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Abstract

In the context of Hermitian geometry, the Hull–Strominger system is a system

of non-linear PDEs on heterotic string theory, over a six-dimensional mani-

fold endowed with an SU(3)-structure. Its seven-dimensional analogue, the

heterotic G2 system, is a system for both geometric fields and gauge fields

over a manifold with a G2-structure. In this thesis, we study manifolds with

geometric structures compatible with the Hull–Strominger system and the

heterotic G2 system in the cohomogeneity one setting. In the former case,

we develop a case-by-case analysis to provide a non-existence result for bal-

anced non-Kähler SU(3)-structures which are invariant under a cohomogeneity

one action on a simply connected six-manifold. In the latter case, we study

two different SU(2)2-invariant cohomogeneity one manifolds, one non-compact

M = R4 × S3, and one compact M = S4 × S3. For R4 × S3, we prove the ex-

istence of a family of coclosed (but not necessarily torsion-free) G2-structures

which is given by three smooth functions satisfying certain boundary con-

ditions around the singular orbit and a non-zero parameter. Moreover, any

coclosed G2-structure constructed from a half-flat SU(3)-structure is in this

family. For S4 × S3, we prove that there are no SU(2)2-invariant coclosed

G2-structures constructed from half-flat SU(3)-structures. Then, we study

the existence of SU(2)2-invariant G2-instantons on R4 × S3 manifold with the

coclosed G2-structures found. We find two 1-parameter families of smooth

SU(2)3-invariant G2-instantons with gauge group SU(2) on R4×S3 and study

its “bubbling” behaviour. We also provide existence results for locally defined

SU(2)2-invariant G2-instantons.
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Introduction

In 1955, Berger presented a complete classification of the groups which can possibly occur

as the holonomy groups of simply connected, irreducible, non-symmetric Riemannian

manifolds [Ber55]. If the holonomy group of a manifold is contained in either of U(n),

SU(n), Sp(n), Sp(n)Sp(1), G2 or Spin(7), we say that the manifold has special holonomy.

Two of these groups have gathered special interest from the mathematical community,

the special unitary group of dimension n, SU(n); and the Lie group G2, which (together

with the group Spin(7)) is one of the so-called exceptional holonomy groups. A manifold

with special holonomy group H admits a special type of geometric structure, known as an

H-structure, which has vanishing torsion. The H-structures which present some torsion

expand the concept of special holonomy, and naturally appear in physical theories such

as heterotic string theory and M-theory.

In the context of Hermitian geometry, an SU(3)-structure on a six-dimensional mani-

fold consists of the data of a Riemannian metric, an orthogonal almost complex structure

and a nowhere-vanishing holomorphic (3, 0)-form satisfying a normalisation condition.

They can be uniquely determined in terms of a 2-form and a 3-form which satisfy certain

properties. An SU(3)-structure may give rise to different types of Hermitian metrics;

such as Kähler metrics and balanced metrics, depending on whether the aforementioned

2-form, known as Hermitian form or fundamental form, is closed, or its second power is

closed. At the present time, we do not have a general method to determine whether a

manifold admits a balanced structure.

Seven-dimensional manifolds with a torsion-freeG2-structure are known asG2-manifolds.
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They exhibit noteworthy properties: they have holonomy group contained in G2 and are

Ricci-flat. The construction of examples of G2-manifolds turned out to be a difficult prob-

lem, with the first complete examples being found on non-compact manifolds by Bryant

and Salamon in 1989 [BS89], and on compact manifolds by Joyce in 1996 [Joy96]. A

G2-structure is a 3-form which is pointwise linearly identified with a certain 3-form on

R7. There are different types of G2-structures with non-vanishing torsion, which have

also attracted substantial interest: closed, coclosed and nearly-parallel. Coclosed G2-

structures are particularly relevant in the context of gauge theory as they provide the

setting to construct G2-instantons. Coclosed G2-structures exist on any oriented spin

seven-manifold [CN15].

On manifolds with a G2-structure, we consider a special type of connections, G2-

instantons, whose study lies at the intersection of special holonomy and gauge theory.

The study of higher dimensional gauge theories (i.e. gauge theories on manifolds of six,

seven and eight dimensions) is motivated by three- and four-dimensional gauge theories. In

particular, G2-instantons, anti-self-dual instantons in four-manifolds and flat connections

on three-manifolds are absolute minimizers of a Chern–Simons type energy functional.

Following Donaldson–Thomas’ suggestion [DT98] we can think about using G2-instantons

to define invariants for compact G2-manifolds, inspired by Donaldson’s work on anti-self-

dual connections on four-manifolds. Some details of this idea were later worked out by

Donaldson and Segal [DS11]. However, the näıve count of G2-instantons on a compact

G2-manifold cannot produce a deformation-invariant, and the construction of such an

invariant is an important open problem.

These structures are not only of great interest for the mathematics community, but also

for mathematical physicists working in string theory. In 1986, Hull and Strominger inde-

pendently introduced a system of partial differential equations in the context of heterotic

string theory [Hul86,Str86], known as the Hull–Strominger system. The Hull–Strominger

system involves a manifold with an SU(3)-structure, a pair of Hermitian metrics and

two gauge fields. Since then, there has been plenty of work on the Hull–Strominger sys-
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tem, both from mathematicians and physicists, but the difficulty to understand one of

their equations, the Bianchi identity, has made it difficult to find solutions. Its seven-

dimensional analogue, known as the heterotic G2 system, is a system for both geometric

fields and gauge fields over a manifold with a G2-structure. In particular, it requires the

G2-structure to be coclosed (after possibly a conformal transformation) and for the ex-

istence of two G2-instantons whose curvatures are related through the heterotic Bianchi

identity. At the present time, solutions to the Hull–Strominger system have been found

under restrictive hypotheses in [AGF12,FY15,Fei16,FHP21,FTY09,FY08,GF18b,Gra11,

OUV17]. For the heterotic G2 system, exact and approximate solutions have been found

in [FIUV11, FIUV15, CGFT16, CGFT20, LE21, dlOG21], but with the exception of the

last two references, these solutions correspond to Lorentzian internal spaces of zero scalar

curvature.

In this thesis, we study special differential-geometric structures in six and seven

dimensions. In particular: balanced SU(3)-structures, coclosed G2-structures and G2-

instantons. Our methodology involves using the theory of homogeneous spaces and Lie

groups to implement a symmetry reduction. These methods lead to considering a specific

kind of manifolds, called cohomogeneity one manifolds, whose metrics can be described us-

ing functions of one parameter. A cohomogeneity one manifold is a Riemannian manifold

with an action by isometries of a compact Lie group having a generic orbit of codimension

one. Cohomogeneity one techniques have played a significant role in the construction of

examples of structures in special holonomy (see [BS89,BGGG01,Bog13,FHN21b,Cla14,

LO18,Oli14,MNT22,ST23]). Moreover, until [FHN21a] and except for [KN10], the known

examples of complete non-compact G2–manifolds were of cohomogeneity one. Therefore,

one can hope that it will be similarly fruitful to utilise this tool in our settings. It is also

the natural next step after the use of homogeneous spaces, also known as cohomogeneity

zero, to construct examples.

We provide a summary of the main results of this thesis. A more detailed layout is

provided at the beginning of each chapter.
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Summary of the results

We divide our results into three parts, corresponding respectively to Chapters 2, 3 and 4

of this thesis.

Balanced metrics on six-manifolds of cohomogeneity one

In Chapter 2 of this thesis we study the existence of balanced SU(3)-structures over

cohomogeneity one manifolds with six dimensions. We first give a local result.

Theorem A. [AS22] Let M be a six-dimensional simply connected cohomogeneity one

manifold under the almost effective action of a connected Lie group G, and let K be the

principal isotropy group. Then, the principal part Mprinc admits a G-invariant balanced

non-Kähler SU(3)-structure (g, J,Ψ) if and only if (g, k) = (su(2)⊕ su(2),R) and R is

diagonally embedded in g or M is compact and (g, k) = (su(2)⊕ 2R, {0}).

The idea of the proof is to first write a classification of the possible pairs (g, k), and then

study which of these pairs admit a G-invariant balanced non-Kähler SU(3)-structures on

the principal part of the manifold, by solving systems of ODEs and algebraic equations.

Then, we use the Eschenburg–Wang method to show that when (g, k) ̸= (su(2) ⊕

su(2),∆R) neither of these structures can smoothly extend to the singular orbits. This

gives the main result of this chapter, which is a non-existence theorem.

Theorem B. [AS22] Let M be a six-dimensional simply connected cohomogeneity one

manifold under the almost effective action of a connected Lie group G, and let K be

the principal isotropy group. Assume (g, k) ̸= (su(2) ⊕ su(2),∆R). Then M admits no

G-invariant balanced non-Kähler SU(3)-structures.

This result gives us a better understanding of manifolds with balanced structures, the

interaction of the conditions of being balanced and being of cohomogeneity one, and how

the cohomogeneity one technique can be used to study the existence of new examples of

solutions to the Hull–Strominger system.
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SU(2)2-invariant coclosed G2-structures

In Chapter 3 of this thesis we study another type of special geometric structures: coclosed

G2-structures. We study two different SU(2)2-invariant cohomogeneity one manifolds,

one non-compact M = R4 × S3 and one compact M = S4 × S3, and look for coclosed

SU(2)2-invariant G2-structures constructed from half-flat SU(3)-structures, that are not

necessarily torsion-free. We first prove the following theorem (see Chapter 3 for a more

detailed statement).

Theorem C. [Alo22] On the cohomogeneity one manifold M = R4 × S3 with group

diagram SU(2)2 ⊃ ∆SU(2) ⊃ {1}, there is a family of SU(2)-invariant coclosed G2-

structures which is given by three positive smooth functions satisfying certain boundary

conditions around the singular orbit, and a non-zero parameter. Moreover, any SU(2)-

invariant coclosed G2-structure constructed from a half flat SU(3)-structure is in this

family.

This family includes a SU(2)3-invariant subfamily of explicit structures. It also in-

cludes some known families of torsion-free G2-structures as particular cases: the Bryant-

SalamonG2-holonomy metric [BS89] and the 1-parameter family of complete (SU(2)2 × U(1))-

invariant G2-metrics of Brandhuber et al. [BGGG01] and Bogoyavlenskaya [Bog13], also

known as the B7 family. We observe that the existence of a class of coclosed G2-structures,

not necessarily torsion-free, of Theorem C contrasts with Theorem B, as in the seven

dimensional analogue, the cohomogeneity one hypothesis does not force coclosed G2-

structures to be torsion-free.

On S4 × S3, we prove a non-existence result.

Theorem D. [Alo22] On the cohomogeneity one manifold M = S4 × S3 with group

diagram SU(2)2 ⊃ ∆SU(2),∆SU(2) ⊃ {1}, there are no SU(2)2-invariant coclosed G2-

structures constructed from half-flat SU(3)-structures.
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G2-instantons on R4 × S3

Chapter 4 of this thesis continues the work of the previous one, and is devoted to the

construction of G2-instantons on the cohomogeneity one manifold R4 × S3, with the

coclosedG2-structures form the previous chapter. We study the existence ofG2-instantons

on the two SU(2)3-invariant SU(2)-bundles on R4 × S3:

P1 = SU(2)2 ×(∆SU(2),1) SU(2), Pid = SU(2)2 ×(∆SU(2),id) SU(2),

corresponding to the trivial and identity isotropy homomorphisms, respectively. The main

result of this work is the following theorem.

Theorem E. Let M = R4 × S3, with a SU(2)3-invariant coclosed G2-structure given by

A1 and b0 > 0 as in Proposition 3.3.9. There exists two 1-parameter families of smooth

SU(2)3-invariant G2-instantons with gauge group SU(2): θx1 , x1 ∈ [0,∞) on the bundle

P1; and θy0 , y0 ∈ [−1/b0, 1/b0] on the bundle Pid.

Theorem E generalises the previous existence results of G2-instantons on R4 × S3

[Cla14, LO18, ST23] by now considering coclosed but not necessarily torsion-free G2-

structures.

We also show that the first family ofG2-instantons of Theorem E presents a “bubbling”

behaviour and removable singularity phenomenon, and we describe the relation between

all G2-instantons encountered. At the end of the chapter we provide existence results for

locally defined SU(2)2-invariant G2-instantons.
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Chapter 1

Preliminaries

The first chapter of this thesis addresses the following questions:

• What are the geometric structures which we study in this thesis?

• Why do we care about them?

• How do we study them?

Therefore, we will start by giving a preliminary background on the special geometric struc-

tures that we will consider in the following chapters: SU(3)-structures and G2-structures,

as well asG2-instantons. Then, we will formally introduce the main motivation of the work

presented here: heterotic systems, with a special focus on the six-dimensional version, the

Hull–Strominger system, and the seven-dimensional version, the heterotic G2-system. Fi-

nally, we will describe our technique for this study: cohomogeneity one. We will also

establish the notation used throughout the thesis.

The layout of this chapter is as follows. In Section 1.1.1 we will recall some back-

ground on Hermitian geometry, including balanced manifolds. We then introduce SU(3)-

structures, define and characterise stable forms, and describe Hitchin’s construction. In

Section 1.1.2 we will give a review of the concept of G2-structures, the associated splitting

of differential forms and the torsion classes of the structure. We also explain how to con-
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struct a G2-structure from a half-flat SU(3)-structure. Finally, we introduce G2-instantons

and discuss known examples.

In Section 1.2.1, we will talk about the motivation of the work presented in Chapter

2 of this thesis: the Hull–Strominger system. The desire to find solutions to this system

of partial differential equations, coming from heterotic string theory, will provide the

setting in which we will be working in Chapter 2 of the thesis. We will give a definition

of this system and a short summary of what we know about the existence of solutions

to it. Then, in Section 1.2.2, we present the seven-dimensional analogue of this system,

known as heterotic G2 system, as it appears in [LE21], and discuss its appearance in the

mathematics literature. This system will provide the setting in which we will be working

in Chapter 3 and Chapter 4 of the thesis.

In Section 1.3, we will develop the relevant mathematical background on cohomogene-

ity one manifolds with two, one or zero ends, including the description of a cohomogeneity

one manifold in terms of its group diagram.

1.1 Special geometric structures

Since the principal bundle formulation of Yang–Mills theory in the 1970s, there has been

a substantial interaction between various areas of physics and differential geometry, via

gauge theory. These approaches require one to consider manifolds endowed with specific

geometric structures, such as metrics with holonomy SU(n) or G2.

1.1.1 SU(3)-structures and stability of forms

LetX be a complex manifold of dimension n with complex structure J and with underlying

smooth manifold M .

Definition 1.1.1 (Hermitian metric). A Hermitian metric is a Riemannian metric g on

M such that

g(J ·, J ·) = g(·, ·).
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Definition 1.1.2 (Hermitian form). Let g be an Hermitian metric on M , the Hermitian

form ω of g is defined by

ω(·, ·) = g(J ·, ·).

The Hermitian form is a (1, 1)-form which is also known as the fundamental form.

Given any two elements of (g, J, ω), the third one can be reconstructed from these two.

There are different types of Hermitian structures.

Definition 1.1.3 (Kähler metrics). A Hermitian metric g on X is Kähler if dω = 0. We

say that a complex manifold is kählerian if it admits a Kähler metric.

Equivalently, g is a Kähler metric if ∇J = 0, where ∇ is the Levi-Civita connection

of g.

There is another special type of Hermitian structure, weaker than the Kähler condition.

Definition 1.1.4 (balanced metrics). A Hermitian metric g onX is balanced if dωn−1 = 0,

We say that a complex manifold is balanced if it admits a balanced metric.

An immediate consequence of this definition is that a Kähler metric is also balanced.

Recall that d∗ = −∗d∗ is the adjoint of the exterior differential d operator for the hermitian

metric g, where ∗ denotes the Hodge star operator of g. Then, as ∗ω = ωn−1/(n − 1)!,

the balanced condition is equivalent to d∗ω = 0.

Definition 1.1.5 (Calabi–Yau n-fold). A Calabi–Yau n-fold is a pair (X, Ω) where X is a

simply connected complex manifold of dimension n and Ω is a non-vanishing holomorphic

global section of the canonical bundle KX = ΛnT ∗X.

Remark 1.1.6. There are different definitions of Calabi–Yau manifolds, and some of them

are inequivalent. Simple connectedness can be included or not in the definition, and so can

compactness. Other definitions require X to have vanishing first real Chern class instead

of the existence of a non-vanishing holomorphic global section of the canonical bundle. By

the Calabi conjecture (see [Joy00, Chapter 6]), for a compact complex Kähler manifold,
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this is equivalent to admitting a Kähler metric with zero Ricci form (see [Bes87, Chapter

11]).

Definition 1.1.7 (Norm of Ω). We define the norm of Ω, ||Ω||ω by the equation

||Ω||2ω
ωn

n!
= (−1)

n(n−1)
2 inΩ ∧ Ω̄. (1.1)

Definition 1.1.8 (U(n)-structure). A U(n)-structure (g, J) on a 2n-dimensional smooth

manifold M consists of a Riemannian metric g and a g-orthogonal almost complex struc-

ture J . The pair (g, J) is also known as an almost Hermitian structure on M .

When J is integrable, i.e. (M,J) is a complex manifold, (g, J) defines a Hermitian

structure on M .

Definition 1.1.9 (SU(n)-structure). An SU(n)-structure (g, J,Ψ) on a 2n-dimensional

smooth manifold M is a U(n)-structure (g, J) on M together with an (n, 0)-form Ψ =

ψ+ + iψ− of non-zero constant norm satisfying the normalisation condition

Ψ ∧ Ψ̄ = (−1)n(n+1)/2(2i)n
ωn

n!
, (1.2)

where ω := g(J ·, ·).

Note that (1.2) is equivalent to ||Ψ||2ω = 2n. Our case of interest is n = 3, where

Ψ = ψ+ + iψ− is a (3, 0)-form of non-zero constant norm.

Definition 1.1.10 (SU(3)-structure). An SU(3)-structure on a six-dimensional smooth

manifoldM is the data of a Riemannian metric g, a g-orthogonal almost complex structure

J , and a (3, 0)-form Ψ = ψ++ iψ− of non-zero constant norm satisfying the normalisation

condition

ψ+ ∧ ψ− =
2

3
ω3, (1.3)

where ω := g(J ·, ·).
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One can show that the SU(3)-structure actually depends only on the pair (ω, ψ+) ∈

Ω2(M) × Ω3(M). Before getting into the proof of this fact, we first need to explain the

concept of stability of forms in vector spaces and in manifolds.

Definition 1.1.11 (stability of forms). Let V real six-dimensional vector space. We say

that α ∈ Ωk(V ∗) is stable if its orbit under the action of GL(V ) is open in Ωk(V ∗). We

say that α ∈ Ωk(M) is stable if αp is a stable form on the vector space TpM for all p ∈M .

Fix an orientation Ω ∈ Ω6(V ∗). Consider the isomorphism

A : Ω5(V ∗) → V ⊗ Ω6(V ∗);

α 7→ A(α) = v ⊗ Ω,

(1.4)

where v is such that ιvΩ = α, and ιv denotes the contraction by the vector v. If ψ ∈

Ω3(V ∗), then ιvψ ∧ ψ ∈ Ω5(V ∗), so we can define a linear map

Kψ : V → V ⊗ Ω6(V ∗);

v 7→ A(ιvψ ∧ ψ),
(1.5)

and a non-linear map

P : Ω3(V ∗) → Ω6(V ∗)2;

ψ 7→ 1

6
tr(K2

ψ).
(1.6)

With these functions we write the following definition.

Definition 1.1.12. Define λ : Ω3(V ∗) → R by

λ(ψ) = ιΩ⊗ΩP (ψ).

Note that A and the sign of λ do not depend on the choice of orientation (only λ

depends on the scale). The following Proposition characterises the stability of 2-forms

and 3-forms.
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Proposition 1.1.13. ( [Hit00,Rei07]) Let V be an oriented, six-dimensional real vector

space. Then

(i) a 2-form ω ∈ Ω2(V ∗) is stable if and only if it is non-degenerate,

(ii) a 3-form ψ ∈ Ω3(V ∗) is stable if and only if λ(ψ) ̸= 0.

We not are interested in stable 3-forms with positive λ as they do not define almost

complex structures. We denote by Ω3
+(V

∗) the open orbit of stable 3-forms satisfying

λ < 0. The GL+(V )-stabilizer of a 3-form lying in this orbit is isomorphic to SL(3,C).

As a consequence, every ψ ∈ Ω3
+(V

∗) gives rise to a complex structure

Jψ := − 1√
|P (ψ)|

Kψ, . (1.7)

which depends only on ψ and on the volume form Ω. From the definition of Kψ, we have

K2
ψ = λ(ψ)I, so J2

ψ = −I.

Let (ω, ψ+) ∈ Ω2(M) × Ω3
+(M) be a pair of stable forms, satisfying the compatibility

condition

ω ∧ ψ+ = 0. (1.8)

Let J = Jψ+ . Define

ψ− := Jψ+ = ψ+(J ·, J ·, J ·), (1.9)

and define Ψ := ψ+ + iψ−, which can be shown to be a nowhere vanishing (3, 0)-form.

We observe that ψ− = −ψ+(J ·, ·, ·). Finally, setting g(·, ·) := ω(·, J ·) we get an SU(3)-

structure (g, J,Ψ) provided that g is a Riemannian metric and the normalisation condition

is satisfied, just from the data (ω, ψ+). We also note that

ψ+ ∧ ψ− = P (ψ+)

up to a constant, so the normalisation condition (2.6) can be written purely in terms of

ω and ψ+.
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Conversely, given an SU(3)-structure (g, J,Ψ) on M , the pair (ω, ψ+) given by

ω := g(J ·, ·), ψ+ := Re(Ψ)

satisfies the compatibility condition ω ∧ ψ+ = 0 and the stability condition λ(ψ+) < 0.

From [FTUV09], we define balanced SU(3)-structures as follows:

Definition 1.1.14 (balanced SU(3)-structure). We say an SU(3)-structure (g, J,Ψ) on

a six-dimensional manifold M is balanced if the Kähler form ω satisfies dω2 = 0 and the

complex volume (3, 0)-form Ψ is closed.

We also introduce another condition for SU(3)-structures, which is weaker than being

balanced.

Definition 1.1.15 (half-flat SU(3)-structure). We say that an SU(3)-structure given by

the pair (ω, ψ+) is half-flat if

dψ+ = 0, dω2 = 0.

1.1.2 The geometry of G2-structures

We will give a summary of the geometry of G2-structures, from a Riemannian-geometric

point of view, including a discussion of the torsion. For more details we refer the reader

to [Kar19, Section 4] and references therein.

Consider R7 with the standard euclidean metric g0, for which the standard basis

e1, ..., e7 is orthonormal. Let µ0 = e1 ∧ ... ∧ e7 be the standard volume form associated to

g0 and the standard orientation. Define the “associative” 3-form φ0 by

φ0 = e123 + e145 + e167 + e257 − e356 − e246 − e347, (1.10)

where e1, ..., e7 is the standard dual basis of (R7)∗ and we write eijk = ei ∧ ej ∧ ek. Define
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the “coassociative” 4-form ψ0 by

ψ0 = e4567 + e2367 + e2345 + e1346 − e1247 − e1357 − e1256. (1.11)

The order of e1, ..., e7 used might change between references. One can show using equation

(1.10) that

(a
¬
φ0) ∧ (b

¬
φ0) ∧ φ0 = −6g0(a, b)µ0.

Let ∗0 be the Hodge star operator induced from (g0, µ0). Then

ψ0 = ∗0φ0. (1.12)

We also have

∥φ0∥2 = ∥ψ0∥2 = 7, (1.13)

φ0 ∧ ψ0 = 7µ0. (1.14)

Definition 1.1.16 (Group G2). The group G2 is the subgroup of GL(7,R) that preserves

the standard G2-package on R7, that is,

G2 = {A ∈ GL(7,R) : A∗g0 = g0, A
∗µ0 = µ0, A

∗φ0 = φ0}. (1.15)

Since elements of the group G2 preserve the standard Euclidean metric and orientation

on R7, G2 is also a subgroup of SO(7).

Theorem 1.1.17. ( [Bry87]) If A ∈ GL(7,R) preserves φ0, then it also automatically

preserves g0 and µ0.

Corollary 1.1.18. The group G2 can be viewed explicitly as the subgroup of SO(7)

consisting of those elements A ∈ SO(7) of the form

A = (f1|f2|f1 ×0 f2|f4|f1 ×0 f4|f2 ×0 f4|(f1 ×0 f2)×0 f4)), (1.16)
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where f1, . . . , f7 are column vectors in R7, ×0 is the cross product operation on R7 and

{f1, f2, f4} is an orthonormal triple satisfying φ0(f1, f2, f4) = 0.

Bryant shows that G2 is a compact, connected, simply connected Lie group of dimen-

sion 14 and rank 2.

Definition 1.1.19 (G2-structure). LetM be a smooth seven-manifold. AG2-structure on

M is a smooth 3-form φ onM such that, at every p ∈M , there exists a linear isomorphism

TpM ∼= R7 with respect to which φp ∈ Λ3(T ∗
pM) corresponds to φ0 ∈ Λ3(R7)∗.

A G2-structure φ on M induces a Riemannian metric gφ and associated Riemannian

volume form µφ by

(X
¬
φ) ∧ (Y

¬
φ) ∧ φ = −6gφ(X, Y )µφ, (1.17)

for all X, Y ∈ X (M). Let ∗φ be the Hodge star operator induced from (gφ, µφ). Then the

coassociative form is given by

ψ = ∗φφ.

Only certain smooth manifolds admit G2-structures.

Proposition 1.1.20. ( [Gra69])A smooth seven-manifoldM admits a G2-structure if and

only if M is both orientable and spinnable. This is equivalent to the vanishing of the first

two Stiefel–Whitney classes w1(TM) and w2(TM).

When the conditions of the previous Proposition hold, for any metric g the Riemannian

manifold (M, g) admits a compatibleG2-structure φ ∈ Ω3
+(M) satisfying the compatibility

condition

(X
¬
φ) ∧ (Y

¬
φ) ∧ φ = −6g(X, Y )volg,

for all X, Y ∈ X (M).

Let Ωk = Γ(Λk(T ∗M)) be the space of smooth k-forms on M . We can write a de-

composition of Ω• into irreducible G2 representations. Any subspaces of Ωk defined using
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φ, ψ, g and ∗ will be G2 representations. Let Ωk
l be the irreducible representation of G2

of (pointwise) rank l. We have

Ω2 = Ω2
7 ⊕ Ω2

14,

Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

where

Ω2
7 = {β ∈ Ω2|∗(φ ∧ β) = −2β},

Ω2
14 = {β ∈ Ω2|∗(φ ∧ β) = β} = {β ∈ Ω2|β ∧ ψ = 0},

Ω3
1 = {fφ|f ∈ Ω0},

Ω3
7 = {X

¬
ψ|X ∈ Γ(TM)},

Ω3
27 = {γ ∈ Ω3|γ ∧ φ = 0, γ ∧ ψ = 0}.

(1.18)

Let (M,φ) be a manifold with a G2-structure and let ∇ be the Levi-Civita covariant

derivative associated to the Riemannian metric coming from φ.

Definition 1.1.21 (full torsion tensor). We can write

∇Xφ = T (X)
¬
ψ,

for some vector field T (X) on M . We call T ∈ Γ(T ∗M ⊗ T ∗M) the full torsion tensor of

φ.

The following proposition explains how the torsion of φ is completely described by

four quantities.

Proposition 1.1.22. ( [Bry06, Proposition 1]) For any G2-structure φ ∈ Ω3
+(M), there

exist unique differential forms τ0 ∈ Ω0(M), τ1 ∈ Ω1, τ2 ∈ Ω2
14 and τ3 ∈ Ω3

27 so that the

following equations hold:

dφ = τ0ψ + 3τ1 ∧ φ+ ∗τ3, (1.19)

dψ = 4τ1 ∧ ψ + τ2 ∧ φ. (1.20)
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Definition 1.1.23 (torsion forms). The quadruple of forms (τ0, τ1, τ2, τ3) defined by (1.19)

and (1.20) will be referred to as the intrinsic torsion forms of φ.

Definition 1.1.24 (torsion-free). The G2-structure φ is called torsion-free if ∇φ = 0.

We say (M,φ) is a G2-manifold if φ is a torsion-free G2-structure on M .

Hence φ is torsion-free if and only if T = 0. From (1.19) and (1.20) we also have

that φ is torsion-free if and only if both dφ = 0 and dψ = 0. When φ is torsion-free, gφ

is Ricci-flat and its holonomy is contained in G2. For compact manifolds, the following

theorem tells us when the holonomy is full.

Proposition 1.1.25. ( [Joy00, Chapter 11]) Let (M,φ, g) be a compact G2-manifold.

Then Hol(g) = G2 if and only if π1(M) is finite.

The group G2 is one of the two exceptional holonomy groups in the Berger’s classifi-

cation [Ber55].

Definition 1.1.26 (Associative submanifold). An oriented compact three-dimensional

submanifold L ⊂M is called an associative if

φ|L = volL.

We can classify G2-structures into different types, depending on which components of

the torsion vanish:

(i) torsion-free (∇φ = 0): τ0 = τ1 = τ2 = τ3 = 0;

(ii) closed (dφ = 0): τ0 = τ1 = τ3 = 0;

(iii) coclosed (dψ = 0): τ1 = τ2 = 0;

(iv) nearly-parallel (dφ = λψ, λ ̸= 0): τ1 = τ2 = τ3 = 0.

A G2-structure is of pure type if all but one of the torsion components vanish. We will

be interested in coclosed G2-structures, as for our manifold to admit a solution to the
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heterotic G2 system, we need that (possibly after a conformal transformation) both τ1

and τ2 vanish. As proved by Crowley and Nordström in [CN15], coclosed G2-structures

exist on any oriented spin seven-manifold.

There is a relation between G2-structures and SU(3)-structures, following from the

fact that there is a Lie group inclusion SU(3) ⊂ G2. For the rest of this section and from

Chapter 3, to avoid confusion with the coassociative form, we will write Ω1 = ψ+ and

Ω2 = ψ− for an SU(3)-structure (g, J,Ψ = ψ+ + iψ−).

Recall that an SU(3)-structure given by the pair (ω,Ω2) is half-flat if

dΩ1 = 0, dω2 = 0.

We consider the case where M = I × N , where M and N are smooth manifolds

of dimensions 7 and 6 respectively and I is an interval with coordinate t ∈ R. Let

(ω(t),Ω2(t)) be a 1-parameter family of SU(3)-structures on N parameterised by t ∈ I.

Then, the following forms give a G2-structure on M :

φ = dt ∧ ω(t) + Ω1(t),

ψ =
ω2(t)

2
− dt ∧ Ω2(t),

(1.21)

where Ω1(t) = JΩ2(t) and J is the almost complex structure determined by Ω2(t) using

Hitchin’s construction. Every G2-structure on M can be constructed from an SU(3)-

structure on N . Assume that (ω(t),Ω2(t)) are half-flat. The G2-structure φ is closed if

the 1-parameter family (ω(t),Ω2(t)) is a solution of

Ω̇1 = dω.

The dot denotes the derivative with respect to the parameter t. The G2-structure is
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coclosed if (ω(t),Ω2(t)) is a solution of

ω ∧ ω̇ = −dΩ2.

Hence the G2-structure is torsion-free if (ω(t),Ω2(t)) is a solution of both equations. This

is subject to the SU(3)-structure being half-flat.

Remark 1.1.27. Note that a coclosed G2-structure whose restriction to each principal

orbit is half-flat only requires dΩ1 = 0 as an extra condition, as dω2 = 0 automatically

holds.

LetM be a seven-dimensional manifold and let φ be aG2-structure. We further assume

that the G2-structure is coclosed. Let P →M be a principal bundle with structure group

G, which we assume to be a compact Lie group. Let A be a connection over the principal

bundle P .

Definition 1.1.28 (G2-instanton). We say A is a G2-instanton if

FA ∧ ψ = 0,

where FA is the curvature of A. We refer to this equation as the G2-instanton equation.

Equivalently, G2-instantons can be defined as the solutions to the G2-analogue of the

“anti-self-dual” condition on four-dimensional manifolds:

FA ∧ φ = −∗FA.

The study of G2-instantons is a research topic of interest for the gauge theory com-

munity, due to Donaldson–Thomas’ suggestion [DT98] that it may be possible to use

G2-instantons to define invariants for G2-manifolds. Some details of this idea were later

worked out by Donaldson and Segal [DS11]. Although the näıve count of G2-instantons

on a compact G2-manifold cannot produce a deformation-invariant, one may hope that
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by counting G2-instantons together with Seiberg–Witten monopoles on associative sub-

manifolds the mutual degenerations will solve the issue, while giving a relation between

G2-instantons and Seiberg–Witten monopoles [Hay17]. G2-instantons also play a key role

in heterotic string theory, as we will see in the next section.

Remark 1.1.29. For the definition of G2-instantons, we do need to ask for the structure

to be coclosed in order not to get an extra condition when differentiating FA ∧ ψ = 0, as

the equation would be over-determined. We do not need to ask for the structure to be

closed.

On a compact G2-manifold, G2-instantons minimise the Yang–Mills energy functional

YM(A) =

∫
M

|FA|2 =
∫
M

tr(FA ∧ ∗FA)

on the space of finite-energy connections on P .

Example 1.1.30. There are different examples of G2-instantons over both compact and

non-compact G2-manifolds. Trivial examples are flat connections, i.e. with FA = 0. More

interesting examples are the following:

(i) Over Joyce’s compact G2-manifolds ( [Joy96]) constructed by desingularising G2-

orbifolds T 7/Γ (where Γ is a finite group of G2-involutions) “Generalised Kummer

Construction”; Walpuski constructed non-trivial examples of G2-instantons, with

a method based on gluing anti-self-dual instantons over asymptotically locally eu-

clidean (ALE) spaces to flat bundles [Wal13].

(ii) Over the compact G2-manifolds constructed by generalising the Generalised Kum-

mer Construction (Joyce and Karigiannis [JK21]); Platt [Pla22] constructed G2-

instantons by generalising Walpuski’s method from [Wal13]. These manifolds are

resolutions of orbifolds of the form Y/Γ, where Y is a manifold with holonomy

contained in G2, but not necessarily flat.
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(iii) Over compact G2-manifolds constructed by the “twisted connected sum” method

( [Kov03,CHNP15]); Sá Earp and Walpuski [EW15] gave an abstract construction

of G2-instantons, and one example [Wal16]. Later, Menet–Sá Earp–Nordström con-

structed other examples of G2-instantons over these manifolds on [MNE21].

(iv) Over R4 × S3 with the Bryant–Salamon metric [BS89]; Clarke [Cla14] constructed

a 1-parameter family of G2-instantons. Lotay–Oliveira [LO18] gave existence, non-

existence and classification results for SU(2)3-invariant and (SU(2)2 × U(1))-invariant

G2-instantons (including on the B7 family of G2-metrics on R4×S3, which contains

the BGGG metric). Very recently, Stein and Turner [ST23] completed the study

of SU(2)3-invariant G2-instantons over the spinor bundle of S3 [LO18] with the

Bryant–Salamon metric by constructing a new 1-parameter family of examples.

(v) Foscolo, Haskins and Nordström constructed infinitely many 1-parameter families

of complete asymptotically locally conical (ALC) G2-metrics [FHN21b]. Over the

asymptotically conical limit of the C7 family of G2-metrics (this is a manifold which

is diffeomorphic to a G2-cone outside of a compact set, and whose metric is in some

sense asymptotic to a conical metric), Matthies, Nordström and Turner constructed

a 1-parameter family of (SU(2)2 × U(1))-invariant G2-instantons with gauge group

SU(2) in [MNT22]. This family is not explicit.

1.2 Heterotic systems

Ten-dimensional heterotic supergravity is a theory that includes a supersymmetric gauge

theory. It is formulated on a ten dimensional spin manifold N (i.e. oriented with vanishing

second Stiefel–Whitney class) and with a choice of an element in H1(N,Z2). To study

this theory in lower dimensions, we impose the following ansatz:

N =M10−D × Y D,
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where Y D is a D-dimensional Lorentzian manifold and M10−D is a Riemannian spin

manifold which encodes the extra dimensions of a supersymmetric vacuum and is known

as the internal space. This mechanism is called compactification and reduces the equations

the fields must satisfy to a system on the compact smooth manifold. Following [CGFT20],

the Killing spinor equations in (heterotic) supergravity, for a Riemannian metric g, a

spinor ψ, a function f (the dilaton), a 3-form H (the NS-flux), a g-compatible connection

∇ with skew-symmetric torsion H, and a connection A with curvature FA on a principal

K-bundle PK over M10−D, can be written as

∇ψ = 0,

(df − 1

4
H) · ψ = 0,

FA · ψ = 0.

These equations, together with the instanton condition

R∇ · ψ = 0,

and the Bianchi identity

dH = α (tr(R∇ ∧R∇)− tr(FA ∧ FA)) ,

give the equations of motion.

The equations that we are going to study are a particular instance of this system of

equations. In the case where D = 4, we get the Hull–Strominger system (with three

complex dimensions). When D = 3, we get the heterotic G2 system.

1.2.1 The Hull–Strominger system

The motivation for the work presented in Chapter 2 is finding new solutions to the Hull–

Strominger system. This system was introduced in 1986 independently by Strominger
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in [Str86] and Hull in [Hul86] and has its origins in the low-energy limit of heterotic

string theory. For details of the physical origins of the Hull–Strominger system, we refer

the reader to [GF18a]; here we just present a brief discussion of them. The relation

between the heterotic supergravity equations and the Hull–Strominger system arises via

Strominger–Hull compactifications, where the internal space M is a compact smooth

oriented spin six-dimensional manifold. It also requires M admitting a complex structure

and being Calabi–Yau.

The Hull–Strominger system is the natural generalization of the Calabi problem (Ricci-

flat equation) for non-kählerian complex manifolds. It is believed (Fu and Yau in [FY08])

that metrics motivated by theoretical physics should have good properties. Although it

is well-motivated and studied both by mathematicians and physicists, the paucity of non-

trivial examples of solutions to the Strominger system means that there is a clear gap in

our understanding of the system.

The setup for the Hull–Strominger system is the following:

• A Calabi–Yau manifold (X,Ω) of dimension n: X is a complex manifold of complex

dimension n and Ω is a non-vanishing holomorphic global section of the canonical

bundle KX . We denote the underlying smooth manifold by M and the almost

complex structure by J ;

• a hermitian metric g on (X,Ω);

• an holomorphic vector bundle ε over X, with underlying smooth complex vector

bundle E;

• a hermitian metric h on ε;

• a unitary connection A on (E, h) (with curvature FA);

• an integrable Dolbeault operator ∂̄T on (TM, J);

• a unitary connection ∇ on (TM, J, ∂̄T ) (with curvature R∇);
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• a non-vanishing real constant α, which is proportional to the slope parameter in

string theory.

Definition 1.2.1 (Hull–Strominger system). In the above setup, the Hull–Strominger

system for g, A and ∇ is the following system of coupled non-linear differential equations:

ΛFA = 0, F 0,2
A = 0,

ΛR∇ = 0, R0,2
∇ = 0,

d∗ω − dc log ||Ω||ω = 0,

ddcω − α(trR∇ ∧R∇ − trFA ∧ FA) = 0,

(1.22)

where Λ denotes the contraction operator by ω.

The first two equations are the Hermite–Einstein condition for the connections A

and ∇, with Einstein factor γ = 0. The third one is called the dilatino equation. It is

equivalent to the conformally balanced equation:

d(||Ω||ωωn−1) = 0. (1.23)

The fourth one is called the anomaly equation or Bianchi identity and couples both

curvatures. It is called an anomaly because it is condition necessary for the consistency

of the quantised theory. It is the most difficult to understand equation of the Hull–

Strominger system.

Remark 1.2.2. Historically, the name “Hull–Strominger system” or “Strominger system”

has been used for a system of coupled non-linear differential equations of mixed order for

g, h and ∂̄T :

ΛFh = 0,

ΛRg = 0,

d∗ω − dc log ||Ω||ω = 0,

ddcω − α(trRg ∧Rg − trFh ∧ Fh) = 0,

(1.24)
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where Fh ∈ Ω1,1(End(E, h)) is the curvature of the Chern connection on (ε, h) and Rg

is the curvature of the Chern connection of g, regarded as a hermitian metric on the

holomorphic vector bundle T = (TM, J, ∂̄T ). However, Martelli and Sparks [MS11] showed

that the Chern connection is never an instanton.

For (X,Ω, E) to admit a solution of the Hull–Strominger system there are some co-

homological obstructions on the Chern classes:

deg(E) = 0, (1.25)

and also

c2(E) = c2(X), (1.26)

where c2 denotes the second Chern class.

By the (set theoretical) Kobayashi–Hitchin correspondence, for a complex manifold to

admit solutions to the Hull–Strominger system, the holomorphic bundles ε = (E, ∂̄A) and

T = (TM, J, ∂̄∇) must be polystable. On general grounds, an effective check of any of the

two equivalent conditions in the Kobayashi–Hitchin correspondence is a difficult problem.

The next result tells us that forM to admit a solution of the Hull–Strominger system,

it has to be balanced. Its proof can be found in [GF18a] and uses the equivalence of the

dilatino equation and the conformally balanced equation.

Proposition 1.2.3. [GF18a, Proposition 3.3] Let σ be a hermitian conformal class on

(X,Ω). Then,

(i) if n = 2, σ admits a solution of the dilatino equation if and only if all g ∈ σ is a

solution, if and only if there exists a Kähler Ricci-flat metric on σ;

(ii) if n ≥ 3, σ admits a solution of the dilatino equation if and only if σ admits a

balanced metric.

If X is compact, then there exists at most one balanced metric in σ up to homothety.
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Our case of interest would be n = 3, where the problem of existence and uniqueness

is still open. Therefore, in Chapter 2 of this thesis we will look for balanced manifolds.

Known solutions to the Hull–Strominger system with n = 3 can be classified into three

main groups depending on the method used to find them. The first ones were obtained in

non-kählerian threefolds by Fu and Yau in [FY08], on suitable torus fibrations over a K3

surface, i.e. a compact connected complex manifold of dimension 2 with trivial canonical

bundle and dimH1(X,Ω0) = 0. This reduction method of Fu and Yau was based on

the non-kählerian fibred threefolds constructed by Goldstein and Prokushkin in [GP04].

More recently, Fino et al. [FGV19a] generalised Fu–Yau solution to torus bundles over

K3 orbifolds.

The second group of solutions to the Hull–Strominger system have been found in

non-kählerian homogeneous spaces, especially on nilmanifolds. For example, in [OUV17],

the invariant solutions are found on three different compact non-Kähler homogeneous

spaces which are obtained as the quotient by a lattice of maximal rank of a nilpotent

Lie group (the nilmanifold h3), the semisimple group SL(2,C) and a solvable Lie group

(the solvmanifold g7). Further solutions in non-kählerian homogeneous spaces have been

found in [Gra11,FIUV09].

The third group of solutions follows from the work of Björn Andreas and Mario Garćıa

Fernández [AGF12]: they prove that a given Calabi–Yau threefold endowed with a Kähler

Ricci-flat metric and with a stable holomorphic vector bundle can be perturbed to a

solution of the Strominger system provided the topological condition (1.26) is satisfied.

This theorem assumes that the manifold can be endowed with a Kähler Ricci-flat metric,

which in particular means that it is kählerian. In order to look for different solutions to the

Hull–Strominger system, we will focus on manifolds which are balanced but non-Kähler.

In [FY15] a class of invariant solutions to the Hull–Strominger system on complex Lie

groups was provided; these solutions extend to solutions on all compact complex paral-

lelizable manifolds, by Wang’s classification theorem [Wan54]. Moreover, in [FGV19b], it

was shown that a compact complex homogeneous space with invariant complex volume
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admitting a balanced metric is necessarily a complex parallelizable manifold, so the com-

plex compact homogeneous case is exhausted by the invariant solutions given in [FY15].

Then, the natural next step in complexity is to study the cohomogeneity one case.

1.2.2 The heterotic G2 system

The heterotic G2 system, as it appears in [LE21], is the following system, whose equations

come from [dlOLS18, Section 2].

Definition 1.2.4. The heterotic G2 system on a seven-manifold M with G2-structure φ

and coassociative form ψ is comprised of the following degrees of freedom.

• Geometric fields:

– scalar field λ ∈ R;

– dilaton µ ∈ C∞(M);

– flux H ∈ Ω3(M).

• Gauge fields:

– A ∈ A(E), where E → M is a vector bundle and A is a G2-instanton, i.e.

FA ∧ ψ = 0 for FA the curvature of A;

– θ ∈ A(TM) such that θ is a G2-instanton, i.e. Rθ∧ψ = 0, for Rθ the curvature

of θ.

Let α′ ̸= 0 be a (small) real constant, related to the string scale. The heterotic G2 system

consists of the following relations between the geometric fields and the intrinsic torsion

forms: 

τ0 =
3
7
λ;

τ1 =
1
2
dµ;

τ2 = 0;

H = 1
6
τ0φ− τ1

¬
ψ − τ3;
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together with the anomaly free condition or heterotic Bianchi identity that relates the

curvatures of the gauge fields:

dH =
α′

4
(trFA ∧ FA − trRθ ∧Rθ). (1.27)

Note that the Bianchi identity can only happen if

p1(E) = p1(M) ∈ H4
dR(M). (1.28)

After a conformal transformation, we can assume that τ1 = 0. Hence we are looking

for G2-structures such that

dψ = 0.

This is analogous to the balanced condition of the Hull–Strominger system in three com-

plex dimensions.

There has been substantial interest in the heterotic G2 system, both from mathe-

maticians and from physicists. The heterotic G2 system was first studied in the physics

literature in [GN95, GMWK01, FI02, FI03, GMPW04, GMW04, II05, LM11, GLL12]. It

appeared in the mathematics literature for the first time in [FIUV11], where Fernández

et al. constructed the first explicit compact solutions, with non-zero field strength, non-

flat instanton and constant dilaton, based on nilmanifolds. Then in [FIUV15] smooth

solutions with non-vanishing flux, non-trivial instanton and non-constant dilaton based

on the quaternionic Heisenberg group are constructed. Clarke et al. [CGFT16,CGFT20]

studied the moduli space of solutions and prove that the space of infinitesimal deforma-

tions, modulo automorphisms, is finite dimensional. In [CGFT20] they also provide a

new family of solutions to this system, on T 3 bundles over K3 surfaces. The only con-

structive solutions of the heterotic G2 system with non-zero τ0 currently available in the

literature are found in [LE21], over contact Calabi–Yau seven-manifolds and in [dlOG21],

on squashed homogeneous 3-Sasakian manifolds (the seven-sphere and the Aloff–Wallach
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space). In [LE21], the connections over the tangent bundle from the authors’ solutions

are approximate G2-instantons (they satisfy the instanton condition only to first order in

α′).

Torsion-free G2-manifolds have seen plenty of study in the context of the heterotic

G2-system. Moreover, the torsion-free condition is very restrictive, as many interesting

solutions to the equations arise in manifolds with non-vanishing torsion. Hence, we will

focus on the case where the G2-structure is coclosed but not necessarity closed.

1.3 Cohomogeneity one manifolds

We will give a description of the structure of cohomogeneity one manifolds and their

metrics. We will use [BB82,Zil09] as our main references.

Definition 1.3.1 (cohomogeneity one manifold). A Riemannian manifold M is of coho-

mogeneity one for the action of the compact Lie group G if:

(i) G is a closed subgroup of the isometry group of M ,

(ii) and G has an orbit of codimension one.

We denote the action by α : G ×M → M , and by α̃ : G → Diff(M) the Lie group

homomorphism induced by the action

α̃ : G→ Diff(M);

g 7→ α̃(g) : m 7→ gm.

(1.29)

Definition 1.3.2 (almost effective action). We say that the action α is almost effective

if ker α̃ is discrete, i.e. the set of points of G whose action is trivial is discrete.

We will assume that the manifold M and the group G are connected. Let π : M →

M/G be the canonical projection onto the orbit space M/G. M/G is a connected rie-

mannian manifold of dimension one (with or without boundary), which has the quotient
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topology relative to π. Connected riemannian manifolds of dimension one must be of one

of the following options (up to isometries): S1, [0, L], (−∞,∞), (0,∞), (0, L), [0,∞),

[0, L), where L > 0. From [BB82], we get the following result:

Proposition 1.3.3. [BB82, Proposition 2.5] In the previous situation:

(i) M is compact if and only if M/G is compact;

(ii) M is complete if and only if M/G is complete.

In particular, this means that if the manifold M is compact then M/G has to be a

closed interval or S1. We continue by introducing the two different types of orbits that

we can find in a cohomogeneity one manifold.

Definition 1.3.4 (principal orbits, singular orbits). The inverse images of the interior

points of the orbit space M/G are known as principal orbits.

The inverse images of the boundary points, if they exist, are called singular orbits.

A cohomogeneity one manifold then can have zero, one or two singular orbits. We call

the principal part the union of all principal orbits, which is an open dense subset of M ,

and denote it by Mprinc. We denote by Gp = {g ∈ G|g · p = p} the isotropy group at a

point p ∈M .

We will parameteriseM with the help ofM/G and a principal orbit. Let m be a point

in one of the principal orbits of M . Let γ : I → M be the orthogonal geodesic through

the orbit of m. This geodesic will be orthogonal to the orbit of G at any of its points.

Definition 1.3.5 (normal geodesic). We call a geodesic orthogonal to every principal

orbit a normal geodesic.

If M/G = S1, then all orbits are principal and π : M → M/G is a bundle map.

Also, using the homotopy sequence we have that π1(M) is infinite, so M is not simply

connected. This will not be our case of interest, so from the rest of the section we will

focus on the case where M/G is not a circle.
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If M/G is not a circle, then π ◦ γ : I → M/G is a global isometry. Let K be the

isotropy group of m by the action of G. We parameterise M with the map

F : G/K × I →M ;

(gK, t) 7→ gγ(t),

which is well defined as K preserves γ pointwise. F is surjective and differentiable, so it

induces a diffeomorphism

G/K ×
◦
I ∼= Mprinc.

This diffeomorphism is G-equivariant under the action of G which is trivial on I and the

usual action on G/K:

F (g(g′K, t)) = F ((gg′)K, t) = (gg′)γ(t) = g(g′γ(t)) = gF (g′K, t).

We will consider first the case where M is compact and simply connected, so I would

be a closed interval, say [−1, 1]. We denote the singular isotropy groups by H− = Gγ(−1)

and H+ = Gγ(1).

Proposition 1.3.6. The spaces H−/K and H+/K are spheres. They are called normal

spheres.

Proof. We identify H±/K with the unit sphere in Tγ(±1)(G/H±)
⊥.

We denote the singular orbits byO− = π−1(−1) andO+ = π−1(1). Let γ : [−1, 1] →M

be a normal geodesic, which we assume is of minimal length, and suppose that π ◦ γ =

Id[−1,1]. There exists a subgroup K of G such that Gγ(t) = K for all t ∈ (−1, 1) and

K is a subgroup of Gγ(−1) and Gγ(1). Up to conjugation along the orbit, we have three

possible isotropy groups: H− = Gγ(−1), H+ = Gγ(1) and K = Gγ(t), t ∈ (−1, 1). Then

O− ∼= G/H−, O+
∼= G/H+ and for all t ∈ (−1, 1), G · γ(t) = π−1(t) ∼= G/K.

Denote the tubular neighbourhoods of the singular orbits by D(O−) = π−1([−1, 0])

and D(O+) = π−1([0, 1]). Let D± be unit disks in Tγ(±1)(G/H±)
⊥. By the slice theorem,
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the tubular neighbourhoods can be described by

D(O±) = G×H± D±,

where G×H± D± is the quotient space G×D±/H± of the action of H± on G×D± given

by

k ⋆ (g, p) = (gk−1, kp).

In the last equation k acts on D± via the slice representation, i.e. the restriction of the

isotropy representation to Tγ(±1)(G/H±)
⊥. Hence we have the decomposition

M = D(O−) ∪G/K D(O+).

The principal orbit G/K is canonically identified with ∂D(O±) = G×H± S± via the maps

gK 7→ [(g, γ̇(−1))],

gK 7→ [(g,−γ̇(1))],

where S± = ∂D± = H±/K. In conclusion we can recover M from the groups G, H−, H+

and K.

Definition 1.3.7 (group diagram). The collection of G with its isotropy groups G ⊃

H−, H+ ⊃ K is called a group diagram.

Conversely, we can start with a group diagram G ⊃ H−, H+ ⊃ K, where H±/K ∼= Sl±

are l±-dimensional spheres, and build a cohomogeneity one manifold. We know that a

transitive action of a compact Lie group on a sphere is conjugate to a linear action. Hence

we can assume that H± acts linearly on Sl± with isotropy group K ⊂ H± at some point

p± ∈ Sl±−1. It hence extends to a linear action on the bounding disk Dl± and we can
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thus define a manifold

M = (G×H− D−) ∪G/K (G×H+ D+),

where we glue the two boundaries by sending [(g, p−)] to [(g, p+)]. The action of G on M

on each half is

g ⋆ [(g′, p)] = [(gg′, p)].

We can check that this is a cohomogeneity one manifold with the desired group diagram,

that the gluing is G-equivariant, and that the action has isotropy groups H± at [(e, 0)]

and K at [(e, p±)].

ForM non-compact, eitherM/G is homeomorphic to an open interval or to an interval

with one closed end. In the former case, M is a product manifold

M ∼= I ×G/K.

In the latter case, there exists exactly one singular orbit, and M/G ∼= I where I = [0, L)

and L is either infinity or 1. Analogously to the compact case, there exists a normal

geodesic γ : [0, L) → M such that γ(0) ∈ π−1(0) and we can suppose π ◦ γ = Id[0,L).

In addition, there exists a subgroup K of G such that Gγ(t) = K for all t ∈ (0, L) and

if H := Gγ(0), K is a subgroup of H. Up to conjugation along the orbit, we have two

possible isotropy groups: H = G and K, t ∈
◦
I. Then G · γ(0) = π−1(0) ∼= G/H and for

all t ∈
◦
I, G · γ(t) = π−1(t) ∼= G/K.

If M is a non-compact cohomogeneity one manifold with one singular orbit we define

the group diagram of M by the collection of G and the isotropy groups, G ⊃ H ⊃ K,

where the homogeneous space H/K will be a sphere. In this case, as before we have the

homotopy equivalence

M = G×H D,
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where D is a unit disc in Tγ(0)(G/H)⊥ and H acts on G×D as in the compact situation.

The converse is also true: the group diagram G ⊃ H ⊃ K where H/K is an l-dimensional

sphere defines a non-compact cohomogeneity one manifold.

Borel classified transitive effective actions of compact Lie groups on spheres. The

classification or Borel list is summarised in Table 1.1.

H K Sl = H/K
SO(n) SO(n− 1) Sn−1

U(n) U(n− 1) S2n−1

SU(n) SU(n− 1) S2n−1

Sp(n)Sp(1) Sp(n− 1)Sp(1) S4n−1

Sp(n)U(1) Sp(n− 1)U(1) S4n−1

Sp(n) Sp(n− 1) S4n−1

G2 SU(3) S6

Spin(7) G2 S7

Spin(9) Spin(7) S15

Table 1.1: Transitive effective actions of compact Lie groups on spheres

Remark 1.3.8. If a cohomogeneity one manifoldM has group diagram G ⊃ H−, H+ ⊃ K

or G ⊃ H ⊃ K, there are some operations that result in a G-equivariantly diffeomorphic

manifold:

(i) switching H+ and H−,

(ii) conjugating each group in the diagram by the same element of G,

(iii) replacing H± (respectively H) with aH±a
−1 (respectively aHa−1) for a ∈ N(K)0,

where N(K)0 is the identity component of the normaliser of K.

We can fix a coordinate system such that on the principal part the metric is determined

by

g = dt2 + gt, (1.30)

where dt2 is the (0, 2)-tensor corresponding to the vector field ξ := γ′(t) at γ(t) and gt is a

G-invariant metric on the homogeneous orbit G · γ(t). Since the regular points are dense
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on M , this expression also describes the metric on M . Fix a bi-invariant inner product

B on g. We can write g = k ⊕ m where the splitting is B-orthogonal and m is Ad(K)-

invariant. Let m = m1⊕ ...⊕mr be the B-orthogonal decomposition into Ad(K)-invariant

irreducible subspaces. If m1, ..., mr are inequivalent to each other, then we can write the

metric gt as

gt = f 2
1 (t)B|m1×m1 + ...+ f 2

r (t)B|mr×mr

for some functions f1, ..., fr. But ifM has one or more singular orbits, in order for g to be

smoothly extending to these orbits, f1, ..., fr have to satisfy certain smoothness conditions

at them. Writing these conditions and checking whether they hold will be a crucial step

to prove the results on the next chapters of this thesis (see Sections 2.4, 3.2.2, 4.1.3).

Definition 1.3.9 (equivalence of cohomogeneity one manifolds). LetMi be cohomogene-

ity one manifolds with respect to the action of Lie groups Gi, i = 1, 2. We say that the

action of G1 on M1 is equivalent to the action of G2 on M2 if there exists a Lie group

isomorphism ϕ : G1 → G2 and an equivariant diffeomorphism f : M1 → M2 with respect

to the isomorphism ϕ.

We shall study cohomogeneity one manifolds up to this type of equivalence.
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Chapter 2

Balanced metrics on six-dimensional

cohomogeneity one manifolds

In this chapter, we study manifolds that can admit balanced non-kähler SU(3)-structures,

and that are of cohomogeneity one under the action of a compact connected Lie group G.

Such structures are of interest for both Hermitian geometry and string theory, since they

provide the ideal setting for the Hull–Strominger system. Balanced metrics have been

extensively studied in [BV17,FGV19a,FV15,FV16,FLY12,Mic82,PPZ19].

As we explained on Section 1.2.1, a manifoldM with a solution to the Hull–Strominger

system has to be conformally balanced. When one assumes all structures to be invariant

under the smooth action of a certain Lie group G, the aforementioned condition reduces

to the balanced equation dωn−1 = 0. We also need M to be endowed with an invariant

nowhere-vanishing holomorphic (3, 0)-form Ψ satisfying a normalisation condition. In

these cases, (g, J,Ψ) is a balanced SU(3)-structure onM , up to a suitable uniform scaling

of Ψ. Moreover, we require M to be simply connected.

The layout of this chapter is as follows. Our strategy will be to classify all possible

principal parts (up to G-equivariant diffeomorphisms). If we denote the principal isotropy

group by K, then the principal part of the manifold is completely determined by the pair

(G,K), or, up to finite quotients, by their Lie algebras (g, k). In Section 2.1 we will obtain
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a list of possible principal parts of a manifold with an SU(3)-structure which is invariant

under a cohomogeneity one action. In Section 2.2 we will use the assumption that M is

simply connected to reduce the list to only three possibilities. In Section 2.3 we will state

and prove the first main result of this chapter, which is a local result for the existence

of balanced non-Kähler SU(3)-structures, by working on Mprinc. We first establish the

general setup that we will use later for studying the remaining cases, and we will do so

carrying out a case-by-case analysis in Sections 2.3.2, 2.3.1 and 2.3.3. Finally, in Section

2.4 we prove our main theorem, which shows that when K is connected none of these local

solutions can be extended to a global one. We will also comment on the consequences of

this result for the problem of existence of balanced SU(3)-structures on S3 × S3.

2.1 SU(3)-structures on cohomogeneity one manifolds

Let (g, J, ψ) be an SU(3)-structure on a simply connected cohomogeneity one manifold

M of complex dimension three for the almost effective action of a compact connected Lie

group G. The group G preserves the SU(3)-structure. In particular, for any p ∈ M , the

principal isotropy group K acts on TpM preserving (gp, Jp, ψp), which means that K is a

subgroup of SU(3). Recall that ξ = γ′(t) ∈ Tγ(t)M is the vector field normal to the orbits.

The K-action is J-invariant, so it fixes the subspaces ⟨ξ|p⟩ and also ⟨Jξ|p⟩ of TpM , as

K(Jξ|p) = J(Kξ|p) ∈ ⟨Jξ|p⟩. We can write

TpM = ⟨ξ|p⟩ ⊕ ⟨Jξ|p⟩ ⊕ V, (2.1)

where V is the 4-dimensional gp-orthogonal complement of ⟨ξ|p, Jξ|p⟩ in TpM . Then V

is Jp-invariant and K-invariant. This means that for every element of K, its action on
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TpM = ⟨ξ|p⟩ ⊕ ⟨Jξ|p⟩ ⊕ V is described by a 6× 6 matrix of the form



1 0

0 1

A


.

We had that K ⊂ SU(3), so the matrix A is in SU(2). This means that we can identify K

with a subgroup of SU(2). If we denote k = Lie(K), it is a subalgebra of su(2), and hence

isomorphic to {0}, R or su(2), as su(2) has no 2-dimensional subalgebras. We can then

classify all possible pairs (g, k) which may admit an SU(3)-structure in cohomogeneity

one. The only possible decompositions into irreducibles for any principal point p, as

dim(g)− dim(k) = dim(G · p) = 5, are:

(a) if k = {0}, then

(1) g = su(2)⊕ 2R,

(2) g = 5R,

(b) if k = R, then

(1) g = su(2)⊕ su(2),

(2) g = su(2)⊕ 3R,

(3) g = 6R,

(c) if k = su(2), then

(1) g = su(2)⊕ su(2)⊕ 2R,

(2) g = su(2)⊕ 5R,
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(3) g = su(3).

We will discard some pairs from this list using the simple connectedness of M .

2.2 Ruling out cases using simple connectedness

The hypothesis of simple connectedness of M will let us discard most of the cases that

appear in the previous list. We will have to consider the compact and the non-compact

situations separately. The van Kampen theorem for cohomogeneity one manifolds that

are compact appears in [Hoe10a]. It has has already been used to rule out some cases

in this list in [PS10]. However, the non-compact situation has not been explored in this

way before. The following proposition tells us how to compute the fundamental group of

a compact cohomogeneity one manifold using the group diagram.

Proposition 2.2.1 (van Kampen, compact case). [Hoe10a, Proposition 1.8] Let M be

the compact cohomogeneity one manifold given by the group diagram G ⊃ H−, H+ ⊃ K

with H±/K = Sl± and assume l± ≥ 1. Then π1(M) ∼= π1(G/K)/N−N+ where

N± = ker{π1(G/K) → π1(G/H±)} = Im{π1(H±/K) → π1(G/K)}.

In particular M is simply connected if and only if the images of π1(H±/K) = π1(S
l±)

generate π1(G/K) under the natural inclusions.

Following the proof from [Hoe10a], we can adapt it to the case where M is non-

compact with M/G ∼= [−1,∞), and has one orbit by decomposing M as π−1([−1, 0]) ∪

π−1([0,∞)). Now π−1([0,∞)) deformation retracts to π−1(0) = G · x0 ∼= G/K, and

π−1([−1, 0]) deformation retracts to π−1(−1) ∼= G/H. The technical part of the proof

would be identical except for the substitution of [0, 1] by [0,∞) and H+ by K. Finally,

the equivalent ‘N+’ will be N+ = ker{π1(G/K) → π1(G/K)} = {1}. Then π1(M) ∼=
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π1(G/K)/N , where

N = ker{π1(G/K) → π1(G/H)} = Im{π1(H/K) → π1(G/K)}.

Moreover, we haveM ≃ G/H, so π1(M) ∼= π1(G/H). Hence we have proved the following

proposition.

Proposition 2.2.2 (van Kampen, non-compact case). Let M be the non-compact coho-

mogeneity one manifold given by the group diagram G ⊃ H ⊃ K with H/K = Sl, and

l ≥ 1. Then, π1(M) ∼= π1(G/H). In particular M is simply connected if and only if the

image of π1(H/K) = π1(S
l) generates π1(G/K) under the natural inclusions.

We know that π1(S
l) is either {0} (if l > 1) or Z (if l = 1). Now we observe that,

for cases (a.1) and (c.1), π1(G/K) = Z2, for cases (a.2), (b.3) and (c.2), π1(G/K) = Z5

and for case (b.2), π1(G/K) is either Z2 or Z3, depending on the immersion of k in g. If

M is non-compact and has no singular orbits, we had that M ∼= I ×G/K for some open

interval I, so we have π1(M) = π1(G/K). As a consequence of this fact and the previous

analysis together with Proposition 2.2.2, we can discard the pairs (a.1), (a.2), (b.2), (b.3),

(c.1) and (c.2) when M is non-compact. If M is compact, by Proposition 2.2.1 we can

easily discard the pairs, (a.2), (b.2) when π1(G/K) = Z3, (b.3) and (c.2) as π1(M) would

be infinite.

We can also discard cases (b.2) when π1(G/K) = Z2 and (c.1) in the compact case

using the classification of groups acting transitively on spheres. Let now H denote either

H+ or H− for the compact case, or H for the non-compact case. As H/K has to be

a sphere and H acts transitively on H/K, we can study the different options for pairs

(H,K). The cohomogeneity one condition gives dim(G/K) = 5, so dim(H/K) has to be

1,2,3,4 or 5. We will write the options using the Borel list for writing Sn, n = 1, ..., 5, but
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without the cases where k ̸= {0},R, su(2) :

S1 =
SO(2)

{1}
=

U(1)

{1}
; S2 =

SO(3)

SO(2)
;

S3 =
SO(4)

SO(3)
=

U(2)

U(1)
=

SU(2)

{1}
=

Sp(1)Sp(1)

{1}Sp(1)
=

Sp(1)U(1)

{1}U(1)
; S5 =

SU(3)

SU(2)
.

Alternatively, we can classify them by the different options for K:

(a) Case k = {0} and K = {1}: we can have either

H = U(1) = SO(2) (corresponds to h = R and normal sphere S1),

or H = Sp(1) (corresponds to h = su(2) and normal sphere S3).

(b) Case k = R and K = U(1) = SO(2): we can have either

H = SO(3) (corresponds to h = su(2) and normal sphere S2),

H = U(2) (corresponds to h = su(2)⊕ R and normal sphere S3),

or H = Sp(1)U(1) (corresponds to h = su(2)⊕ R and normal sphere S3).

(c) Case k = su(2): we can have either

K = SU(2) = Sp(1) and H = SU(3) (corresponds to h = su(3) and normal sphere

S5),

H = Sp(1)Sp(1) (corresponds to h = su(2)⊕ su(2) and normal sphere S3),

or K = SO(3) and H = SO(4) (corresponds to h = su(2)⊕ su(2) and normal sphere

S3).

After this analysis, we can make the following observation.

Observation 2.2.3. Studying the classification of effective transitive actions of groups

on spheres, we see that only when k = {0} (case (a)) we could have l = 1, for H/K = Sl.

In particular, from this observation we get that when M is compact and k = su(2), if

H±/K = Sl± , then l± > 1. This lets us discard case (c.1) also for the compact case.

Therefore, the possible pairs which may admit a balanced SU(3)-structure on a simply

connected manifold of cohomogeneity one under the almost effective action of a compact

connected Lie group G are (a.1) (only when M is compact), (b.1), and (c.3).
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To summarise, the remaining options are:

(a.1) Case k = {0} and g = su(2)⊕ R⊕ R.

(b.1) Case k = R and g = su(2)⊕ su(2).

(c.3) Case k = su(2) and g = su(3).

We will study each of them in the following sections.

2.3 Proof of Theorem A

We are going to fix the notation that will be used for the rest of this chapter. We denote

by

• B the negative of the Killing form on g;

• {ẽi}i=1,2,3 the generic basis for su(2), which is given by

ẽ1 =

i 0

0 −i

 , ẽ2 =

0 i

i 0

 , ẽ3 =

 0 1

−1 0

 ;

• {fi}i=1,...,m the generic basis for g = k⊕m, with k = ⟨f1, . . . , fk⟩ andm = ⟨fk+1, . . . , fm⟩,

where k = dim k and m = dim g;

• e1 := ξ ∼= ∂
∂t
;

• ei := f̂dim k−1+i the Killing vector fields on Mprinc induced by the G-action, for

i = 2, . . . , 6;

• ei the dual 1-forms to ei.

Therefore, {ei}i=1,...,6 will be vectors on Mprinc which provide a basis for TpM at each

point p = γ(t) ∈Mprinc, where γ :
◦
I →M is a normal geodesic through the point p. Since

g · γp = γg·p, e1 is invariant under the adjoint action of every element in g.
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Every k-form α on Mprinc is of the form

α =
∑

1≤i1<...<ik≤6

αi1...ike
i1...ik ,

where we use the notation ei1...ik = ei1 ∧ . . . ∧ eik . It is G-invariant if and only if αp is

Ad(K)-invariant for all p ∈ Mprinc. Moreover, if α is a G-invariant k-form on M and

X1, . . . , Xk are G-invariant vector fields on M , then α (X1, . . . , Xk) |p is constant along

the G-orbit through p, for each p ∈ M . The general form of a pair of forms on Mprinc of

degrees two and three is

ω =
∑

1≤i<j≤6

hije
ij, ψ+ =

∑
1≤i<j<k≤6

pijke
ijk (2.2)

with coefficients hij, pijk ∈ C∞(
◦
I). For (ω, ψ+) to be G-invariant, we have to ask for

(ωp, ψ+|p) to be Ad(K)-invariant for all p ∈Mprinc. Recall that we can always we recover

the whole SU(3)-structure from a pair of Ad(K)-invariant stable forms (ω, ψ+) of degrees

two and three respectively.

We are now ready to state Theorem A.

Theorem A. Let M be a six-dimensional simply connected cohomogeneity one manifold

under the almost effective action of a connected Lie group G, and let K be the principal

isotropy group. Then, the principal partMprinc admits a G-invariant balanced non-Kähler

SU(3)-structure (g, J,Ψ) if and only if (g, k) = (su(2)⊕ su(2),R) and R is diagonally

embedded in g or M is compact and (g, k) = (su(2)⊕ 2R, {0}).

In order for the pair (ω, ψ+) to define a G-invariant balanced non-Kähler SU(3)-

structure on Mprinc we have to impose the following conditions, that we explained at

the beginning of the chapter:

(1) the stability conditions:

• ω3 ̸= 0,
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• λ := λ (ψ+) < 0,

(2) the compatibility conditions ψ± ∧ ω = 0,

(3) the normalisation condition: ψ+ ∧ ψ− = 2
3
ω3,

(4) dψ± = 0,

(5) the balanced condition dω2 = 0,

(6) the non-Kähler condition dω ̸= 0,

(7) the positive-definiteness of the induced symmetric bilinear form g(·, ·) := ω(·, J ·) on

Mprinc.

From the above discussion, the only possible pairs allowing Mprinc to support a bal-

anced SU(3)-structure are (a.1) with M compact, (c.3), and (b.1). We start with the case

with larger k.

2.3.1 Case (c.3)

For this section, will assume that (g, k) = (su(3), su(2)). We consider the usual B-

orthogonal basis of g = su(3), which is given by

f1 =


0 i 0

i 0 0

0 0 0

 , f2 =


0 1 0

−1 0 0

0 0 0

 , f3 =


i 0 0

0 −i 0

0 0 0

 , f4 =


0 0 i

0 0 0

i 0 0

 ,

f5 =


0 0 1

0 0 0

−1 0 0

 , f6 =


0 0 0

0 0 i

0 i 0

 , f7 =


0 0 0

0 0 1

0 −1 0

 , f8 =
1√
3


i 0 0

0 i 0

0 0 −2i

.
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We can assume that the embedding of k = su(2) in g is such that k = ⟨f1, f2, f3⟩. We

denote a := ⟨f8⟩ and n := ⟨f4, f5, f6, f7⟩, so that

g = k⊕m = k⊕ a⊕ n.

The Ad(K)-invariant irreducible modules in the decomposition of g are pairwise inequiv-

alent, so metric g on Mprinc has the form

g = dt2 + h(t)2B|a×a + f(t)2B|n×n,

where h, f ∈ C∞(
◦
I). The structure equations with respect to the frame {ei}i=1,...,6 of

Mprinc are:

de1 = 0, de2 = −
√
3e36, de3 =

√
3e26,

de4 = −
√
3e56, de5 =

√
3e46, de6 = −

√
3(e23 + e45).

The general form of Ad(K)-invariant forms ω and ψ+ is:

ω = h1e
16 + h2(e

23 + e45) + h3(e
24 − e35) + h4(e

25 + e34),

ψ+ = p1(e
123+e145)+p2(e

124−e135)+p3(e246−e135)+p4(e236+e456)+p5(e125+e134)+p6(e256+e346).

The form ψ− should be Ad(K)-invariant as well, so we can also write it as

ψ− = q1(e
123+e145)+q2(e

124−e135)+q3(e246−e135)+q4(e236+e456)+q5(e125+e134)+q6(e256+e346),

where coefficients q1, ..., q6 will depend on coefficients p1, ..., p6. Then the conditions for

the coefficients h1, ..., h4 and p1, q1, ..., p6, q6 obtained from equations (1)–(6) for this case

will be the following (we do not need to use (7)).
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(1) Stability condition:

0 ̸= ω3 = 6h1(h
2
2 + h23 + h24)e

123456. (2.3)

(2) The compatibility condition ψ+∧ω = 0 is equivalent to the following two algebraic

equations:

p1h2 + p5h4 + p2h3 = 0,

p3h3 + p4h2 + p6h4 = 0.
(2.4)

Analogously, the compatibility condition ψ− ∧ ω = 0 is equivalent to:

q1h2 + q5h4 + q2h3 = 0,

q3h3 + q4h2 + q6h4 = 0.
(2.5)

(3) The normalisation condition ψ+ ∧ ψ− = 2
3
ω3 can be written as

p2q3 − p3q2 + p5q6 − p6q5 = 2h1(h
2
2 + h23 + h24). (2.6)

(4) From dψ+ = 0, we get ODE’s:

p5 = − 1
2
√
3
p′3,

p2 =
1

2
√
3
p′6,

p4 = 0.

(2.7)

Analogously, condition dψ− = 0 yields:

q5 = − 1
2
√
3
q′3,

q2 =
1

2
√
3
q′6,

q4 = 0.

(2.8)
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(5) The balanced condition dω2 = 0 becomes the ODE:

0 = h2(
√
3h1 + h′2) + h′4h4 + h′3h3. (2.9)

(6) Non-Kähler condition:

0 ̸= dω = (
√
3h1 + h′2)(e

123 + e145) + h′3(e
124 − e135) + h′4(e

125 + e134)

+2
√
3h3(e

346 + e256) + 2
√
3h4(e

356 − e246).
(2.10)

We start by imposing the stability of ψ+. We will assume that p4 = 0, since we got

this from the condition of ψ+ being closed. A straightforward computation implies that

λ(ψ+) = −4(p2p6 − p3p5)
2 − 4p21(p

2
6 + p23)

This is negative if p2p6 − p3p5 ̸= 0 or p21(p
2
6 + p23) ̸= 0.

Recall that ψ− = Jψ+ = − 1√
λ(ψ+)

ψ+(Kψ+·, ·, ·). Hence the coefficients for ψ− will

satisfy

−
√

−λ(ψ+)q1 = 2p1(p2p3 + p5p6),

−
√
−λ(ψ+)q2 = 2p2p5p6 − 2p21p3 − 2p3p

2
5,

−
√

−λ(ψ+)q3 = 2p6(p2p6 − p3p5),

−
√
−λ(ψ+)q4 = 2p1(p

2
3 + p26),

−
√
−λ(ψ+)q5 = 2p2p3p5 − 2p21p6 − 2p22p6,

−
√

−λ(ψ+)q6 = 2p3(p3p5 − p2p6).

Condition dψ− = 0 implies q4 = 0, which in turn implies either p1 = 0 or p3 = p6 = 0.

The second situation would also imply that p2 = p5 = 0 (from equation (2.7)), and

from normalisation conditions (2.6) and (2.3), that ω3 = 0. But that would mean that

ω is not stable, so from now on we assume p1 = 0. Multiplying by −(−λ(ψ+))
−1/2 =

−|2(p2p6 − p3p5)|−1, and recalling that for ψ+ to be stable, p2p6 − p3p5 must be non-zero,

we have two situations:
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(i) Case p2p6 − p3p5 < 0:

q1 = 0, q2 = p5, q3 = p6, q4 = 0, q5 = −p2, q6 = −p3.

(ii) Case p2p6 − p3p5 > 0:

q1 = 0, q2 = −p5, q3 = −p6, q4 = 0, q5 = p2, q6 = p3.

We can also check that the rest of the equations in (2.8) that we got from dψ− = 0 are a

consequence of (2.7) in either of these cases.

Compatibility conditions (2.4) and (2.5) are now in both cases

p3h3 + p6h4 = 0,

−p6h3 + p3h4 = 0,

p′6h3 − p′3h4 = 0,

p′3h3 + p′6h4 = 0,

The first two of these imply that either p3 = p6 = 0 or h3 = h4 = 0. We already discussed

that if p3 = p6 = 0 we do not have a solution. If h3 = h4 = 0, from the balanced condition

(2.9) we get that either h2 = 0 or
√
3h1+h

′
2 = 0. But if h2 = 0 then ω3 = 0 by (2.3), so ω

would not be stable. On the other hand, if
√
3h1 + h′2 = 0, by (2.10) ω would be Kähler.

Hence, we can conclude that the system of equations coming from conditions (1) to

(7) is incompatible.

2.3.2 Case (b.1)

For this section, will assume that (g, k) = (su(2)⊕ su(2),R).

Remark 2.3.1. We shall need to divide the discussion depending on the embeddings of

k = R in g = su(2)⊕ su(2) which, up to isomorphism, are all generated by an element of
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the form 
ip 0

0 −ip

 ,

iq 0

0 −iq


 ∈ su(2)⊕ su(2),

with fixed p, q ∈ N. We can assume either (p, q) = (1, 0) or p, q to be coprime if neither

is zero. Notice that when (p, q) = (1, 1) or (p, q) = (1, 0), k induces a decomposition of

g into Ad(K)-modules, some of which are equivalent. In the former case, we shall say

that k is diagonally embedded in g, while in the latter k is said to be trivially embedded

in one of the two su(2)-factors of g. When instead p, q are different and non-zero, the

Ad(K)-modules are pairwise inequivalent.

In the notation of Remark 2.3.1, let us first suppose p, q non-zero and coprime with

(p, q) ̸= (1, 1). Consider the B-orthonormal basis of g given by

f1 =
1

2
√

2(p2 + q2)
(pẽ1, qẽ1), f2 =

1

2
√
2(p2 + q2)

(qẽ1,−pẽ1),

f3 =
1

2
√
2
(ẽ3, 0), f4 =

1

2
√
2
(0, ẽ3),

f5 =
1

2
√
2
(ẽ2, 0), f6 =

1

2
√
2
(0, ẽ2).

(2.11)

Take k = ⟨f1⟩. Notice that, since rk(su(2)) = 1, this assumption is not restrictive. The

decomposition of g into irreducible Ad (K)-modules is given by

g = k⊕ a⊕ b1 ⊕ b2,

where a := ⟨f2⟩ is Ad(K)-fixed, b1 := ⟨f3, f5⟩ and b2 := ⟨f4, f6⟩, and hence m = a⊕b1⊕b2.

Fix the orientation given by Ω = e1...6 and consider the general G-invariant 3-form ψ+ on

Mprinc,

ψ+ := p1 e
135 + p2 e

146 + p3 e
235 + p4 e

246,

where pj ∈ C∞(
◦
I), j = 1, . . . , 4 and ei are defined at the beginning of Section 2.3. A

simple calculation (done with the help of mathematical software) shows that λ(ψ+) =
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(p1p4 − p2p3)
2 ≥ 0, so the stability condition λ(ψ+) < 0 never holds. Alternatively,

by [Hit00, Proposition 2] we can directly see that λ is non-negative, as ψ+ = (p1 e
1 +

p3 e
2) ∧ e35 + (p2 e

1 + p4 e
2) ∧ e46 can be written as a sum of real decomposable forms.

Now let (p, q) = (1, 0) and consider the B-orthogonal basis of g given by (2.11) when

(p, q) = (1, 0) and assume k = ⟨f1⟩ as before. Then, the decomposition of g into irreducible

Ad(K)-modules is given by

g = k⊕ b1 ⊕ a1 ⊕ a2 ⊕ a3,

where b1 := ⟨f3, f5⟩, a1 := ⟨f2⟩, a2 := ⟨f4⟩ and a3 := ⟨f6⟩. Observe that the ai’s are

equivalent. Consider the general G-invariant 3-form ψ+ on Mprinc, which is of the form

ψ+ := p1 e
124 + p2 e

126 + p3 e
135 + p4 e

146 + p5 e
235 + p6 e

246 + p7 e
345 + p8 e

356,

where pj ∈ C∞(
◦
I), j = 1, . . . , 8. It is straightforward to show that

λ(ψ+) = (p1p8 + p2p7 − p3p6 + p4p5)
2 ≥ 0. Similarly, ψ+ can be written as a sum of real

3-forms (p3 e
1 + p5 e

2 − p7 e
4 + p8 e

6) ∧ e35 and p1 e
124 + p2 e

126 + p4 e
146 + p6 e

246, both of

which are decomposable.

Remark 2.3.2. By the previous discussion we have that when (g, k) = (su(2)⊕ su(2),R)

with k not diagonally embedded in g, M admits no G-invariant SL(3,C)-structures, i.e.

G-invariant stable 3-forms inducing an almost complex structure on M .

Finally, let us consider the case where k is diagonally embedded in g. Without loss of

generality, we can assume (p, q) = (1, 1). We consider the B-orthonormal basis of g given

by (2.11) when (p, q) = (1, 1). The decomposition of g into irreducible Ad (K)-modules

is given by

g = k⊕ a⊕ b1 ⊕ b2,

where k = ⟨f1⟩, a := ⟨f2⟩ is Ad(K)-fixed, b1 := ⟨f3, f5⟩ and b2 := ⟨f4, f6⟩. Then, m =

a⊕ b1 ⊕ b2. Unlike the case p ̸= q both non-zero, here the equivalence of the bi-modules

50



implies that the metric g on Mprinc is not necessarily diagonal but of the form

g = dt2 + f(t)2B|a×a + h1(t)
2B|b1×b1 + h2(t)

2B|b2×b2 +Q|b1×b2 ,

for some f, h1, h2 ∈ C∞(
◦
I), where Q denotes a symmetric quadratic form on the isotypic

component b1 ⊕ b2. In particular, the metric coefficients gij := g(ei, ej) must satisfy

g1i = gi1 = 0, i = 2, . . . , 6,

g2i = gi2 = 0, i = 3, . . . , 6,

g33 = g55, g35 = g53 = 0,

g44 = g66, g46 = g64 = 0,

(2.12)

where ei, i = 1, . . . , 6, are the vector fields defined in the usual way. Fix the orientation

given by Ω := e1...6, and consider a pair of G-invariant forms (ω, ψ+) of degree two and

three, given respectively by

ω :=h1 e
12 + h2 e

35 + h3 e
46 + h4(e

34 + e56) + h5(e
36 + e45),

ψ+ :=p1 e
135 + p2 e

146 + p3(e
134 + e156) + p4(e

136 + e145)

+ p5 e
235 + p6 e

246 + p7(e
234 + e256) + p8(e

236 + e245),

where hi, pj ∈ C∞(
◦
I), i = 1, . . . , 5, j = 1, . . . , 8. Moreover, the structure equations are

given by

de1 = 0, de2 =
1

2

(
e35 − e46

)
, de3 = −1

2
e25, de4 =

1

2
e26, de5 =

1

2
e23, de6 = −1

2
e24.

In order to find a G-invariant balanced non-Kähler SU(3)-structure on Mprinc, we have

to impose the conditions (1) to (7) listed at the beginning of this section, together with

(2.12). We shall show that this system of equations is incompatible. This implies there

are no G-invariant balanced non-Kähler SU(3)-structures on the corresponding M . In
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order to see this, we write conditions in terms of the coefficients hi, pj of (ω, ψ+), for

i = 1, . . . , 5, j = 1, . . . , 8.

(1) The first stability condition ω3 ̸= 0 is:

ω3 = −6h1(h2h3 − h24 − h25)e
123456 ̸= 0

In particular, h1 ̸= 0. For the second stability condition λ < 0 we compute:

λ = p22p
2
5 − 2p1p2p5p6 + 4p23p5p6 + 4p24p5p6 + p21p

2
6

−4p2p3p5p7 − 4p1p3p6p7 + 4p1p2p
2
7 − 4p24p

2
7

−4p2p4p5p8 − 4p1p4p6p8 + 8p3p4p7p8 + 4p1p2p
2
8

−4p23p
2
8

(2) Compatibility condition ψ+ ∧ ω:


−h3p1 − h2p2 + 2h4p3 + 2h5p4 = 0,

−h3p5 − h2p6 + 2h4p7 + 2h5p8 = 0.

(2.13)

Compatibility condition ψ− ∧ ω:


−h3q1 − h2q2 + 2h4q3 + 2h5q4 = 0,

−h3q5 − h2q6 + 2h4q7 + 2h5q8 = 0.

(2.14)

(3) Normalisation condition ψ+ ∧ ψ− =
2

3
ω3. We can write

ψ+ ∧ ψ− = −6
√
−λe123456,

so the normalisation condition becomes

−6
√
−λ = −4h1(h2h3 − h24 − h25). (2.15)
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(4) A computation shows dψ+ = 0 if and only if



p′8 − p3 = 0,

p′7 + p4 = 0,

p5 = p6,

p′6 = 0.

(2.16)

Let us suppose that ψ+ is stable with λ < 0, and consider the induced almost complex

structure J on Mprinc. Recall that, by G-invariance, ψ− = Jψ+ needs to be of the same

general form of ψ+, namely

ψ− =q1e
135 + q2e

146 + q3(e
134 + e156) + q4(e

136 + e145)

+ q5e
235 + q6e

246 + q7(e
234 + e256) + q8(e

236 + e245),

where the qi’s are functions of {pj}j=1,...,8 for i = 1, . . . , 8. Therefore, dψ− = 0 if and only

if 

q′8 − q3 = 0,

q′7 + q4 = 0,

q5 = q6,

q′6 = 0.

(2.17)

(5) Balanced condition: one has that dω2 = 0 if and only if

h1
2
(h3 − h2)−

(
h2h3 − h24 − h25

)′
= 0. (2.18)
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(6) Non-kähler condition dω ̸= 0. We have dω = 0 if and only if


−h1

2
+ h′2 = 0,

(h2 + h3)
′ = 0,

h4 = h5 = 0.

(7) We would also need to check that the metric g is positive definite.

Moreover, the only non-redundant equation from (2.12) is g12 = 0, which is equivalent

to

p1p6 + p2p6 − 2p3p7 − 2p4p8 = 0, (2.19)

where we have already assumed p5 = p6 from (2.16). Since p′6 = 0 and all the condi-

tions for the G-invariant balanced non-Kähler SU(3)-structure involve only homogeneous

polynomials, we can assume either p6 = 0 or p6 = 1, up to scalings.

We use K to compute ψ− and get

−
√
−λq1 = −3(−p1p2p5 + 2p23p5 + 2p24p5 + p21p6 − 2p1p3p7 − 2p1p4p8)

−
√
−λq2 = −3(p22p5 − p1p2p6 + 2p23p6 + 2p24p6 − 2p2p3p7 − 2p2p4p8)

−
√
−λq3 = −3(p2p3p5 + p1p3p6 − 2p1p2p7 + 2p24p7 − 2p3p4p8)

−
√
−λq4 = −3(p2p4p5 + p1p4p6 − 2p3p4p7 − 2p1p2p8 + 2p23p8)

−
√
−λq5 = +3(p2p

2
5 − p1p5p6 − 2p3p5p7 + 2p1p

2
7 − 2p4p5p8 + 2p1p

2
8)

−
√
−λq6 = −3(p2p5p6 − p1p

2
6 + 2p3p6p7 − 2p2p

2
7 + 2p4p6p8 − 2p2p

2
8)

−
√
−λq7 = −3(2p3p5p6 − p2p5p7 − p1p6p7 + 2p4p7p8 − 2p3p

2
8)

−
√
−λq8 = −3(2p4p5p6 − 2p4p

2
7 − p2p5p8 − p1p6p8 + 2p3p7p8)

We now note that as p5 = p6, the condition q5 = q6 implies

(p1 − p2)(−p26 + p27 + p28) = 0 (2.20)

We will show that both for p6 = 0 and for p6 = 1, (1)–(7) requires p1 = p2. If p6 = 0,
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then

λ = 4p1p2(p
2
7 + p28)− 4(p4p7 − p3p8)

2.

From equation (2.20) we must have p1 = p2, as if it were not true, we would have

p7 = p8 = 0 and therefore λ = 0.

Suppose now that p6 = 1. Equation (2.20) implies that we have two possibilities:

either p27 + p28 = 1 or p1 = p2. We first assume p27 + p28 = 1. Differentiating this expression

and using (2.16), we get

p4p7 − p3p8 = 0.

Hence,

λ = 4(p23 + p24 − (p3p7 + p4p8)2)

By Cauchy–Schwarz,

(p3p7 + p4p8)2 ≤ (p23 + p24)(p
2
7 + p28),

and since p27 + p28 = 1, we get λ ≥ 0 which gives a contradiction. Hence from now on we

assume p1 = p2.

We now provide an example of a solution to (1)–(7) on the Mprinc. To do so, we set

p1 = p2 = p3 = p5 = p6 = p8 = h4 = h5 = 0. In particular, the compatibility conditions

will then be automatically satisfied. A solution is given by setting

h2 = −3t,

h3 = t,

h1 = −3,

p4 = −3
√
2

2
t1/2,

p7 =
√
2t3/2,

for t > 0 and all other coefficients equal to 0. This satisfies conditions (1)–(7) and hence

gives G-invariant balanced non-Kähler SU(3)-structure on Mprinc. Then, by performing
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the change of variable

t̃(t) =
√
6t3/2,

we get

ω = −3 e12 + 6−1/3t̃2/3(−3e35 + e46),

ψ+ = −2−2/335/6t̃1/3(e136 + e145) + 3−1/2t̃(e234 + e256),

and the metric onMprinc with respect to the t̃ parameter is then represented by the matrix

(so the basis of the dual space taken is {dt̃, e2, e3, e4, e5, e6})

(gij) =



1 0 0 0 0 0

0 t̃2 0 0 0 0

0 0
3

2
t̃2 0 0 0

0 0 0
1

2
t̃2 0 0

0 0 0 0
3

2
t̃2 0

0 0 0 0 0
1

2
t̃2


.

It follows from [VZ20] or [FH17] that this solution does not extend to a singular orbit at

t = 0 to give a smooth metric on the whole manifold. In Section 2.4 we will study the

extension of the structure to the singular orbits.

2.3.3 Case (a.1)

Through this section, we will assume that (g, k) = (su(2)⊕2R, {0}). We recall that this is

only possible whenM is compact, asM non-compact impliesM not simply connected, so

I = [−1, 1] for this section. As k = {0}, any generic forms on Mprinc are Ad(K)-invariant,

so the most general way of writing the pair (ω, ψ+) is:

ω =
∑

1≤i<j≤6

hije
ij, ψ+ =

∑
1≤i<j<k≤6

pijke
ijk, (2.21)
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where hij, pijk ∈ C∞ ((−1, 1)). We choose a B-orthogonal basis of su(2) with vectors of

constant norm

fi = (ẽi, 0, 0), i = 1, 2, 3,

and extend it to a basis {fi}i=1,...,5 of g. The structure equations with respect to {ei}i=1,...,6

of Mprinc will be given by

de1 = 0, de2 = −2e34, de3 = 2e24, de4 = −2e23, de5 = 0, de6 = 0.

We fix the volume form Ω := −e1...6. If we set

p134 = p234 = 1,

p136 = p235 = p246 = −p145 = e2t,

h12 =
3

2

e4t√
9 + 3e6t

,

h34 = −1

3

(
−3 +

√
9 + 3e6t

)
e−2t,

h35 = h36 = h46 = −h45 = 1,

h56 = 2e2t,

for each t ∈ (−1, 1), and all other coefficients equal to zero. Then, by performing the

change of variable

t̃(t) :=

∫ t

0

a(s)ds, a(s) =

√
3

2
(9 + 3 e6t)−

1
4 e2t,

one can easily check that the resulting pair (ω, ψ+) defines a G-invariant balanced non-

Kähler SU(3)-structure on the corresponding Mprinc. With respect to the t parameter,

the resulting pair (ω, ψ+) given by (2.21) is

ω =
3

2

e4t√
9 + 3e6t

e12 − 1

3

(
−3 +

√
9 + 3e6t

)
e−2te34 + e35 + e36 − e45 + e46 + e2te56,
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ψ+ = e123 + e234 + e2t(e136 − e145 + e235 + e246),

and the metric on Mprinc is represented by the matrix

(gij) =



3

2

e4t√
9 + 3e6t

0 0 0 0 0

0
3

2

e4t√
9 + 3e6t

0 0 0 0

0 0
3 +

√
9 + 3e6t

3e2t
0 1 −1

0 0 0
3 +

√
9 + 3e6t

3e2t
1 1

0 0 1 1 2e2t 0

0 0 −1 1 0 2e2t


.

This concludes the proof of Theorem A.

However, using the results in [VZ20] we can check that this example cannot be ex-

tended to the singular orbits to give a smooth metric on the whole manifold. Indeed,

suppose that g can be extended smoothly to the singular orbit O− = π−1(−1). By

Lemma 3.8 in [VZ20], g55 and g66 are even functions on t+ 1. But the exponential func-

tion is not even, so we get to a contradiction. The question of whether any solution to

(1)–(7) could be smoothly extended to the singular orbits will be answered in the next

section. Because of the existence of the previous example, the methods used for other

cases would not work for this situation. The aim is then to use a different approach to

tackle the problem. As the computations become too complicated as a consequence of k

being trivial, we will instead look into topological arguments.

2.4 Proof of Theorem B

We will finally prove the main theorem of this chapter.

Theorem B. Let M be a six-dimensional simply connected cohomogeneity one manifold

under the almost effective action of a connected Lie group G, and let K be the principal
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isotropy group. Assume (g, k) ̸= (su(2) ⊕ su(2),∆R). Then M admits no G-invariant

balanced non-Kähler SU(3)-structures.

By Theorem A, we only need to discuss if there exist balanced non-Kähler SU(3)-

structures of cohomogeneity one arising as the compactification of the principal part

determined by the pair (g, k) = (su(2)⊕ 2R, {0}). We leave the study of the case where

(g, k) ̸= (su(2)⊕ su(2),∆R) for future work.

By [Hoe10b], a six-dimensional compact simply connected cohomogeneity one manifold

M whose corresponding principal part is given by the pair (g, k) = (su(2)⊕ 2R, {0}) at

the Lie algebra level, is G-equivariantly diffeomorphic to the product of two 3-dimensional

spheres, i.e.

M ∼= S3 × S3.

If we denote by H± the singular isotropy groups for the G-action on M and by h± =

Lie(H±) their Lie algebras, from Section 2.2, we get that if M is simply connected, then

π1(H±/K) = Z and we have that both h+ and h− are isomorphic to R so that both the

singular orbits of M are 4-dimensional compact submanifolds of M . We now recall a

result due to Michelsohn, that we will refer to as Michelsohn’s obstruction.

Proposition 2.4.1. [Mic82, Corollary 1.7] Suppose X is an n-dimensional complex

manifold which admits a balanced metric. Then every compact complex subvariety of

dimension n− 1 in X represents a non-zero class in H2n−2(X;R).

Proof. Let V be a compact complex submanifold of dimension n− 1 and let i : V ↪→ M

be the inclusion. Then

1

(n− 1)!

∫
V

i∗(ωn−1) = vol(V ) ̸= 0

Suppose V represents a zero class in H2n−2(X;R). Then every closed form defined on V

is exact. Let ω be a fundamental form such that dωn−1 = 0. Since d and the pullback of

i commute,

0 = i∗(dωn−1) = d(i∗ωn−1).
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Hence, there exists a form α such that

i∗ωn−1 = dα.

Therefore by Stokes Theorem

∫
V

i∗(ωn−1) =

∫
V

dα = 0,

which is a contradiction.

By Michelsohn’s obstruction, and as H4(S
3 × S3;R) = 0, if M admitted any 4-

dimensional compact complex submanifold S, thenM would not admit a balanced metric.

Therefore, we can make a few considerations by focusing on a tubular neighborhood of

one singular orbit G/H at a time. In particular we divide the discussion depending on the

immersion of h ⊂ g. Let S be the singular orbit given by the group diagram G ⊃ H ⊃ K.

We notice that, if S is J-invariant, a complex structure on M would induce a complex

structure on S, so we can discard all these cases by Michelsohn’s obstruction. We have

that TqM = TqS⊕V where V = TqS
⊥ is the slice at q ∈ S; since S is 4-dimensional, V is

always a 2-plane. We recall that theH-action on TqS is given by the adjoint representation

while the H-action on V is given via the slice representation (which is determined from

the embedding K ⊂ H), and since V is two-dimensional, this action is just a rotation on

V of a certain weight, say, a. Let us start by considering the case where h is contained in

the center of g, ξ(g). In this case the H-action on TqS is trivial. Therefore TqS and V are

inequivalent modules of the H-action on TqM and, since J commutes with the H-action,

J preserves TqS for each q ∈ S, i.e. S is an almost complex manifold and we may apply

Michelsohn’s obstruction to discard this case. Therefore we may suppose that h has a

non-trivial component in the su(2)-factor of g. In particular, since rank(su(2)) = 1 and

the adjoint action ignores components in the center of g, we will assume for our discus-

sion that h = ⟨f1⟩. Moreover, if we denote by m the tangent space to S via the usual
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identification, the decomposition of m in irreducible H-modules is given by

m = l0 ⊕ l1,

where H acts on l0 trivially and on l1 via rotation of speed d. The assumption h = ⟨f1⟩

does not change our discussion, since more generally if h = ⟨f1 +X⟩, where X ∈ R⊕ R,

{f1 + X, f2, f3, f4, f5} are again a basis for g and m ∼= ⟨f2, f3, f4, f5⟩ so the H-action on

m̂|q is again the adjoint representation adh which splits TqS as sum of l0 and l1 as before.

If the integer a is different from d the modules l0, l1 and V are inequivalent for the H-

action and again, since J commutes with the H-action, it cannot exchange two different

modules. In particular J(TqS) ⊆ TqS and we may apply Michelsohn’s obstruction as

before. For the remaining case a = d we have that the two modules l1 and V are

equivalent, hence J(l1 ⊕ V ) ⊆ l1 ⊕ V but not necessarily J(l1) ⊆ l1. In particular,

when this case occurs, the orbit S is not J-invariant and we do not have obstructions to

the existence of balanced metrics. Therefore, from now on, we assume this is the case.

Let ∂/∂x be a vector field such that (ξ|q, ∂/∂x|q) is an orthonormal basis for the slice

V and T ∗
qM = ⟨e1|q, dx|q, e3|q, e4|q, e5|q, e6|q⟩. Let φ : h → End(TqM) be the h-action on

TqM . Then, in order to have l1 and V h-equivalent, φ(f1)
∗ acts on 1-forms given with the

previous basis as

φ(f1)
∗ =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

61



Fix the volume form Ω = e1...6 and consider the 3-form

ψ+ := p1e
123 + p2e

124 + p3e
125 + p4e

126 + p5e
134 + p6e

135 + p7e
136 + p8e

145 + p9e
146 + p10e

156

+p11e
234 + p12e

235 + p13e
236 + p14e

245 + p15e
246 + p16e

256

+p17e
345 + p18e

346 + p19e
356 + p20e

456,

where pj ∈ C∞((−1, 1)) for any j = 1, . . . , 20.

The condition dψ+ = 0 is equivalent to the following ODE system:



p′11 = 0,

p′12 + 2p8 = 0,

p′13 + 2p9 = 0,

p′14 − 2p6 = 0,

p′15 − 2p7 = 0,

p′17 + 2p3 = 0,

p′18 + 2p4 = 0,

p16 = p19 = p20 = 0.

(2.22)

From now on, we will assume p16 = p19 = p20 = 0.

Let the slice be V ∼= R2 so that the singular point q ∈ O− is identified with 0 ∈ R2, and

let r : V → R be the radial distance, such that for v = (v1, v2) ∈ V , r(v) = |v| =
√
v21 + v22.

Then r is not in C∞(V ), and neither are the odd powers of r. Via the exponential map,

we can identify t+ 1 with the radial distance r.

Let α be a G-invariant 1-form on M . Then

α(t) =
6∑
i=1

αi(t)e
i,

for t ∈ (−1, 1) and some smooth functions αi, i = 1, ..., 6. This expression has to extend
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smoothly to t = −1. In particular, the Taylor expansion of αk(t) around t = −1 for k ≥ 2

only has even powers of t+ 1:

αk(t) ∼
∑
n>1

ak,2n(t+ 1)2n.

Now, for 2 ≤ i < j < k ≤ 6 fixed, the eijk-coefficients extend smoothly to t = −1. Hence,

p12(t) ∼
∑
n>1

a2n(t+ 1)2n,

and similarly for the Taylor expansions of p13(t), p14(t) and p15(t) around t = −1. There-

fore limt→−1 p
′
12(t) = limt→−1 p

′
13(t) = limt→−1 p

′
14(t) = limt→−1 p

′
15(t) = 0. From (2.22),

we obtain that limt→−1 p6(t) = limt→−1 p7(t) = limt→−1 p8(t) = limt→−1 p9(t) = 0.

The 3-form ψ+ at t = 0 has to be H-invariant, and hence can be written as

ρ = c3e
1 ∧ dx ∧ e5 + c4e

1 ∧ dx ∧ e6 + c6e
135 + c7e

136

+c8e
145 + c9e

146 − c8dx ∧ e35 − c9dx ∧ e36

+c6dx ∧ e45 + c7dx ∧ e46 + c17e
345 + c18e

346,

for some c3, c4, c6, c7, c8, c9, c17, c18 ∈ R. But ci = limt→−1 pi(t) = 0 for i = 6, 7, 8, 9.

Therefore, we can easily compute that

λ|t=−1 = (c18c3 − c17c4)
2 ≥ 0.

This concludes case (a.1).

We note that it is possible to reach a contradiction by just studying the behaviour

around one of the singular orbits. However, if we do not use the information coming from

Michelsohn’s obstruction, the computations get significantly more complicated. The main

point is that from dψ− = 0 and using the stability condition λ < 0, we get p10 = 0. If we
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assume this too, the 3-form ψ+ at t = −1 can be written as

ρ = c1e
1 ∧ dx ∧ e3 + c2e

1 ∧ dx ∧ e4 + c3e
1 ∧ dx ∧ e5 + c4e

1 ∧ dx ∧ e6

+c5e
134 + c6e

135 + c7e
136 + c8e

145 + c9e
146

+c11dx ∧ e34 + c12dx ∧ e35 + c13dx ∧ e36 + c14dx ∧ e45 + c15dx ∧ e46

+c17e
345 + c18e

346,

for some ci ∈ R, i = 1, ..., 18, i ̸= 10, 16. Then, once again we find that λ|t=−1 =

(c18c3 − c17c4)
2 ≥ 0, which finishes the case.

We may also reaching a contradiction by studying the possible H-actions on TqS and

V and showing that the weights a and d cannot be equal.

Remark 2.4.2. We also note that in case (a.1) and when h = R, we can remove the

hypothesis of simple connectedness from the non-compact case and still get a non-existence

result. Let M be a six-dimensional non-compact cohomogeneity one manifold under the

almost effective action of a connected Lie group G and let K,H be the principal and

singular isotropy groups, respectively, with (g, h, k) = (su(2)⊕ 2R,R, {0}). Then M

admits no G-invariant balanced non-Kähler SU(3)-structures.

In [FLY12], balanced metrics were constructed on the connected sum of k ≥ 2 copies

of S3 × S3. However, it is not known whether S3 × S3 admits balanced structures.

By [AI01, Remark 1], in a manifold with six real dimensions, there is no non-Kähler

Hermitian metric which is simultaneously balanced and strong Kähler-with-torsion, i.e.

∂∂̄ω = 0, also known as SKT. In [FV15] the authors conjectured that on non-Kähler

compact complex manifolds it is never possible to find an SKT metric and also a balanced

metric. In [GGP08] an example of an SKT structure on S3 × S3 is provided. One of the

key cases that needs to be tackled in Theorem B is precisely S3 × S3. From Theorem B

we get the following Corollary.

Corollary 2.4.3. There is no non-Kähler balanced SU(3)-structure on S3 × S3 which is

invariant under a cohomogeneity one action.
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Chapter 3

Coclosed G2-structures on

cohomogeneity one manifolds

The aim of this chapter is to find new coclosed G2-structures on manifolds of cohomogene-

ity one. A coclosed G2-structure in a smooth seven-manifoldM is a positive 3-form φ such

that d∗φφ = 0, where ∗φ is the Hodge star operator associated to the metric and volume

form on M defined by φ. We are interested in manifolds with coclosed G2-structures as

they can admit solutions to the heterotic G2-system. They have also attracted substantial

interest in M-theory. In heterotic string theory they give rise to three-dimensional vacua,

while in M-theory to four-dimensional N = 1 Minkowski vacua.

Our strategy is to work out which Lie groups G could act with cohomogeneity one

on a seven-manifold M , and then look for G-invariant coclosed G2-structures on M . We

are interested in cohomogeneity one coclosed G2-structures as this is the next step of

complexity after Reidegeld studied homogeneous coclosed G2-structures in [Rei09]. Since

the situation of simple G was already considered in [CS02], we focus on the case where

there is an action of G = SU(2)2. We will also consider the case where the symmetry

group enhances to SU(2)3.

The main results of this chapter are Theorem C and Theorem D. We find that for

the SU(2)-symmetric cohomogeneity one manifolds M = R4 × S3 and M = S4 × S3
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respectively, and three given smooth functions satisfying certain conditions around a

unique singular orbit S3 for the non-compact case, and around both singular orbits, both

diffeomorphic to S3, for the compact case, and an initial non-zero parameter, there is

a unique G2-structure extending smoothly to the singular orbit (respectively, singular

orbits).

On the manifold M = R4 × S3, there are two explicit complete G2-holonomy met-

rics: the Bryant–Salamon (BS) metric [BS89] and the Brandhuber et al. (BGGG) met-

ric [BGGG01]. The second one is a member of a family of complete (SU(2)2 × U(1))-

invariant G2-holonomy metrics found by Bogoyavlenskaya in [Bog13], and known as the B7

family. More recently, Foscolo, Haskins and Nordström constructed infinitely many new

1-parameter families of simply connected complete noncompact G2–manifolds [FHN21b],

which are also (SU(2)2 × U(1))-invariant. In [Pod21], Podestà proved the existence of a

one-parameter family of nearly parallel G2-structures, which are mutually non-isomorphic

and invariant under the cohomogeneity one action of the group SU(2)3.

The layout of this chapter is as follows. In Section 3.1.1, we classify all possible

principal orbit types of cohomogeneity one almost effective actions that preserve the G2-

structure of a simply connected manifold. We will use the same strategy as we did for

SU(3)-structures on six-dimensional cohomogeneity one manifolds in the previous chapter

to look for possible solutions of the Hull–Strominger system. In sections 3.1.2 and 3.1.3

we discuss Cleyton and Swann’s results on cohomogeneity one G2-structures with simple

acting group.

In Section 3.2.1 we give a description of a G2-structure on a manifold which is invariant

under the cohomogeneity one action of SU(2)2. In Section 3.2.2 we discuss the conditions

for the metric to be extended to a singular orbit. In Sections 3.2.4 and 3.2.5 we obtain

the systems of equations for the G2-structure to be closed and coclosed. Then we consider

some special cases of coclosed G2-structures in 3.2.6.

In Section 3.3 we find a class of coclosed G2-structures on a given seven-dimensional

simply connected manifold under the cohomogeneity one action of SU(2)2. In Section
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3.3.1 we will provide existence and uniqueness results for the existence of a coclosed

G2-structure (constructed from a half-flat SU(3)-structure) in the principal part of a

seven-dimensional simply connected manifold M under the cohomogeneity one action

of SU(2)2. We use a technical result (Theorem 3.3.1) which provides local solutions to

singular initial value problems. In Sections 3.3.2 and 3.3.3 we will study the extension

of the corresponding metric to singular orbit(s). Finally, in Section 3.3.4 we make a few

concluding remarks.

3.1 Cohomogeneity one G2-structures

Let M be a seven-dimensional simply connected manifold of cohomogeneity one for the

almost effective action of a compact connected Lie group G. Let φ be a G2-structure on

M which is preserved by the action, and denote ψ = ∗φ. Let K be the principal isotropy

group.

3.1.1 Principal orbit structure

We require that the action of G preserves the G2-structure, so the principal isotropy group

K acts on TpM with K ⊂ G2 ⊂ SO(7), for any p ∈ M . If we denote k = Lie(K), then

k ⊂ g2. Let ξ = ∂/∂t, where t is the parameter normal to the orbits. The subgroup of G2

that fixes the subspace ⟨ξ|p⟩ of TpM is SU(3). Hence, the requirement that G acts on M

with cohomogeneity one preserving φ implies that the representation of the isotropy group

K = Kp on the tangent space of the principal orbit is a subgroup of SU(3). Therefore at

the Lie algebra level k := Lie (K) is {0}, R, su (2), 2R, u = su(2)⊕R or su(3). Note that

su(2) has two different embeddings in su(3).

As dim g− dim k = 6, the only possible decompositions of the Lie algebra g = Lie(G)

into simple summands are:

(a) if k = {0}, then
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(1) g = su (2)⊕ su (2),

(2) g = su (2)⊕ 3R,

(3) g = 6R,

(b) if k = R, then

(1) g = su (2)⊕ su (2)⊕ R,

(2) g = su (2)⊕ 4R,

(3) g = 7R,

(c) if k = su (2), then

(1) g = su (2)⊕ su (2)⊕ su (2),

(2) g = su (2)⊕ su (2)⊕ 3R,

(3) g = su (2)⊕ 6R,

(4) g = su (3)⊕ R.

(d) if k = 2R, then

(1) g = su (2)⊕ su (2)⊕ 2R,

(2) g = su (2)⊕ 5R,

(3) g = 8R,

(4) g = su (3).

(e) if k = u(2) = su(2)⊕ R, then

(1) g = su (2)⊕ su (2)⊕ su (2)⊕ R,

(2) g = su (2)⊕ su (2)⊕ 4R,

(3) g = su (2)⊕ 7R,

(4) g = su (3)⊕ 2R,
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(5) g = sp(2),

(f) if k = su(3), then

(1) g = su (3)⊕ su (2)⊕ su (2),

(2) g = su (3)⊕ su (2)⊕ 3R,

(3) g = su (3)⊕ 6R,

(4) g = g2.

By the hypothesis of simple connectedness, using Proposition 2.2.1 for the compact

case and Proposition 2.2.2 for the non-compact case, we can easily rule out many of these

cases: (a.2), (a.3), (b.2), (b.3), (c.2), (c.3), (d.2), (d.3), (e.2), (e.3), (f.2) and (f.3). Also,

in case (c.4), for M to be simply connected we would need that for one singular isotropy

group H, H/K ∼= S1, and for this to happen that k = {0}, which is not true in (c), so we

can rule it out as well. The same happens in case (b.1) when k is not embedded in the

R component of g, (d.1) when k is not embedded in the 2R component of g, (e.1) when

the R component of k is not embedded in the R component of g and (e.4) when the R

component of k is not embedded in one of the R components of g.

If k ⊂ g is an ideal, then the principal isotropy would act trivially onM and the action

would not be almost effective. This allows us to rule out case (f.1) as well.

Then, up to finite quotients, the principal orbits are one of the following types:

(1) S3 × S3 = SU(2)2 =
SU(2)2 × U(1)

U(1)
=

SU(2)3

SU(2)
;

(2) S5 × S1 =
SU(3)× U(1)

SU(2)
;

(3) F1,2 =
SU(3)

T 2
(k = 2R, g = su (3));

(4) CP (3) =
Sp(2)

SU(2)U(1)
(k = su (2)⊕ R, g = sp(2));

(5) S6 =
G2

SU(3)
(k = su (3), g = g2).
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For the last three cases, and up to a finite quotient, the group G acting is SU(3), Sp(2)

and G2, respectively. They have been studied in [CS02], where Cleyton and Swann clas-

sified all solutions with holonomy G2 and weak holonomy G2. In this paper, they started

considering G2-structures with a cohomogeneity one action of a compact Lie group G,

then wrote the connected simple groups G that can act. The simple groups in question

are: SU(3), G2 and Sp(2). Later they studied the coclosed (or cosymplectic, as they call

them) structures and determined the topological types of manifolds admitting such struc-

tures. They also found new examples of compact manifolds with coclosed G2-structures.

On account of this, our focus will be on case (1), where there is an invariant action of

SU(2)2 symmetry. We will also consider situations where there are extra symmetries, such

as extra SU(2).

In the next two sections, we present some of the results found in [CS02] about the

existence of coclosed G2-structures in the last three cases.

3.1.2 Case k = su(3) and g = g2

For this section k = su (3) and g = g2. Hence, up to finite quotients, the principal orbits

would be

G

K
=

G2

SU(3)
= S6.

From [CS02] there are precisely two singular orbit types: RP (6) and a point {∗}.

Therefore, there are two spaces with base homeomorphic to the non-compact interval

[0,∞):

(i) G/H = RP (6). Then M is the canonical line bundle over RP (6).

(ii) G/H = {∗}. Then M = R7 viewed as a 7-dimensional vector bundle over a point.

There is another non-compact case, M = R × S6, but we are not interested in it as it is

just a product manifold.

In the compact case (base B = [0, 1]) there are three possibilities:
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(i) G/H± = {∗}. Then M = S7.

(ii) G/H− = {∗}, G/H+ = RP (6). Then M = RP (7).

(iii) G/H± = RP (6). Then M = RP (7)#RP (7).

There is another compact case, M = S1 × S6, but it is not simply connected so we are

not interested in it.

From [CS02], the space of invariant 3-forms is is two dimensional, spanned by 3-forms

α and β. Let g0 be the canonical metric on S6 = G2/SU(3) with sectional curvature one.

Then let ω, α and β be such that

ω3 = 6vol0,

dω = 3α,

∗0α = β,

dβ = −2ω2.

Let γ be a geodesic through p orthogonal to the principal orbit and parameterise it by

the arc length t ∈ I ⊂ R. On the union of principal orbits Mprinc = I × G2/SU(3) there

are smooth functions f, θ : I → R such that

g = dt2 + f 2g0,

vol = f 6vol0 ∧ dt,

φ = f 2ω ∧ dt+ f 3(cos θα + sin θβ).

Then

ψ =
1

2
f 4ω2 + f 3(cos θβ − sin θα) ∧ dt,

dφ = (3f 2 − (f 3 cos θ)·)α ∧ dt− (f 3 sin θ)·β ∧ dt− 2f 3 sin θω2

The coclosed equations required from the heterotic G2 system, d∗φ = 0, are equivalent to

ḟ = cos θ. (3.1)
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Here the dot denotes derivative respect to the variable t. Locally, these are described by

one arbitrary function θ. If (3.1) holds, then

dφ = f 2 sin θ(3 sin θ + f θ̇)α ∧ dt− f 2 cos θ(3 sin θ + f θ̇)β ∧ dt− 2f 3 sin θω2.

There exist examples of both compact and non-compact complete manifolds with a

coclosed G2-structure preserved by an action of G2 of cohomogeneity one.

3.1.3 Cases k = 2R, g = su(3) and k = su(2)⊕ R, g = sp(2)

First, we assume k = 2R and g = su(3). Hence, up to finite quotients, the principal orbits

would be

G

K
=

SU(3)

T 2
= F1,2.

From [CS02], any SU(3)-invariant G2-structure on Mprinc = I × SU(3)/T 2 has

g = dt2 + f 2
1 g1 + f 2

2 g2 + f 2
3 g3, (3.2)

vol = f 2
1 f

2
2 f

2
3vol0 ∧ dt, (3.3)

where t ∈ I ⊂ R is the arc-length parameter of an orthogonal geodesic and f1, f2, f3 :

I → R are non-vanishing functions. The corresponding invariant 3-form is

φ = (f 2
1ω1 + f 2

2ω2 + f 2
3ω3) ∧ dt+ f1f2f3(cos θα + sin θβ), (3.4)

for some function θ : I → R. The G2-structure is coclosed if

(f 2
1 f

2
2 )

· = (f 2
3 f

2
1 )

· = (f 2
2 f

2
3 )

· = 2f1f2f3 cos θ.

These equations were solved in [CS02]. They found that the structure may be determined

by the function f1.
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Theorem 3.1.1. ( [CS02, Theorem 6.1]) Consider a coclosed G2-structure preserved by

an action of SU(3) of cohomogeneity one. Then the metric is given by equation (3.2).

Arrange the coefficients so that f 2
3 ≥ f 2

2 ≥ f 2
1 . Then

|ḟ1| ≤
√

Ξ(f1, µ, ν), (3.5)

for some constants ν ≥ µ ≥ 0 and

Ξ(f1, µ, ν) =
f 8
1 + 2(2ν2 − µ2)f 4

1 + µ4

2f 4
1

(
f 4
1 + 2ν2 − µ2 +

√
f 8
1 + 2(2ν2 − µ2)f 4

1 + µ4
) .

Conversely, any smooth function f1 satisfying the differential inequality (3.5) gives a

coclosed G2-structure with f2 determined by

f 2
2 − ν2f−2

2 = f 2
1 − µ2f−2

1 , (3.6)

f3 determined by

f 2
3 − (ν2 − µ2)f−2

3 = f 2
1 + µ2f−2

1 , (3.7)

and θ by

f3 cos θ = (f1f2)
·. (3.8)

The case k = su(2)⊕ R and g = sp(2), where up to finite quotients we have

G

K
=

Sp(2)

U(1)× SU(2)
= CP (3),

can be regarded as a special case of the previous case. Sp(2)-invariant G2-structures are

given by equations (3.2) and (3.4) with f2 = f3.

There exist examples of both compact and non-compact complete manifolds with a

coclosed G2-structure preserved by an action of SU(3) of cohomogeneity one.
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3.2 SU(2)2-invariant equations

For the rest of this chapter, letM be a seven-dimensional simply connected cohomogeneity

one manifold under the action of the compact connected Lie group G such that, up to

finite quotients, the principal orbits are

G

K
∼= S3 × S3.

In this case there is an invariant action of SU(2)2. We will also consider situations where

there are extra symmetries.

3.2.1 G2-structures on cohomogeneity one manifolds

In this section we construct an SU(2)2-invariant half-flat SU(3)-structure on the principal

part It × N of a cohomogeneity one manifold M . We will describe the SU(3)-structure,

the associated G2-structure given by equation (1.21) and the corresponding metric on M

in terms of six real valued functions, by using an orthonormal basis given by a Milnor

frame. This follows from the work by Schulte-Hegensbach in his PhD thesis [SH10] and

Madsen and Salamon in [MS13]. Here we will follow the reformulation by Lotay and

Oliveira from [LO18, Section 2].

We can construct a basis of su(2)⊕ su(2) written as su(2)⊕ su(2) = su+(2)⊕ su−(2).

Let {Ti}3i=1 be a basis for su(2) such that [Ti, Tj] = 2ϵijkTk. Then

T+
i = (Ti, Ti), T−

i = (Ti,−Ti),

define a basis for su+(2) and su−(2) respectively. Let {η+i }3i=1 and {η−i }3i=1 be dual basis

to {T+
i }3i=1 and {T−

i }3i=1 respectively. Then the structure equations are

dη+i = −ϵijk(η+j ∧ η+k + η−j ∧ η−k ),

dη−i = −2ϵijkη
−
j ∧ η+k .
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We will denote η±ij = η±i ∧η±j , and η±123 = η±1 ∧η±2 ∧η±3 . A generic SU(2)2-invariant half-flat

SU(3)-structure on the principal bundle is given by

ω = 4
∑3

i=1AiBiη
−
i ∧ η+i ,

Ω1 = 8B1B2B3η
−
123 − 4

∑3
i,j,k=1 ϵijkAiAjBkη

+
i ∧ η+j ∧ η−k ,

Ω2 = −8A1A2A3η
+
123 + 4

∑3
i,j,k=1 ϵijkBiBjAkη

−
i ∧ η−j ∧ η+k ,

(3.9)

for real-valued functions Ai, Bi : It → R, i = 1, 2, 3, Ai(t), Bi(t) ̸= 0 for t in the interior of

It. The compatible metric determined by this SU(3)-structure on {t} ×M is ( [MS13]):

gt =
3∑
i=1

(
(2Ai)

2η+i ⊗ η+i + (2Bi)
2η−i ⊗ η−i

)
,

and the resulting metric on Rt ×M , compatible with the G2-structure φ = dt ∧ ω + Ω1,

is given by

g = dt2 + gt. (3.10)

Hence, we can see the functions Ai(t) and Bi(t) as describing deformations of the standard

cone metric.

Remark 3.2.1. For a G2-structure given by a half-flat SU(3)-structure as before, using

the previous expressions and equation (1.21), we have that ψ
¬
dφ = 0, so

τ0 = 0.

This means that for all of the G2-structures considered, the scalar curvature is zero.

Remark 3.2.2. Recall that in seven dimensional heterotic string theory, we say that the

flux is a 3-form given by

H =
1

6
τ0φ− τ1

¬
ψ − τ3.

One of the equations of the heterotic G2 system, the heterotic Bianchi identity or anomaly

free condition, relates the exterior differential of the flux to the curvatures of two gauge
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fields. If the G2-structure is coclosed as before, and using that τ0 = 0 from the previous

remark, we get

dH = 1
6

∏3
i=1 |AiBi|

[16(−4A1B1 + (B1B2B3)
· − (A2A3B1)

· + (A3A1B2)
· + (A1A2B3)

·)η−23 ∧ η+23

+16(−4A2B2 + (B1B2B3)
· + (A2A3B1)

· − (A3A1B2)
· + (A1A2B3)

·)η−13 ∧ η+13

+16(−4A3B3 + (B1B2B3)
· + (A2A3B1)

· + (A3A1B2)
· − (A1A2B3)

·)η−12 ∧ η+12].

This expression will be relevant when looking for solutions of the heterotic G2 system

for the SU(2)2-invariant cohomogeneity one manifolds and the described coclosed G2-

structures. The author is still working on this.

3.2.2 Extension to the singular orbits

The union of the principal orbitsMprinc of the manifoldM is a dense subset ofM . Hence,

it is possible to extend the metric on the principal part to the singular orbit(s) to give

a metric on the manifold M . However, there are some extra conditions that we need to

impose in order to ensure that this extension is smooth. These conditions follow from

a method developed by Eschenburg and Wang [EW00] to find when a metric (or more

generally, a tensor) extends smoothly to a singular orbit. In [VZ20], Verdiani and Ziller

gave an efficient way of checking the conditions for a smooth extension of the metric. To

use this method, we need to fix our cohomogeneity one manifold. We will consider two

situations, one of a compact and one of a non-compact example.

As explained in Section 1.3, a non-compact cohomogeneity one manifold is given by

a homogeneous vector bundle, while a compact one by the union of two homogeneous

disc bundles. We are interested in the smoothness conditions near a singular orbit, so we

restrict ourselves to only one such bundle.

The non-compact manifold that we are going to consider is M = R4 × S3, seen as a

cohomogeneity one manifold with group diagram SU(2) × SU(2) ⊃ ∆SU(2) ⊃ {1}. In
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particular, we consider the embedding R4 × S3 ↪→ H×H and let SU(2)× SU(2) act via

(a1, a2) · (p, q) = (a1p, a1qā2).

One of the reasons why we are interested in this manifold is that it admits torsion-free

G2-structures [BS89,BGGG01] and G2-instantons [LO18]. R4×S3 is diffeomorphic to the

total space of the spinor bundle S → S3 over the 3-sphere, which can be described as the

quotient

SU(2)× SU(2)× R4

∆SU(2)
,

where SU(2) is acting on the right diagonally.

The next Lemma tells us the conditions on the functions from the previous sec-

tion Ai, Bi of t ∈ R+, i = 1, 2, 3, for the metric to extend to the singular orbit Q =

SU(2)2/∆SU(2) ∼= S3.

Lemma 3.2.3. [LO18, Lemma 8] The metric g in (3.10) extends smoothly (as a metric)

over the singular orbit Q = SU(2)2/∆SU(2) if and only if Ai, Bi are non-zero for t > 0

and:

(i) the Ai’s are odd with Ȧi(0) = 1/2;

(ii) the Bi’s are even with B1(0) = B2(0) = B3(0) ̸= 0 and B̈1(0) = B̈2(0) = B̈3(0).

Note that condition (i) says that the metrics have to be almost round near to the

singular orbit, while condition (ii) guarantees that the singular orbit is totally geodesic.

For a compact manifold, we consider the cohomogeneity one manifold M = S4 × S3

with group diagram SU(2)×SU(2) ⊃ ∆SU(2),∆SU(2) ⊃ {1}. We consider the embedding

S3 × S4 ↪→ H× (H× R), then S3 × S3 acts on M via

(a1, a2) · (p, q, t) = (a1pa
−1
2 , a2q, t).

The metric g in (3.10) extends smoothly (as a metric) over the singular orbits Q1,2 =
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SU(2)2/∆SU(2) if the conditions for Ai, Bi from the previous lemma are satisfied around

both singular orbits.

Remark 3.2.4. For the two previous situations, the corresponding normal sphere(s)H/K

have dimension 3. It would be interesting to explore another example where there is a

normal sphere with dimension 1, such as the Bazaikin-Bogoyavlenskaya manifolds [BB13],

which have group diagram SU(2)2 ⊃ U(1) ⊃ Z/4.

3.2.3 Torsion-free ODEs

The general ODEs describing SU(2)2-invariant G2-manifolds of cohomogeneity one are

[MS13]:

Ȧi =
1

2

(
A2
i

AjAk
− A2

i

BjBk

−
A2
j + A2

k

AjAk
+
B2
j +B2

k

BjBk

)
,

Ḃi =
1

2

(
A2
j +B2

k

AjBk

+
A2
k +B2

j

AkBj

− B2
i

AjBk

− B2
i

AkBj

)
,

(3.11)

where {i, j, k} denotes a cyclic permutation of {1, 2, 3}. In every example solution of these

equations there is an extra U(1)-symmetry: this U(1) acts diagonally on S3 × S3 with

infinitesimal generator T+
1 . As a consequence, we have A2 = A3 and B2 = B3, and (3.11)

becomes

Ȧ1 =
1

2

(
A2

1

A2
2

− A2
1

B2
2

)
,

Ȧ2 =
1

2

(
B2

1 +B2
2 − A2

2

B1B2

− A1

A2

)
,

Ḃ1 =
A2

2 +B2
2 −B2

1

A2B2

,

Ḃ2 =
1

2

(
A2

2 +B2
1 −B2

2

A2B1

+
A1

A2

)
.

(3.12)

These equations appeared in Brandhuber et al. [BGGG01] for the first time.

Example 3.2.5. One of the first examples of a torsion-free G2-structure with a complete

metric is the one that gives the Bryant–Salamon metric on R4 × S3 from [BS89]. The

Bryant–Salamon metric is actually SU(2)3-invariant, and it can be realised as a coho-

mogeneity one manifold with group diagram SU(2)3 ⊃ SU(2)2 ⊃ SU(2) (where SU(2)

is embedded in SU(2)3 as 1 × 1 × SU(2) and SU(2)2 as ∆1,2SU(2) × SU(2)), as well as
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with an action of SU(2)2 in multiple inequivalent ways. The extra symmetry means that

A1 = A2 = A3 and B1 = B2 = B3, and the torsion-free equations reduce to

Ȧ1 =
1

2

(
1− A2

1

B2
1

)
, Ḃ1 =

A1

B1

.

We find a solution

A1 =
r

3

√
1− r−3, B1 =

r√
3
,

where r ∈ [1,+∞) is a coordinate defined implicitly by

t(r) =

∫ r

1

ds√
1− s−3

,

and t denotes the arc length parameter. When t → ∞, A1(t) ∼ t/3 and B1(t) ∼ t/
√
3.

The metric will then be

g = dt2 +
3∑
i=1

(
4r2

9
(1− r−3)η+i ⊗ η+i +

4r2

3
η−i ⊗ η−i

)
.

This metric is asymptotically conical, and the asymptotic cone is the standard homoge-

neous nearly Kähler structure on S3 × S3.

Example 3.2.6. There is another example of an explicit complete holonomy G2 metric

on R4 × S3, by Brandhuber, Gomis, Gubser and Gukov [BGGG01]. In this example the

symmetry is enhanced and theG2-structures are (SU(2)
2 × U(1))-invariant, the extra U(1)

meaning that A2 = A3, B2 = B3. Brandhuber et al. obtain a torsion-free G2-structure,

which is given by

A1 =

√
(r − 9/4)(r + 9/4)√
(r − 3/4)(r + 3/4)

, A2 = A3 =

√
(r − 9/4)(r + 3/4)

3
,

B1 =
2r

3
, B2 = B3 =

√
(r − 3/4)(r + 9/4)

3
,
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where r ∈ [9/4,+∞) is a coordinate defined implicitly by

t(r) =

∫ r

9/4

√
(s− 3/4)(s+ 3/4)√
(s− 9/4)(s+ 9/4)

ds.

3.2.4 Closed equations

In this section we look for the equations that the functions Ai, Bi have to satisfy such

that the G2-structure obtained from them is closed. Recall from Section 1.1.1 that they

will be derived from

Ω̇1 = dω. (3.13)

A straightforward computation using the expressions for ω and Ω1 from (3.9) gives us the

following Proposition.

Proposition 3.2.7. Let M be a seven-dimensional simply connected cohomogeneity one

manifold under the action of SU(2)2, with a G2-structure coming from a half-flat SU(3)-

structure. Let the SU(3)-structure (ω,Ω1,Ω2) be written as in (3.9). Then, the equations

for the G2-structure to be closed are:



(B1B2B3)
· = +A1B1 + A2B2 + A3B3,

(A2A3B1)
· = −A1B1 + A2B2 + A3B3,

(A3A1B2)
· = +A1B1 − A2B2 + A3B3,

(A1A2B3)
· = +A1B1 + A2B2 − A3B3.

3.2.5 Coclosed equations

We derive equations for the functions Ai, Bi such that the G2-structure obtained via (3.9)

is coclosed. Recall from Section 1.1.1 that they will be derived from

ω ∧ ω̇ = −dΩ2. (3.14)
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Using the expression for ω and Ω2 from equation (3.9), we obtain the system of ODEs

that will give us the coclosed conditions. We present it in the following Proposition.

Proposition 3.2.8. Let M be a seven-dimensional simply connected cohomogeneity one

manifold under the action of SU(2)2, with a G2-structure coming from a half-flat SU(3)-

structure. Let the SU(3)-structure (ω,Ω1,Ω2) be written as in (3.9). Then, the equations

for the G2-structure to be coclosed are:


A2B2(Ȧ3B3 + A3Ḃ3) + A3B3(Ȧ2B2 + A2Ḃ2) = A1A2A3 −B2B3A1 +B1B3A2 +B1B2A3,

A1B1(Ȧ3B3 + A3Ḃ3) + A3B3(Ȧ1B1 + A1Ḃ1) = A1A2A3 +B2B3A1 −B1B3A2 +B1B2A3,

A1B1(Ȧ2B2 + A2Ḃ2) + A2B2(Ȧ1B1 + A1Ḃ1) = A1A2A3 +B2B3A1 +B1B3A2 −B1B2A3.

(3.15)

We will assume that for t in the interior of It, all Ai’s are sign definite. Hence, this

system will be well defined in interior of It and we will study the behaviour for the

boundary points, where the Ai’s are zero. If we define

D1 = A2B2A3B3,

D2 = A1B1A3B3,

D3 = A1B1A2B2,

then we can write (3.15) as a system of ODEs for the functions D1, D2, D3, where the

coefficients depend on free functions A1, A2, A3, given that they satisfy some properties to

ensure that the G2-structure could be extended to singular orbits. Note that the initial

conditions from Lemma 3.2.3 correspond to

Di(t) =
b20
4
t2 +O(t4), t ∈ [0, L), (3.16)
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and Di even, i = 1, 2, 3. The system is



Ḋ1 = A1A2A3 −
A2

1D1

A1A2A3

+
A2

2D2

A1A2A3

+
A2

3D3

A1A2A3

,

Ḋ2 = A1A2A3 +
A2

1D1

A1A2A3

− A2
2D2

A1A2A3

+
A2

3D3

A1A2A3

,

Ḋ3 = A1A2A3 +
A2

1D1

A1A2A3

+
A2

2D2

A1A2A3

− A2
3D3

A1A2A3

.

(3.17)

Writing D = (D1, D2, D3)
T the system of equations now becomes

Ḋ =


1

1

1

A1A2A3 +
1

A1A2A3


−A2

1 A2
2 A2

3

A2
1 −A2

2 A2
3

A2
1 A2

2 −A2
3

D. (3.18)

We will write it with matrix notation. Let

M =
1

A1A2A3


−A2

1 A2
2 A2

3

A2
1 −A2

2 A2
3

A2
1 A2

2 −A2
3

 , N = A1A2A3


1

1

1

 . (3.19)

Then our system is

Ḋ =M(t)D +N(t). (3.20)

Remark 3.2.9. We would like to recover the Bi’s from the Di’s and b0 ̸= 0 with:

Bi(t) = sign(b0)

√
DjDk

DiA2
i

, t > 0, Bi(0) = b0, (3.21)

where D̈i(0) = b20/2 and {i, j, k} is a cyclic permutation of {1, 2, 3}. We can only do that

if DiDj/Dk > 0 for t > 0.

3.2.6 Examples of coclosed G2-structures

We now study some special cases of coclosed G2-structures.
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3.2.6.1 Case A1 = A2 = A3 and B1 = B2 = B3.

In this section, we will see what happens when A1 = A2 = A3 and B1 = B2 = B3. We

only have one equation:

(A1B1)
· =

1

2

A2
1 +B2

1

B1

.

If we define D = A2
1B

2
1 , we get

Ḋ = A3
1 +

D

A1

. (3.22)

Example 3.2.10. If we take A1 = t/2, our equation is

Ḋ =
t3

8
+

2D

t
.

This has solutions depending on one constant c:

D = ct2 +
t4

16
.

Hence renaming 4c by c:

B =

√
t2

4
+ c.

This is an even function, and B1(0) ̸= 0 if and only if c ̸= 0. For c > 0, since it is well

defined for t ∈ [0,∞), we can smoothly extend the metric to the singular orbit at t = 0.

The corresponding metric is

g = dt2 + t2
3∑
i=1

η+i ⊗ η+i + (t2 + c)
3∑
i=1

η−i ⊗ η−i .

In the limit c→ 0, the metric is conical.

The general solution to equation (3.22) is

D = ce
∫ t
1/2

1
A1(ξ)

dξ
+ e

∫ t
1/2

1
A1(ξ)

dξ

∫ t

0

A3
1(η)e

−
∫ η
1/2

1
A1(ξ)

dξ
dη. (3.23)
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As limt→0D(t)t2 = 4c, and we are only interested in positive solutions, we rename c by

b20/16 so that the behaviour of D for small t agrees with (3.16). Let fA1 be the function

defined by

fA1 : t 7→ e
∫ t
1/2

1
A1(ξ)

dξ
,

we conclude that D = b20/16fA1(t) + fA1(t)
∫ t
0
A3

1(η)f
−1
A1

(η)dη and

B1 =

√
A−2

1 (t)

(
b20
16
fA1(t) + fA1(t)

∫ t

0

A3
1(η)f

−1
A1

(η)dη

)
.

For these solutions, there is an extra SU(2) symmetry, and hence they are not only

SU(2)2-invariant but actually SU(2)3-invariant.

If we consider R4 × S3 and assume a linear asymptotic behaviour of A1, i.e.

A1(t) ∼ at,

a > 0, when t→ ∞, we have linear asymptotic behaviour of B1 (as in the Bryant–Salamon

metric, for which a = 1/3) where a > 1/4 (but only in this case). Specifically,

B1(t) ∼

√
a2

4a− 1
t.

3.2.6.2 Case A1 = A2 = A3.

In this section, we will see what happens when A1 = A2 = A3. Writing D = (D1, D2, D3)
T

the system of equations (3.14) is

Ḋ =
1

A1


−1 1 1

1 −1 1

1 1 −1

D +


1

1

1

A3
1.

We will solve the system for a generic smooth A1(t), with A1(t) ̸= 0 if t ̸= 0. By
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first solving the homogeneous system and then using variation of parameters for the the

general solution to the in-homogeneous system, we find that the general solution is

D =


−f−2

A1
(t) −f−2

A1
(t) fA1(t)

0 −f−2
A1

(t) fA1(t)

−f−2
A1

(t) 0 fA1(t)



c1

c2

c3

+


fA1(t)

∫ t
0
A3

1(η)f
−1
A1

(η)dη

fA1(t)
∫ t
0
A3

1(η)f
−1
A1

(η)dη

fA1(t)
∫ t
0
A3

1(η)f
−1
A1

(η)dη

 ,

for some real constants c1, c2, c3. We observe that although 1/A1(t) might not be locally

integrable in a neighborhood of 0, the exponential of the integral ±
∫ t
1/2
A−1

1 (ξ)dξ need

not present a singularity at 0 (see examples below). Similarly for

fA1(t)
∫ t
0
A3

1(η)f
−1
A1

(η)dη.

As motivated from the conditions from Lemma 3.2.3, we now suppose a Taylor expan-

sion of A1(t) of the following form

A1(t) =
t

2
+ a1,3t

3 + a1,5t
5 + ...

We have then

∫ t

1/2

1

A1(ξ)
dξ =

∫ t

1/2

2

ξ
dξ +

∫ t

1/2

a1,3ξ + a1,5ξ
3 + ...

1
4
+ a1,3

2
ξ2 + a1,5

2
ξ4 + ...

dξ = 2 ln t+ f(t)

The second term is the integral of a smooth function, and we have denoted it by f(t).

Hence

fA1(t) = ef(t)t2, f−2
A1

(t) = e−2f(t)t−4.

Imposing Di(0) = 0 so that conditions from Lemma 3.2.3 can be satisfied, we see that we

must have c1 = c2 = 0, so B1 = B2 = B3 and we are in special case of 3.2.6.1. Renaming
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c3 as b20/16 as before, the general solution becomes

D =


b20
16
fA1(t) + fA1(t)

∫ t
0
A3

1(η)f
−1
A1

(η)dη

b20
16
fA1(t) + fA1(t)

∫ t
0
A3

1(η)f
−1
A1

(η)dη

b20
16
fA1(t) + fA1(t)

∫ t
0
A3

1(η)f
−1
A1

(η)dη

 .

3.3 Class of SU(2)2-invariant coclosed G2-structures

We are now ready to solve the coclosed equations (3.17). We use a technical result which

provides solutions to singular initial value problems, and then prove that we can extend

this solutions to our manifolds.

3.3.1 Existence and uniqueness results

The main tool that we are going to use to get existence and uniqueness results for co-

closed G2-structures is the following theorem ( [Mal74, Theorem 7.1] and [FH17] for this

statement).

Theorem 3.3.1. [FH17, Theorem 4.7] Consider the singular initial value problem

ẏ =
1

t
M−1(y) +M(t, y), y(0) = y0, (3.24)

where y takes values in Rk, M−1 : Rk → Rk is a smooth function of y in a neighbourhood

of y0 and M : R× Rk → Rk is smooth in t, y in a neighbourhood of (0, y0). Assume that

(i) M−1(y0) = 0;

(ii) hId− dy0M−1 is invertible for all h ∈ N, h ≥ 1.

Then there exists a unique solution y(t) of (3.24). Furthermore y depends continuously

on y0 satisfying (i) and (ii).

Note that this result only gives a short-time solution. However, we will be able to

further extend the solution (see Remark 3.3.3).
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We will write our system as in this theorem. Let A1, A2, A3 : [0, L) → R be smooth

functions, where we can assume that L is either infinity or 1, that satisfy the corresponding

conditions from Lemma 3.2.3, i.e. with Ai(t) > 0 for t ∈ (0, L), and such that

(i) Ai’s are odd;

(ii) Ȧi(0) = 1/2.

Let D0 = (0, 0, 0)T as Di(0) must be 0 if we want an extension to a singular orbit in t = 0.

Then we can write (3.18) as

Ḋ =
1

t
M−1(D) +M(t,D),

where

M−1 = 2


−1 1 1

1 −1 1

1 1 −1

 : R3 → R3,

and

M(t,D) = A1A2A3


1

1

1

+
1

A1A2A3


−A2

1 A2
2 A2

3

A2
1 −A2

2 A2
3

A2
1 A2

2 −A2
3

D − 1

t
M−1(D)

is smooth in t,D. The condition (i) from Theorem 3.3.1 holds as M−1(D0) = 0. However,

(ii) does not hold as dy0M−1 has one positive eigenvalue: dy0M−1 − hId is not invertible

for h = 2:

dy0M−1 = 2


−1 1 1

1 −1 1

1 1 −1

 .

However, if we divide by t2 we will be able to use the Theorem. The following example

illustrates what we will do for a simple case.
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Example 3.3.2. Consider the special case from Section 3.2.6.1. In order to reduce the

singular system (3.22) to a non-singular one, we have to do an intermediate step. Suppose

that A(t) = t/2 +O(t2). We can write the coclosed ODE as

Ḋ =
D

A
+ A3 =

1

t
2D +

(
1

A
− 2

t

)
D + A3,

with initial value D0 = 0. Let M−1 = 2 : R → R and

M(t,D) =

(
1

A
− 2

t

)
D + A3,

which is smooth in t,D. The condition (ii) from Theorem 3.3.1 does not hold for the

system Ṁ =M−1(D)/t+M(t,D), as hId− dD0M−1 = 0 for h = 2. However, if we divide

the equation by t2, we get

d

dt

(
D

t2

)
=M ′

(
t,
D

t2

)
,

where

M ′(t, E) =

(
1

A
− 2

t

)
E +

A3

t2

is a smooth function in t, E. For every E0 ∈ R, there exists a solution E(t) = D(t)/t2 of

the initial value problem Ė =M ′(E, t), E0 = E(0). We further assume E0 > 0 and write

E0 = b20/4. Hence, there is a 1-parameter family of solutions Di to the system (3.22),

with Di(0) = Ḋi(0) = 0 and D̈i(0) = b20/2.

We will do the same in the general case. Dividing (3.18) by t2, we get

Ḋ

t2
=

1

t
M−1

(
D

t2

)
+M ′

(
t,
D

t2

)
,
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where M−1 is as before and

M ′(t, y) =
1

t2
A1A2A3


1

1

1

+
1

A1A2A3


−A2

1 A2
2 A2

3

A2
1 −A2

2 A2
3

A2
1 A2

2 −A2
3

 y − 1

t
2


−1 1 1

1 −1 1

1 1 −1

 y

which is smooth in (t, y) in a neighborhood of (0, D0). Then

d

dt

(
D

t2

)
=
Ḋ

t2
− 2D

t3

=
1

t
(M−1 − 2Id)

(
D

t2

)
+M ′

(
t,
D

t2

)
=

1

t
M ′

−1

(
D

t2

)
+M ′

(
t,
D

t2

)
,

where

M ′
−1 = 2


−2 1 1

1 −2 1

1 1 −2

 : R3 → R3.

Therefore dy0M
′
−1 has eigenvalues 0,−6,−6. Fix

E0 =


b20/4

b20/4

b20/4

 ,

for some b0 ̸= 0. Note that M ′
−1(E0) = 0. The new singular initial value problem for

E(t) = D(t)/t2 is:

Ė =
1

t
M ′

−1(E) +M ′(t, E), E(0) = E0. (3.25)

It satisfies the conditions from Theorem 3.3.1, meaning there exists a unique solution

E(t) in a neighbourhood of 0. Furthermore it depends continuously on E0. Then we can

recover D1, D2, D3 by D(t) = t2E(t).

Remark 3.3.3. As for every i = 1, 2, 3 we have that Ai is smooth and positive on (0, L),
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the function (D, t) 7→M(t)D+N(t) (withM and N are as in (3.19)) is Lipschitz in D on

any closed interval contained in (0, L). Hence, using Picard–Lindelöf Theorem we know

that we can extend the solution in a neighbourhood of 0 to [0, L).

We have proved the next Proposition.

Proposition 3.3.4. Let A1, A2, A3 : [0, L) → R be smooth functions with Ai(t) > 0 for

t ∈ (0, L), where L is either infinity or 1, such that

(i) Ai’s are odd;

(ii) Ȧi(0) = 1/2.

Let b0 ̸= 0. Consider the singular initial value problem

Ḋ1 = A1A2A3 −
A2

1D1

A1A2A3

+
A2

2D2

A1A2A3

+
A2

3D3

A1A2A3

,

Ḋ2 = A1A2A3 +
A2

1D1

A1A2A3

− A2
2D2

A1A2A3

+
A2

3D3

A1A2A3

,

Ḋ3 = A1A2A3 +
A2

1D1

A1A2A3

+
A2

2D2

A1A2A3

− A2
3D3

A1A2A3

,

with

Di(0) = Ḋi(0) = 0, D̈i(0) = b20/4.

Then there exists a unique solution on [0, L) for this system of ODEs, that depends

continuously on b0. □

We need to check whether we can recover B1, B2, B3 using equation (3.21) to obtain

a coclosed G2-structure in the principal part. We can only do that if D1D2D3 > 0. The

following Lemma guarantees that this is true.

Lemma 3.3.5. Let D1, D2, D3 : [0, L) → R be the unique solutions from Proposition

3.3.4, for some L which is either infinity or 1. Then Di(t) > 0 for t ∈ (0, L).

Proof. By construction Di(t) =
b20
4
t2 + O(t3), so in a neighborhood around 0 they are all

positive. Suppose the statement is not true, and let t′ > 0 be the smallest point where
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one of the Di’s is 0. Then

Ḋi(t
′) = A1(t

′)A2(t
′)A3(t

′) +
A2
j(t

′)Dj(t
′)

A1(t′)A2(t′)A3(t′)
+

A2
k(t

′)Dk(t
′)

A1(t′)A2(t′)A3(t′)
> 0

where {i, j, k} is a cyclic permutation of {1, 2, 3}. However, Di cannot be increasing at t′,

so this is a contradiction.

Corollary 3.3.6. Let A1, A2, A3 : [0, L) → R be smooth functions with Ai(t) > 0 for

t ∈ (0, L), where L is either infinity or 1, such that

(i) Ai’s are odd;

(ii) Ȧi(0) = 1/2.

Let b0 ̸= 0. Then there exist unique functions B1, B2, B3 : [0, L) → R that, together with

A1, A2, A3, will give a solution for the system of ODEs (3.15) with Bi(0) = b0, and the

Bi’s depend continuously on b0.

The next step is checking the extension of this structure to a singular orbit Q =

SU(2)2/∆SU(2).

3.3.2 Extension on R4 × S3

Recall the expression of the Bi’s:

Bi(t) = sign(b0)

√
DjDk

DiA2
i

, t ∈ (0, L), Bi(0) = b0,

where {i, j, k} is a cyclic permutation of {1, 2, 3}. Note that Bi(t) is continuous at t = 0.

We check whether they satisfy the conditions from Lemma 3.2.3 for the metric to be

extended to a singular orbit Q = SU(2)2/∆SU(2) ∼= S3. First, a direct consequence from

Lemma 3.3.5 is that Bi’s are sign definite for t > 0. Second, we need the functions Bi to

be even.
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Lemma 3.3.7. The functions B1, B2, B3 from Corollary 3.3.6 are even.

Proof. Recall that we can write (3.15) in matrix form as dD/dt =M(t)D +N(t), where

D = (D1, D2, D3)
T and both M,N are matrices of smooth odd functions. Let D(t)

be the unique solution of this equation in a neighbourhood of 0. Then the equation

dD(−t)/d(−t) =M(−t)D(−t) +N(−t) also holds. As both M,N are odd, this equation

is dD(−t)/dt = M(t)D(−t) +N(t), so by uniqueness D(−t) = D(t). Finally as Di’s are

even, Bi’s are even too.

Finally, in the next Lemma we show that with the previous hypothesis, B̈1(0) =

B̈2(0) = B̈3(0).

Lemma 3.3.8. The functions B1, B2, B3 from Corollary 3.3.6 satisfy B̈1(0) = B̈2(0) =

B̈3(0).

Proof. We denote by ai,3 the coefficient accompanying t3 in the Taylor expansion of Ai(t),

bi,2 the coefficient accompanying t2 in the Taylor expansion of Bi(t) and di,4 the parameter

accompanying t4 in the Taylor expansion of Di(t):

Ai(t) =
t

2
+ ai,3t

3 +O(t5),

Bi(t) = b0 + bi,2t
2 +O(t4),

Di(t) =
b20
4
t2 + di,4t

4 +O(t6).

Let {i, j, k} be a cyclic permutation of {1, 2, 3}. As Di(t) = Aj(t)Bj(t)Ak(t)Bk(t):

di,4 =
b20
2
(aj,3 + ak,3) +

b0
4
(bj,2 + bk,2).

Then

b1,2 =
2

b0
(−d1,4 + d2,4 + d3,4 − b20a1,3)

b2,2 =
2

b0
(+d1,4 − d2,4 + d3,4 − b20a2,3)

b3,2 =
2

b0
(+d1,4 + d2,4 − d3,4 − b20a3,3).

(3.26)
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Note that parameters di,4 depend on ai,3. We can deduce this dependence from the ODEs

for D(t) by considering the Taylor expansion of both sides of

A1A2A3Ḋi = (A1A2A3)
2 − A2

iDi + A2
jDj + A2

kDk.

Looking at the coefficients accompanying t6 on both sides we obtain:

1

2
di,4 +

b20
8
(a1,3 + a2,3 + a3,3) =

1

64
− 1

4
di,4 +

1

4
dj,4 +

1

4
dk,4 +

b20
4
(−ai,3 + aj,3 + ak,3)

We get

3di,4 − dj,4 − dk,4 =
1

16
+
b20
2
(−3ai,3 + aj,3 + ak,3).

The three equations corresponding to {i, j, k} being each cyclic permutation of {1, 2, 3}

gives that for i = 1, 2, 3,

di,4 =
1

16
− 1

2
b20ai,3. (3.27)

Introducing this equation into equation (3.26), b1,2 = b2,2 = b3,2 is automatically satisfied,

so condition B̈1(0) = B̈2(0) = B̈3(0) is always true. In particular, if we denote this

constant by b2, then

b2 =
1

8b0
− b0(a1,3 + a2,3 + a3,3).

We can now write the following Proposition.

Proposition 3.3.9. Let M = R4 × S3 be a seven-dimensional non-compact simply con-

nected cohomogeneity one manifold with group diagram SU(2)2 ⊃ ∆SU(2) ⊃ {1}, with

a G2-structure coming from a half-flat SU(3)-structure which is invariant under the co-

homogeneity one action. Let the SU(3)-structure (ω,Ω1,Ω2) be written as in (3.9). Let

A1, A2, A3 : [0,∞) → R be smooth functions with Ai(t) > 0 for t ∈ (0, L), where L is

either infinity or 1, such that
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(i) Ai’s are odd;

(ii) Ȧi(0) = 1/2.

Let b0 ̸= 0. Then there exist unique functions B1, B2, B3 : [0,∞) → R that, together with

A1, A2, A3, will give a solution to (3.15) with Bi(0) = b0, and the Bi’s depend continuously

on b0 ̸= 0. The metric g given by (3.10) extends smoothly over the singular orbit.

Proof. By Corollary 3.3.6, there exists unique functions B1, B2, B3 : [0,∞) → R that,

together with A1, A2, A3, will give a solution to (3.15) with Bi(0) = b0, and the Bi’s

depend continuously on b0 ̸= 0. Note that the Bi’s are smooth functions in [0,∞), and

B1(0) = B2(0) = B3(0) ̸= 0. By Lemma 3.3.7, the functions Bi are even, and by Lemma

3.3.8, B̈1(0) = B̈2(0) = B̈3(0). They are also sign definite. Hence, by Lemma 3.2.3, as

the conditions for the functions Ai are satisfied by construction, the metric g extends

smoothly over the singular orbit.

The next Theorem summarizes the results from the previous Proposition.

Theorem C. On the cohomogeneity one manifold M = R4 × S3 with group diagram

SU(2)2 ⊃ ∆SU(2) ⊃ {1}, there is a family of SU(2)2-invariant coclosed G2-structures

which is given by three positive smooth functions A1, A2, A3 : [0,∞) → R satisfying the

boundary conditions at t = 0

Ai(t) =
t

2
+O(t3),

and a non-zero parameter. Moreover, any SU(2)2-invariant coclosed G2-structure con-

structed from a half flat SU(3)-structure is in this family.

Remark 3.3.10. The volume of the singular orbit at t = 0 is proportional to b30.

3.3.3 Extension on S4 × S3

In this section we consider the seven-dimensional compact simply connected cohomogene-

ity one manifold M = S4 × S3 with group diagram SU(2)2 ⊃ ∆SU(2),∆SU(2) ⊃ {1}.
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From Section 3.3.1, we know that on the principal part of that manifold there is a family

of coclosed G2-structures constructed from a half-flat SU(3)-structure. In the last section,

we saw that it is possible to extend the structure to one singular orbit SU(2)2/∆SU(2).

The next Theorem shows that the previous structure cannot be smoothly extended to

two singular orbits of type SU(2)2/∆SU(2).

Theorem D. On the cohomogeneity one manifold M = S4 × S3 with group diagram

SU(2)2 ⊃ ∆SU(2),∆SU(2) ⊃ {1}, there are no SU(2)2-invariant coclosed G2-structures

constructed from half-flat SU(3)-structures.

Proof. Suppose that M has a G2-structure constructed from a half-flat SU(3)-structure

on its principal part, which is invariant under the cohomogeneity one action. Then the

SU(3)-structure (ω,Ω1,Ω2) can be written as in (3.9), and there are A1, A2, A3 : [0, 1] → R

smooth functions with Ai(t) > 0 for t ∈ (0, 1) such that

(i) Ai’s are odd around t = 0;

(ii) Ȧi(0) = 1/2.

Let b0 ̸= 0. By Proposition 3.3.4 we know that there exists a unique solution of the

system (3.17), Di : [0, 1) → R with initial conditions Di(0) = Ḋi(0) = 0, D̈i(0) = b20/4, for

i = 1, 2, 3. Then, there exist unique functions B1, B2, B3 : [0, 1) → R that, together with

A1, A2, A3, will solve (3.15). Also, by Proposition 3.3.9 the metric (3.10) can be extended

to the singular orbit at t = 0. Hence, this solution can be extended to the interval [0, 1).

It remains to check whether we can extend the solutions to t = 1. In equation (3.17), we

add

d

dt
(D1 +D2 +D3) = 3A1A2A3 +

A2
1D1 + A2

2D2 + A2
3D3

A1A2A3

,

In Lemma 3.3.5 we proved that for t ∈ (0, 1), Di(t) > 0, i = 1, 2, 3 so d(D1+D2+D3)/dt >

0. In particular, as D1 +D2 +D3 vanishes at t = 0, it cannot be 0 at t = 1. Therefore,

there cannot be an extension to the singular orbit at t = 1. This is because the Bi

functions obtained from the Di’s blow up at this orbit.
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3.3.4 Conclusions

The first thing that we observe is that on M = R4 × S3 there are many more G2-

structures constructed from half-flat SU(3)-structures that are coclosed than that are

torsion-free (in general, one can perturb a coclosed G2-structure by adding a small exact

4-form to construct another coclosed G2-structure). In particular, Lotay and Oliveira give

a two-parameter family of torsion-free G2-structures constructed from half-flat SU(3)-

structures [LO18, Remark 21]. The coclosed family described in this chapter depends on

three smooth functions satisfying certain boundary conditions and a non-zero parameter.

More generally, known examples of torsion-free G2-structures constructed from half-flat

SU(3)-structures have an extra U(1)-symmetry. With our previous notation, this means

that A2 = A3 and B2 = B3. We showed that if we relax the torsion-free condition to

coclosed, the Ai’s only need to be equal at orders lower or equal than 1 in the Taylor

expansion of the cohomogeneity one parameter around the singular orbit, and the Bi’s

at orders lower or equal than 2. Our families of structures contain the Bryant-Salamon

G2-holonomy metric [BS89] and the 1-parameter family of complete (SU(2)2 × U(1))-

invariant G2-metrics of Brandhuber et al. [BGGG01] and Bogoyavlenskaya [Bog13], also

known as the B7 family. In particular, we deduce from [FHN21b, Theorem 6.16] that if

we have an extra U(1)-symmetry and impose that the metric is G2 and complete, we get

precisely this family.

In the previous chapter of this thesis, we showed that if M is a six-dimensional simply

connected cohomogeneity one manifold under the almost effective action of a connected

Lie group G and (g, k) ̸= (su(2)⊕su(2),∆R), thenM admits no G-invariant balanced non-

Kähler SU(3)-structures. As in this chapter, the search for balanced SU(3)-structures was

also motivated by heterotic string theory; in particular, the Hull–Strominger system. This

means that on most cases (and possibly always), the existence of a balanced structure

(which can be seen as the six-dimensional analogue to a coclosed G2-structure) in the

cohomogeneity one setting forces the structure to be Kähler. We observe that the existence
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of a class of coclosed G2-structures, not necessarily torsion-free, in the cohomogeneity one

setting contrasts with this result, as in the 7 dimensional analogue, the cohomogeneity

one hypothesis does not force coclosed G2-structures to be torsion-free.

Given the structures found in this chapter, the question that arises is what are the G2-

instantons over R4 × S3 with these structures. Another question is whether it is possible

to find solutions to the heterotic G2 system over them. The next chapter of this thesis

deals with the first of these questions.
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Chapter 4

SU(2)2-invariant G2-instantons

In this chapter, we study the existence of SU(2)2-invariant G2-instantons on R4 × S3

with the coclosed G2-structures found in Chapter 3. G2-instantons are special kind of

connections on Riemannian seven-manifolds. They play a key role in high dimensional

gauge theory: they are analogues of anti-self-dual connections over four-manifolds and flat

connections over three-manifolds, in the sense that they are critical points of a Chern–

Simons type functional.

On noncompact complete holonomy G2-manifolds, the first examples of G2-instantons

where found on the spinor bundle of S3 with the Bryant–Salamon metric [BS89] by Clarke

in [Cla14]; these examples were later generalized in [Oli14,LO18]. Very recently, Stein and

Turner [ST23] completed the study of SU(2)3-invariant G2-instantons over the spinor bun-

dle of S3 [LO18] with the Bryant–Salamon metric by constructing a new 1-parameter fam-

ily of examples. In [MNT22], Matthies, Nordström and Turner construct a 1-parameter

family of G2-instantons on the asymptotically conical limit of the C7 family of G2-metrics

of [FHN21b]. All of these constructions used the fact that the manifolds had a coho-

mogeneity one structure. Hence, it is natural to continue exploiting cohomogeneity one

symmetries to construct more examples of G2-instantons.

In the previous chapter, a large family of SU(2)2-invariant coclosed G2-structures was

constructed over the manifold M = R4 × S3. Hence, it is a natural question to ask
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what are the G2-instantons for the G2-structures of these families. In this paper, we will

construct and classify G2-instantons for the G2-structures of these families. This expands

the study of SU(2)2-invariant G2-instantons initiated in [LO18] by considering coclosed

but not necessarily torsion-free G2-structures. Moreover, SU(2)2-invariant G2-structures

and G2-instantons considered previously had an extra SU(2) or U(1) symmetry.

On M = R4×S3, for every SU(2)3-invariant coclosed G2-structure from Section 3.3.2,

we prove an existence result of two 1-parameter families of G2-instantons with larger

symmetry group (SU(2)3-invariant), extending smoothly to the singular orbit. These two

families appear on two different principal bundles. We also provide existence results for

locally defined SU(2)2-invariant G2-instantons.

In Section 4.1 we present a summary of the setup of the problem of finding G2-

instantons on a vector bundle over a cohomogeneity one manifold. We state the general

equations for an SU(2)2-invariant connection to be a G2-instanton, the conditions for this

connection to extend smoothly to a singular orbit, and consider the particular case where

the structure group of the instanton is abelian.

In Section 4.2 we study SU(2)3-invariant G2-instantons on R4 × S3. First we present

the ODEs for SU(2)3-invariant G2-instantons in 4.2.1. In sections 4.2.2 we review known

results over the Bryant–Salamon manifold R4×S3, when theG2-structures are torsion-free,

and explain the bubbling behaviour, removable singularity phenomenon and conservation

of energy of some particular examples, the G2-instantons of Clarke [Cla14]. In 4.2.3 we

present our main results, on the existence of SU(2)3-invariant G2-instantons with coclosed

G2-structures, dividing our discussion depending on the two available choices of principal

SU(2)-bundle. In 4.2.4 we analyze the behaviour of sequences of instantons found, which

present a “bubbling” behaviour, and the relation between all G2-instantons encountered.

In Section 4.3 we study the most general situation of SU(2)2-invariant G2-instantons.

We derive a system of six ordinary differential equations for a connection to be a G2-

instanton and the conditions for it to extend smoothly to a singular orbit P1 or Pid in

4.3.1. In 4.3.2 we give an existence result of a 3-parameter family of G2-instantons in a
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neighbourhood of the singular orbit P1. In 4.3.3 we study the existence of G2-instantons

with singular orbit Pid, and find another 3-parameter family of G2-instantons.

4.1 G2-instantons on cohomogeneity one manifolds

A G2-instanton on a principal bundle over a cohomogeneity one manifold will be an

extension of a connection on a principal bundle that is a homogeneous bundle on the

principal orbit G/K.

4.1.1 Homogeneous bundles and isotropy homomorphism

Definition 4.1.1. We say that a principal H-bundle P on a homogeneous manifold G/K

is G-homogeneous if the action of G on G/K lifts to a G-action on P which commutes

with the action of H.

These bundles are determined by their isotropy homomorphism, which we will now

define. Let u0 be an arbitrary point of P . For any k ∈ K, we have that ku0 is a point in

P , which lies in the same fibre as u0. Hence, there exists some h ∈ H such that ku0 = u0h.

We define the isotropy homomorphism as

λ : K → H;

k 7→ h.

(4.1)

Then λ is indeed a homomorphism. Conversely, given a homomorphism λ : K → H, the

associated bundle

Pλ = G×(K,λ) H (4.2)

is a homogeneous bundle over G/K whose isotropy homomorphism is λ.

The Lie algebra g of G has a reductive splitting with respect to K, which we write

as g = k ⊕ m. We call the canonical invariant connection the connection on the bundle

G → G/K whose horizontal space is m. Its connection form Acan
λ ∈ Ω1(G, h) is the
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left-invariant translation of dλ ⊕ 0 : k ⊕ m → h. This invariant connection induces a

corresponding canonical connection on any Pλ. Wang’s theorem classifies other invariant

connections, which are in correspondence with morphisms of K-representations:

Theorem 4.1.2. [Wan58, Theorem 1] There is a 1-1 correspondence between G-invariant

connections on Pλ and K-morphisms:

Λ : (m,Ad) → (h,Ad ◦ λ). (4.3)

We see that any invariant connection will differ from the canonical invariant connection

by a morphism Λ and the horizontal space of such a connection is given by the kernel of

this morphism. This allows us to parameterise all invariant connections on a bundle Pλ.

4.1.2 G2-instanton equations

Let M = It × N be a seven-dimensional manifold with a G2-structure coming from a

half-flat SU(3)-structure. Let P be a principal H-bundle on M , then P is a pullback of

a bundle on N . We will work in temporal gauge, so we can assume that a connection on

P is of the form A = a(t), where a(t) is a one-parameter family of connections on the

bundle over N . The curvature of A is given by

FA = dt ∧ ȧ+ Fa(t), (4.4)

where Fa(t) is the curvature of the connection a(t). Hence, A is a G2-instanton if and

only if the following equation for a(t) is satisfied:

ȧ ∧ 1

2
ω2 − Fa ∧ Ω2 = 0, Fa ∧

1

2
ω2 = 0. (4.5)

Lemma 4.1.3. [LO18, Lemma 1] Let M = It×N be equipped with a G2-structure φ as

in (1.21) satisfying ω ∧ dω = 0 and ω ∧ ω̇ = −dΩ2, which is equivalent to dψ = 0. Then,
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G2-instantons A for φ are in one-to-one correspondence with one-parameter families of

connections {a(t)}, t ∈ It solving the equation

Jtȧ = −∗t(Fa ∧ Ω2), (4.6)

subject to the constraint ΛtFa = 0, where Λt denotes the metric dual of the operation

of wedging with ω(t). Moreover, this constraint is compatible with the evolution: more

precisely, if it holds for some t0 ∈ It, then it holds for all t ∈ It.

The most general SU(2)2-invariant connection on any SU(2)2-homogeneous H-bundle

Pλ = SU(2)2 ×(K,λ)H over N = SU(2)2/K, where λ : K → H is a group homomorphism,

can be written as

a =
3∑
i=1

a+i ⊗ η+i + a−i ⊗ η−i , (4.7)

where a±i ∈ h are constant on each principal orbit.

Lemma 4.1.4. [LO18, Lemma 2] In the previous situation, the curvature of the connec-

tion a(t) on {t} ×N is given by

Fa =
∑3

i=1[a
+
i , a

−
i ]⊗ η+i ∧ η−i

+
∑3

i=1((−2a+i + [a+j , a
+
k ])⊗ η+j ∧ η+k + (−2a+i + [a−j , a

−
k ])⊗ η−j ∧ η−k )

+
∑3

i=1((−2a−i + [a−j , a
+
k ])⊗ η−j ∧ η+k + (−2a−i + [a+j , a

−
k ])⊗ η+j ∧ η−k ),

(4.8)

where in the summation above {j, k} is such that {i, j, k} is a cyclic permutation of

{1, 2, 3}.

Lemma 4.1.5. [LO18, Lemma 3] Let {i, j, k} be a cyclic permutation of {1, 2, 3}. The

equations (4.5) for SU(2)2-invariant instantons a on R+
t ×N are

Bi

Ai
ȧ+i +

(
Bi

BjBk

− Bi

AjAk

)
a+i =

Bi

2BjBk

[a−j , a
−
k ]−

Bi

2AjAk
[a+j , a

+
k ],

Ai
Bi

ȧ−i +

(
Ai
BjAk

+
Ai
AjBk

)
a−i =

Ai
2BjAk

[a−j , a
+
k ] +

Ai
2AjBk

[a+j , a
−
k ],

(4.9)
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together with the constraint
3∑
i=1

1

AiBi

[a+i , a
−
i ] = 0. (4.10)

4.1.3 Extension to a singular orbit

In this section, we present the conditions for the extension of a g-valued 1-form to a

singular orbit Q = SU(2)2/∆SU(2) ∼= S3 in R4 × S3. This conditions are obtained using

the Eschenburg–Wang method [EW00], which for this particular situation was worked

out in [LO18, Appendix A].

We first consider the case where H = U(1).

Lemma 4.1.6. [LO18, Lemma 9] The 1-form b

b =
3∑
i=1

b+i ⊗ η+i +
3∑
i=1

b−i ⊗ η−i ,

extends over the singular orbit Q = SU(2)2/∆SU(2) if and only if the b±i ’s are even and

b±i (0) = 0 for i = 1, 2, 3.

For most of our analysis, we will take H = SU(2). The conditions for the extension

to the singular orbit will now depend on the choice of bundle. Over the principal orbits

G/K0
∼= SU(2)2/{0}, the only SU(2)-bundle is the trivial one P = SU(2)2 × SU(2). The

singular orbit in the manifold considered is SU(2)2/∆SU(2). Up to an isomorphism of

homogeneous bundles, as there are only two possible homomorphisms λ : SU(2) → SU(2),

the trivial one and the identity. Hence, for each singular orbit there are two choices of

bundle:

P1 = SU(2)2 ×(∆SU(2),1) SU(2), Pid = SU(2)2 ×(∆SU(2),id) SU(2).

Therefore, we have two possible bundles over R4 × S3, that we will also denote P1 and

Pid when it does not lead to confusion. Although these two bundles are trivial, they have

inequivalent group actions and only P1 is equivariantly trivial. Recall that, as it was
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described in Section 3.2.2, R4×S3 is diffeomorphic to the total space of the spinor bundle

S → S3 over the 3-sphere. Hence, the bundles P1 and Pid are pull-backs of the bundles

from S3.

Lemma 4.1.7. [LO18, Lemma 10] Let b be an su(2)-valued 1-form

b =
3∑
i=1

b+i ⊗ η+i +
3∑
i=1

b−i ⊗ η−i .

Write b±i =
∑3

j=1 b
±
ijTj, where {Ti}3i=1 is the standard basis for su(2). Then the 1-form b

extends over the singular orbit Q = SU(2)2/∆SU(2) if:

(i) On the bundle Pid: for i = 1, 2, 3, b±ii ’s are even and there are c−0 , c
±
2 ∈ R such that

b+ii = c+2 t
2 +O(t4), b−ii = c−0 + c−2 t

2 +O(t4)

and for i ̸= j, b±ij = O(t4) are even.

(ii) On the bundle P1: b
±
ij’s are even with b±ij(0) = 0.

4.1.4 Abelian instantons

Suppose the Lie algebra structure of the gauge group is trivial. Then equations (4.9)

reduce to

ȧ+i +

(
Ai
BjBk

− Ai
AjAk

)
a+i = 0

ȧ−i +

(
Bi

BjAk
− Bi

AjBk

)
a−i = 0,

(4.11)

and we have the following Proposition, which is similar to [LO18, Proposition 4] but for

R4 × S3 with a coclosed G2-structure constructed from a half-flat SU(3)-structure.

Proposition 4.1.8. Let θ be an SU(2)2-invariant G2-instanton on a U(1)-bundle, or

equivalently a complex line bundle, on R4 × S3 with a SU(2)2-invariant coclosed G2-

structure as in Proposition 3.3.9. Then θ lies in a 3-parameter family; in particular it can
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be written as

θ =
3∑
i=1

a+i (t0)t
−2
0 exp

(
−
∫ t

t0

(
Ai
BjBk

− Ai
AjAk

)
ds

)
η+i , (4.12)

for some fixed t0 ∈ R+ and a+i (t0) ∈ R for i = 1, 2, 3 where {i, j, k} is a cyclic permutation

of {1, 2, 3}.

Proof. We observe that the only principal U(1)-bundle is the trivial one, as the only

possible isotropy isomorphism λ : ∆SU(2) → U(1) is trivial. We compute the coefficients

a±i from (4.7) integrating in (4.11), and knowing the Taylor expansions around t = 0 of

the term inside the parenthesis, we have

a+i (t) = a+i (t0) exp

(
−
∫ t

t0

(
Ai
BjBk

− Ai
AjAk

)
ds

)
= a+i (t0)t

−2
0 t2 +O(t4),

a−i (t) = a−i (t0) exp

(
−
∫ t

t0

(
Bi

BjAk
+

Bi

AjBk

)
ds

)
= a+i (t0)t

4
0t

−4 +O(t−2),

and both of them are even. By Lemma 4.1.6, the corresponding instantons do extend

smoothly to the singular orbit at t = 0 if and only if a−i (t0) = 0 for i = 1, 2, 3. Then,

a+i (t0) ∈ R, i = 1, 2, 3 give the 3-parameter family of G2-instantons. This finishes the

proof.

If we specialise Proposition 4.1.8 to the Bryant Salamon metric, we get the following

Corollary for G2-instantons with gauge group U(1).

Corollary 4.1.9. [LO18, Corollary 1 (a)] Any SU(2)2-invariant G2-instanton A with

gauge group U(1) over the Bryant Salamon G2-manifold R4 × S3 can be written as

θ =
r3 − 1

r

3∑
i=1

xiη
+
i ,

for some x1, x2, x3 ∈ R, where r ∈ [1,+∞) is a coordinate defined implicitly by t(r) =∫ r
1

ds√
1− s−3

.
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4.2 SU(2)3-invariant instantons

We start our discussion by considering the case where the G2-structure enjoys an extra

SU(2)-symmetry, i.e. A1 = A2 = A3 and B1 = B2 = B3.

4.2.1 SU(2)3-invariant ODEs

As we already discussed abelian G2-instantons in Section 4.1.4, we now consider a non-

abelian gauge group: SU(2). The next Proposition simplifies the ODEs and constraints

in Lemma 4.1.5 to this case.

Proposition 4.2.1. Let θ be an SU(2)3-invariant G2-instanton with gauge group SU(2)

on R4×S3. There is a standard basis {Ti} of su(2) such that (up to an equivariant gauge

transformation) we can write

θ = A1x

(
3∑
i=1

Ti ⊗ η+i

)
+B1y

(
3∑
i=1

Ti ⊗ η−i

)
, (4.13)

with x, y : (0,∞) → R satisfying

ẋ =

(
−Ȧ1

A1

+
1

A1

− A1

B2
1

)
x+ y2 − x2, (4.14)

ẏ =

(
−Ḃ1

B1

− 2

A1

+ 2x

)
y. (4.15)

Proof. By the same argument as in [LO18, Proposition 5], we may always write θ as in

(4.13). Then, the constraints from Lemma 4.1.5 hold, and the ODEs may be written in

two different ways. First, we observe that if we write

θ = x+

(
3∑
i=1

Ti ⊗ η+i

)
+ x−

(
3∑
i=1

Ti ⊗ η−i

)
, (4.16)
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then we obtain the following ODEs:

ẋ+ =
x+

A1

(
1− A2

1

B2
1

− x+
)
+
A1

B2
1

(x−)2, (4.17)

ẋ− =
2x−

A1

(x+ − 1). (4.18)

This way of writing the equations will be useful in the future. Now from the relation

x+ = xA1, x− = yB1,

the system (4.35), (4.36) becomes (4.14), (4.15).

The next Lemma, whose prove uses Lemma 4.1.7, tells us when the G2-instantons

extend smoothly over the singular orbit S3 = SU(2)2/∆SU(2). The conditions for the

smooth extension will depend on the choice of bundle.

Lemma 4.2.2. [LO18, Lemma 4] The connection θ in equation (4.13) extends smoothly

over the singular orbit S3 if x(t) is odd, y(t) is even, and their Taylor expansions around

t = 0 are

• either x(t) = x1t+ x3t
3 + ..., y(t) = y2t

2 + ..., in which case θ extends smoothly as

a connection on P1;

• or x(t) = 2
t
+ x1t+ ..., y(t) = y0 + y2t

2 + ..., in which case θ extends smoothly as a

connection on Pid.

4.2.2 Known examples on R4 × S3

In [LO18], Lotay and Oliveira studied and classified the SU(2)3-invariant G2-instantons

over the manifold R4×S3 with the Bryant–Salamon G2-metric [BS89]. In this section we

present a summary of the results that they found. Some of these results were previously

found by Clarke in [Cla14].
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The next theorem classifies and explicitly describes theG2-instantons with gauge group

SU(2) smoothly extending to a singular orbit on P1. They are precisely the 1-parameter

family of G2-instantons found in [Cla14] on the Bryant–Salamon R4 × S3.

Theorem 4.2.3. [LO18, Theorem 4] Let A be an SU(2)3-invariant G2-instanton with

gauge group SU(2) on the Bryant–Salamon G2-manifold R4×S3, which smoothly extends

over the singular orbit P1. Then, A is one of Clarke’s examples [Cla14], in which case

there is x1 ∈ R such that, in the notation of Proposition 4.2.1,

x(t) =
2x1A1(t)

1 + x1(B2
1(t)− 1/3)

and y(t) = 0.

Given such an x1 ∈ R we shall denote the resulting instanton by Ax1. Observe that Ax1 is

defined globally on R4×S3 if and only if x1 ≥ 0 and that A0 is the trivial flat connection.

The next proposition gives locally defined solutions around the singular orbit in the

case where P = Pid.

Proposition 4.2.4. [LO18, Proposition 6] Let S3 be the singular orbit in the Bryant–

Salamon G2-manifold R4 × S3. There is a one-parameter family of SU(2)3-invariant G2-

instantons, with gauge group SU(2), defined on a neighbourhood of S3 and smoothly

extending over S3 on Pid. The instantons are parameterised by y0 ∈ R and satisfy, in the

notation of Proposition 4.2.1,

x(t) =
2

t
+
y20 − 1

4
t+O(t3) and y(t) = y0 +

y0
2

(
y20
2

− 3

)
t2 +O(t4).

For certain values of the parameter, we can extend the instanton away from the singular

orbit.

Theorem 4.2.5. [LO18, Theorem 5] The G2-instanton arising from the case where

y0 = 0 in Proposition 4.2.4 extends to the Bryant–Salamon G2-manifold R4 × S3, and is
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given by

Alim =
A2

1(t)

1/2(B2
1(t)− 1/3)

3∑
i=1

Ti ⊗ η+i .

Theorem 4.2.6. [ST23, Theorem 3.7] The G2-instantons from Proposition 4.2.4 extend

to the Bryant–Salamon G2-manifold R4 × S3 with quadratic curvature decay if and only

if y0 ∈ [−
√
3,
√
3]. Moreover, the instantons are flat if and only if y0 = ±

√
3, and all

non-flat instantons on this manifold are asymptotic to AnK with rate −3, where AnK is

the nearly Kähler instanton

AnK =
2

3

3∑
i=1

Ti ⊗ η+i .

We see that as x1 → ∞, Clarke’s G2-instantons “bubble off” an ASD connection along

the normal bundle to the associative S3 = {0} × S3 ⊂ R4 × S3. More precisely, consider

the following re-scaling: for p ∈ S3 and δ > 0 we define

spδ : B1 ⊂ R4 → Bδ × {p} ⊂ R4 × S3;

x 7→ (δx, p).

The basic ASD instanton on R4 with scale δ > 0 can be written as

AASD
λ =

λt2

1 + λt2

3∑
i=1

Ti ⊗ η+i . (4.19)

Then, we have the following theorem.

Theorem 4.2.7. [LO18, Theorem 6] Let {Ax1} be a sequence of Clarke’s G2-instantons

with x1 → ∞.

(i) Given any λ > 0, there is a sequence of positive real numbers δ = δ(x1, λ) → 0 as

x1 → ∞ such that: for all p ∈ S3, (spδ)
∗Ax1 converges uniformly with all derivatives

to the basic ASD instanton AASD
λ on B1 ⊂ R4 as in (4.19).

(ii) The connections Ax1 converge uniformly with all derivatives to Alim on every compact

subset of (R4 \ {0})× S3 as x1 → ∞.
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We can interpret (ii) as a “removable singularity” phenomenon since Alim is a smooth

connection on R4×S3. We observe the expected energy concentration along the associative

S3.

Corollary 4.2.8. [LO18, Corollary 2] The function |FAx1 |2− |FAlim |2 is integrable for all

x1 > 0. Moreover, as x1 → ∞ it converges to 8π2δ{0}×S3 as a current, i.e. for all compactly

supported functions f we have

lim
x1→∞

∫
R4×S3

f(|FAx1 |2 − |FAlim |2)dvolg = 8π2

∫
{0}×S3

fdvolg|{0}×S3 .

The sequence of instantons Ax1 determines a constant Fueter section (see for example

[DS11]), taking value at the basic ASD instanton on R4.

4.2.3 Coclosed SU(2)3-invariant G2-instantons

In this section we focus on the case where the G2-structures are SU(2)3-invariant and

coclosed but not necessarily torsion-free. Let A1 : [0,∞) → R be a smooth function with

A1(t) > 0 for t ∈ (0,∞), such that

(i) A1 is odd around t = 0;

(ii) Ȧ1(0) = 1/2.

We denote

A1(t) =
t

2
+ a1,3t

3 +O(t5).

Consider the coclosed G2-structure found in Proposition 3.3.9 for A1 = A2 = A3. By

Section 3.2.6.1, we have that the functions B1, B2, B3 that define the G2-structure are all

equal, so the G2-structure presents an extra SU(2)-symmetry.

Remark 4.2.9. There is a complicated but explicit expression of B1 in terms of A1 and
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b0 (see Section 3.2.6.1):

B1(t) =

√
A−2

1 (t)

(
b20
16
e
∫ t
1/2

1
A1(ξ)

dξ
+ e

∫ t
1/2

1
A1(ξ)

dξ

∫ t

0

A3
1(η)e

−
∫ η
1/2

1
A1(ξ)

dξ
dη

)
. (4.20)

We recall that

B1(t) = b0 + b2t
2 +O(t4).

We need to divide our discussion depending on which choice of bundle over a singular

orbit we take: P1 or Pid (see Section 4.1.3).

4.2.3.1 Extension on P1

For the manifold R4 × S3 with any of the coclosed G2-structures from Chapter 3, we

obtain a 1-parameter family of G2-instantons extending over the singular orbit P1.

Theorem 4.2.10. Let M = R4×S3, with a SU(2)3-invariant coclosed G2-structure given

by A1 and b0 > 0 as in Proposition 3.3.9. There is an explicit 1-parameter family of

SU(2)3-invariant G2-instantons with gauge group SU(2) on the bundle P1, given by

θx1 =
x1A1e

∫ t
1/2 F (ξ)dξ

1 + x1
∫ t
0
e
∫ η
1/2

F (ξ)dξdη

3∑
i=1

Ti ⊗ η+i , (4.21)

where

F (t) = −Ȧ1

A1

+
1

A1

− A1

B2
1

,

and x1 ∈ [0,∞). Given such x1 we denote the resulting instanton by θx1, and θ0 is the

trivial flat connection. Moreover, any SU(2)3-invariant G2-instantons with gauge group

SU(2) on the bundle P1 are in this family.

Proof. From Lemma 4.2.2 we see that for the connection A to smoothly extend to the
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singular orbit on P1, we need u, v : (0,∞) → R real analytic even functions such that

x(t) = x1t+ t3u(t),

y(t) = t2v(t).

Here we are using the notation of Proposition 4.2.1. Then the system (4.14), (4.15) gives

u̇ =
−2u− x21 − x1(8a1,3 + 1/2b20)

t
+ f1(t, u, v),

v̇ =
−6v

t
+ f2(t, u, v),

(4.22)

where f1, f2 : (0,∞)×R2 → R are some real analytic functions. Theorem 3.3.1 guarantees

the existence and uniqueness of solutions to this system in a neighbourhood of the initial

value t = 0 provided that

u(0) =
−x21
2

− x1

(
4a1,3 +

1

4b20

)
,

v(0) = 0.

(4.23)

Suppose y = 0. Then equation (4.14) becomes

ẋ =

(
−Ȧ1

A1

+
1

A1

− A1

B2
1

)
x− x2. (4.24)

We would like to give an explicit solution to this equation. Let

F (t) = −Ȧ1

A1

+
1

A1

− A1

B2
1

,

which has the following Taylor expansion at 0:

F (t) =
1

t
+

(
−8a1,3 −

1

2b20

)
t+O(t3). (4.25)

The equation

ẋ = F (t)x− x2 (4.26)
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is a Bernoulli differential equation, and hence can be solved by making the change of

variables z = x−1 and later using an integrating factor. By a straightforward computation

we get that all the solutions to (4.26) are x ≡ 0 or

x(t) =
e
∫ t
1/2 F (ξ)dξ

k +
∫ t
0
e
∫ ξ
1/2

F (η)dηdξ
, (4.27)

for some choice of real constant k. Note that choosing k is the same as choosing the limits

of the integrals. Suppose that k ̸= 0. Then we can write

x(t) =
x1e

∫ t
1/2 F (ξ)dξ

1 + x1
∫ t
0
e
∫ η
1/2

F (ξ)dξdη
, (4.28)

for some real x1. This expression together with y = 0 agrees with the one corresponding

to the unique solution of (4.22) in a neighbourhood of t = 0, as a straightforward compu-

tation shows that (4.23) holds. If we take x1 ≥ 0, this explicit expression is well defined

for t > 0, so the resulting instantons are defined globally on R4 × S3. It remains to check

that (4.28) extends smoothly to the singular orbit at t = 0 as a connection on P1. Let

0 < t≪ 1, and fix a≪ 1, a > t. We can write

x(t) =
x1 exp

(∫ a
1/2
F (ξ)dξ

)
exp

(∫ t
a
F (ξ)dξ

)
1 + x1

∫ t
0
exp

(∫ a
1/2
F (ξ)dξ

)
exp

(∫ η
a
F (ξ)dξ

)
dη
.

We observe that
∫ a
1/2
F (ξ)dξ is constant, and denote it by c. Then for ξ ∈ [t, a], we can

approximate F (ξ) ∼= ξ−1. Then

x(t) ∼=
x1e

c exp
(∫ t

a
ξ−1dξ

)
1 + x1ec

∫ t
0
exp

(∫ η
a
ξ−1dξ

)
dη

=
x1e

ca−1t

1 + x1eca−1t2/2
.

Hence, limt→0 xt
−1 ∈ R. Finally, the fact that x is odd follows from F (t) = 1/t + O(t)

and F odd.
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Remark 4.2.11. We recover Clarke’s instantons [Cla14]

θx1 =
2x1A1(t)

2

1 + x1(B1(t)2 − 1/3)

3∑
i=1

Ti ⊗ η+i , (4.29)

when A1 =
r

3

√
1− r−3, b0 =

1√
3
and r ∈ [1,+∞) is a coordinate defined implicitly by

t(r) =
∫ r
1

ds√
1− s−3

. These were the first examples of G2-instantons on R4 × S3 with the

Bryant Salamon G2-holonomy metric.

One may wonder what is the asymptotic behaviour of θx1 when t→ ∞. However, this

would depend on the asymptotic behaviour of the data A1, and we have not introduced

any a priori restrictions on it.

We can compute the curvature of this instantons using (4.4) and [LO18, Lemma 2]:

Fθx1 = Ti ⊗
(
d

dt
(A1x)dt ∧ η+i + A1x(A1x− 1)ϵikjη

+
j ∧ η+k − A1xϵijkη

−
j ∧ η−k

)
.

We deduce that

lim
t→0

Fθx1 = lim
t→1

Fθx1 = −ϵijkTi ⊗ η−j ∧ η−k .

In particular, the curvature is bounded at the singular orbits.

4.2.3.2 Extension on Pid

We now study the existence of smooth G2-instantons on a bundle Pid at a singular orbit,

and its extension on R4 × S3.

Proposition 4.2.12. Let S3 be the singular orbit in R4×S3, with coclosed G2-structure

given by A1 = A2 = A3 as in Proposition 3.3.9. There is exactly a 1-parameter family of

SU(2)3-invariant G2-instantons, with gauge group SU(2), defined in a neighbourhood of

S3 and smoothly extending over S3 on Pid.

Proof. We see from Lemma 4.2.2 that for the connection θ to smoothly extend to the
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singular orbit at t = 0, we need u, v : [0,∞) → R real analytic functions, such that

x(t) =
2

t
+ tu(t),

y(t) = y0 + t2v(t).
(4.30)

Then the system (4.14), (4.15) gives

u̇ =
−4u+ y20 − 16a1,3 − 1/b20

t
+ f1(t, u, v),

v̇ =
−2v + 2y0u+ y0(8a1,3 − 2b2/b0)

t
+ f2(t, u, v),

(4.31)

where f1, f2 : [0,∞)×R2 → R are some real analytic functions. Theorem [FH17, Theorem

4.7] guarantees the existence and uniqueness of solutions to this system in a neighbourhood

of the initial value t = 0 provided that

u(0) =
y20
4

− 4a1,3 −
1

4b20
,

v(0) =
y30
4

− y0

(
1

4b20
− b2
b0

)
.

(4.32)

Therefore (x(t), y(t)) given by (4.30) provide a solution of (4.14) and (4.15). Both F (t) and

G(t) = −Ḃ1(t)/B1(t) − 2/A1(t) are odd. We deduce that (x̃(t), ỹ(t)) := (−x(−t), y(−t))

is also a solution of (4.14), (4.15). Note that although F and G are only defined for t > 0,

we can extend them on t < 0 as odd functions. We can write

x̃(t) =
2

t
+ tũ(t),

ỹ(t) = y0 + t2ṽ(t),

for real analytic ũ, ṽ with ũ(0) = u(0) and ṽ(0) = v(0), and by uniqueness u′ = u, v′ = v.

Therefore, we can smoothly extend (x, y) to t < 0 by (x(−t), y(−t)) = (−x(t), y(t)) and

they still solve (4.14) and (4.15), which gives that x is odd, y is even as desired. Hence,

for each y0 we have a smooth G2-instanton in a neighbourhood of the singular orbit.

If y0 = 0, we can get an explicit expression of the G2-instanton.
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Theorem 4.2.13. There is an explicit SU(2)3-invariant G2-instanton with gauge group

SU(2) onM = R4×S3 with coclosed G2-structure given by A1 = A2 = A3 as in Proposition

3.3.9 corresponding to y0 = 0 in Proposition 4.2.12. It is given by

θ0 =
A1(t)e

∫ t
1/2 F (ξ)dξ∫ t

0
e
∫ η
1/2

F (ξ)dξdη

3∑
i=1

Ti ⊗ η+i . (4.33)

where

F (t) = −Ȧ1

A1

+
1

A1

− A1

B2
1

.

It smoothly extends on the bundle Pid over R4 × S3.

Proof. Here we are also using the notation of Proposition 4.2.1. We first see that y = 0

gives a solution, which corresponds to the value of the parameter y0 = 0, by taking the

solution x0 from (4.27) with k = 0:

x0(t) =
e
∫ t
1/2 F (ξ)dξ∫ t

0
e
∫ η
1/2

F (ξ)dξdη
.

We will prove that it satisfies that x0(0)A1(0) = 1. Let 0 < t ≪ 1, and fix a ≪ 1, a > t.

We can write

x0(t)A1(t) =
A1(t) exp

(∫ a
1/2
F (ξ)dξ

)
exp

(∫ t
a
F (ξ)dξ

)
∫ t
0
exp

(∫ a
1/2
F (ξ)dξ

)
exp

(∫ η
a
F (ξ)dξ

)
dη

=
A1(t) exp

(∫ t
a
F (ξ)dξ

)
∫ t
0
exp

(∫ η
a
F (ξ)dξ

)
dη
,

Then for ξ ∈ [t, a], we can approximate F (ξ) by ξ−1, so

x0(t)A1(t) ∼=

t

2
exp

(∫ t
a
ξ−1dξ

)
∫ t
0
exp

(∫ η
a
ξ−1dξ

)
dη

=
t2a−1/2

a−1
∫ t
0
ηdη

=
t2a−1/2

t2a−1/2
= 1.

Another computation shows that (4.32) holds. Furthermore, x0(t) being odd follows from

F (t) = 1/t + O(t) and F odd. Hence, as the explicit expression is well defined for all

t ∈ [0,∞), and the instanton smoothly extends to the singular orbit at t = 0, the instanton

(4.33) extends to the whole manifold.
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Remark 4.2.14. When M = R4 × S3, A1 =
r

3

√
1− r−3, b0 =

1√
3
and r ∈ [1,+∞) is

a coordinate defined implicitly by t(r) =
∫ r
1

ds√
1− s−3

, we recover the G2-instanton A
lim

from [LO18, Theorem 5]:

Alim =
A1(t)

2

1/2(B1(t)2 − 1/3)

3∑
i=1

Ti ⊗ η+i . (4.34)

We now move on to study the extension of instantons on Pid for other values of the

parameter y0. Unlike when y0 = 0, we will not have explicit expressions. Recall that if

we perform the change x+ = xA1, x
− = yB1, then (4.14) and (4.15) become

ẋ+ =
x+

A1

(
1− A2

1

B2
1

− x+
)
+
A1

B2
1

(x−)2, (4.35)

ẋ− =
2x−

A1

(x+ − 1). (4.36)

We observe that the critical points of this system of ordinary differential equations are

(0, 0), (1, 1) and (1,−1). The point (0, 0) corresponds to the flat connection θ = 0. The

other points, (1, 1) and (1,−1), correspond to connections defined over R4×S3 and which

are smooth on Pid, and that in the notation of Proposition 4.2.12 correspond to values of

the parameter y0 of 1/b0 and −1/b0, respectively. The corresponding connections, which

we denote by θ1/b0 and θ−1/b0 , are:

θ1/b0 =
3∑
i=1

T i ⊗ η+i +
3∑
i=1

T i ⊗ η−i , θ−1/b0 =
3∑
i=1

T i ⊗ η+i −
3∑
i=1

T i ⊗ η−i . (4.37)

A quick computation shows that both of these connections are flat. We will show that

other values of the parameter y0 also give smooth instantons on our manifolds of interest,

although no longer explicit.

We say that a subset R ⊂ Rn is forward-invariant for an ODE system ẋ = F (x, t) if

for a solution x(t) and a non-singular time t0 (i.e. the ODE is regular at t0) such that

x(t0) ∈ R, then x(t) ∈ R for any t > t0 such that x(t) exists. We will use forward-
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invariance of sets to show that the non-autonomous system of ODEs (4.35), (4.36), with

initial point (x+(0), x−(0)) = (1, y0b0), has a solution away from the singular orbit.

Proposition 4.2.15. For values of the parameter y0 in [−1/b0, 1/b0], the G2-instantons

from Proposition 4.2.12 extend to the manifold R4 × S3. We denote these instantons by

θy0 .

Proof. We already considered the case y0 = 0 on Theorem 4.2.13, and y0 = ±1/b0 cor-

responds to the flat instantons (4.37). Separating variables in (4.36), we can solve it to

get

x−(t) = x−(0) exp

(∫ t

0

2

A1(ξ)
(x+(ξ)− 1)dξ

)
. (4.38)

Therefore, away from the singular orbits, y is either always positive, or always negative,

or identically 0. We observe that (x, y) 7→ (x,−y) is a symmetry of equations (4.14)

and (4.15). Hence, we may assume y > 0 or equivalently x− > 0 and study the case

y0 ∈ (0, 1/b0). The remaining case y0 ∈ (−1/b0, 0) will follow by changing the signs of y.

We will show that the following set is forward-invariant:

R := {(x+, x−) ∈ R2|0 < x+ < 1, 0 < x− < 1}.

There exists t0 > 0 such that the solution (x+, x−) of (4.35) and (4.36) is defined on [0, t0]

and (x+(t0), x
−(t0)) ∈ R. First, we see that ẋ− < 0 when x+ < 1, and {(x+, 0)|0 ≤ x+ ≤

1} is an invariant line for the flow. We also observe that for t > 0

ẋ+|x+=1 =
A1

B2
1

((x−)2 − 1) < 0,

and

ẋ+|x+=0 =
A1

B2
1

(x−)2 > 0,

when 0 < x− < 1, as A1 > 0. Hence, the set R is forward-invariant and (x+, x−) cannot

blow-up, so the instanton given by (x+, x−) is defined for every t ∈ [0,∞).
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Remark 4.2.16. Once again, taking A1 =
r

3

√
1− r−3, b0 =

1√
3

and r ∈ [1,+∞) a

coordinate defined implicitly by t(r) =
∫ r
1

ds√
1− s−3

, we can recover the corresponding 1-

parameter family G2-instantons on R4×S3 with the Bryant–Salamon metric; for this case

its existence was shown in [ST23, Theorem 3.7], where it is denoted as T ′
γ′ , γ

′ ∈ [−1, 1].

Remark 4.2.17. We can go from θy0 to θ−y0 by exchanging the factors of SU(2)2.

Putting everything together, we get the following theorem.

Theorem E. Let M = R4 × S3, with a SU(2)3-invariant coclosed G2-structure given by

A1 and b0 > 0 as in Proposition 3.3.9. There exists two 1-parameter families of smooth

SU(2)3-invariant G2-instantons with gauge group SU(2): θx1 , x1 ∈ [0,∞) on the bundle

P1; and θy0 , y0 ∈ [−1/b0, 1/b0] on the bundle Pid.

One may hope to make this result into a classification result, by studying the remaining

possible situation, corresponding the values of the parameter y0 with |y0| > 1/b0. In [ST23]

it is shown that for (R4 × S3, gBS), solutions corresponding to these initial parameter do

not produce uniformly bounded instantons.

4.2.4 Behaviour of solutions

We observe the expected bubbling behaviour of the sequence of instantons θx1 : they

“bubble off” an ASD connection along the normal bundle to the singular orbit S3 =

{0} × S3 ⊂ R4 × S3, which is an associative submanifold.

Theorem 4.2.18. Let θx1, x1 ≥ 0 be the sequence of instantons from Theorem 4.2.10,

given by (4.21). Then

(i) For any λ > 0 there is a sequence δ = δ(x1, λ) > 0 converging to 0 when x1 → ∞

such that: for all p ∈ S3, and if we define

spδ : B1 ⊂ R4 → Bδ × {p} ⊂ R4 × S3;

x 7→ (δx, p),
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then (spδ)
∗θx1 converges uniformly with all derivatives to the basic ASD instanton

θASD
λ with scale λ on B1 ⊂ R4:

θASD
λ =

λt2

1 + λt2

3∑
i=1

Ti ⊗ η+i .

(ii) Suppose that θ0 is bounded. The connections θx1 converge to θ0 given in Theorem

4.2.13 on every compact subset of (R4 \ {0})× S3 when x1 → ∞.

Proof. (i) Recall that near t = 0, A1(t) = t/2 +O(t3) and F (t) = 1/t+O(t3), so we also

have e
∫
F (t)dt = t+O(t3). Then we can compute

(spδ)
∗θx1 = A1(δt)x(δt)

∑3
i=1 Ti ⊗ η+i

=
x1δ

2t2/2 +O(x1δ
4t4)

1 + x1δ2t2/2 +O(x1δ4t4)

∑3
i=1 Ti ⊗ η+i

By taking δ = δ(x1, λ) =
√

2λ/x1 > 0, we have that δ(x1, λ) → 0 when x1 → ∞ and for

every k ∈ N ∪ {0}, there is a ck > 0, not depending on λ, x1, such that

||(spδ)
∗θx1 − θASD

λ ||Ck(B1) ≤ ck
λ2

x1
.

The uniform convergence with all derivatives follows.

(ii) θx1 converges pointwise to θ0. We have

|θx1 − θ0| = A1e
∫ t
1/2 F (ξ)dξ

∣∣∣∣ x1

1 + x1
∫ t
0
e
∫ η
1/2

F (ξ)dξdη
− 1∫ t

0
e
∫ η
1/2

F (ξ)dξdη

∣∣∣∣∣∣∣∣∑3
i=1 Ti ⊗ η+i

∣∣∣∣
= A1e

∫ t
1/2 F (ξ)dξ

∣∣∣∣ 1

(1 + x1
∫ t
0
e
∫ η
1/2

F (ξ)dξdη)
∫ t
0
e
∫ η
1/2

F (ξ)dξdη

∣∣∣∣∣∣∣∣∑3
i=1 Ti ⊗ η+i

∣∣∣∣
= |θ0|

∣∣∣∣ 1

1 + x1
∫ t
0
e
∫ η
1/2

F (ξ)dξdη

∣∣∣∣,
where we denote |θ0| = |A1(t)e

∫ t
1/2 F (ξ)dξ/

∫ t
0
e
∫ η
1/2

F (ξ)dξdη|. Let c1 > 0 be a bound for |θ0|.

A quick computation (similar to the one at the end of the proof of Theorem 4.2.10) shows

that on every compact subset of (R4 \ {0})× S3, there exists a constant c2 > 0 such that
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θb−1
0

θ ≡ 0 θ0

θ−b−1
0

θx1

θy0

θy0

Figure 4.1: Representation of families of G2-instantons on R4 × S3 and their relations.

c2 ≤
∫ t
0
e
∫ η
1/2

F (ξ)dξdη. Then

|θx1 − θ0| ≤
c1

1 + x1c2
.

Therefore θx1 − θ0 converges uniformly to zero when x1 → ∞. Similarly the derivatives

of θx1 − θ0 converge uniformly to zero when x1 → ∞.

Remark 4.2.19. We are interested in connections that have, at the very least, bounded

curvature. Hence the condition that θ0 is bounded on (ii) of the previous theorem is

reasonable, as we are already looking for A1 functions that make our instantons bounded.

Example 4.2.20. For A1(t) = t/2, we get

θx1 =
x1t/2

t2/4 + c

1

1 + 2x1 log(t2/4 + c)

3∑
i=1

T i⊗ η+i , θ0 =
t2/4

t2/4 + c

1

log(t2/4 + c)

3∑
i=1

T i⊗ η+i .

Then θx1 → 0, θ0 → 0 when t→ ∞.

Figure 1 represents the instantons found on R4 × S3 and their relations.

4.3 SU(2)2-invariant G2-instantons

In this section we consider the most general case, when the coclosed G2-structures are

SU(2)2-invariant. We provide an existence and classification results for G2-instantons on

neighbourhoods of a singular orbit of our manifolds of interest. Let A1, A2, A3 : [0, L) → R

be smooth functions with Ai(t) > 0 for t ∈ (0, L), where L is either infinity or 1, such
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that

(i) Ai’s are odd;

(ii) Ȧi(0) = 1/2.

We denote

Ai(t) =
t

2
+ ai,3t

3 +O(t5).

Consider the coclosed G2-structure found in Proposition 3.3.9 for A1, A2, A3.

4.3.1 SU(2)2-invariant ODEs and boundary conditions

We define

c+i =
a+i
Ai
, c−i =

a−i
Bi

.

Then the general SU(2)2-invariant G2-instanton equations (4.9) for A from Lemma 4.1.5

are:

ċ+i +

(
Ȧi
Ai

+
Ai
BjBk

− Ai
AjAk

)
c+i =

1

2
[c−j , c

−
k ]−

1

2
[c+j , c

+
k ],

ċ−i +

(
Ḃi

Bi

+
Bi

BjAk
+

Bi

AjBk

)
c−i =

1

2
[c−j , c

+
k ] +

1

2
[c+j , c

−
k ],

(4.39)

together with the constraint
3∑
i=1

[c+i , c
−
i ] = 0. (4.40)

Proposition 4.3.1. Let θ be an SU(2)2-invariant G2-instanton on R4 × S3 with gauge

group SU(2). There is a standard basis {Ti} of su(2) such that (up to an invariant gauge

transformation) we can write

θ =
3∑
i=1

Aif
+
i Ti ⊗ η+i +

3∑
i=1

Bif
−
i Ti ⊗ η−i . (4.41)
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with f±
i : [0,∞) → R satisfying

ḟ+
1 +

(
Ȧ1

A1

+
A1

B2B3

− A1

A2A3

)
f+
1 = f−

2 f
−
3 − f+

2 f
+
3 ,

ḟ+
2 +

(
Ȧ2

A2

+
A2

B1B3

− A2

A1A3

)
f+
2 = f−

1 f
−
3 − f+

1 f
+
3 ,

ḟ+
3 +

(
Ȧ3

A3

+
A3

B1B2

− A3

A1A2

)
f+
3 = f−

1 f
−
2 − f+

1 f
+
2 ,

ḟ−
1 +

(
Ḃ1

B1

+
B1

B2A3

+
B1

A2B3

)
f−
1 = f−

2 f
+
3 + f+

2 f
−
3 ,

ḟ−
2 +

(
Ḃ2

B2

+
B2

B1A3

+
B2

A1B3

)
f−
2 = f−

3 f
+
1 + f+

3 f
−
1 ,

ḟ−
3 +

(
Ḃ3

B3

+
B3

B1A2

+
B3

A1B2

)
f−
3 = f−

2 f
+
1 + f+

2 f
−
1 .

(4.42)

Proof. We must consider SU(2)2-homogeneous SU(2)-bundles over a slice S3 × S3 ∼=

SU(2)2/{1}. Such bundles are parameterised by the trivial isotropy homomorphism

1 : {1} → SU(2). By Wang’s Theorem (Theorem 4.1.2)), invariant connections on the

bundle SU(2)2 ×({1},1) SU(2) can be written as a left-invariant extension Λ : (m,Ad) →

(su(2),Ad ◦ 1). Here m splits into irreducibles as

m = R⊕ ...⊕ R︸ ︷︷ ︸
6 times

Therefore, we can apply a gauge transformation so that

a =
3∑
i=1

Aif
+
i Ti ⊗ η+i +

3∑
i=1

Bif
−
i Ti ⊗ η−i ,

where f±
i , i = 1, 2, 3, are constants. We then extend this connection to M = R4 × S3 or

S4 × S3 and get

a(t) = γ

(
3∑
i=1

Aif
+
i Ti ⊗ η+i +

3∑
i=1

Bif
−
i Ti ⊗ η−i

)
γ−1,
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for γ : [0,∞) → SU(2) and f±
i : [0,∞) → R. The constraint (4.10) is satisfied, and the

symmetry of (4.9) means that

Aif
+
i [γ

−1γ̇, Tj] = 0, Bif
−
i [γ

−1γ̇, Tj] = 0,

i, j = 1, 2, 3. Finally, if θ ̸= 0 then γ̇ = 0, so we may always find a gauge transformation

such that θ is written as in (4.41). Substituting this expression into (4.9) finishes the

proof.

The next Lemma deals with the conditions for the extension to the singular orbit,

which is of the form S3 ⊂M .

Lemma 4.3.2. The connection θ extends smoothly over the singular orbit S3 if and only

if f+
i are odd, f−

i are even, and their Taylor expansions around 0 are

• either

f+
i = f+

i,1t+O(t3), f−
i = f−

i,2t
2 +O(t4),

for i = 1, 2, 3, in which case θ extends smoothly as a connection on P1;

• or

f+
i =

2

t
+ (b+2 − 4ai,3)t+O(t3), f−

i = b−0 + b−2 t
2 +O(t4),

for i = 1, 2, 3, in which case θ extends smoothly as a connection on Pid.

Proof. For P1, we apply [LO18, Lemma 10] to θ and get the first set of expressions above.

For Pid, we apply [LO18, Lemma 10] to

θ − θcan =
3∑
i=1

(Aif
+
i − 1)Ti ⊗ η+i +

3∑
i=1

Bif
−
i Ti ⊗ η−i .

We obtain the second set of expressions above.
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4.3.2 Extension on P1

We start by studying the existence of G2-instantons around a singular orbit extending as

a connection on P1. We find a 3-parameter family of G2-instantons defined in a neigh-

bourhood of the singular orbit.

Proposition 4.3.3. Let M = R4 × S3, with coclosed G2-structure given by A1, A2, A3

as in Proposition 3.3.9, and let S3 ⊂ M be the singular orbit. There is a 3-parameter

family of SU(2)2-invariant G2-instantons with gauge group SU(2) in a neighbourhood of

S3 which smoothly extends in P1. In the notation of Proposition 4.3.1, these instantons

have f−
i = 0, i = 1, 2, 3 and f+

1 , f
+
2 , f

+
3 : (0, L) → R (where L is either infinity or 1) solve

the ODEs

ḟ+
1 +

(
Ȧ1

A1

+
A1

B2B3

− A1

A2A3

)
f+
1 = −f+

2 f
+
3 ,

ḟ+
2 +

(
Ȧ2

A2

+
A2

B1B3

− A2

A1A3

)
f+
2 = −f+

1 f
+
3 ,

ḟ+
3 +

(
Ȧ3

A3

+
A3

B1B2

− A3

A1A2

)
f+
3 = −f+

1 f
+
2 .

(4.43)

subject to f+
i = f+

i,1t+ t3ui(t), i = 1, 2, 3, where f+
i,1 ∈ R and the ui : (0,∞) → R are real

analytic functions such that

u1(0) = −
(

1

4b20
+ 2a2,3 + 2a3,3

)
f+
1,1 − f+

2,1f
+
3,1,

u2(0) = −
(

1

4b20
+ 2a1,3 + 2a3,3

)
f+
2,1 − f+

1,1f
+
3,1,

u3(0) = −
(

1

4b20
+ 2a1,3 + 2a2,3

)
f+
3,1 − f+

1,1f
+
2,1.

(4.44)

Proof. By Lemma 4.3.2, we write

f+
i = f+

i,1t+ t3ui(t), f−
i = t2vi(t),

for some real analytic functions ui, vi : (0, L) → R, i = 1, 2, 3. The new initial value
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problem for X(t) = (u1(t), u2(t), u3(t), v1(t), v2(t), v3(t))
T can be written as a singular

IVP:

dX

dt
=
M−1(X)

t
+M(t,X), X(0) = X0, (4.45)

where M(t,X) is real analytic on the first coordinate and

M−1(X) =



−2u1 −
(

1

2b20
+ 4a2,3 + 4a3,3

)
f+
1,1 − f+

2,1f
+
3,1

−2u2 −
(

1

2b20
+ 4a1,3 + 4a3,3

)
f+
2,1 − f+

1,1f
+
3,1

−2u3 −
(

1

2b20
+ 4a1,3 + 4a2,3

)
f+
3,1 − f+

1,1f
+
2,1

−6v1

−6v2

−6v3


.

To show existence and uniqueness of solutions, we use Theorem 3.3.1. This theorem guar-

antees the existence and uniqueness of short-time solutions to (4.45) in a neighbourhood

of the singular orbit if M−1(0) = 0 and hId− dX0M−1 is invertible for all integers h ≥ 1.

We see that dM−1(X(0)) = diag(−2,−2,−2,−6,−6,−6), so the second condition applies.

The first condition implies that v1(0) = v2(0) = v3(0) = 0 and that

u1(0) = −
(

1

4b20
+ 2a2,3 + 2a3,3

)
f+
1,1 −

f+
2,1f

+
3,1

2
,

u2(0) = −
(

1

4b20
+ 2a1,3 + 2a3,3

)
f+
2,1 −

f+
1,1f

+
3,1

2
,

u3(0) = −
(

1

4b20
+ 2a1,3 + 2a2,3

)
f+
3,1 −

f+
1,1f

+
2,1

2
.

(4.46)

If the previous equation holds, then the Theorem guarantees the existence of a solution

on a neighbourhood of the singular orbit. The solution of (4.43) and f−
1 = f−

2 = f−
3 = 0

solves the IVP, so by uniqueness all f−
i must vanish. Remains to show that all f+

i are

odd. We argue that

Fi(t) =
Ȧi
Ai

+
Ai
BjBk

− Ai
AjAk

(4.47)
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is odd, from where we deduce that (−f+
1 (−t),−f+

2 (−t),−f+
3 (−t)) is a solution of (4.43).

We write

−f+
i (−t) = f+

i,1t+ t3ũi(t),

and find ũi with ũi(0) = ui(0) solving (4.43), so we can smoothly extend f+
i to t <

0 by f+
i (−t) = −f+

i (t) also solving (4.43), giving the desired parity conditions which

guarantee the smooth extension of the instantons. The G2-instantons obtained are then

parameterised by three constants f+
1,1, f

+
2,1, f

+
3,1 ∈ R.

4.3.3 Extension on Pid

Proposition 4.3.4. Let M = R4×S3, with coclosed G2-structure given by A1, A2, A3 as

in Proposition 3.3.9, and let S3 ⊂M be the singular orbit. There is a 3-parameter family

of SU(2)2-invariant G2-instantons with gauge group SU(2) in a neighbourhood of S3 on

the bundle Pid. In the notation of Proposition 4.3.1, these instantons have f±
i solving the

system of ODEs (4.42).

Proof. By Lemma 4.3.2, we write

f+
i =

2

t
+ (b+2 − 4ai,3)t+ t3ui, f−

i = b−0 + t2vi,

for some real analytic ui, vi : (0, L) → R, i = 1, 2, 3. Note that v1(0) = v2(0) = v3(0). We

can write equations (4.42) as a system of equations for

X(t) = (u1(t), u2(t), u3(t), v1(t), v2(t), v3(t))
T which takes the form of an initial value

problem:

dX

dt
=
M−3(b

−
0 , b

+
2 )

t3
+
M−1(X)

t
+M(t,X).

We can compute

M−3(b
−
0 , b

+
2 ) =

(
−4b+2 + (b−0 )

2 − 1

b20
,−4b+2 + (b−0 )

2 − 1

b20
,−4b+2 + (b−0 )

2 − 1

b20
, 0, 0, 0

)T
.
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We must require M−3(b
−
0 , b

+
2 ) = 0. We achieve this by imposing the extra condition

4b+2 = (b−0 )
2 − 1

b20
.

We take b+2 such that this holds. We now want to apply [FH17, Theorem 4.7] to the IVP

dX

dt
=
M−1(X)

t
+M(t,X).

The eigenvalues of dM−1 are -8, -8, -6, -2, 0, 0, so condition (ii) of 3.3.1 holds. We also

need condition (i) to hold, so we impose that M−1(X(0)) = 0. We have

M−1(X(0)) =



−2(u1(0) + u2(0) + u3(0)) + b−0 (v2(0) + v3(0))

−2(u1(0) + u2(0) + u3(0)) + b−0 (v1(0) + v3(0))

−2(u1(0) + u2(0) + u3(0)) + b−0 (v1(0) + v2(0))

−6v1(0) + 2v2(0) + 2v3(0)

+2v1(0)− 6v2(0) + 2v3(0)

+2v1(0) + 2v2(0)− 6v3(0)


+K,

whereK is a constant. The computation ofK is more involved that in previous situations,

as we need to consider Taylor expansions up to a higher order. We consider the Taylor

expansion of Ai(t) up to order 5

Ai(t) =
t

2
+ ai,3t

3 + ai,5t
5 +O(t7),

and then use it to compute

Ȧ1

A1

+
A1

B2B3

− A1

A2A3

= −1

t
+X1,1t+X1,3t

3 +O(t5),

where

X1,1 = 4a2,3 + 4a3,3 +
1

2b20
,
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X1,3 =
a1,3
b0

− b2
b30

+4(a1,5+a2,5+a3,5)−8(a21,3+a
2
2,3+a

2
3,3)+8(−a2,3a3,3+a1,3a3,3+a1,3a2,3).

Similarly for the other permutations of {1, 2, 3}. Recall that both b2, b+2 can be written in

terms of the data b0, ai,3, ai,5: in particular, b2 = 1/8b0 − b0(a1,3 + a2,3 + a3,3) (see 3.3.8).

The expression for K that we obtain is the following:

K =



−(b+2 )
2 − b+2

2b20
+

2b2
b30

− 8(a1,5 + a2,5 + a3,5) + 16(a21,3 + a22,3 + a23,3)

−(b+2 )
2 − b+2

2b20
+

2b2
b30

− 8(a1,5 + a2,5 + a3,5) + 16(a21,3 + a22,3 + a23,3)

−(b+2 )
2 − b+2

2b20
+

2b2
b30

− 8(a1,5 + a2,5 + a3,5) + 16(a21,3 + a22,3 + a23,3)

2b−0 b
+
2 − 2b2b

−
0

b0

2b−0 b
+
2 − 2b2b

−
0

b0

2b−0 b
+
2 − 2b2b

−
0

b0



.

The solutions X(0) = (u1(0), u2(0), u3(0), v1(0), v2(0), v3(0))
T to the non-homogeneous

system of equations M−1(X(0)) = 0 are given by

v1(0) = v2(0) = v3(0) = b−0 b
+
2 − b2b

−
0

b0
, (4.48)

and

u1(0) + u2(0) + u3(0) = −(b+2 )
2

2
− b+2

4b20
+
b2
b30

+ (b−0 )
2b+2 − b2(b

−
0 )

2

b0

−4(a1,5 + a2,5 + a3,5) + 8(a21,3 + a22,3 + a23,3).

(4.49)

Hence, we can fix any u2(0), u3(0) ∈ R and then u1(0) will be uniquely determined by

equation (4.49), so they lie in a 2-parameter family. Therefore, for each b−0 , u2(0), u3(0) ∈

R there is a unique solution X(t) giving a G2-instanton. To guarantee the smoothness of

found instantons, it remains to check the parity of f±
i at t = 0, i.e. that f+

i are odd and
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f−
i are even. Again, we argue that Fi(t) from (4.47) and

Gi(t) =
Ȧi
Ai

+
Ai
BjBk

− Ai
AjAk

are odd, from where we deduce that

(−f+
1 (−t),−f+

2 (−t),−f+
3 (−t), f−

1 (−t), f−
2 (−t), f−

3 (−t)) is a solution of (4.42). We write

−f+
i (−t) =

2

t
+ (b+2 − 4ai,3)t+ t3ũi(t), f−

i (−t) = b−0 + b−2 t
2ṽi(t),

and find ũi, ṽi with ṽi(0) = ui(0), ṽi(0) = vi(0), i = 1, 2, 3, solving (4.42), so we can

smoothly extend f+
i to t < 0 by f+

i (−t) = −f+
i (t), and f

−
i to t < 0 by f−

i (−t) = f−
i (t) also

solving (4.42), giving the desired parity conditions which guarantee the smooth extension

of the instantons. We have found three parameters b−0 , u2(0), u3(0) ∈ R giving a smooth

G2-instanton in a neighbourhood of S3.

Corollary 4.3.5. Let M = R4×S3, with coclosed G2-structure given by A1, A2, A3 as in

Proposition 3.3.9, and let S3 ⊂ M be the singular orbit. Suppose there is an extra U(1)

symmetry, meaning that A2 = A3. Then there is a 2-parameter family of (SU(2)2 × U(1))-

invariant G2-instantons with gauge group SU(2) in a neighbourhood of S3 which smoothly

extends in Pid.

Proof. By [LO18, Proposition 8], the extra symmetry means that f±
2 = f±

3 . The result

follows by having u2(0) = u3(0) in the previous theorem.

Remark 4.3.6. There is a mistake in [LO18, Proposition 8], which claims that in the

case of R4×S3 and when the G2-structure is also torsion-free, there is only a 1-parameter

family (instead of 2-parameter family) of (SU(2)2 × U(1))-invariant G2-instantons with

gauge group SU(2) in a neighbourhood of the singular orbit smoothly extending over Pid.

We leave the study of the extension of these families of instantons away from a singular

orbit to a future work.
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