Outline	LMCF	Self-expanders	Result	Proof

Uniqueness of Lagrangian self-expanders

Jason D. Lotay

University College London

4 October 2012

Joint with André Neves (Imperial College London)

arXiv:1208.2729

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline	LMCF	Self-expanders	Result	Proof
●	oo	000	00	0000
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Lagrangian Mean Curvature Flow
- Lagrangian self-expanders
- Uniqueness result
- Sketch proof

Outline	LMCF	Self-expanders	Result	Proof
	00			
Lagrang	ian Mean Cur	vature Flow		

Definition

- $\mathbf{x}_t : L \hookrightarrow M \rightsquigarrow Mean Curvature Flow \dot{\mathbf{x}}_t = H(\mathbf{x}_t).$
 - MCF is the gradient flow for the area functional.
 - Stationary points are minimal submanifolds.

Theorem (Smoczyk 1996)

 M^{2n} Calabi–Yau , $\mathbf{x}_t : L^n \hookrightarrow M^{2n}$ satisfies MCF, $\mathbf{x}_0^*(\omega) = 0 \Rightarrow \mathbf{x}_t^*(\omega) = 0 \ \forall t \rightsquigarrow$ Lagrangian Mean Curvature Flow.

- Stationary points of LMCF are special Lagrangian.
- Compact SL are area-minimizing in their homology class.

Outline	LMCF	Self-expanders	Result	Proof
0	○●	000	00	0000
Finding	special Lagra	ngians		

Question

Given Lagrangian L , is there SL $L' \in [L]$? Is L' unique?

- (Schoen-Wolfson 2001) Minimizing compact Lagrangian L^2 in class exist but may not be SL.
- (Wolfson 2005) $\exists L \cong S^2$ such that minimizing Lagrangian in [L] not SL and minimizer in [L] exists but not Lagrangian.

Conjecture (Thomas-Yau 2002)

L compact is "stable" \Rightarrow LMCF converges to unique SL in [L].

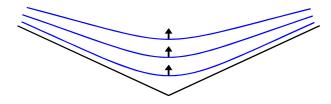
(Neves 2011) L² compact ⇒ ∃ L' ~ L such that LMCF develops finite-time singularity.

Outline	LMCF	Self-expanders	Result	Proof
0	oo	●○○	00	0000
<u> </u>				

Singularities and self-expanders

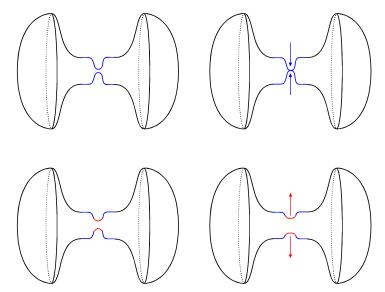
Definition

 $\mathbf{x}: L^n \to \mathbb{C}^n$ self-expander if $H = \mathbf{x}^{\perp} \rightsquigarrow \mathbf{x}_t = \sqrt{2t}\mathbf{x}$ solves LMCF.



- Self-expanders are stationary for weighted area functional.
- (Neves-Tian 2007) Blow-downs of eternal solutions to LMCF are self-expanders for positive time.
- Self-expanders solve LMCF with singular initial condition \rightsquigarrow potential surgery for LMCF.

Outline	LMCF	Self-expanders	Result	Proof
0	00	000	00	0000
Surgery				



Outline	LMCF	Self-expanders	Result	Proof
0	oo	○○●	00	0000
Examples				

- (Anciaux 2006) SO(n)-invariant examples → L ≅ Sⁿ⁻¹ × ℝ asymptotic to transverse SO(n)-invariant pair of planes.
- (Lee & Wang 2007) Hamiltonian stationary examples in \mathbb{C}^n .
- (Joyce-Lee-Tsui 2008) Generalised all known examples , including *L* asymptotic to any transverse pair of planes.
- (Castro–Lerma 2009) Classification of Hamiltonian stationary self-expanders in $\mathbb{C}^2.$
- (Chau-Chen-He 2009) \exists 1-1 correspondence between cones $L_0 = \{x + J\nabla\psi_0(x)\}$ and self-expanders $L = \{x + J\nabla\psi(x)\}$ asymptotic to L_0 with ψ_0, ψ satisfying a Hessian bound.

Outline	LMCF	Self-expanders	Result	Proof
0	oo	000	●○	0000
Planar ends				

Question

Can we classify Lagrangian self-expanders with two planar ends?

- (Schoen 1983) Catenoid is unique minimal hypersurface with two planar ends.
- In \mathbb{C}^2 SL surfaces are holomorphic curves after hyperkähler rotation \rightsquigarrow classification.
- Classification of SL in Cⁿ with two planar ends is not known for n > 2.
- (Ilmanen–White) Self-expanders in ℂ are geodesics for metric with non-positive curvature → uniqueness.
- (Nakahara 2011) Families of singular Lagrangian self-expanders with the same two planar ends in \mathbb{C}^n .

Outline	LMCF	Self-expanders	Result	Proof
0	00	000	○●	0000
Uniqueness	result			

Theorem (L–Neves)

Zero Maslov class Lagrangian self-expanders asymptotic to transverse pairs of planes in \mathbb{C}^n are

- locally unique if n > 2;
- unique if n = 2.

Definition

$$\begin{split} \Omega &= \mathrm{d} z_1 \wedge \ldots \mathrm{d} z_n \text{ , } L \text{ Lagrangian } \rightsquigarrow \Omega|_L = e^{i\theta} \operatorname{vol}_L \\ \rightsquigarrow \text{ Lagrangian angle } \theta. \end{split}$$

• L zero Maslov class if θ single-valued function.

- L Hamiltonian stationary if $\Delta \theta = 0$.
- Key fact: $H = J \nabla \theta$.

Outline	LMCF	Self-expanders	Result	Proof
0	oo	000	00	●○○○
Strategy				

 $L \subseteq \mathbb{C}^2$ zero Maslov class self-expander asymptotic to P.

Lemma

P SO(2)-invariant $\Rightarrow L \text{ SO}(2)$ -invariant $\Rightarrow L$ unique.

Proof: L SO(2)-invariant $\Leftrightarrow \mu = x_1y_2 - y_1x_2 = 0$ on L.

$$\frac{\frac{d}{dt}\mu^2 = \Delta\mu^2 - 2|\nabla\mu|^2}{\text{Monotonicity Formula: } \mu = 0 \text{ at } t = 0 \Rightarrow \mu = 0 \text{ for } t > 0.}$$

- Choose P(s) such that P(0) = P, P(1) is SO(2)-invariant.
- $S = \{ \text{zero Maslov class self-expanders asymptotic to } P(s) \}.$
- Deformation theory $\Rightarrow \pi : S \rightarrow [0, 1]$ local diffeomorphism.
- Show S is compact $\Rightarrow \pi$ covering map.
- $\pi^{-1}(1)$ one element $\Rightarrow \pi$ diffeomorphism \Rightarrow uniqueness.

Outline	LMCF	Self-expanders	Result	Proof ○●○○
l ocal uni	queness			

Liouville form
$$\lambda = \sum_{j=1}^{n} x_j dy_j - y_j dx_j \Rightarrow d\lambda = 2\omega$$
.

Definition

L is exact if $\lambda|_L = d\beta$.

Lemma

Zero Maslov class Lagrangian self-expanders are exact.

Proof:
$$H = J\nabla\theta = \mathbf{x}^{\perp} \Leftrightarrow \nabla\theta = -J\mathbf{x}^{\perp} = -(J\mathbf{x})^{\top} \Leftrightarrow \lambda|_{L} = -\mathrm{d}\theta = \mathrm{d}\beta.$$

- Exact zero Maslov class L' near $L \leftrightarrow$ graphs L_u of $J \nabla u$.
- L_u self-expander $\Leftrightarrow F(u) = \beta_u + \theta_u$ constant.
- $dF|_0(u) = \Delta u + \langle \mathbf{x}, \nabla u \rangle 2u \Rightarrow dF|_0$ isomorphism.
- Inverse Function Theorem \Rightarrow local uniqueness.

Outline	LMCF	Self-expanders	Result	Proof
0	oo	000	00	0000
Compacti	ness			

Let L^{j} be zero Maslov class self-expanders asymptotic to P^{j} .

- (Ilmanen) L^j has subsequence converging to (possibly singular) self-expander L.
- L asymptotic to transverse pair of planes P.
- Suffices to show L is smooth self-expander.

Lemma

L is not minimal.

Proof: Suppose $H = 0 = \mathbf{x}^{\perp} \Rightarrow L$ is a cone $\Rightarrow L = P$.

- (Neves) $\beta^j \to \beta$ constant $\Rightarrow \theta^j = -\beta^j \to -\beta$ constant.
- \rightsquigarrow *P* is SL \rightsquigarrow contradicts *P^j* not SL.

Outline	LMCF	Self-expanders	Result	Proof
0	oo	000	00	○○○●
Gaussiar	density			

Define Gaussian density

$$\Theta(y,l) = \int_{L} (4\pi l)^{-\frac{n}{2}} \exp\left(-\frac{|x-y|^2}{4l}\right) \mathrm{d}\mathcal{H}^n$$

Lemma

Given $\epsilon > 0$, $\exists \delta > 0$ such that $\Theta(y, l) < 1 + \epsilon$ for all $l \leq \delta$.

Proof: (Huisken) Monotonicity Formula $\Rightarrow \Theta(y, l) \leq 2$.

• $\Theta(y, l) = 2 \Rightarrow L$ self-shrinker $\Rightarrow L$ minimal \Rightarrow contradiction.

Suppose that $\Theta(y_k, \delta_k) \ge 1 + \epsilon$ for $\delta_k \to 0$.

- \rightsquigarrow blow-up L' of L which is union of SLs and not a plane.
- Blow-down C of L' is SL cone with Gaussian density $\geq 1 + \epsilon$.

• In \mathbb{C}^2 *C* is union of planes $\Rightarrow \Theta(y, l) \ge 2 \Rightarrow$ contradiction.

(White) Regularity Theorem $\Rightarrow L$ is smooth.