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1 Reminders from Part I
In the last lecture of this advanced class, we study the analytical aspects of the construction
of non-locally symmetric negatively curved compact Einstein manifolds [1, 4]. In the previous
lecture, we explained how to construct a family of hyperbolic manifolds (Mk, gk) and branched
cyclic l-fold covers πk,l : Xk,l → Mk ramified along a null-homologous codimension 2 totally
geodesic submanifold Σk ⊂ Mk ([Σk] = 0 ∈ Hn−2(Mk), where the dimension n ≥ 4. Recall
moreover that we had the following properties (Prop. 2.2 in the previous lecture):

(i) The injectivity radius Rk → ∞.

(ii) Σk has a most two connected components.

(iii) The normal injectivity radius of Σk ⊂ Mk, Rν
k ≥ Rk/2.

(iv) diam(Σk)
Rν

k
→ 0.

(v) vol(Σk) ≤ C exp((n − 3) diam(Σk)).

These are particular examples of Gromov-Thurston manifolds [3], and they cannot admit any
locally symmetric Einstein metrics (or any homogeneous Einstein metrics if n = 4). Nevertheless,
we saw that Xk,l can be endowed with a negatively curved metric gk,l which is almost Einstein,
and we had the following estimates (Prop. 4.1 and the following remark in the previous lecture):

(i) ∥ Ric(gk,l + (n − 1)gk,l∥Cm ≤ C(m, n, l)U−(n−1)
k for any m ∈ N.

(ii) sec(gk,l) ≤ c(m, n, l) < 0.

(iii) For U < Umax, vol({ 1
2 U < u < U}) ≤ C(m, n, l) vol(Σk)Un−1

k .

(iv) ∥ Ric(gk,l + (n − 1)gk,l∥L2 → 0 as k → ∞ (for fixed l).

Here Uk is a gluing parameter satisfying Uk ≤ Uk,max = cosh(Rν
k/2) and u = cosh(d(Σk, ·)).

The goal of this lecture is to explain how to deform gk,l to a nearby Einstein metric (at
least for k, l large enough). This makes use of the following version of the Banach fixed-point
theorem:

Theorem 1.1. Let (A1, ∥ · ∥1), (A2, ∥ · ∥2) be Banach spaces and f : Bδ ⊂ A1 → A2 be a
continuous function defined on the ball of radius δ centred at 0 which can be written as

f(u) = f(0) + L(u) + F (u)
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where L : A1 → A2 is a bounded linear map which has a bounded inverse and F : Bδ → A2 is a
continuous map such that

∥F (u1) − F (u2)∥2 ≤ C∥u1 − u2∥1(∥u1∥1 + ∥u2∥1)

for some constant C > 0. Let Q be the operator norm of L−1 and assume that the following
inequalities hold:

Q|f(0)| < δ/2, CQδ ≤ 1/4.

Then there is a unique u ∈ Bδ such that f(u) = 0, and moreover

∥u∥1 ≤ 2Q∥f(0)∥2.

An obvious issue in our situation is that the Einstein equation is invariant under diffeo-
morphisms, and as such there is no hope for the linearised deformation operator to be elliptic
(it always has an infinite-dimensional kernel). Therefore, our first task will be to rewrite the
equation in order to fix the diffeomorphism invariance. We will then spend the remainder of the
lecture explaining how to find estimates on the inverse of the linearised operator in order to run
the fixed-point theorem, following the method of Hamendstädt–Jäckel.

2 Rewriting the Einstein equation
In this section we let (X, g) be a compact Riemannian manifold. Before writing the linearisation
of the Einstein equation, we need to introduce some notations. For any vector feld v on X, we
will denote by Ricg(v) the vector field dual to the 1-form Ric(g)(v, ·) with respect to g. If
h ∈ C∞(S2T ∗M) we define

Ricg(h)(v, w) = h(Ricg(v), w) + h(v, Ricg(w)) − 2 trg h(R(·, v)w, ·). (2.1)

Then Ricg(h) is also a symmetric (0, 2)-tensor. Then we can define the Lichnerowicz Laplacian
by

∆L = ∇∗∇h + Ricg(h) (2.2)

where ∇∗ is the adjoint operator of ∇, implicitly defined with respect to g. Note that ∇L is an
elliptic operator.

If T is a (0, k)-tensor, we may also define its divergence δgT by

δT = − trg(∇T ) (2.3)

where we take the trace with respect to the first two indices by convention. Then it can be
shown that if gt = g + th is a family of metrics, the variation of the Ricci tensor is given by the
following formula (see for instance Peter Topping’s notes on the Ricci flow):

∂ Ric(gt)
∂t

∣∣∣∣
t=0

= 1
2∆Lh − 1

2Lβg(h)♯g (2.4)

where L is the Lie derivative, ♯ the musical isomorphism mapping 1-forms to their dual vector
field with respect to g, and βg(h) is the Bianchi operator:

βg(h) = δh + 1
2d trg(h). (2.5)

In order to fix the diffeomorphism invariance and compensate the second term in order to make
the linearisation of the Einstein equation elliptic, the idea is to introduce the operator

Φg(g) = Ric(g) + (n − 1)g + 1
2Lβg(g)♯g (2.6)
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for another Riemannian metric g. Then the linearisation of Φg at g = g is to be

(DΦg)g(h) = 1
2∆Lh + (n − 1)h (2.7)

for any symmetric (0, 2)-tensor h. This uses the identity βg(g) = 0 which is clear. Another
useful identity is βg(Ric(g)) = 0 which follows by tracing the Bianchi identity. Perhaps for this
reason, βg is called the Bianchi operator, and a metric satisfying βg(g) = 0 is said to be in
Bianchi gauge with respect to g.

This looks like an ad hoc way of making the equations elliptic, but the point is that the
equation Φg(g) = 0 implies that g is a Einstein metric at least when Ric(g) < 0 (see [1, Lem.
4.2], with somewhat different notations):

Lemma 2.1. Let g be a Riemannian metric with Ric(g) < 0 on X. Then Φg(g) = 0 if and only
if βg(g) = 0 and Ric(g) = −(n − 1)g.

Proof. The idea is to apply the Bianchi operator βg of g to the equation Φg(g) = 0, which yields
βg(Lβg(g)♯g) = 0. Now a fastidious computation yields

βg(Lβg(g)♯g) = 1
2∇∗g ∇gβg(g) − 1

2 Ric(g)(βg(g)♯, ·) (2.8)

and since Ric(g) < 0 and X is compact, then Ric(g) < −λg for some λ > 0 and the result
follows by integration by parts:

0 =
∫

X

⟨βg(Lβg(g)♯g), βg(g)⟩ dvolg ≥
∫

M

|∇gβg(g)|2g dvolg +λ

∫
M

|βg(g)|2g dvolg (2.9)

which implies βg(g)♯ = 0.

In order to construct Einstein metrics on the manifolds Xk,l using the fixed-point theorem,
the most important step is to prove that the linearised deformation operator Lk,l = 1

2 ∆L+(n−1)
is invertible on (0, 2)-tensors, with uniform estimates on the operator norm of its inverse. In the
next two sections we explain the argument of Hamendstädt–Jäckel who found a very slick way
to do so in any dimension n ≥ 4.

3 The deformation argument
The invertibility of Lk,l is a consequence of the following proposition [1, Prop. 4.3]:

Proposition 3.1. For any l ≥ 2, there exists a constant λ = λ(n, l) > 0 such that for any
sufficiently large k we have∫

Xk,l

⟨Lk,lh, h⟩gk,l
dvolgk,l

≥ λ

∫
Xk,l

|h|2gk,l
dvolgk,l

for all h ∈ C∞(S2T ∗Xk,l).

The proof proceeds by integration by parts using (2.2), which yields∫
Xk,l

⟨Lk,lh, h⟩gk,l
dvolgk,l

≥ (n−1)
∫

Xk,l

|h|2gk,l
dvolgk,l

+1
2

∫
Xk,l

⟨Ricgk,l
(h), h⟩gk,l

dvolgk,l
. (3.1)

Then the idea is to use the fact that Ric(gk,l) → −(n − 1) and the uniform upper bound
sec(gk,l) ≤ −c in order to estimate the right-hand side, given the explicit expression (2.1) of
Ricgk,l

(h). The proof of Fine–Premoselli is essentially an adaptation of an argument of Koiso
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[6], who proves that for any compact Einstein manifold (Mn, g) such that Ric(g) = −(n − 1)
and sec(g) ≤ −K < 0, the deformation operator Lg satisfies∫

M

⟨Lgh, h⟩g dvolg ≥ n − 2
2 K

∫
M

|h|2g dvolg (3.2)

which in particular implies that (M, g) is rigid.
In order to find uniform bounds on the inverse of Lk,l, the key result of Hamenstädt–Jäckel

is the following local C0-estimate [4, Lem. 2.2]:

Lemma 3.2. For all n ∈ N, Λ ≥ 0 and i0 > 0 there exist constants ρ, C > 0 with the following
property. Let (X, g) be a Riemannian n-manifold with | sec(g)| ≤ Λ and inj(X, g) ≥ i0. Let
f ∈ C0(S2T ∗X) and h ∈ C2(T ∗X) satisfying

1
2∆Lh + (n − 1)h = f.

Then for all x ∈ X it holds

|h|(x) ≤ C(∥h∥L2(Bρ(x)) + ∥f∥C0(Bρ(x))).

We will outline the proof of these local estimates in the next section. Before this, we explain
how this is enough to run the deformation argument in order to perturb gk,l to an Einstein
metric g̃k,l in the remainder of this section.

The idea is to work with the Banach spaces C0,α(S2T ∗Xk,l) and C2,α(T ∗Xk,l), equipped
with hybrid norms

∥h∥0 = max{∥h∥C0,α(gk,l), ∥h∥L2(gk,l)}
∥h∥2 = max{∥h∥C2,α(gk,l), ∥h∥L2

2(gk,l)}

where the L2
2 of h norm is defined as the L2-norm of (h, ∇h, ∇2h). The norms ∥·∥i are equivalent

to the Ci,α-norms and hence Ci,α(S2T ∗Xk,l) is still a Banach space for the norm ∥ · ∥i. The
point of introducing these norms is that with the previous lemma one can show that the operator
norm of the inverse of Lk,l is uniformly bounded (for l fixed and k large enough) [4, Prop. 4.2]:

Proposition 3.3. There exists a constant C = C(α, n, l) such that

Lk,l : (C2,α(S2T ∗Xk,l), ∥ · ∥2) → (C0,α(S2T ∗Xk,l), ∥ · ∥0)

is invertible, and the operator norms ∥Lk,l∥, ∥L−1
k,l ∥ ≤ C.

Proof. The basic observation is that for a fixed value of l, all the spaces Xk,l are locally the
same, and therefore the operator norm of Lk,l is uniformly bounded? Moreover, classical elliptic
regularity gives uniform a priori estimates

∥h∥C2,α ≤ C(∥Lk,lh∥C0,α + ∥h∥C0) (3.3)
∥h∥L2

2
≤ C(∥Lk,lh∥L2 + ∥h∥L2). (3.4)

Using Proposition 3.1, one can improve the second bound to

∥h∥L2
2

≤ C∥Lk,lh∥L2 . (3.5)

It just remains to improve the first a priori estimate using the C0-bound of Lemma 4, which
implies

∥h∥C0 ≤ C(∥h∥L2 + ∥Lk,lh∥C0) ≤ C(∥Lk,lh∥L2 + ∥Lk,lh∥C0,α (3.6)

whence we deduce ∥h∥2 ≤ C∥Lk,lh∥0 uniformly in k for fixed n, l, α.
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Once we have this results, then for k large enough the fixed-point theorem (applied to
the function Φgk,l

) implies that gk,l can be deformed to a nearby Einstein metric g̃k,l with
∥gk,l − g̃k,l∥2 ≤ C∥ Ric(gk,l) + (n − 1)gk,l∥0 → 0. This is where it is important to have the L2-
estimate. This use the fact that the nonlinear part of Φgk,l

satisfies quadratic bounds uniform
in k.

Remark 3.4. Since ∥gk,l − g̃k,l∥C2 → 0 and the sectional curvature of gk,l is nonconstant and
bounded above away from zero, then the same holds for the sectional curvature of g̃k,l; in
particular the metric cannot be locally homogeneous.

4 The local estimates
In this section we explain where the local C0-estimates of Proposition come from. In fact, the
estimates are not specific to the metrics gk,l, they only depend on a lower bound on the injectivity
radius and a double-sided bound on the sectional curvatures. Hence to prove the inequality, me
let (M, g) be a compact manifold with injectivity radius inj(M, g) ≥ i0 > 0 and sec(g) ≤ Λ.
Then if α ∈ (0, 1), a result of Jost–Karcher [5] implies that there exists ρ > 0, depending only
on α, i0, Λ and the dimension n, such that at every p ∈ M there there are harmonic coordinates
(x1, . . . , xn) on the ball B(p, 2ρ) such that in these coordinates ∥gij − δij∥C1,α ≤ C.

The local estimates will come from (a version of) the DeGiorgi–Nash–Moser estimates, which
can be stated as follows. Let us consider a uniformly elliptic linear partial differential operator
L acting on functions on B2R ⊂ Rn with bounded coefficients, and let f be a bounded function
and u ∈ C2(B2R)1 satisfying Lu ≥ f . Then the following interior estimates hold:

sup
BR

u ≤ C(∥u+∥L2(B2R) + ∥f∥C0(B2R)) (4.1)

for some constant C depending only on R, the bounds on the coefficients of L and the ellipticity
of the principal symbol [2, Th. 8.17]. Here u+ denotes the nonnegative part of u.

Of course in our case we are considering sections of a vector bundle and not functions so
the estimates do not apply directly. Instead, the key idea is to show that the norm |h| satisfies
a differential inequation (at least if h does not vanish, which we can assume to be the case by
a density argument since generic sections of S2T ∗M do not intersect the zero section). Let us
first look at |h|2: the rough Laplacian ∆ = ∇∗∇ satisfies 1

2 ∆(|h|2) = ⟨∆h, h⟩ − |∇h|2. Now we
have the equation 1

2 ∆h = f − 1
2 Ricg(h)− (n−1)h where Ricg(h) may be bounded only in terms

of the sectional curvature of g. Therefore using the Cauchy–Schwarz inequality we obtain an
inequality of the form

−∆(|h|2) ≥ −|f ||h| + C|h|2 + |∇h|2. (4.2)

In order to get rid of the annoying term |∇h|2, one can use the formula for the Laplacian acting
on the square of a function:

1
2∆(|h|2) = |h|(∆|h|) − (∇|h|)2. (4.3)

Moreover (∇|h|)2 ≤ |∇h|2), and putting everything together one obtains

−1
2∆|h| + C|h| ≥ −|f | (4.4)

and the DeGiorgi–Nash–Moser estimate can be applied to this equation.
1One could also considerably relax these regularity assumptions: e.g. one could take u ∈ L2

1 and g ∈ Lq(B2ρ)
for some q > 2n, but this will not be needed.
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Remark 4.1. The original proof of Fine–Premoselli relied on the use of weighted Hölder norms,
and a key part of the argument was to prove that the operator norm of the inverse of the linearised
deformation operator did not grow too quickly. Ultimately this relies on close examination of
the Green’s functions on the model spaces, and the authors could only prove sufficiently good
estimates in dimension n = 4. The main insight of Hamendstädt–Premoselli was to introduce
the mixed Sobolev/Hölder norms where the DeGiorgi–Nash–Moser estimates imply uniform
bounds on the operator norm of the inverse of the deformation operator. On the geometric side,
this required a refinement of the geometric construction in order to prove the L2-smallness of
Ric(gk,l) + (n − 1)gk,l.
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