) of a hyperbolic
n-manifold (M, g) is isometric to the hyperbolic space (H", g, ). It can be described as H" =
{(zo,...,zn) € R"zg > 0,Q(z,7) = —1} where the quadratic form @ is defined by

Qz,z) = V223 + 22 + -+ a2 (2.1)

and the metric g, is induced by restriction of ). The hyperbolic space is symmetric: this
is the symmetric space of SOy(Q). If S is a complete totally geodesic submanifold of H",
then (S, gs) ~ (H""2,g,_2). Moreover, H" is diffeomorphic to S x R?, and if one uses polar
coordinates (r,0) € (0,00) x R/(27Z) on R*\{0} then one can write the hyperbolic metric (on
the complement of S) as

gn = dr? + sinh®(r)d? + cosh?(r)gs. (2.2)

Using these coordinates, we can define a branching cover p; : S x R? — S x R? ramified along
S by
pi(z,r,0) = (x,r,10). (2.3)

This construction has a “global version”: namely, if (M™,g) is a compact, oriented, hyper-
bolic manifold and ¥ C M a closed totally geodesic submanifold of codimension 2, we want to
construct a branched [-fold cover X — M ramified along ¥ based on the above local model.
This is not possible in general: there are global topological obstructions. But it can be done
in the following situation: assume that there are two totally geodesic hypersurfaces H, H' such
that ¥ = H N H' and H, H' separate M: M\H = U][[V,UNV = H. Then ¥ = (U N H')
— in particular [¥] = 0 € H,,_2(M) — and one can build a cyclic I-fold cover X; — M ramified
along ¥ (basically by gluing cyclically I copies of M\(H' NU) — just think of the n = 2 case).
These are particular examples of Gromov—Thurston manifolds [2].

The following existence result is a combination of [1, Prop. 1.1] and [3, Prop. 3.1]:

Proposition 2.2. For each n > 4, there exists a sequence of compact hyperbolic manifolds
(M}, gx) containing such codimension 2 totally geodesic submanifolds Xy, such that

(i) The injectivity radius Ry — 00.



(i) The normal injectivity radius of X C My, R} > Ry /2.
(#ii) 3y has a most two connected components.
(iv) S 0,

Remark 2.3. In the next lecture, it will be useful to note that since ¥X; ~ H"‘2/Fk for some
discrete group of isometries I'y, the volume of ¥ is bounded by

vol(£) < Cp exp((n — 3) diam (X))

for some universal constant C,,. This is a special easy case of the Bishop—Gromov inequality,
which holds more generally for Riemannian manifolds with Ric > —(n — 3).

Remark 2.4. I will not attempt to reproduce the proof; but basically the idea is just to find a
discrete subgroup of SO(Q) satisfying appropriate properties.

With this theorem we get of family of manifolds X} ; with hyperbolic metrics gi; = 7/ gx
which have conical singularities along 3, with cone angle 27l. The next step is to find model
Einstein metrics to smooth out these singularities.

3 Local model along the branching locus

To smooth out the previously constructed conically singular metrics near the branching locus,
we seek Einstein metrics h; on S x R? (S ~ H"~2) such that

hy ~ dr? + 1% sinh®()d6?* 4 cosh®(r)gs (3.1)

as r — 0o. Using the cyclic [-fold branched cover p;, we can rephrase this problem and instead
look for an asymptotically hyperbolic metric on S x R? which has conical singularities with angle
27/l along S. In order to do this it is convenient to introduce the coordinate v = cosh(r) and
rewrite the hyperbolic metric

du?

u? —

Gn = o+ (u? —1)d6* + u’gs. (3.2)

The idea is to perturb slightly the potential V(u) = u? — 1. In fact, we consider the family of
metrics given by

du? 9 9
he = Vo) + Vo (u)df* + u®gs. (3.3)
where a
Va(u) = 7.L2 -1 + W (34)

Here a is a real parameter taking values in the interval (—o0, amax(n)] and this defines a positive
metric on (ug, 00) X R/(27Z) x S where u, > 0 is the maximal root of V,,. Fine-Premoselli proved
that these metrics satisfy the Einstein equation Ricp,, = —(n — 1)h, [1, Prop. 3.2]. Evidently,
hq is asymptotically hyperbolic. Moreover, by doing a Taylor expansion near v = u,, one can
easily prove that the metrics are conically singular along S, with cone angle ¢, which can be
given as an explicit function of u,. In fact, one can prove that the map a — ¢, is one-to-one,
and there exists a sequence a; — amax such that ¢,, = 27/l [1, Prop. 3.3]. Finally, by an explicit
computation Fine-Premoselli obtained [1, Lem. 3.4]

-2
secp, < —1+ n ) aul™" (3.5)

a

where the RHS is negative when a — apax.



Remark 3.1. We can take a quotient ¥ = S/I" where T" is a discrete group of isometries of S
and consider the metrics h, as defined on ¥ x R? as the potential only depends on the normal
radial coordinate.

Remark 3.2. We obtain a smooth metric p}h,, on S x R? asymptotic to pjg and symmetric
under the action of the cyclic groups Z; (in fact under the action of a full circle). The fixed-point
set of this action is the branching locus S, end hence S is totally geodesic for this metric. In
particular, the sectional curvature of pjh,, along S is —uil, which can be shown to be strictly
smaller than —1.

4 A family of approximately Einstein metrics

Let (Mg, gx), Xx and mg © Xi; — My be as before. On My, we define the functions r(z) =
d(Xg,x) and v = cosh(r). Let us moreover denote Uy max = cosh(R}/2) and pick a sequence
U — oo with Uy, < U max. We aim to prove the following proposition ([3, Prop. 2.4], after [1,
Prop. 3.1]):

Proposition 4.1. There exists a family of metrics gr; on Xy and constants C(m,n,1), c(m,n,1)
depending on the dimension n and an integers m, 1 such that (for k large enough):

(i) | Ric(gra) + (n = Dgrallen < CUL "™ for any m € N.
(i) sec(gr,;) < —c <O0.
(iii) vol({3Uk < u < Up}) < Cvol(Sy)Up L.

The metrics gx,; can be constructed as follows. We may identify the tubular neighbourhood
{u < Uy} of ¥} with a tubular neighbourhood of ¥, x R? for the hyperbolic metric. Now fix a
cutoff function x : R — [0,1] such that x(¢) = 1 for t <1/2 and x(t) =1 of t > 1. On I, x R?

define the metrics
- du? 2, .2
i1 = Vi () + Vi (u)do” + u”gs,, (4.1)

where

kal(u) —u? -1 + X(U/Uk) (4.2)

un—3"
This metric can be extended to all of M}, by the hyperbolic metric, and it has conical singularities
along ¥ with angle 27 /l. Then we might define g;; = 19k, on X, . The various estimates

follow from straightforward (though tedious to write down explicitly) computations; we refer
the interested reader to the original articles for more details.

Remark 4.2. From part (iv) of Proposition 2.2 and Proposition 4.1 we obtain the L?-estimate
I Ric(gki + (n = 1)grllrz =0

as k — oo (for fixed ). The importance of this estimate will be clear in the next lecture.

5 Non-existence of locally symmetric Einstein metrics

Before making a lot of effort to deform the approximately Einstein metrics to genuine one, let
us justify that these efforts will not be in vain and that we will indeed end up with metrics
which are not locally symmetric. In fact the author of these note has a PhD thesis to finish
writing so I will not actually explain anything in detail; we will just sketch the argument of
Fine-Premoselli in the case n = 4 and refer the reader to the article of Hammendstadt—Jéackel
(which is more subtle) for the higher-dimensional case.



In the remainder of this section we shall assume that the dimension n = 4 unless otherwise
noted. As mentioned in the introduction, the idea is to rule out the existence of locally ho-
mogeneous Einstein metrics on X ; by topological consideration. First of all, notice that the
fundamental group of X}, ; is infinite (they admit negatively curved metric so the universal cover
must be diffeomorphic to R*, and by compactness of Xj,; this implies the result). The specificity
of dimension 4 is that there is a classification of homogeneous Einstein metrics due to Jensen
[4]; compact manifolds with infinite fundamental group the only possibilities are flat, hyperbolic
and complex-hyperbolic metrics (metrics which are locally isometric to the symmetric space of
PU(1,m) —m = 2 if n = 4), which are in particular automatically locally symmetric.

The first possibility can be ruled out by considering the fundamental group. The fundamental
group of any compact flat 4-manifold manifold is isomorphic to F x Z*; in particular it has an
abelian subgroup isometric to Z*. On the other hand, Preisman’s theorem implies that any
nontrivial abelian subgroup of a negatively curved manifold is isometric to Z, and so Xy
cannot admit a flat metric.

The remaining possibilities are hyperbolic and complex-hyperbolic metrics. Such metrics are
self-dual: that is, the Weyl tensor W is self-dual. Therefore, Chern-Weil theory and Hirzebruch’s
signature formula yield

/ W |*dvol = Co(Xy,) (5.1)
Xkt

for some combinatorial constant C' # 0, where (X} ;) is the signature of the intersection form on
H?(Xj,). One can prove that o(X};) = 0 which implies that any self-dual metric has vanishing
Weyl tensor, which implies that it must be conformally flat. This rules out complex-hyperbolic
metrics, which are not. Finally, the fact that X} ; admit no hyperbolic metrics was noted by
Gromov and Thurston in their original article [2, Remark 3.6].

The main difference when n > 5 is that there is no classification of locally homogeneous
Einstein metrics, and Hamenstddt—Jéckel could only prove a weaker result: for any k, only
a finite number of cyclic covers can admit a locally symmetric metric. The idea of proof is
similar: one can prove that the only possibility would be rank one symmetric spaces (using
Preissmann’s theorem again), and hence the only cases to consider are hyperbolic, complex-
hyperbolic, quaternionic-hyperbolic and Cayley-hyperbolic metrics. The last three possibilities
are relatively easy to rule out on topological grounds, but the situation is a lot more subtle in
the hyperbolic case.
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