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1 Introduction
The goal of these two classes is to describe the construction of Einstein metrics with negative
sectional curvature which are not locally symmetric by Hamenstädt–Jäckel [3] (in dimension
n ≥ 4) on a class of compact manifolds constructed by Gromov–Thurston [2], building upon
earlier work of Fine–Premoselli [1] (in dimension 4). More precisely, we have the following
theorem:

Theorem 1.1. For any n ≥ 4 there exists infinitely many pairwise non-homeomorphic smooth
closed Riemannian manifolds (X, g) of dimension n satisfying:

(i) Ricg = −(n − 1)g.

(ii) secg < 0.

(iii) g is not locally homogeneous.

Moreover, if n = 4 the manifolds X do not admit any locally homogeneous Einstein metrics,
and if n ≥ 5 they do not admit a locally symmetric Einstein metric.

In a sense, these are Einstein manifolds which have “nothing special” (no special holonomy
or high degree of symmetries, even locally). This rules out the possibility of constructing them
explicitly. Instead, the idea (which is classical for constructing solutions of nonlinear geometric
PDEs) is use a gluing-perturbation method. Schematically this involves three steps:

Step 1: Build a countable family (Xn
i , gi) of Einstein manifolds which have secgi

≤ −δ < 0 and
∥ Ricgi +(n−1)gi∥ → 0 as i → ∞. This is done by gluing different Einstein metrics (constructed
using for instance homegeneity or cohomogeneity one methods) together.

Step 2: Show that gi can be deformed to a nearby Einstein metric g̃i; if g̃i is close enough to
gi (say in the C2-sense) then the negativity of the sectional curvature is preserved, as will be
other properties of the sectional curvature which will imply that the metric cannot be locally
homogeneous.

Step 3: Find obstructions to the existence of locally symmetric Einstein metrics on Xi. These
considerations usually have a more topological flavour.
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Before explaining how each of these steps work, let me give a word of warning about branched
covers. If M and X are two n-manifolds and Σ ⊂ X is a submanifold of codimension 2, we will
say that a continuous map X → M is a covering map of degree l ramified along Σ if

1. π : X\π−1(Σ) → M\Σ is a smooth covering map of degree l.

2. π : π−1(Σ) → Σ is a diffeomorphism.

But we do not require that π be a smooth map globally. The reason is the following issue.
Consider the map π′ : C → C, z 7→ zl. This is a globally smooth branched cover of C with
branching locus Σ = {0}. The problem with this covering map is that dπ vanishes at z = 0,
and hence the pull-back on any Riemannian metric (or indeed any other tensor) on C by π
degenerates at z = 0: for instance π∗|dz|2 = l2|z|2(l−1)|dz|2. But if one instead considers the
map π : C → C, z 7→ zl/|z|l, which is a branched cover of degree l ramified at 0 but not a smooth
map, then the pull-back of a Riemannian metric on C is a singular metric with cone angle 2πl
at z = 0; e.g. π∗|dz|2 = dr2 + l2r2dθ2 in polar coordinates (r, θ) ∈ (0, ∞) × R/(2πZ).

2 Topological construction
Definition 2.1. A hyperbolic manifold of dimension n ≥ 3 is a complete Riemannian manifold
(M, g) with constant sectional curvature secg ≡ −1.

It follows from the classification of space-forms that the universal cover (M̃, g̃) of a hyperbolic
n-manifold (M, g) is isometric to the hyperbolic space (Hn, gn). It can be described as Hn =
{(x0, . . . , xn) ∈ Rn+1|x0 > 0, Q(x, x) = −1} where the quadratic form Q is defined by

Q(x, x) = −
√

2x2
0 + x2

1 + · + x2
n (2.1)

and the metric gn is induced by restriction of Q. The hyperbolic space is symmetric: this
is the symmetric space of SO0(Q). If S is a complete totally geodesic submanifold of Hn,
then (S, gS) ≃ (Hn−2, gn−2). Moreover, Hn is diffeomorphic to S × R2, and if one uses polar
coordinates (r, θ) ∈ (0, ∞) × R/(2πZ) on R2\{0} then one can write the hyperbolic metric (on
the complement of S) as

gn = dr2 + sinh2(r)dθ2 + cosh2(r)gS . (2.2)

Using these coordinates, we can define a branching cover pl : S × R2 → S × R2 ramified along
S by

pl(x, r, θ) = (x, r, lθ). (2.3)

This construction has a “global version”: namely, if (Mn, g) is a compact, oriented, hyper-
bolic manifold and Σ ⊂ M a closed totally geodesic submanifold of codimension 2, we want to
construct a branched l-fold cover X → M ramified along Σ based on the above local model.
This is not possible in general: there are global topological obstructions. But it can be done
in the following situation: assume that there are two totally geodesic hypersurfaces H, H ′ such
that Σ = H ∩ H ′ and H, H ′ separate M : M\H = U

∐
V , U ∩ V = H. Then Σ = ∂(U ∩ H ′)

– in particular [Σ] = 0 ∈ Hn−2(M) – and one can build a cyclic l-fold cover Xl → M ramified
along Σ (basically by gluing cyclically l copies of M\(H ′ ∩ U) – just think of the n = 2 case).
These are particular examples of Gromov–Thurston manifolds [2].

The following existence result is a combination of [1, Prop. 1.1] and [3, Prop. 3.1]:

Proposition 2.2. For each n ≥ 4, there exists a sequence of compact hyperbolic manifolds
(Mn

k , gk) containing such codimension 2 totally geodesic submanifolds Σk such that

(i) The injectivity radius Rk → ∞.
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(ii) The normal injectivity radius of Σk ⊂ Mk, Rν
k ≥ Rk/2.

(iii) Σk has a most two connected components.

(iv) diam(Σk)
Rν

k
→ 0.

Remark 2.3. In the next lecture, it will be useful to note that since Σk ≃ Hn−2/Γk for some
discrete group of isometries Γk, the volume of Σk is bounded by

vol(Σk) ≤ Cn exp((n − 3) diam(Σk))

for some universal constant Cn. This is a special easy case of the Bishop–Gromov inequality,
which holds more generally for Riemannian manifolds with Ric ≥ −(n − 3).

Remark 2.4. I will not attempt to reproduce the proof; but basically the idea is just to find a
discrete subgroup of SO(Q) satisfying appropriate properties.

With this theorem we get of family of manifolds Xk,l with hyperbolic metrics gk,l = π∗
l gk

which have conical singularities along Σk, with cone angle 2πl. The next step is to find model
Einstein metrics to smooth out these singularities.

3 Local model along the branching locus
To smooth out the previously constructed conically singular metrics near the branching locus,
we seek Einstein metrics hl on S × R2 (S ≃ Hn−2) such that

hl ∼ dr2 + l2 sinh2(r)dθ2 + cosh2(r)gS (3.1)

as r → ∞. Using the cyclic l-fold branched cover pl, we can rephrase this problem and instead
look for an asymptotically hyperbolic metric on S×R2 which has conical singularities with angle
2π/l along S. In order to do this it is convenient to introduce the coordinate u = cosh(r) and
rewrite the hyperbolic metric

gn = du2

u2 − 1 + (u2 − 1)dθ2 + u2gS . (3.2)

The idea is to perturb slightly the potential V (u) = u2 − 1. In fact, we consider the family of
metrics given by

ha = du2

Va(u) + Va(u)dθ2 + u2gS . (3.3)

where
Va(u) = u2 − 1 + a

un−3 · (3.4)

Here a is a real parameter taking values in the interval (−∞, amax(n)] and this defines a positive
metric on (ua, ∞)×R/(2πZ)×S where ua > 0 is the maximal root of Va. Fine–Premoselli proved
that these metrics satisfy the Einstein equation Richa

= −(n − 1)ha [1, Prop. 3.2]. Evidently,
ha is asymptotically hyperbolic. Moreover, by doing a Taylor expansion near u = ua, one can
easily prove that the metrics are conically singular along S, with cone angle ca which can be
given as an explicit function of ua. In fact, one can prove that the map a 7→ ca is one-to-one,
and there exists a sequence al → amax such that cal

= 2π/l [1, Prop. 3.3]. Finally, by an explicit
computation Fine–Premoselli obtained [1, Lem. 3.4]

secha ≤ −1 + n − 2
2 au1−n

a (3.5)

where the RHS is negative when a → amax.
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Remark 3.1. We can take a quotient Σ = S/Γ where Γ is a discrete group of isometries of S
and consider the metrics ha as defined on Σ × R2 as the potential only depends on the normal
radial coordinate.

Remark 3.2. We obtain a smooth metric p∗
l hal

on S × R2, asymptotic to p∗
l g and symmetric

under the action of the cyclic groups Zl (in fact under the action of a full circle). The fixed-point
set of this action is the branching locus S, end hence S is totally geodesic for this metric. In
particular, the sectional curvature of p∗

l hal
along S is −u2

al
, which can be shown to be strictly

smaller than −1.

4 A family of approximately Einstein metrics
Let (Mk, gk), Σk and πk,l : Xk,l → Mk be as before. On Mk, we define the functions r(x) =
d(Σk, x) and u = cosh(r). Let us moreover denote Uk,max = cosh(Rν

k/2) and pick a sequence
Uk → ∞ with Uk ≤ Uk,max. We aim to prove the following proposition ([3, Prop. 2.4], after [1,
Prop. 3.1]):

Proposition 4.1. There exists a family of metrics gk,l on Xk,l and constants C(m, n, l), c(m, n, l)
depending on the dimension n and an integers m, l such that (for k large enough):

(i) ∥ Ric(gk,l) + (n − 1)gk,l∥Cm ≤ CU
−(n−1)
k for any m ∈ N.

(ii) sec(gk,l) ≤ −c < 0.

(iii) vol({ 1
2 Uk < u < Uk}) ≤ C vol(Σk)Un−1

k .

The metrics gk,l can be constructed as follows. We may identify the tubular neighbourhood
{u < Uk} of Σk with a tubular neighbourhood of Σk × R2 for the hyperbolic metric. Now fix a
cutoff function χ : R → [0, 1] such that χ(t) = 1 for t ≤ 1/2 and χ(t) = 1 of t ≥ 1. On Σk × R2

define the metrics
gk,l = du2

Vk,l(u) + Vk,l(u)dθ2 + u2gΣk
(4.1)

where
Vk,l(u) = u2 − 1 + χ(u/Uk) a

un−3 . (4.2)

This metric can be extended to all of Mk by the hyperbolic metric, and it has conical singularities
along Σk with angle 2π/l. Then we might define gk,l = π∗

k,lgk,l on Xk,l. The various estimates
follow from straightforward (though tedious to write down explicitly) computations; we refer
the interested reader to the original articles for more details.

Remark 4.2. From part (iv) of Proposition 2.2 and Proposition 4.1 we obtain the L2-estimate

∥ Ric(gk,l + (n − 1)gk,l∥L2 → 0

as k → ∞ (for fixed l). The importance of this estimate will be clear in the next lecture.

5 Non-existence of locally symmetric Einstein metrics
Before making a lot of effort to deform the approximately Einstein metrics to genuine one, let
us justify that these efforts will not be in vain and that we will indeed end up with metrics
which are not locally symmetric. In fact the author of these note has a PhD thesis to finish
writing so I will not actually explain anything in detail; we will just sketch the argument of
Fine–Premoselli in the case n = 4 and refer the reader to the article of Hammendstädt–Jäckel
(which is more subtle) for the higher-dimensional case.

4



In the remainder of this section we shall assume that the dimension n = 4 unless otherwise
noted. As mentioned in the introduction, the idea is to rule out the existence of locally ho-
mogeneous Einstein metrics on Xk,l by topological consideration. First of all, notice that the
fundamental group of Xk,l is infinite (they admit negatively curved metric so the universal cover
must be diffeomorphic to R4, and by compactness of Xk,l this implies the result). The specificity
of dimension 4 is that there is a classification of homogeneous Einstein metrics due to Jensen
[4]; compact manifolds with infinite fundamental group the only possibilities are flat, hyperbolic
and complex-hyperbolic metrics (metrics which are locally isometric to the symmetric space of
PU(1, m) – m = 2 if n = 4), which are in particular automatically locally symmetric.

The first possibility can be ruled out by considering the fundamental group. The fundamental
group of any compact flat 4-manifold manifold is isomorphic to F ⋉ Z4; in particular it has an
abelian subgroup isometric to Z4. On the other hand, Preisman’s theorem implies that any
nontrivial abelian subgroup of a negatively curved manifold is isometric to Z, and so Xk,l

cannot admit a flat metric.
The remaining possibilities are hyperbolic and complex-hyperbolic metrics. Such metrics are

self-dual: that is, the Weyl tensor W is self-dual. Therefore, Chern-Weil theory and Hirzebruch’s
signature formula yield ∫

Xk,l

|W |2d vol = Cσ(Xk,l) (5.1)

for some combinatorial constant C ̸= 0, where σ(Xk,l) is the signature of the intersection form on
H2(Xk,l). One can prove that σ(Xk,l) = 0 which implies that any self-dual metric has vanishing
Weyl tensor, which implies that it must be conformally flat. This rules out complex-hyperbolic
metrics, which are not. Finally, the fact that Xk,l admit no hyperbolic metrics was noted by
Gromov and Thurston in their original article [2, Remark 3.6].

The main difference when n ≥ 5 is that there is no classification of locally homogeneous
Einstein metrics, and Hamenstädt–Jäckel could only prove a weaker result: for any k, only
a finite number of cyclic covers can admit a locally symmetric metric. The idea of proof is
similar: one can prove that the only possibility would be rank one symmetric spaces (using
Preissmann’s theorem again), and hence the only cases to consider are hyperbolic, complex-
hyperbolic, quaternionic-hyperbolic and Cayley-hyperbolic metrics. The last three possibilities
are relatively easy to rule out on topological grounds, but the situation is a lot more subtle in
the hyperbolic case.
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