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1 Reminders from Part I

In the last lecture of this advanced class, we study the analytical aspects of the construction
of non-locally symmetric negatively curved compact Einstein manifolds [1, 4]. In the previous
lecture, we explained how to construct a family of hyperbolic manifolds (Mjy, gx) and branched
cyclic I-fold covers my; : Xi; — M}, ramified along a null-homologous codimension 2 totally
geodesic submanifold X C My ([Xx] = 0 € H,_2(My), where the dimension n > 4. Recall
moreover that we had the following properties (Prop. 2.2 in the previous lecture):

(i) The injectivity radius Ry — co.

(iii) The normal injectivity radius of Xy C My, Ry > Ry /2.

)

(ii) ¥k has a most two connected components.
)

) dlaum(E;C

(iv — 0.

(v) Vol(Zk) < Cexp((n — 3) diam(Xg)).

These are particular examples of Gromov-Thurston manifolds [3], and they cannot admit any
locally symmetric Einstein metrics (or any homogeneous Einstein metrics if n = 4). Nevertheless,
we saw that X ; can be endowed with a negatively curved metric g ; which is almost Einstein,
and we had the following estimates (Prop. 4.1 and the following remark in the previous lecture):

(i

cm < C(m,n, U, "™V for any m € N.

) [ Ric(gr 4 (n = 1)gr.l

(i) sec(gx,) < c(m,n,l) <O0.

(ili) For U < Umax, vol({3U < u < U}) < C(m,n, 1) vol(Sx) Uy~

(iv)

Here Uy, is a gluing parameter satisfying Uy < Uk max = cosh(R}/2) and u = cosh(d(Xx, -)).
The goal of this lecture is to explain how to deform gi; to a nearby Einstein metric (at

least for k,l large enough). This makes use of the following version of the Banach fixed-point
theorem:

| Ric(gx,; + (n — 1)gkill2 — 0 as k — oo (for fixed I).

Theorem 1.1. Let (A1, | - |l1), (A2, || - ||2) be Banach spaces and f : Bs C Ay — Az be a
continuous function defined on the ball of radius 0 centred at 0 which can be written as

f(u) = f(0) + L(u) + F(u)



where L : A1 — As is a bounded linear map which has a bounded inverse and F' : By — As is a
continuous map such that

[[F'(u1) — F(uz)ll2 < Clluy — ua|ls (JJuifls + [Juzll1)

for some constant C' > 0. Let @ be the operator norm of L~ and assume that the following
inequalities hold:

QIF(0) <d/2, CQS<1/4.

Then there is a unique u € Bs such that f(u) =0, and moreover

l[ully < 2Q[1f(0)]2-

An obvious issue in our situation is that the Einstein equation is invariant under diffeo-
morphisms, and as such there is no hope for the linearised deformation operator to be elliptic
(it always has an infinite-dimensional kernel). Therefore, our first task will be to rewrite the
equation in order to fix the diffeomorphism invariance. We will then spend the remainder of the
lecture explaining how to find estimates on the inverse of the linearised operator in order to run
the fixed-point theorem, following the method of Hamendstadt—Jackel.

2 Rewriting the Einstein equation

In this section we let (X, g) be a compact Riemannian manifold. Before writing the linearisation
of the Einstein equation, we need to introduce some notations. For any vector feld v on X, we
will denote by Ricg(v) the vector field dual to the 1-form Ric(g)(v,-) with respect to g. If
h € C*(S*T*M) we define

Ricg(h)(v,w) = h(Ricg(v),w) + h(v, Ricg(w)) — 2trg h(R(-,v)w,-). (2.1)
Then Ricg(h) is also a symmetric (0, 2)-tensor. Then we can define the Lichnerowicz Laplacian

by
Ay = V*Vh + Ricg(h) (2.2)

where V* is the adjoint operator of V, implicitly defined with respect to g. Note that V, is an
elliptic operator.
If T is a (0, k)-tensor, we may also define its divergence 651" by

0T = — trz(VT) (2.3)

where we take the trace with respect to the first two indices by convention. Then it can be
shown that if g; = g+ th is a family of metrics, the variation of the Ricci tensor is given by the
following formula (see for instance Peter Topping’s notes on the Ricci flow):

O Ric(gt)

1 1
N 2.4
ot |, 2 M Tl (24)

where L is the Lie derivative, ff the musical isomorphism mapping 1-forms to their dual vector
field with respect to g, and S5(h) is the Bianchi operator:

Bg(h) = 6h + %dtrg(h). (2.5)

In order to fix the diffeomorphism invariance and compensate the second term in order to make
the linearisation of the Einstein equation elliptic, the idea is to introduce the operator

. 1
®5(g) = Ric(g) + (n —1)g + i‘cﬂ?(g)ﬁg (2.6)



for another Riemannian metric g. Then the linearisation of ®5 at g = g is to be
1
(D®5)5(h) = §ALh +(n—1)h (2.7)

for any symmetric (0,2)-tensor h. This uses the identity 35(g) = 0 which is clear. Another
useful identity is Bg(Ric(g)) = 0 which follows by tracing the Bianchi identity. Perhaps for this
reason, [z is called the Bianchi operator, and a metric satisfying S5(g) = 0 is said to be in
Bianchi gauge with respect to 3.

This looks like an ad hoc way of making the equations elliptic, but the point is that the
equation ®5(g) = 0 implies that ¢ is a Einstein metric at least when Ric(g) < 0 (see [1, Lem.
4.2], with somewhat different notations):

Lemma 2.1. Let g be a Riemannian metric with Ric(g) < 0 on X. Then ®5(g) = 0 if and only

Proof. The idea is to apply the Bianchi operator 3, of g to the equation ®4(g) = 0, which yields
By (E,@?(g)ug) = 0. Now a fastidious computation yields

Bu(Lisiye) = 57 V55(0) — 5 Riclg) (35(9)". ) (238)

and since Ric(g) < 0 and X is compact, then Ric(g) < —Ag for some A > 0 and the result
follows by integration by parts:

0= [ (BLaiaro)sBata))dvoly = [ [955(0) B dvoly 42 [ [55()Edvol,  (29)
X M M

which implies 35(g)* = 0. O

In order to construct Einstein metrics on the manifolds X}, ; using the fixed-point theorem,
the most important step is to prove that the linearised deformation operator Ly ; = %A r+(n—1)
is invertible on (0, 2)-tensors, with uniform estimates on the operator norm of its inverse. In the
next two sections we explain the argument of Hamendstddt—Jéckel who found a very slick way
to do so in any dimension n > 4.

3 The deformation argument

The invertibility of Ly is a consequence of the following proposition [1, Prop. 4.3]:

Proposition 3.1. For any I > 2, there exists a constant A = A(n,l) > 0 such that for any
sufficiently large k we have

/ (Liih, hYg, , dvoly, , > )\/ 2, dvoly,
Xk,

for all h € C*®(S*T* X}, ).

The proof proceeds by integration by parts using (2.2), which yields

1 .
/ <Lk’lh7 h>gk,l dVOlgk,l Z (n_l)/ |h|§kl dVOlgk,l +§ / <Rlcgk,z(h‘)’ h>gk,l dVOlgk,l . (31)
Xk Xk',l Xk,l

Then the idea is to use the fact that Ric(gr;) — —(n — 1) and the uniform upper bound
sec(gr,1) < —c in order to estimate the right-hand side, given the explicit expression (2.1) of
Ricy, ,(h). The proof of Fine-Premoselli is essentially an adaptation of an argument of Koiso



[6], who proves that for any compact Einstein manifold (M™, g) such that Ric(g) = —(n — 1)
and sec(g) < —K < 0, the deformation operator L, satisfies

—9
/ (Lyh, by dvol, > "TK/ Ih]2 dvol, (3.2)
M M

which in particular implies that (M, g) is rigid.
In order to find uniform bounds on the inverse of Ly ;, the key result of Hamenstadt—Jéckel
is the following local C%estimate [4, Lem. 2.2]:

Lemma 3.2. For alln € N, A > 0 and ig > 0 there exist constants p,C > 0 with the following
property. Let (X,g) be a Riemannian n-manifold with |sec(g)| < A and inj(X,g) > ig. Let
feCS?T*X) and h € C*(T*X) satisfying

1
Then for all x € X it holds

|hl(z) < C(Ihllz2(B, ) + Ifllcos,@))-

We will outline the proof of these local estimates in the next section. Before this, we explain
how this is enough to run the deformation argument in order to perturb g;; to an Einstein
metric g, in the remainder of this section.

The idea is to work with the Banach spaces C%(S*T* X} ;) and C*(T*X},), equipped
with hybrid norms

1Pllo = max{||Allco.e(gy.), 17l L2 (g}

||hH2 = max{”hHCl”(gk,z)’ ”h”L%(gk,z)}
where the L3 of h norm is defined as the L?-norm of (h, Vh, V2h). The norms ||-||; are equivalent
to the C»*norms and hence C**(S*T* X}, ,;) is still a Banach space for the norm || - ||;. The

point of introducing these norms is that with the previous lemma one can show that the operator
norm of the inverse of Ly ; is uniformly bounded (for [ fixed and k large enough) [4, Prop. 4.2]:

Proposition 3.3. There exists a constant C = C(a,n,l) such that
Ly (C*(S*T X ), || - [l2) = (CO(S*T* Xio), || - [lo)
is invertible, and the operator norms || Ly, ||L;%H <C.

Proof. The basic observation is that for a fixed value of [, all the spaces X} ; are locally the
same, and therefore the operator norm of Ly, ; is uniformly bounded? Moreover, classical elliptic
regularity gives uniform a priori estimates

[hllc2.e < C(||Lkhllcoo + [[hllco) (3-3)
7]z < C(|LkihllLz + Al z2)- (3.4)

Using Proposition 3.1, one can improve the second bound to
1hllrz < Cl|Lyhll2. (3.5)
It just remains to improve the first a priori estimate using the C°-bound of Lemma 4, which

implies
[Bllco < C(lIhllL2 + |k ihllco) < CUILk b2 + || L bl co (3.6)

whence we deduce ||h||2 < C||Lg,h||o uniformly in & for fixed n,l, . O



Once we have this results, then for k large enough the fixed-point theorem (applied to
the function ®,, ) implies that gp; can be deformed to a nearby Einstein metric gi; with
gkt — Grill2 < C| Ric(gr) + (n — 1)gk.llo — 0. This is where it is important to have the L*-
estimate. This use the fact that the nonlinear part of ®, , satisfies quadratic bounds uniform
in k.

kL

Remark 3.4. Since ||gx,; — Gx,i|lc2 — 0 and the sectional curvature of gj; is nonconstant and
bounded above away from zero, then the same holds for the sectional curvature of §i;; in
particular the metric cannot be locally homogeneous.

4 The local estimates

In this section we explain where the local C?-estimates of Proposition come from. In fact, the
estimates are not specific to the metrics gy ;, they only depend on a lower bound on the injectivity
radius and a double-sided bound on the sectional curvatures. Hence to prove the inequality, me
let (M,g) be a compact manifold with injectivity radius inj(M,g) > igp > 0 and sec(g) < A.
Then if @ € (0,1), a result of Jost—Karcher [5] implies that there exists p > 0, depending only
on a, ig, A and the dimension n, such that at every p € M there there are harmonic coordinates
(1,...,2y,) on the ball B(p,2p) such that in these coordinates ||g;; — 0i;||c1.o < C.

The local estimates will come from (a version of) the DeGiorgi-Nash-Moser estimates, which
can be stated as follows. Let us consider a uniformly elliptic linear partial differential operator
L acting on functions on Bogp C R™ with bounded coefficients, and let f be a bounded function
and u € C?(Bag)! satisfying Lu > f. Then the following interior estimates hold:

supu < C(llu”l|z2(son) + I lleoBam) (4.1)

R

for some constant C' depending only on R, the bounds on the coefficients of L and the ellipticity
of the principal symbol [2, Th. 8.17]. Here u™ denotes the nonnegative part of u.

Of course in our case we are considering sections of a vector bundle and not functions so
the estimates do not apply directly. Instead, the key idea is to show that the norm |h| satisfies
a differential inequation (at least if A does not vanish, which we can assume to be the case by
a density argument since generic sections of S?T*M do not intersect the zero section). Let us
first look at |h|?: the rough Laplacian A = V*V satisfies £A(|h|?) = (Ah, h) — |Vh|?. Now we
have the equation $Ah = f — 1 Ricy(h) — (n— 1)h where Ricy(h) may be bounded only in terms
of the sectional curvature of g. Therefore using the Cauchy—Schwarz inequality we obtain an
inequality of the form

—A(IR[2) = ~|fI[h] + CIh[? + V. (4.2)

In order to get rid of the annoying term |Vh|?, one can use the formula for the Laplacian acting
on the square of a function:

1
S AURP) = [BI(AR]) = (VIA])*. (4.3)
Moreover (V|h|)? < |Vh|?), and putting everything together one obtains
1
N (1.4

and the DeGiorgi—-Nash—Moser estimate can be applied to this equation.

10ne could also considerably relax these regularity assumptions: e.g. one could take u € L% and g € LY(B2p)
for some ¢ > 2n, but this will not be needed.



Remark 4.1. The original proof of Fine-Premoselli relied on the use of weighted Holder norms,
and a key part of the argument was to prove that the operator norm of the inverse of the linearised
deformation operator did not grow too quickly. Ultimately this relies on close examination of
the Green’s functions on the model spaces, and the authors could only prove sufficiently good
estimates in dimension n = 4. The main insight of Hamendstddt—Premoselli was to introduce
the mixed Sobolev/Hoélder norms where the DeGiorgi-Nash—Moser estimates imply uniform
bounds on the operator norm of the inverse of the deformation operator. On the geometric side,
this required a refinement of the geometric construction in order to prove the L?-smallness of
Ric(gk,1) + (n — 1)gk.i-
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