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Abstract

Building upon Grayson’s theorem, this paper answers the ques-
tion: on a smooth orientable surface, which embedded curves converge
to a geodesic and which shrink to a point? The paper, first, asks this
question on surfaces with the metric induced from an embedding in
Euclidean space. We obtain a classification for, beyond the well known
example of the round sphere, the rotational torus, surfaces with neg-
ative Gaussian curvature everywhere, and surfaces that satisfy the
condition of Fiala-Huber’s isoperimetric inequality. Looking at sur-
faces with a Riemannian metric in which they have constant Gaussian
curvature, justified by Uniformisation theorem, the paper obtains a
classification for embedded curves under the flow. We also obtain a
classification of the embedded curves that converge to the systoles of
a flat torus and hyperbolic surfaces.
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Analysis of the behaviour of curves under Curve Shortening Flow is a field
that is not traditionally linked to topological, geometrical ideas such as the
Teichmüller space. The paper connects arguments of Geometry, Topology,
and Analysis to answer questions where the answer to them are not explicitly
written elsewhere. Independent work done in the paper are written below in
chronological order with the essential results being highlighted.

• Section 2.3; Calculations in the Gauss-Bonnet argument and Classi-
fication of the embedded curves on a torus under Curve Shortening
Flow

• Example in Section 2.3: a geodesic of a surface homeomorphic
to a torus that bounds a disc

• Classification in Section 2.5.2: the
∫
Ω
κ+dA < 2π case1

• Classification in Section 3.1: the negative curvature case

• Section 3.2; Theorem 12 and 13: Classification of the embedded curves
that converge to the systoles of a flat torus under Curve Shortening
Flow

• Section 3.3.2; Theorem 14: Classification of the embedded
curves that converge to the systoles of hyperbolic surfaces
under Curve Shortening Flow

1This condition is enforced by Fiala-Huber in [1]. Curve Shortening Flow on surfaces
in 2.5.2 and 3.1, albeit being simple arguments, is not explicitly dealt elsewhere.
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1 Introduction
We introduce some concepts to motivate the classification problem of the

behaviour of embedded curves under Curve Shortening Flow.

Definition 1.1 Let M and N be smooth manifolds. A smooth function
f : M → N is an embedding if M is diffeomorphic to its image f(M) in
N. Embedded curves on a smooth manifold M are curves γ : S1 → M ,
S1 being a circle, where the map from S1 to M is an embedding. A curve
γ : S1 → M is immersed if it is a smooth map from S1 to M that has
non-zero derivatives everywhere.

From the definition, we can note that all embeddings are immersions.
Yet, not all immersions are embeddings. The figure ∞ would be an example
of an immersion that is not an embedding. It’s not injective; hence, can’t be
a diffeomorphism.

Definition 1.2 For a vector v starting at point p of a manifold M, there
exists a unique geodesic γv(t) where γv(0) = p with its tangent vector at
p being v. Let’s define an exponential map2 expp(v) = γv(1). A Com-
plete Riemannian manifold is manifold M in which the exponential map at
p expp : S ⊂ TpM → M is defined on the entire tangent space TpM at any
p of M. Hence, there can’t be punctures or boundaries.

We will now define what it means to apply the Curve Shortening Flow
to a closed immersed curve on a smooth complete orientable 2-manifold M .
The Completeness of the manifold is enforced to avoid issues where the flow
hits the boundary of the manifold. The orientability is necessary to define
the normal vector of M ; normal direction and tangent direction of curve γ.

For a point p on an orientable surface, there are two candidates of choosing
the normal vector of the surface M . Let’s denote them as N and −N. Choose
an orientation on S1 for γ : S1 → M , where γ(s) = p for a s ∈ S1, to define
the normal direction and tangent direction of γ at p. The unit vector in the
normal direction of γ is denoted as n. This allows us to define the Geodesic
curvature κg to apply the Curve Shortening Flow. Note that reversing the
signs of N would reverse those of n and κg. Thus, it would not change the
value κg · n. This motivates the following definition.

2An exponential map is a map from the subset of a tangent space TpM at p of M to
M . Definition 1.2 is a summary of key concepts in [2].
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Definition 1.3 For a 2-dimensional Smooth Complete Orientable Manifold,
denote the initial closed immersed curve as γ0(u) : S

1 → M and let T > 0.
We say that a family of curves γ(u, t) : S1 × [0, T ) → M evolves under
Curve Shortening Flow if it satisfies the following initial value problem.

∂γ

∂t
= κg · n

γ(u, 0) = γ0(u)
(1)

By definition, we can note that for geodesics, κg would be 0 and hence under
Curve Shortening Flow, geodesics are stationary.

As M is an orientable manifold, we can define a vector starting from a
point p on a curve ∂Ω to be pointing inwards when parallel to n. The region
enclosed by the curve can be denoted as Ω. The equation for dA

dt
, of area A

enclosed by an embedded curve, is given below [3].

dA

dt
= −

∫
∂Ω

κgds (2)

It’s also worth noting that the arc-length L of an embedded curve is
monotone under Curve Shortening Flow [3].

dL

dt
= −

∫
∂Ω

κ2
gds (3)

Definition 1.4 An Isotopy is a Homotopy H: M × [0,1] → N from one
embedding of M in N to another such that it is an embedding for all t ∈ [0,1].
If two embedded curves γ1 and γ2 are isotopic to each other, there exists a
homotopy H: S1 × [0,1] → M with H(0) = γ1 and H(1) = γ2 such that H(t)
for all t ∈ [0,1] is an embedded curve.

All results we have for homotopy classes, we can have for isotopy classes
when dealing with embedded curves evolved under Curve Shortening Flow
because of the following result.

Theorem 1 Embedded curves remain embedded under Curve Shortening Flow.

For the full proof of this theorem, we refer the reader to [3] and [4]. Here,
we would sketch the proof for the case of R2.
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• As S1 is compact, it suffices to prove that γ : S1 → M is injective at
an arbitrary time t to show that it’s an embedding3. Let’s define the
extrinsic distance function d : S1 × S1 × [0, t0] → R for γ as

d(x, y, t) = |γ(y, t)− γ(x, t)|

• Note that d is zero on the diagonal subset {(x, x) : x ∈ S1}. The
curvature is bounded by compactness. Say the upper bound is K. We
will obtain a lower bound of d on a neighbourhood of this diagonal
subset in terms of K. (Theorem 2)

• We apply the maximum principle [5] to d on {(x, y, t) ∈ S1×S1×[0, t0] :
l(x, y, t) ≥ π

K
}, where l(x, y, t) is the arc-length between x and y at time

t, to yield a positive lower bound for d for all y ̸= x and t.

Theorem 2 For an immersed curve γ : S1 → R2 with κg(x) ≤ K for all
x ∈ S1,

d(x, y) ≥ 2

K
· sin(K · l(x, y)

2
)

for all (x,y) such that arc-length l(x, y) ≤ π
K

.

For the proof of Theorem 2, we refer the reader to [3]. Theorem 1 holds for
embeddings on orientable surfaces as well. The proof is done by the same
idea as the R2 case. Yet, the extrinsic distance function needs to be bounded
in a more sophisticated way, which was presented by Gage in [4].

We now state Gage,Hamilton, and Grayson’s theorem for the R2 case.

Theorem 3 Let the initial curve γ0 : S
1 → R2 be embedded. Then the Curve

Shortening Flow has a solution up to some maximal time T. The curve γt is
smooth for all t ∈ [0, T ) and shrinks to a round point 4 as t → T .

We sketch a proof of the theorem done by Ben Andrews. The key of the
proof is obtaining a curvature bound of the embedding that holds as long as
the length is positive. For a rigorous statement of the curvature bound, we
refer the reader to [3].

3An embedding is a proper injective immersion. Let γ, a closed immersed curve, be
injective. As S1 is compact, its image γ(S1) is compact. As M is Hausdorff by definition,
γ(S1) is closed. For a compact subset C of γ(S1), it is closed in M and hence its pre-image
is also closed. A closed subset of a compact set is compact. Hence, γ is proper.

4The embedding converges to a circle as it shrinks to a point.
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• The existence of solutions for the Curve Shortening Flow for all time
t ∈ [0, T ) follows from the curvature bound described above. In the
process, we obtain a bound for all the spatial derivatives of κg as well.

• We first prove that (Theorem 2.12 in [3])

lim
t→T

sup sup
S1×t

{|κg(s, t)| : s ∈ S1} = ∞ (4)

Note that L is monotone (3). By observing that κ2
g remains bounded if

we have a non-zero lower bound for L, we get a contradiction. Hence,
L tends to zero. Embedded curves shrink to a point as t → T .

• We obtain estimates of the total arc-length L(t) using the curvature
bound to obtain that the isoperimetric ratio: L2

4πA
, A being the enclosed

area, converges to 1 as t → T . The isoperimetric ratio is 1 for a circle.

Theorem 4 Grayson’s theorem Let (M,g) be a smooth, orientable, and
complete surface that is convex at infinity 5. For the initial embedded
curve γ0 : S1 → M , there exists a solution of the Curve Shortening Flow
such that it exists for all t ∈ [0, T ) for T ∈ R+∪ ∞ and the embedding either
shrinks to a point in finite time or converges to a geodesic, as t → ∞.

For the infinite T case, we first obtain the result that the total length of the
curve converges to a certain value: L∞ > 0 as t → ∞ and then prove that
κg converges to 0 in the C∞ norm. For the proof, we refer the reader to [6].

The paper would be exclusively dealing with smooth, orientable, closed,
and connected manifolds6. From section 2 and onwards, we would use the
terminology surfaces to represent closed and connected 2-manifolds. This ter-
minology is not conventional, so we emphasize this to the reader. Grayson’s
theorem, albeit being a powerful theorem, does not help us determine whether
an embedding would converge to a geodesic or shrink to a point. Classifica-
tion of the embedded curves that converge to a geodesic and the ones that
shrink to a point would be a natural goal. Among the surfaces in which we

5M is convex at infinity when the intersection of all convex subsets containing an
arbitrary compact subset of M is compact.

6Grayson, in [6], gives an example of a torus with complete hyperbolic structure that
is not convex at infinity where Grayson’s theorem does not hold. Closed manifolds are
complete and convex at infinity.
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would be able to do so, we would try to obtain a classification of the em-
bedded curves that converge to the shortest closed geodesics. We introduce
theorems that help us answer these questions.

1.1 Theorems in Topology and Geometry

Theorem 5 Euler Characteristics χ(Ω) are homotopy invariants [7]

Hence, Euler Characteristics are isotopy invariants.

Theorem 6 Uniformisation theorem for Riemann Surfaces Every
Riemann surface (X,J), X being the topological space and J the holomorphic
atlas, has a Riemannian metric g compatible with its conformal structure in
which X has constant Gaussian Curvature of -1 or 0 or 1 [8].

The Uniformisation theorem for Riemann surfaces also hold for smooth
closed orientable surfaces. The following theorem justifies this.

Theorem 7 The Riemannian metric of every smooth closed Riemannian
surface induces a complex structure [9]

Let’s apply the Gauss-Bonnet theorem to Theorem 6. From Theorem 7
we can deduce the following.

Theorem 8 Let M be a smooth closed orientable surface.

• If χ(M) > 0, there exists a Riemannian metric such that M has con-
stant Gaussian Curvature 1.

• If χ(M) = 0, there exists a Riemannian metric such that M has con-
stant Gaussian Curvature 0.

• If χ(M) < 0, there exists a Riemannian metric such that M has con-
stant Gaussian Curvature -1.

Finally for hyperbolic surfaces7, we have the following theorem that is
used to obtain our classification of embedded curves that converge to the
systoles of hyperbolic surfaces.

Theorem 9 Let M be a hyperbolic surface. If Γ is a closed curve in M that
is not homotopic into a neighbourhood of a puncture, then Γ is homotopic to
a unique closed geodesic [10].

7Hyperbolic surfaces are surfaces with constant negative curvature.
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1.2 Teichmüller space

Definition 1.5 Fix a smooth closed orientable surface S of genus g ≥ 2.
We define a marked hyperbolic surface (X, f) to be a hyperbolic surface
X together with a diffeomorphism f : S → X. Such a surface X exists by
the Uniformisation theorem. Two marked hyperbolic surfaces, (X, f) and
(Y, g), are equivalent if gf−1 : X → Y is homotopic to an isometry. A
Teichmüller space of S, denoted as τ(S), is defined as the set of equivalence
classes [(X, f)] of marked hyperbolic surfaces8.

Note that we don’t have to consider the neighbourhood of a puncture case
in Theorem 9 with the compactness condition enforced in Definition 1.5. We
will define the following terms: pants decomposition, length parameters, and
twist parameters.

Definition 1.6 A pair of pants is a compact surface of genus 0 with three
boundary-components. A pants decomposition P of S is a collection of
disjoint simple closed curves in S such that cutting along the curves split S
into a disjoint union of pairs of pants.

Definition 1.7 Define S likewise to Theorem 1.5. X would be a hyperbolic
surface. The dimension of its Teichmüller space is 6g-6 [10]. Take 3g-3
simple closed curves γ1, . . . , γ3g−3 to be its pants decomposition P and 3g-3
curves β1, . . . , β3g−3 that cross two curves in the same pair of pants pairwise.
For χ = [(X, f)] ∈ τ(S) and a curve γi ∈ P of S, the length parameter of
χ: li(χ) is the length l(γi) of the unique geodesic Γi, by Theorem 9, homotopic
to f(γi).

For γi and γj of the same pair of pants in P , there would exist a βk

intersecting them. For βk and βl crossing γi, f(βk) and f(βl) are homotopic
to some bk and bl which meet with Γi at two points i1 and i2. By giving an
orientation to Γi, we can denote the signed distance along Γi from i1 to i2 as
tL − tR. The twist parameters θi(χ) of χ ∈ τ(S) are defined as 2π tL−tR

l(γi)
.

Definition 1.8 For S with genus g ≥ 2, the Fenchel-Nielsen coordinates
of χ ∈ τ(S) are defined as the numbers (l1, θ1, l2, θ2, . . . , l3g−3, θ3g−3)

8Theorem 8 allows us to rephrase this for S being a torus and X being a flat torus.
The equivalence between Definition 1.5 and the set of isotopy classes of hyperbolic metrics
on S for χ(S) < 0 is shown in [10].
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2 Classification of embedded curves under Curve
Shortening Flow on surfaces defined with a
Euclidean Metric

After establishing Grayson’s theorem of embedded curves on smooth ori-
entable surfaces, a natural question arises: how would you classify the embed-
ded curves that converge to a geodesic and the ones that shrink to a point?
In this paper, we would tackle this question case by case for the surface the
curves are embedded in. Section 2 would exclusively deal with surfaces with
the metric induced from their embedding in Euclidean space. We will use
the term Euclidean metrics to represent these metrics.

2.1 Classification of embedded curves on a round sphere

On a round sphere, by Jordan curve theorem, an embedded curve on the
surface splits the sphere into two faces. Both faces are homeomorphic to
discs. The Gauss-Bonnet formula9 reads as the following.∫

Ω

κdA+

∫
∂Ω

κgds = 2πχ(Ω)

where on top of the variables in equation (2) and (3), κ is the Gaussian
Curvature and χ(Ω) is the Euler characteristic of Ω. Here, the region enclosed
by a curve on the sphere would be homeomorphic to a disc; thus, χ(Ω) is 1.
Note that as derived in equation (2),

dA

dt
= −

∫
∂Ω

κgds

Plugging (2) into Gauss-Bonnet, we obtain

dA

dt
=

∫
Ω

κdA− 2π (5)

Note that κ is 1 for a unit sphere, and; thus, the equation reads as

dA

dt
= A(t)− 2π

9Remind ourselves that compactness of Ω is required to apply the theorem. The com-
pactness condition in the term surfaces allows this.
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Solving this differential equation, we obtain that A(t) is cet + 2π where the
constant c is forced to be A(0) − 2π by the initial conditions. Thus, if
A(0) < 2π, the curve shrinks to a point when t = log(2π)− log(2π − A(0)).

When the enclosed area defined, likewise to the introduction, under the
conventional choice of normal vector N is larger than 2π, dA

dt
obtains a pos-

itive value for all t. This insists that the area we would like to observe the
outcome of is actually the complement. We can resolve this issue by taking
−N to reverse the normal direction n such that the enclosed area would
be defined as the area smaller than 2π. Thus, the curve would shrink to a
point. For A(0) = 2π, A(t) is constantly 2π; thus, the curve would exist for
an infinite time. Grayson’s theorem implies that such curves would converge
to a geodesic.

2.2 Applying the Gauss-Bonnet Argument for Curve
Shortening Flow

In Theorem 5, we have introduced that the Euler Characteristic is an iso-
topy invariant. Thus, if the Euler characteristic of the two regions (or the
whole surface if the curve is not separating10) are not 1, we could conclude
that this curve would not shrink to a point, which has Euler Characteristic
1. We denote these cases as when embedded curves do not bound discs. By
Grayson, such embedded curves would converge to geodesics. In this section,
we cautiously define enclosed areas to apply the Gauss-Bonnet Argument for
Curve Shortening Flow.

Prior to the construction, let’s remind ourselves that orientable surfaces
that are not homeomorphic to spheres can not have an embedded curve sep-
arating them into two (regions homeomorphic to) discs. Thus, when dealing
with surfaces that are not homeomorphic to spheres, which would be the case
for the rest of the section, there would be only one surface that would be
homeomorphic to a disc if existent.

The isotopy argument above implies that cases when the curve bounds
10It is conventional to define curves to be separating when the curve splits the surface

into two components.
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regions with Euler Characteristic 1 would be the only ones where the curve
can shrink to a point. Thus, it is quite natural to set the enclosed area as
the area bounded by the disc. We would use the term: an embedded curve
that bounds a disc regularly to describe this case in the paper. We formalise
this similarly to the A(0) > 2π case for the round sphere.

For the case when the enclosed area defined with N11 is the region home-
omorphic to a disc, we are done. Say, however, that the enclosed area defined
like above is the complement of the region homeomorphic to a disc. We can
take −N so that n of ∂Ω would now be pointing towards the interior of the
region homeomorphic to a disc. We saw that this would not change the value
of κg ·n. From now on, we will think of doing this process automatically when
necessary and just define the enclosed region to be the region homeomorphic
to a disc.

Before we introduce some ideas using the Gauss-Bonnet formula, we
would like to note that the enclosed area defined as above might not neces-
sary be the region shrinking to a point or converging to a geodesic. It could
be the complement.

Following the same procedure as the sphere case, we can insert equation

dA

dt
= −

∫
∂Ω

κgds

into the Gauss-Bonnet formula to obtain

dA

dt
=

∫
Ω

κdA− 2π

For the surfaces where the right hand side of the equality is smaller than 0
for all embedded curves, we can conclude that such a surface does not have a
geodesic bounding a region homeomorphic to a disc (Geodesics are station-
ary). Thus, by Grayson, all curves that bound a region homeomorphic to a
disc would shrink to a point.

Say that dA
dt

is larger or equal to 0 initially, looking at a surface not
homeomorphic to a sphere. If dA

dt
remain to be of non-negative value for all

11We remind the reader of the construction in page 4 of the Introduction.
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Figure 1: Torus

time t, this would imply that the complement of the enclosed area would
be the one shrinking to a point or converging to a geodesic. As this region
does not have Euler Characteristic 1, by the isotopy argument, this would
indicate that the embedded curve would converge to a geodesic. Yet, this
information is not given to us necessarily when given an initial curve12. As
far as we know, although the initial curve increases in area, dA

dt
might be

negative as the curve evolves under Curve Shortening Flow.

2.3 Classification of embedded curves on a rotational
torus

In this section, the surface of interest would be a rotational torus defined
under a Euclidean Metric. We would parameterise the torus using the follow-
ing terms: c would be the major radius; a the minor radius; and u,v angles
defined as in Figure 1. We would be only looking at the conventional ring
torus, where c is larger than a. Let v be from −π to π and u from 0 to 2π.
The parameterisation reads as

x = (c+ acosv)cosu

y = (c+ acosv)sinu

z = asinv

Let’s first apply the isotopy argument to the torus case. For embedded
curves that do not bound regions homeomorphic to discs, as the Euler Char-
acteristic of the bounded region is not 1, they can’t shrink to a point. By

12unless we know that the area is proportional to the integral of the Gaussian curvature
over the area such as the sphere case
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Grayson, this implies that they converge to a geodesic. For embedded curves
that bound a region homeomorphic to a disc, we can first attempt to create
an analogous argument to the sphere case.

Calculating the first fundamental form and second fundamental form of
the torus, we obtain the Gaussian curvature and |∂γ/∂u × ∂γ/∂v|, where
the curve is represented as γ. They are precisely cos(v)/a(c + acos(v)) and
a(c+ acos(v)), resulting the integral

∫
Ω
κdA to read as∫ ∫

Γ

cos(v)/a(c+ acos(v)) · a(c+ acos(v))dudv

where Γ is the enclosed area Ω re-parameterised in terms of u, v. Returning
to the form

dA

dt
=

∫
Ω

κdA− 2πχ(Ω),

the equation would read as

dA

dt
=

∫ ∫
Γ

cos(v)dudv − 2π (6)

since the Euler Characteristic of the region enclosed by the curve is 1. Note
that ∫ ∫

Γ

cos(v)dudv <

∫ π/2

−π/2

∫ 2π

0

cos(v)dudv = 4π

This inequality holds as the right hand side is when the integral is maxi-
mum. The strictness follows from the fact that a region with the integral
equal to the right hand side exists uniquely on the surface of a torus and is
not bounded by an embedding. We can justify this. The region of u varying
from 0 to 2π and v from −π/2 to π/2 in Figure 1 is not bounded by an
embedding. The complement of this region has negative Gaussian curvature
at every point and every point in the interior of the region has positive Gaus-
sian curvature. Hence, the integral of the Gaussian curvature of this region
is maximum and unique.

An area enclosed by an embedding where the integral of the Gaussian cur-
vature is larger than 2π would increase initially. Thus, an analytic argument
using the Gauss-Bonnet formula would not give a complete classification for
embedded curves under Curve Shortening Flow on a rotational torus. Yet,
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Table 1: Geodesic characterisation, drawn likewise to Barret O’Neill [11]

for the case of a rotational torus, the geodesics are characterised. The idea
used to characterise geodesics is using Clairaut’s Parameterisation with the
Geodesic equation. Geodesics of X(u, v) depend on one parameter: the
geodesic slant, which is (c+acos(v))sin(ϕ), where ϕ is the angle between the
geodesic and Xu [11]. Clairaut’s relation implies that the geodesic slant is
constant along a geodesic. The characterisation of the geodesics of the torus
is given in table 1.

Note that we are looking at non self-intersecting geodesics only, as we
are looking at embedded curves and non self-intersecting curves can not self
intersect (Theorem 1), evolving under Curve Shortening Flow. We can see
that the geodesics can not bound a disc, as none of the geodesics are sep-
arating. For a visualisation of the geodesics, we would refer the reader to [11].

As geodesics of the rotational torus do not bound a disc, by an isotopy
argument, we can conclude that embedded curves on a torus that bound a
disc can not converge to a geodesic. By Grayson, this would imply that such
curves shrink to a point.

Theorem 10 If an embedded curve on a rotational torus bounds a disc, it
would shrink to a point and otherwise, it would converge to a geodesic.

A question arises from the observation made above: would the topological
property that a geodesic does not bound a disc hold for a surface homeomor-
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Figure 2: Geodesic bounding a disc of a surface homeomorphic to a torus

phic to a rotational torus i.e, a general torus? If we could show that this is
the case, this could be a suitable approach to classify embedded curves on
more general surfaces in the later sections. However, this is not the case. The
red curve A of Figure 2, constructed so that the derivative of the tangent
vector at points of A are all parallel to the normal vectors of the surface13,
bounds a disc.

Let’s bring attention to the fact that two topologically equivalent surfaces
did not agree on a topological property of the geodesics: whether there exists
a geodesic that bounds a disc. This implies that in regards of determining
whether a geodesic bounds a disc, using a topological argument of the surface
would not hold. [Remark 2.1]

2.4 Embedded curves on a g-genus torus

In this section, the object of interest would be the g-genus torus Mg ob-
tained by gluing g tori when each torus is parameterised likewise to the sec-
tion before. The smoothness would imply that we would have to smoothen
out, alter the Gaussian curvature of points on the torus, such that the glu-
ing boundary would be smooth everywhere. By Gauss-Bonnet,

∫
Mg

κdA =

2πχ(Mg), we know that the integral of the curvature over the surface is of
negative value for a g-genus torus. Thus, we can note that in the smoothen-

13This is a geodesic [11].
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ing out process, we would normally introduce negative Gaussian Curvature.
How we define this smoothening out procedure would alter the geodesics of
the g-genus torus.

Let’s say for now that we specify a well-defined smoothening out proce-
dure and; hence, get a g-genus torus with parameterisation Γ. Would there
be cases where we get a parameterisation in terms of angles u, v? If so, like-
wise to the torus case, we would get a explicit expression for the Gaussian
Curvature and perhaps be able to characterise the geodesics of the g-genus
torus. Yet, such a parameterisation does not exist. Let’s prove this rigorously.

Theorem 7 states that Riemannian metrics of smooth orientable surfaces
induce complex structures. This allows us to interpret the g-genus torus
with the Euclidean metric as a Riemann surface with its induced complex
structure. We can view parameterisations in terms of u, v as maps defined
on the flat torus, viewed as the quotient space: R2/(2πZ)2. The Riemann-
Hurwitz Formula reads as

χX = χY · d−
n∑

i=1

(ei − 1)

14 for a meromorphic map f : X → Y in which this case, X is the torus. This
implies that f(T ), the image of the torus under the map f , can not have an
Euler Characteristic of negative value.

Hence, the Gauss-Bonnet argument or geometric arguments using an ex-
plicit form of the Gaussian Curvature κ would not be applicable to the g-
genus torus case. Yet, an isotopy argument would still stand. Thus, for all
embedded curves that do not bound a region homeomorphic to a disc, the
curves would converge to a geodesic under the Curve Shortening Flow. For
embedded curves that bound a disc, for now, the observations above imply
that when defined under a Euclidean Metric, there would not exist direct ap-
plications of the methods used for the round sphere or the rotational torus.
This motivates viewing the g-genus torus in a different Riemannian metric
so that we can get an explicit parameterisation for κ.

14χ is the Euler Characteristic, d the degree of the meromorphic map, and ei the rami-
fication index. n indicates the number of ramification points.
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2.5 Surfaces under a Euclidean Metric with full classi-
fications

Likewise to the g-genus torus case, the isotopy argument using the fact
that the Euler Characteristic is a homotopy invariant can be applied to a
general surface. When an embedding does not bound a region homeomor-
phic to a disc, the area would not be able to shrink to a point which has
Euler Characteristic 1. By Grayson’s theorem, this implies that such curves
converge to a geodesic of the surface.

In this section, the paper would illustrate some surfaces on which we can
make interesting observations for when χ(Ω) is 1.

2.5.1 Surfaces with negative Gaussian curvature everywhere

Albeit not existing as a surface embedded in R3, surfaces with negative
Gaussian curvature on all of its points can be embedded in higher dimensions
[12]. We can obtain a classification for a family of surfaces that include
surfaces with negative Gaussian curvature everywhere.

2.5.2 Surfaces that satisfy
∫
Ω
κ+dA < 2π

One classification of surfaces that we could classify would be the ones that
we can use the isoperimetric inequality on given by Fiala-Huber [1].

L2 ≥ 2A(2π −
∫
Ω

κdA)

In [1], the condition for the inequality is given as∫
Ω

κ+dA < 2π

where κ+ is defined as the Gaussian curvature κ when it is positive and 0
when negative. As we are integrating over compact sets, for the area A of an
arbitrary enclosed region homeomorphic to a disc, there would exist a real
number ϵ such that dA

dt
< −ϵ. Geodesics are stationary i.e., dA

dt
= 0. Hence,

this implies that a geodesic bounding a disc would not exist. (This argument
was introduced in section 2.2.) Thus, by Grayson, embedded curves bound-
ing a disc would shrink to a point.
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3 Classification of embedded curves that con-
verge to Systoles under Curve Shortening Flow

The Uniformisation theorem states that there are Riemannian metrics un-
der which a surface M has constant Gaussian Curvature. Dealt in section
3.1, having constant curvature would give us a complete classification of the
outcome of embedded curves on orientable surfaces defined under these Rie-
mannian metrics. Yet, even in this abstract setting, the behaviour of the
embedded curves such as which specific limit they would converge to if con-
verging to a geodesic remains not answered.

Systoles of a surface are the shortest closed geodesics of the surface. Ex-
tending from the complete classification of outcomes (whether the embed-
ding would shrink to a point or converge to a geodesic) of embedded curves
in section 3.1, we attempt to classify curves that would converge to these
geometrically significant objects. The isotopy class of embedded curves on
the surfaces would be the subject of interest.

3.1 Classification of embedded curves on surfaces under
a Riemannian metric in which they have constant
Gaussian curvature

Applying the Uniformisation theorem, we obtain a classification for em-
bedded curves under the Curve Shortening Flow on every oriented surface
when defined under a Riemannian metric in which it has constant Gaussian
curvature. Note that this is different from classifying the behaviour of em-
bedded curves under the Curve Shortening Flow when given an arbitrary
surface and an arbitrary metric.

We have established that the Uniformisation theorem can be extended
to smooth orientable surfaces in Theorem 8. Deducing from Theorem 8 and
section 2.2, in Figure 3, we give a complete classification.
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Figure 3: Classification of the behaviour of embedded curves on surfaces with
constant curvature; Uniformisation Theorem

Here are some brief justifications for the result given above.

• For a surface M with positive Euler characteristic, by Uniformisation
theorem, it can be given a Riemannian metric where its Gaussian Cur-
vature is 1. We can complete the classification of embedded curves on
such surfaces using an analogous argument of the Gauss-Bonnet argu-
ment on the round sphere for embedded curves bounding a disc. The
criteria for the initial area A(0) = 2π is applicable as well, as the Gauss-
Bonnet formula for surface M :

∫
M
κdA = 2πχ(M) suggests that the

area of surface M with constant curvature 1 is 4π.

• For a surface M with zero Euler Characteristic, by Uniformisation, it
can be defined with a Riemannian metric where its Gaussian curvature
is 0. Thus, we can complete the classification by using the Gauss-
Bonnet argument. dA

dt
would be −2π for all embedded curves bounding

a disc; hence, shrink to a point.

• For a surface M with negative Euler Characteristic, by Uniformisation,
there exists a Riemannian metric where its Gaussian Curvature is -1.
The classification follows from the result we’ve got from section 2.5 for
surfaces with negative Gaussian curvature everywhere.
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3.2 Classification of embedded curves that converge to
the Systoles of a flat torus

By Uniformisation theorem, we can note that there exists Riemannian
Metrics where the torus is a flat torus. The planar model of a Torus suffices
to demonstrate this: R2/Z2. We can further note that the Teichmüller space
characterising such Riemannian metrics is the upper half plane with the
group action of PSL(2,Z): the projective special linear group of degree 2 over
the integers. We can briefly justify this. Each parallelogram can be rotated
or translated such that one of its vertices is the origin and one of the edges
containing the origin lies on the x-axis. We can correspond the antipodal
point of the origin on the parallelogram to a point on the upper half plane.
It is natural to think of the rotations and translations done on these tori as
the action of PSL(2,Z). Thus, the result holds. For a rigorous proof and
description of this result, we would refer the reader to [13]. We would try to
understand how the parameters in the Teichmüller space correspond to the
geometry of the flat torus and discuss their geodesics and systoles.

3.2.1 Geodesics and Systoles of a flat torus

The geodesics of a plane are lines. As we are looking for closed geodesics on
a flat torus, the union of line segments we are interested in should start from
a point and end at the point it’s identified with on the boundary. Looking
at the fundamental group of the torus would give the following description
of the closed geodesics.

Theorem 11 The fundamental group of a torus is Z×Z. Each isotopy class
of the closed embedded geodesics of a flat torus, which would be a union of line
segments 15 starting from a point on the boundary and ending at its identified
point on the boundary, would be represented with winding numbers (x,y)
where x would be amount of times the geodesic wraps around the flat torus
horizontally, parallel to the x-axis, and y vertically, parallel to the other pair
of sides of the parallelogram16. Diagonal lines would have (1,1) as their
winding number. Horizontal lines would have (1,0) and vertical lines (0,1).
Geodesics with different winding numbers would not be isotopic to each other
[7]. Figure 4 illustrates the closed geodesics.

15not intersecting with each other apart from their end points
16With the parallelogram rotated or translated such that one vertex is on the origin and

one side on the x-axis.
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Figure 4: Closed geodesics and its winding numbers

Figure 5: Fundamental domain of the Teichmüllerspace of a torus; drawn
likewise to [13]

When determining which one of the closed geodesics are systoles, we
would consider the variable: L2/A, with L being the length of the curve and
A being the area of the flat torus, instead of just the length L. The infinite
case motivates this. When the side lengths of the parallelogram are infinite,
it would not be possible to compare the lengths of the closed geodesics. By
Loewner’s inequality [14], we have an upper bound for our variable: 2/

√
3.

For the angle being close to 0, this variable would also be helpful as well.

Note that with the variable L2/A, a torus with length l1 on its side on the
x-axis and l2 on its other side with angle θ would have the exact geodesics
and systoles as its scalar scaled version of length 1 on the x-axis, length
τ = l2

l1
on its other side and angle θ. We can think of the parameters of

the Teichmüllerspace as angle θ and length τ . On this setting, let’s remind
ourselves what the fundamental domain of the action of (PSL2,Z) on the
upper half plane looks like (Figure 5).
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Figure 6: Drawn likewise to Jean P.Serre [13]

Theorem 12 Calculation of the length of the line segments gives us the fol-
lowing classification of systoles when τ = 1.

• For π/3 < θ < 2π/3, the systoles are the horizontal lines and the
vertical lines

• For θ = π/3 θ = 2π/3, the systoles are the horizontal lines, vertical
lines, and (1,1) lines parallel to the shorter diagonal.

• For θ < π/3 or θ > 2π/3, the systoles are (1,1) lines parallel to the
shorter diagonal.

It is shown in [13] that for the fundamental domain of the action of
PSL(2,Z) on H, on the points τ = 1; θ = π/3, 2π/3, the group does not act
freely17. We can observe that this is where we have systoles with winding
numbers: (1,0), (0,1), (1,1). For θ smaller than π/3 or larger than 2π/3,
which are outside the fundamental domain of the Teichmüller space, we can
map this back to the fundamental domain by using Figure 6, where S and T
are the rotation, translation matrices forming the basis of PSL(2,Z).

3.2.2 Classification of embedded curves that converge to the Sys-
toles of a flat torus

From Section 3.1, as embedded curves in the interior of the flat torus
would bound a disc, we can deduce that embedded curves that start and end

17A group acts freely if its stabilisers are trivial.
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at points that are identified to each other on the boundary are the only ones
that converge to closed geodesics.

Let’s first introduce the concept of Strip-distance for embedded curves
that have winding number (1,0) with the horizontal lines of the flat torus.
Strip-distance for embedded curves with winding number (0,1) or (1,1) would
be done analogously. Note that such curves are not isotopic to each other;
hence, the notion of Strip-distance is well defined.

Definition 3.1 Strip-distance of A from B along x would be defined as
the sum of signed distance, as x changes its value, say from 0 to 1 in the
setting from Section 3.2.1, between two embedded curves A and B where it
is given a positive sign when for a certain x, A is above B and negative sign
when for x, B is above A.

We would claim using this definition that two embedded curves evolved
under Curve Shortening Flow would have Strip-distance 0. A simple argu-
ment using the definition of Curve Shortening Flow and the Fundamental
theorem of Calculus suffices to prove this. Note that we can interpret em-
bedded curves on a flat torus as graphs. Say f and g. As the curves are
closed, we know that these graphs are periodic. Let’s integrate f − g for x
from 0 to 1. This would be exactly F (1) − F (0), by Fundamental theorem
of Calculus, for some integrand F . Yet, as these two curves are related to
each other by Curve Shortening Flow, this F would be the flow between
the two embedded curves. As x = 1 is identified to x = 0, and hence the
same point, F (1)−F (0) would be 0. Hence, the Strip-distance would be zero.

By Grayson, embedded curves not bounding discs converge to geodesics.
They don’t converge to geodesics that are not isotopic to them; hence, the
horizontal lines are the candidates. Among these, the ones with non zero
Strip-distance can not be the geodesics the embedded curves converge to
from the argument above. Thus, they would have to converge to the geodesic
with Strip-distance 0. We can duplicate both directions with Strip-distances
defined for vertical lines and for lines with winding number (1,1).

Theorem 13 Embedded curves on the flat torus converge to systoles under
Curve Shortening Flow if and only if they do not bound discs and have Strip-
distance 0 with the systoles they converge to.
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Figure 7: Hyperbolic double torus in Poincaré disc model

3.3 Classification of embedded curves that converge to
the Systoles of hyperbolic surfaces

For the flat torus, we could describe it as a parallelogram with side iden-
tifications. A hyperbolic surface could be thought of as in a similar way
using the Poincaré Disc Model. One way to construct a hyperbolic double
torus would be an arc-length regular octagon with side identifications on the
Poincaré disc. We illustrate this in Figure 7.

Geodesics of the Poincaré disc are arcs orthogonal to the boundary circle
or diameters of the circle. The planar models should be hyperbolic tilings, i.e.,
the angle between the two incident arc-lengths forming the octagon should
have angle 45 degrees. The second picture in Figure 7 helps us calculate
the arc lengths of the hyperbolic octagon. The arc lengths of the hyperbolic
octagon are the second longest length of a triangle of angles π/2,π/3, π/8.
Using the cosh(c) = cot(α) cot(β) relation, we get that the arc lengths of the
octagon are cosh−1(2 cos(π/8)√

3
) = 2 cosh−1(1 +

√
2).

3.3.1 The Systoles of a double torus and its Teichmüller space of
marked hyperbolic surfaces

Figure 7 in the earlier section has a specific name: the Bolza surface. We
will state and roughly derive the length spectrum of the Bolza surface that
indicates that the regular arcs of the octagon are the systoles of this surface.
For further details, we will refer to the works of Aurich [15]. Let’s think
about the symmetry group for the Bolza surface. Rotations in the Poincaré
disc model would not be different from the canonical sense. Yet, the trans-
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lation would need a new definition, as the lengths are defined differently in
this model18. Let’s denote the subgroup of the symmetry group of the Bolza
surface that contains only hyperbolic translations as G. The generators of G
can be derived to be in the following form [15], where k represents the kth
vertex, counting from 0 to 7.

gk =

(
1 +

√
2 (2 +

√
2)(
√√

2− 1)(exp ikπ
4
)

(2 +
√
2)(
√√

2− 1)(exp −ikπ
4

) 1 +
√
2

)
For all closed geodesics, we can get the expression of its corresponding

hyperbolic translation as products of these generators and its inverse. We
can express this as the following19.

g =

(
a b
b∗ a∗

)
Aurich, looking at closed geodesics as periodic orbits, motivates that the

length of the geodesic would be two times the real part of a in the matrix
above. This gives us the explicit expression of the length spectrum of the
closed geodesics of the Bolza surface. They are written as m+ n

√
2 for nat-

ural numbers m, n where n goes from 1 to all the natural numbers whilst m
satisfies to be the odd number that minimises |m− n

√
2| [16]. This gives us

that the regular arcs are indeed the systoles and gives an explicit expression
for the other lengths of closed geodesics.

A pants decomposition of the Bolza surface is given in Figure 8. Given
a Fenchel–Nielsen coordinate of the Bolza surface, we can note the follow-
ing about the embedded curves that converge to the systoles using equa-
tion (3). One of the most commonly used coordinates for the surface is
(l1, t1; l2, t2; l3, t3) = (2 cosh−1(1 +

√
2), 0; 2 cosh−1(1 +

√
2), 0; 2 cosh−1(3 +

2
√
2), 1/2) [15]. We note that there are no closed geodesics of length20

between l1 and l3. Using the fact that Curve Shortening Flow is length
decreasing for non-geodesic curves, we can describe a family of embedded

18The length between two points p and q are ln( |aq||pb||ap||qb| ) where points a and b are defined
as the two points the geodesic passing through p and q meet with the boundary circle.

19Here, * denotes complex conjugates. Justification can be done by noting that the
symmetry group would be the pseudo unitary group: SU(1, 1)/±1 [15].

20The length spectrum of the Bolza surface justifies that l3 is the second shortest length
of closed geodesic.
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Figure 8: Pants decomposition of hyperbolic double torus, drawn likewise to
[10]

curves that converge to the systoles as embedded curves that do not bound
discs and have length shorter than l3. Yet, this would not be a full classifi-
cation which we will find out in the next section.

Given a hyperbolic surface, we can identify its systolic length by describ-
ing its group of hyperbolic translations as products of generators and getting
its length spectrum likewise to the example of the Bolza surface. We refer
the reader to [16] for calculations on higher genus surfaces as well such as
the Klein Quartic.

3.3.2 Classification of the embedded curves that converge to the
Systoles of hyperbolic surfaces

By Theorem 9, a geodesic of a hyperbolic surface would be the unique
one in its isotopy class of embedded curves evolved under Curve Shortening
Flow. Note that if the systole does not bound a disc, then the elements of
its isotopy class would not be able to shrink to a point. Hence, by Grayson,
they would converge to a geodesic in the isotopy class. We have that such
a geodesic is uniquely the systole in this case; hence, the embedded curves
of the isotopy class of the systole all converge to the systole under Curve
Shortening Flow. By the isotopy argument, we can conclude that embedded
curves in other isotopy classes can not converge to the systole; hence, this is
a complete classification.
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We can conclude that in fact, geodesics of hyperbolic surfaces can’t bound
discs using section 3.1. We have the result by using the Gauss-Bonnet argu-
ment, that all embedded curves that bound a disc would shrink to a point.
Hence, if there exists such a geodesic, the geodesic would shrink to a point
under Curve Shortening Flow. Geodesics are stationary; hence, a contradic-
tion.

Theorem 14 Embedded curves of hyperbolic surfaces converge to a systole
if and only if they are in the isotopy class of the systole.

4 Conclusion
In this paper, we obtained classifications of the behaviour of embedded

curves under Curve Shortening Flow whilst varying the surface it was de-
fined on. We restricted the surfaces of interest to smooth closed connected
orientable 2-manifolds.

We first scrutinised surfaces with the metric induced from their embed-
ding in Euclidean space. Combining the results given by Barrett O’Neill on
the geodesics of a rotational torus [11] and Theorem 5 [7], we obtained the
dichotomy: if an embedded curve on a rotational torus bounds a
disc, it would shrink to a point and otherwise, it would converge
to a geodesic. For the g-genus torus, using the Riemann-Hurwitz formula,
we justified why a likewise geometric argument would not work. For gen-
eral surfaces, embedded curves bounding discs were the curves that we could
not determine the outcome of. We could, however, adapt the Gauss-Bonnet
argument to obtain a classification for surfaces that satisfy

∫
Ω
κ+dA < 2π.

This held significance, as this is the condition for the isoperimetric inequality
given by Fiala-Huber [1].

We, next, looked at the orientable surfaces under the Riemannian metrics
in which they have constant Gaussian curvature. From Uniformisation theo-
rem and the results above, we could naturally obtain a complete classification
for orientable surfaces under such metrics (Figure 3, Section 3.1). Defining
the notion of Strip-distance and using Theorem 11, we obtained that em-
bedded curves on the flat torus converge to systoles under Curve
Shortening Flow if and only if they do not bound discs and have
Strip-distance 0 with the systoles they converge to. The Teichmüller
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space of marked hyperbolic surfaces up to a homotopy gave us the foundation
to formulate arguments when dealing with hyperbolic surfaces (such as the
Fenchel-Nielson coordinates). A geometric result about hyperbolic surfaces:
Theorem 9 [10] combined with Theorem 5 [7] and Grayson’s theorem gave
us the desired classification: embedded curves of hyperbolic surfaces
converge to a systole if and only if they are in the isotopy class of
the systole. That the arc-length L of embedded curves is monotone under
Curve Shortening Flow [3] combined with results from Aurich [15], gave a
description of a subset of the isotopy class of the systoles: embedded curves
not bounding discs with L smaller than the second shortest length of closed
geodesics would be in the isotopy class of the systoles.

The isotopy class of embedded curves on the flat torus was not enough
to determine which geodesic the embedding would converge to, as there were
many different geodesics of the same isotopy class. When not dealing with
hyperbolic surfaces, we do not have the uniqueness of geodesics in each iso-
topy class. For surfaces with positive constant curvature, due to this, it would
be a completely different type of question to the flat torus or the hyperbolic
case. Geodesics of round spheres, for instance, are not only in the same iso-
topy class but also have Strip-distance 0 to each other. We would need to
introduce more sophisticated arguments to deal with the positive curvature
case. Finding an argument that would help one determine whether a surface
would contain geodesics that bound discs would be helpful in completing the
classification for the surfaces we failed to do so. The example in section 2.3
demonstrates that an argument using the topological properties of the sur-
face would not be effective. This steers the direction of further research on
the classification of embedded curves under Curve Shortening Flow.
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