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CONTENTS

Abstract

The subject of this thesis is the role of Hermitian Yang-Mills (HYM) connections in Spin(7)

instanton moduli spaces over asymptotically conical (AC) Calabi-Yau fourfolds. The start-

ing point is Lewis’ result [40] on the equivalence of the equations over a closed base: if a

bundle over a closed CY fourfold admits HYM solutions then all Spin(7) instantons are

HYM. The fundamental problem we are interested in is whether this result persists in the

AC setting.

A first-order approach is to pass to the (Sasaki-Einstein) asymptotic link, which is not Ricci

flat and could thus be homogeneous. The role of the Spin(7) instantons is then assumed

by the G2 instantons and that of the HYM connections by the contact instantons. It is

easier to explore the relationship between these systems instead.

We provide an alternative construction of the standard octonionic instanton of Fubini and

Nicolai [27], in line with the modern methods of equivariant gauge theory [43], [55]. Prior to

the results of this thesis, this was the only known example of a non HYM Spin(7) instanton

on a Calabi-Yau fourfold. Examining the limiting connection over the asymptotic link, we

exclude the existence of HYM connections in its moduli space. We conclude that the

octonionic instanton does not help in the resolution of the problem we are interested in.

We extend Lewis’s theorem to the AC setting, conditioning on decay rates.

We construct the moduli space of SO(5)-invariant Spin(7) instantons with structure group

SO(3) on the Stenzel space [56]. These new instantons sit exactly at the slow-rate cut-

off point of our extension of Lewis’s theorem. They provide a negative answer to the

question we set out to answer: the moduli space is one-dimensional and contains precisely

two HYM connections. One of these is the epicentre of a removable singularity/ bubbling

phenomenon and the development of a corresponding Fueter section [9], [79], [81]. We

compute this explicitly and verify (after suitable modifications) an infinite-energy version

of Tian’s energy conservation identity [9], [43], [70]. This phenomenon hints at a possible

relationship between the AC Spin(7) instanton and HYM systems.

vi



0 Context, Motivation and Overview of the Results

Instantons are special Yang-Mills connections characterized by first order PDE systems

stronger than the full second order Yang-Mills equation. The prototype for such a system

is the ASD equation over a closed 4-manifold (Atiyah [3], Donaldson-Kronheimer [15]). In

this setting, the ASD instantons are the absolute minimizers of the free Yang-Mills action.

Moduli spaces of ASD solutions are instrumental in the study of the smooth topology

of simply connected, closed, oriented 4-manifolds (Donaldson [14], Freed-Uhlenbeck [25],

Mariño [45]). This approach, pioneered by Donaldson, revealed the stark difference between

the smooth and continuous categories.

Analogues of the ASD system are available in higher dimensions, but now depend on the

choice of a closed (n−4)-form (here n denotes the dimension of the base space). To proceed,

one would like to have a natural choice of such an object. This is often the case over base

manifolds with special geometry. Notably, in the setting of exceptional holonomy, Spin(7)

and G2 structures are encoded by their Cayley calibration Φ ∈ Λ4T ⋆X8 and associative

calibration ϕ ∈ Λ3T ⋆Σ7 respectively. We thus obtain corresponding instanton equations:

the Spin(7) instanton equations and the G2 instanton equations. The hope is to use the

corresponding moduli spaces to extract geometric and topological invariants in analogy

to the 4-dimensional Donaldson theory. This is broadly known as the Donaldson-Thomas

[17] (DT)/ Donaldson-Segal (DS) [16] program. In some ways, these systems parallel

the ASD equations: over closed manifolds they determine the absolute minima of the

Yang-Mills energy. However, their analysis is generally much harder to understand due

to very complicated non-compactness phenomena and the presence of heavy obstructions

complicating their infinitesimal deformation theory. Consequently, the analytic definition

of DT/ DS invariants still remains conjectural.

The inclusion of SU(4) in Spin(7) allows one to endow a Calabi-Yau (CY) 4-fold with a

natural Spin(7) structure. On such a manifold (in fact over any Kähler manifold), one may

define yet another type of instanton: the Hermitian Yang-Mills (HYM) connections. A

natural question is to ask whether these connections are related to the Spin(7) instantons

associated to the induced Spin(7) structure. One immediately observes that HYM is a

1



stronger condition. Our aim is to study this relationship in more detail.

A natural first step is to ask whether the HYM equations are genuinely stronger, that

is if pure (not HYM) Spin(7) instantons can exist on a complete CY fourfold. We are

thus interested in constructing such an object. In the compact case, it is known that

as long as an HYM connection exists, the two types of instantons coincide (Lewis [40]).

Consequently, if one hopes to display a compact counterexample to equivalence, there must

not be any HYM connections at all. Furthermore, we have a general existence theorem for

HYM connections over stable holomorphic bundles (Uhlenbeck, Yau [73]). This restricts

the choices of bundles one could look at. Finally, closed, locally irreducible manifolds of

exceptional holonomy admit no continuous symmetries (Joyce, [32]). This precludes the

use of symmetry techniques (dimensional reduction), forcing us to tackle the prohibitively

complicated analysis head-on. We are thus motivated to look for a counterexample over

a noncompact base. Since Lewis’s argument is essentially an energy estimate, it does not

directly carry over to the noncompact setting.

We shall narrow down our scope to asymptotically conical (AC) CY-4 geometries. These

manifolds possess a single infinite end along which the geometry approaches that of a cone.

In this context, it is natural to augment the gauge theoretic equations with boundary

conditions reflecting the asymptotic geometry of the base. This leads to the notion of AC

instantons: solutions approaching a dilation invariant limit A∞ along the noncompact end.

If one hopes to find AC Spin(7) instantons/HYM connections approaching A∞, the latter

ought to obey strong constraints. In particular, it has to satisfy gauge-theoretic equations

over the 7-dimensional asymptotic link. The link of a Spin(7) cone is nearly parallel G2,

whereas the link of a CY-4 cone possesses a richer Sasaki-Einstein structure. Both of

these geometries admit natural instanton equations: the G2 instanton equations and the

contact instanton equations respectively. The former is weaker than the latter so that the

boundary conditions imposed by the HYM system are more demanding. This brings us to

the basic object of our study. We are interested in studying moduli spaces of AC Spin(7)

instantons over AC CY fourfolds, where the limiting connection is contact. Such moduli

spaces could a priori contain both pure Spin(7) instantons and HYM connections. We are

interested in the relationship between the two.
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We note that an example of a pure AC Spin(7) instanton already exists. It is known as

the standard octonionic instanton and it lives on the trivial Spin(7)-bundle over flat space

R8 . The problem is that its limiting connection is G2 but not contact. The question

still remains whether pure AC Spin(7) instantons can approach a limit compatible with

the HYM system. Better yet, in light of Lewis’ theorem, one would like to know if they

can show up in moduli spaces hosting HYM connections. Furthermore, one could ask if

the existence of pure Spin(7) instantons is a pathology related to the special nature of flat

space. In particular, one would like to know if such objects can live over honest complete

AC CY fourfolds with full holonomy SU(4).

We begin by presenting background material on the geometry of CY fourfolds, Sasaki-

Einstein 7-manifolds, Spin(7) manifolds and weak G2 manifolds. We introduce the natural

instanton equations on these spaces and review Lewis’ Theorem [40]. We derive their

linearizations (centered at an instanton A) and specify their relationship with the corre-

sponding spin Dirac operators (twisted by A). We finally derive the relevant Weitzenböck

formulae. To the author’s knowledge, the formulae for the Spin(7) case are new.

In section 2, we provide a detailed introduction to gauge theory over spaces with large

isometry groups. The techniques outlined here are crucial for what is to follow: the

spaces we will be working with are of cohomogeneity one. We are thus interested in the

interaction between this symmetry and gauge theory. We introduce homogeneous bundles

and invariant connections and prove Wang’s theorem (Wang [82]) on their classification.

In section 3 we generalise Lewis’ energy estimate to the AC setting.

In section 4 we give a new construction of the standard octonionic instanton. This was

initially introduced by Fubini and Nicolai in the Physics article [27]. We present an al-

ternative derivation aligned with the methods of equivariant gauge theory in the spirit of

Lotay-Oliveira [43], Clarke-Oliveira [9], Oliveira [55], [54]. We hope that this elucidates the

geometric context. In contrast to [27], rather than a single solution, we find a 1-parameter

family degenerating at both ends. Our method guarantees that there are no other solutions

3



enjoying the same symmetries. We thus get a complete handle on the invariant locus in

the moduli space.

Section 5 is based on the author’s published work (Papoulias [56]). It is concerned with

the analysis of the instanton equations on the Stenzel space (Stenzel [67]). We use the

cohomogeneity one SO(5) action to reduce these to tractable ODEs and proceed to study

the SO(5)-invariant solutions. In the abelian case we establish local equivalence and prove

a global nonexistence result. We then study the nonabelian equations corresponding to

the structure group SO(3). We give an explicit one parameter family of Spin(7) instantons

containing a unique HYM connection. All instantons in the family are AC. This negatively

resolves the question regarding the equivalence of the two equations. Interestingly, the

decay rates of these examples sit right at the slow rate cut-off point of our generalization

of Lewis’ estimate, demonstrating that it is sharp.

We construct the full moduli space of invariant Spin(7) instantons in this context. This

involves a second family, living on another bundle. It also carries a unique HYM connection.

The bundles hosting the two families are isomorphic away from a Cayley submanifold.

The first family is parameterized by a half-open half-closed interval. The second family

is compact. The HYM connections play a role in the compactification of the moduli

space, exhibiting a novel removable singularity/ bubbling phenomenon. As we vary the

parameter of the first family toward the open end of the interval, energy concentrates

around a Cayley submanifold. This provides an explicit example of Tian’s compactness

theory (Tian [70]). Furthermore, the family bubbles off an ASD instanton in the normal

directions. We explicitly compute the relevant Fueter section (Walpuski [79], [81], Oliveira-

Clarke [9], Lotay-Oliveira [43]). As expected, cutting off the Cayley, we are able to obtain a

limit in the C∞
loc topology. Interestingly, the limit is precisely the unique HYM connection

of the other family. The moduli space is then compactified by attaching it to the open end

and gluing the two intervals transversally.
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1 Rudiments of CY-4 Geometry and the Associated Gauge

Theories

In this section, we collect background material on the geometry of CY fourfolds and the

gauge theories available on them. Along the way, we introduce various related geometries:

the 7-dimensional Sasaki-Einstein and nearly parallel (weak) G2 geometries, as well as the

exceptional holonomy G2 and Spin(7) geometries. These are all intimately tied to the

study of AC CY-4 spaces. They will play a central role in the sequel. We emphasize

aspects related to the corresponding instanton equations: the HYM equations, the contact

instanton equations, the Spin(7) instanton equations and the G2 instanton equations.

We do not always give complete proofs and instead refer to the books (Joyce [32], Salamon

[62]), the expository paper (Salamon-Walpuski [61]), as well as the PhD theses of C. Lewis

(Lewis [40]) and Thomas Walpuski ([77]) among others. The foundational article (Friedrich

[63]) serves as a comprehensive introduction to weak G2 manifolds. Our aim is to provide

enough material to specify and motivate the object of our study.

We begin by introducing certain linear algebraic structures special to real dimensions 7 and

8. These structures provide the pointwise flat model for the spaces we are interested in. We

then pass to the global level to introduce CY fourfolds and the other geometries of interest.

We introduce the corresponding instanton equations and show that they are stronger than

the full Yang-Mills system. We derive the topological energy estimates exhibiting their

solutions as Yang-Mills minimizers (when the base is closed). We observe that the HYM

equations are stronger than the Spin(7) instanton equations and present Lewis’ Theorem

[40]. Finally, we linearize the Spin(7) and G2 instanton equations and relate them to the

natural (twisted) Dirac operators available on the respective spaces. We derive the relevant

Weitzenböck formulae. These resemble the formulae derived by Bourguignon-Lawson [6]

in 4 dimensions. We conclude the section with a precise description of the moduli spaces

we are interested in.
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1.1 Geometric Aspects

1.1 Geometric Aspects

1.1.1 Octonionic Linear Algebra

1.1.1.1 Real Normed Division Algebras

A normed division algebra over R consists of a finite dimensional real Euclidean vector

space
(
W, ⟨·, ·⟩

)
equipped with a compatible multiplication operation admitting a unital

element 1 ∈W .

Concretely, W is endowed with a bilinear map:

⊗2 W →W

u⊗ v 7→ uv

satisfying

|uv| = |u||v|

and

1w = w1 = w for all w ∈W.

We define the real and imaginary parts of W as:

Re(W )
def
= SpanR(1), (1.1)

Im(W )
def
= Re(W )⊥. (1.2)

We thus obtain a natural decomposition:

W = Re (W )⊕ Im (W ) .

This, in turn, yields a conjugation operation:

ū
def
=


u if u ∈ Re (W ),

-u if u ∈ Im (W ).

6



1.1 Geometric Aspects

The latter can be used to write down a multiplicative inverse for every non-zero element:

u−1 def
=

u

|u|2
. (1.3)

An easy computation using the axioms verifies that indeed:

uu−1 = 1,

as required. This confirms that W is a division algebra and thus justifies our terminology.

From here on, we will always identify the real part of a normed division algebra with

the real numbers R. Correspondingly, we will slightly abuse notation by denoting scalar

multiples of the unital element λ · 1 simply by λ.

It is possible to obtain a full classification of real normed division algebras. To this end,

suppose that we are given a Euclidean space
(
W, ⟨·, ·⟩

)
and we are interested in upgrading

it to a normed division algebra. The first step is to select a unit vector 1 to serve as the

unital element. This determines the real and imaginary parts according to (1.1) and (1.2).

Denote the imaginary part by:

V
def
= SpanR (1)⊥ .

To obtain the desired binary operation on W , one has to make a further choice. It turns

out that this amounts to choosing either a triple cross product on W or a cross product

on V . These two structures are interchangeable and equivalent to the desired product

operation on W .

A triple cross product on
(
W, ⟨·, ·⟩

)
is an alternating trilinear map:

⊗3 W →W

u⊗ v ⊗ w 7→ u× v × w

satisfying:

⟨u× v × w, u⟩ = ⟨u× v × w, v⟩ = ⟨u× v × w,w⟩ = 0

7



1.1 Geometric Aspects

|u× v × w| = |u ∧ v ∧ w|

A cross product on
(
V, ⟨·, ·⟩

)
is an alternating bilinear map:

⊗2 V → V

(u, v) 7→ u× v

satisfying:

⟨u× v, u⟩ = ⟨u× v, v⟩ = 0

|u× v|2 = |u|2|v|2 − ⟨u, v⟩2

Suppose that an algebra structure (product) is given. The associated triple cross product

on W is defined by:

u× v × w
def
=

1

2

(
(uv̄)w − (wv̄)u

)
. (1.4)

Similarly, the associated cross product on V is defined by:

u× v
def
= uv + ⟨u, v⟩. (1.5)

These two structures are related through the equation:

u× v
def
= u× 1× v. (1.6)

For the converse, note that starting from a cross product on V , formula (1.5) determines

how to multiply elements of V . One subsequently extends this to W by identifying the

real part with R and having it act on W by scalar multiplication.

Correspondingly, given a triple cross product (and our choice of unit-norm identity ele-

ment), one defines the normed algebra structure by:

uv
def
= u× 1× v + ⟨u, 1⟩v + ⟨v, 1⟩u− ⟨u, v⟩ · 1. (1.7)

The upshot is the following. One may obtain a complete classification of cross products

8



1.1 Geometric Aspects

using techniques of elementary linear algebra. Due to the above observation, this also gives

a classification of real normed division algebras (Salamon-Walpuski [61]). Essentially, the

only possibilities are the real numbers R, the complex numbers C, the quaternions H and

the octonions O.

We recall the final two examples for the reader’s convenience. The quaternions H are

defined by setting:

H = SpanR(1, i, j, k), (1.8)

where the generators are orthonormal and anti-commuting with square −1, ij = k and the

product is associative. The multiplication table for H takes the following form:

· 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Note that the resulting product is not commutative.

The octonions O are defined by setting:

O = SpanR(1, i, j, k, e, ei, ej, ek), (1.9)

where the generators are orthonormal and anti-commuting with square −1, ij = k and

associativity can be used to determine the product of any generator with all subsequent

ones in the ordered list. The multiplication table for O takes the following form:

9
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· 1 i j k e ei ej ek

1 1 i j k e ei ej ek

i i −1 k −j −ei e ek −ej

j j −k −1 i −ej −ek e ei

k k j −i −1 −ek ej −ei e

e e ei ej ek −1 −i −j −k

ei ei −e ek −ej i −1 k −j

ej ej −ek −e ei j −k −1 i

ek ek ej −ei −e k j −i −1

Note that the resulting product is neither commutative nor associative.

The triple cross product and cross product structures associated to the four real normed

division algebras can be computed using (1.4) and (1.5). The cross product associated to

R lives on a 0-dimensional space and thus vanishes. Using (1.5), we find that the cross

product associated to C vanishes as well. The cross product on Im (H) is the usual cross

product on R3, familiar from vector calculus. The cross product on Im (O) is known as

the standard cross product on R7. It will be further explored in section 1.1.2, though not

in its standard form but rather a form suitable to the context of our study.

1.1.1.2 Associative Calibrations and Cayley Calibrations

In view of our objective to globalize the above linear algebraic picture, we are interested

in recasting it in a more manageable way. In this section, we will see that we can capture

the data of a real normed division algebra using alternating multilinear forms.

Let
(
W, ⟨·, ·⟩

)
and

(
V, ⟨·, ·⟩

)
be as above i.e. W is a Euclidean vector space with a preferred

unit vector 1 and V = 1⊥ ⊂W .

An alternating 3-form

ϕ ∈ Λ3V ⋆

is an associative calibration for (V, ⟨·, ·⟩) provided that it is nondegenerate and compatible

with the inner product. The first condition is that for all linearly independent u, v ∈ V

10
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there exists some x ∈ V such that:

ϕ(x, u, v) ̸= 0.

The second condition is that the map defined by

(u, v) 7→ u× v

where

⟨u× v, x⟩ = ϕ(u, v, x) (1.10)

is a cross product on V .

It is immediate from (1.10) that associative calibrations and cross products are in one-to-

one correspondence.

The Hodge dual (over V ) of an associative calibration is known as a coassociative calibra-

tion. It is often denoted as:

ψ = ⋆ϕ. (1.11)

An alternating 4-form

Φ ∈ Λ4W ⋆

is called a Cayley calibration for (W, ⟨·, ·⟩) if it is nondegenerate and compatible with the

inner product. The first condition means that for all linearly independent u, v, w ∈ W

there exists some x ∈ W such that Φ(u, v, w, x) ̸= 0. The second one is that the map

defined by:

(u, v, w) 7→ u× v × w

⟨x, u× v × w⟩ = Φ(x, u, v, w) (1.12)

is a triple cross product on W .

It is immediate from (1.12) that triple cross products and Cayley calibrations are in one-

11
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to-one correspondence.

Cayley calibrations are automatically self-dual for the Hodge-star operator determined by

the metric and the orientation:

⋆ Φ = Φ.

The correspondence between cross products on V and triple cross products on W induces

a correspondence between associative calibrations ϕ over V and Cayley calibrations Φ over

W . Explicitly, this takes the form:

Φ = 1♭ ∧ ϕ+ ⋆ϕ. (1.13)

A normed division algebra structure on W induces a triple cross product on W and a cross

product on V . One may subsequently pass to the corresponding calibrations. Dimension

considerations demonstrate that these vanish for R and C and that they are trivial (scalar

multiples of the volume form) for H.

From here on, we shall focus on the final normed division algebra: the octonions O. Our

interest stems from the fact that O ∼= R8 and Im (O) ∼= R7 provide the flat models for

Spin(7) and G2 manifolds respectively. These geometries are intimately tied to AC CY-4

geometry. Consequently, their respective flat models will play a central role in the sequel.

1.1.1.3 The groups G2 and Spin(7)

The groups G2 and Spin(7) arise as the stabilizers of Im (O) and O respectively. In this

sense, once we pass to the global level, they assume the role that the special orthogonal

groups play in standard Riemannian geometry.

The octonionic product induces a triple cross product on O and a cross product on Im (O).

Let ϕ and Φ denote the corresponding associative and Cayley calibrations.
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We define the group G2 to be the isotropy subgroup of ϕ in GL
(
Im (O)

)
:

G2
def
=
{
g ∈ GL

(
Im (O)

)
s.t. g⋆ϕ = ϕ

}
.

All linear automorphisms that preserve ϕ also preserve the Euclidean metric and orientation

on Im (O). It is then the case that:

G2 ⊂ SO(Im (O)) ∼= SO(7).

In fact, we have that:

G2 =
{
g ∈ SO(Im (O)) s.t. gu× gv = g(u× v)

}
.

The group G2 is a semisimple, connected, simply connected 14-dimensional Lie group [61].

We define the group Spin(7) to be the isotropy subgroup of Φ in GL(O) i.e.:

Spin(7) def
=
{
g ∈ GL(O) s.t. g⋆Φ = Φ

}
.

All linear automorphisms that preserve Φ also preserve the Euclidean metric and orienta-

tion. It is therefore the case that:

Spin(7) ⊂ SO(O) ∼= SO(8).

In fact, we have:

Spin(7) =
{
g ∈ SO(O) s.t. gu× gv × gw = g(u× v × w)

}
.

The group Spin(7) is a semisimple, connected, simply connected 21-dimensional Lie group.

We now confirm that the above definition of Spin(7) agrees with the familiar one as the

universal cover of SO(7). The group SO(8) acts on so(8) adjointly. Since SO(8) is simple,

this representation is irreducible. Restrict it to Spin(7) ⊂ SO(8). The associated branching

problem is easily solved. The subspace spin(7) ⊂ so(8) is clearly stable under the restricted
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action. The corresponding representation agrees with the adjoint action of Spin(7). It is

irreducible since Spin(7) is simple. The homogeneous space SO(8)
Spin(7) is reductive. Let m be

a reductive complement. Its dimension is easily computed:

dim(m) = dim
(
so(8)

)
− dim

(
spin(7)

)
= 28− 21

= 7. (1.14)

Standard semisimple theory demonstrates that the lowest-dimensional non-trivial irrep of

Spin(7) has dimension 7. Since Spin(7) doesn’t act trivially on m, the latter completes

the decomposition. Identifying it with R7, furnishes a map Spin(7) → SO(7). This is a

non-trivial double covering, exhibiting Spin(7) as the universal cover of SO(7). We thus

recover the usual definition from the theory of spin groups (Hamilton [29], Roe [60]).

Given that we are primarily interested in the global picture, we want our terminology to

align with the theory of G-structures (Joyce [32]). For this reason, we shall often refer

to Cayley calibrations as Spin(7)-structures and associative calibrations as G2-structures.

Indeed, fixing smoothly varying Cayley or associative calibrations over the tangent spaces

of a base manifoldX8 or Σ7 naturally induces a reduction of structure ([32], [37]) to Spin(7)

or G2 respectively. This is achieved by considering the frames that restore the relevant

calibration to its standard form.

1.1.2 The Flat Model for CY-4 Geometry

1.1.2.1 The Flat SU(4), Spin(7) and G2 Structures

The local model for CY-4 geometry is provided by the space C4 endowed with its natural

SU(4) structure (J, ω,Ω). Here J denotes the standard complex structure given by scalar

multiplication through i, ω denotes the standard symplectic (Kähler) form:

ω =
i

2

4∑
j=1

dzj ∧ dz̄j

14
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and Ω denotes the standard holomorphic volume form:

Ω = dz1 ∧ dz2 ∧ dz3 ∧ dz4.

The tensors J and ω naturally induce a Riemannian metric given by:

g(u, v) = ω(u, Jv).

Furthermore, the complex structure J induces a natural orientation. The stabilizer of the

collection of these structures is the group:

SU(4) ⊂ SO(8).

The above data naturally induce a Cayley calibration on C4:

Φ
def
=
ω2

2
+Re (Ω) . (1.15)

This is known as the standard Spin(7) structure on R8 ∼= C4 and it constitutes the local

model for Spin(7) geometry. It is clear that:

SU(4) ⊂ Spin(7) ⊂ SO(8), (1.16)

where the intermediate group is the stabilizer of Φ. It follows that the standard SU(4)

structure on C4 can be used to obtain a model for O. To this end, note that C4 is naturally

Euclidean: it possesses a natural Riemannian metric and orientation. Seeking to upgrade

it to a normed division algebra, we note the availability of a natural choice of unit vector:

1 = (1, 0, 0, 0) .

We use this as the unital element. The Cayley calibration Φ then determines the product

as discussed in section (1.1.1.2).

In the sequel we will maintain the earlier notation W for the full 8-dimensional space and

15



1.1 Geometric Aspects

V for the orthogonal complement of the unital element. In particular:

W = C4,

V = 1⊥ ⊂ C4.

Using (1.13) we obtain a natural associative calibration ϕ on R7 ∼= V . This is known as

the standard G2 structure on R7 and it constitutes the local model for G2 geometry.

Earlier, we remarked that the Spin(7) and G2 geometries are intimately related with the

CY-4 geometry. The above considerations make this precise—at least at the local/ flat

level.

1.1.2.2 Coordinate Representations

We wish to make the previous discussion more explicit. In particular, we wish to intro-

duce natural coordinates and obtain associated expressions for the various linear algebraic

structures involved in the flat model.

To begin with, we identify:

C4 ∼= R8

by writing a typical element u ∈ R8 as:

u =
(
x1, y1, x2, y2, x3, y3, x4, y4

)⊺
;

and associating it to v ∈ C4 where:

v =
(
z1, z2, z3, z4

)⊺
, zj = xj + iyj .

We then introduce the following notation for the frame associated to the above coordinate
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system on R8:

e1 = ∂x1 , e2 = ∂y1

e3 = ∂x2 , e4 = ∂y2

e5 = ∂x3 , e6 = ∂y3

e7 = ∂x4 , e8 = ∂y4 .

Using this notation, the unital element is given by:

1 = e1.

The real and imaginary parts of a fixed vector are then given by orthogonally projecting

to the span of e1 and to its orthogonal complement respectively.

We denote the dual coframe by
(
ϵi
)
i=1...8

so that:

ϵi
(
ej
)
= δij .

Transporting the CY-4 structure of C4 through the identification, we find that the complex

structure becomes:

J =ϵ1 ⊗ e2 + ϵ3 ⊗ e4 + ϵ5 ⊗ e6 + ϵ7 ⊗ e8

−ϵ2 ⊗ e1 − ϵ4 ⊗ e3 − ϵ6 ⊗ e5 − ϵ8 ⊗ e7.

Similarly, the Kähler form ω and the holomorphic volume form Ω are given by:

ω = ϵ12 + ϵ34 + ϵ56 + ϵ78

and

Ω = Re (Ω) + iIm (Ω) ,

where

Re (Ω) = ϵ1357 − ϵ1368 − ϵ1458 − ϵ1467 − ϵ2358 − ϵ2367 − ϵ2457 + ϵ2468,
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Im (Ω) = ϵ1358 + ϵ1367 + ϵ1457 − ϵ1468 + ϵ2357 − ϵ2368 − ϵ2458 − ϵ2467.

The induced Cayley calibration (1.15) takes the form:

Φ =ϵ1357 − ϵ1368 − ϵ1458 − ϵ1467 − ϵ2358 − ϵ2367 − ϵ2457 + ϵ2468

+ϵ1234 + ϵ1256 + ϵ1278 + ϵ3456 + ϵ3478 + ϵ5678.

Recalling (1.13), we immediately spot that:

ϕ = ϵ357 − ϵ368 − ϵ458 − ϵ467 + ϵ234 + ϵ256 + ϵ278,

ψ = −ϵ2358 − ϵ2367 − ϵ2457 + ϵ2468 + ϵ3456 + ϵ3478 + ϵ5678.

It may be easily verified that Ω and Φ are self dual and:

⋆ ϕ = ψ.

In this last equation, ⋆ denotes the Hodge star operator on the complement of the unital

element.

Furthermore, we compute:

ω2

2!
= ϵ1234 + ϵ1256 + ϵ1278 + ϵ3456 + ϵ3478 + ϵ5678,

ω3

3!
= ϵ123456 + ϵ123478 + ϵ125678 + ϵ345678,

ω4

4!
= ϵ12345678.

Using these, it is easy to verify the well known identities:

⋆ ω =
ω3

3!
,

and

dVg =
ω4

4!
.
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Using the formula:

ϕ(u, v, w) = g(u× v, w),

and the explicit form of ϕ in the coordinate frame, we can obtain a multiplication table for

the cross product on the complement of the unital element. This takes the following form:

× e2 e3 e4 e5 e6 e7 e8

e2 0 e4 −e3 e6 −e5 e8 −e7

e3 −e4 0 e2 e7 −e8 −e5 e6

e4 e3 −e2 0 −e8 −e7 e6 e5

e5 −e6 −e7 e8 0 e2 e3 −e4

e6 e5 e8 e7 −e2 0 −e4 −e3

e7 −e8 e5 −e6 −e3 e4 0 e2

e8 e7 −e6 −e5 e4 e3 −e2 0

The octonionic product on R8 can now be obtained using (1.7). This yields the formula:

uv = Re(u)Re(v)− g
(
Im (u) , Im (v)

)
+Re(u)Im (v) +Re(v)Im (u) + Im (u)× Im (v) .

The resulting multiplication table is given by:

· e1 e2 e3 e4 e5 e6 e7 e8

e1 e1 e2 e3 e4 e5 e6 e7 e8

e2 e2 −e1 e4 −e3 e6 −e5 e8 −e7

e3 e3 −e4 −e1 e2 e7 −e8 −e5 e6

e4 e4 e3 −e2 −e1 −e8 −e7 e6 e5

e5 e5 −e6 −e7 e8 −e1 e2 e3 −e4

e6 e6 e5 e8 e7 −e2 −e1 −e4 −e3

e7 e7 −e8 e5 −e6 −e3 e4 −e1 e2

e8 e8 e7 −e6 −e5 e4 e3 −e2 −e1

Note that the isomorphism with the standard construction of O is not given by directly

identifying the ordered frame (ei)i=1...8 with the generators (1, i, j, k, e, ei, ej, ek). Instead,
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it is given by associating:

1 ↔ e1, i↔ e3, j ↔ e5, k ↔ e7

e↔ e2, ei↔ e4, ej ↔ e6, ek ↔ e8.

1.1.2.3 Decomposition of the Space of 2-Forms

Recall that our ultimate goal is to study gauge theory on CY fourfolds. The link between

CY-4 geometry and gauge theory arises from a natural splitting of the space of 2-forms.

This feature permits us to correspondingly decompose gauge fields (curvature tensors) and

is hence responsible for the availability of the instanton equations of interest.

The copy of Spin(7) in GL(8) arising as the stabilizer of Φ acts on Λ2W ⋆ through the

second antisymmetric power of the standard vector representation. Decomposing this into

irreducibles yields the splitting:

Λ2 = Λ2
7 ⊕ Λ2

21. (1.17)

Here we have omitted denoting the background space and the subscripts signify the di-

mensions of the summands. In particular:

dimR

(
Λ2
7

)
= 7,

dimR

(
Λ2
21

)
= 21.

We are interested in computing these summands explicitly. To this end, we introduce the

Spin(7)-invariant endomorphism:

TΦ : Λ2 → Λ2

α 7→ ⋆ (Φ ∧ α) .

Its eigenvalues are given by λ1 = 3 and λ2 = −1. Since TΦ is Spin(7)-invariant, so are the

corresponding eigenspaces E3 and E−1. In fact, we have [61]:

E3 = Λ2
7, E−1 = Λ2

21.

Denoting the orthogonal projectors associated to the splitting by π27 and π221, we decompose
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the identity as:

1 = π27 + π221. (1.18)

Noting that TΦ acts as a scalar on each piece and making use of (1.18), we compute::

TΦ = 3π27 − π221

= 3π27 −
(
1− π27

)
= 4π27 − 1.

Rearranging, we obtain the following explicit formula for the orthogonal projector to Λ2
7:

π27 (·) =
1

4

(
⋆ (Φ ∧ ·) + ·

)
. (1.19)

This can now be applied to the natural basis of Λ2 to yield a spanning set for Λ2
7. In

hindsight, we introduce the—pairwise orthogonal—2-forms:

v1
def
=

1

4

(
ϵ12 + ϵ34 + ϵ56 + ϵ78

)
,

v2
def
=

1

4

(
ϵ13 − ϵ24 + ϵ57 − ϵ68

)
,

v3
def
=

1

4

(
ϵ14 + ϵ23 − ϵ58 − ϵ67

)
,

v4
def
=

1

4

(
ϵ15 − ϵ26 − ϵ37 + ϵ48

)
,

v5
def
=

1

4

(
ϵ16 + ϵ25 + ϵ38 + ϵ47

)
,

v6
def
=

1

4

(
ϵ17 − ϵ28 + ϵ35 − ϵ46

)
,

v7
def
=

1

4

(
ϵ18 + ϵ27 − ϵ36 − ϵ45

)
.

A long but tedious calculation demonstrates that:

Λ2
7 = SpanR (v1, ..., v7) .

21



1.1 Geometric Aspects

and furthermore:

π27ϵ
12 = v1, π27ϵ

13 = v2, π27ϵ
14 = v3, π27ϵ

15 = v4, π27ϵ
16 = v5, π27ϵ

17 = v6, π27ϵ
18 = v7,

π27ϵ
23 = v3, π27ϵ

24 = −v2, π27ϵ
25 = v5, π27ϵ

26 = −v4, π27ϵ
27 = v7, π27ϵ

28 = −v6

π27ϵ
34 = v1, π27ϵ

35 = v6, π27ϵ
36 = −v7, π27ϵ

37 = −v4, π27ϵ
38 = v5,

π27ϵ
45 = −v7, π27ϵ

46 = −v6, π27ϵ
47 = v5, π27ϵ

48 = v4,

π27ϵ
56 = v1, π27ϵ

57 = v2, π27ϵ
58 = −v3,

π27ϵ
67 = −v3, π27ϵ

68 = −v2,

π27ϵ
78 = v1.

Note that the 2-form v1 is in fact equal to the Kähler form ω. This establishes that ω is

an eigenvector of TΦ with eigenvalue λ1 = 3.

Our explicit description of π27 easily translates to an explicit description of Λ2
21 and π221

through (1.18). We do not list the relevant results as we will have no use for them in the

sequel.

Since the original CY-4 structure (J, ω,Ω) is finer than the induced Spin(7) structure Φ,

we expect it to yield a finer decomposition of Λ2. Considering equation (1.16), we find

that the pieces Λ2
7 and Λ2

21 are SU(4)-invariant. However, they are not irreducible ([40] p.

24). They each split further as follows:

Λ2
7 = SpanR (ω)⊕ C

Λ2
21 = Λ1,1

0 ⊕ B

Here, Λ1,1
0 denotes the orthogonal complement of the Kähler form ω inside the space of

real (1,1)-forms for the bi-degree decomposition induced by J . We therefore have:

dimR

(
Λ1,1
0

)
= 15.

The inclusion:

Λ1,1
0 ⊂ Λ2

21
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can be verified by direct computation. The space B is defined by taking the orthogonal

complement of Λ1,1
0 in Λ2

21. Similarly, the space C is defined by taking the orthogonal

complement of the Kähler form ω inside Λ2
7. Evidently:

dimR (B) = 6,

dimR (C) = 6.

Let πB and πC denote the associated orthogonal projectors:

πB : Λ2 ↠ B,

πC : Λ2 ↠ C.

By definition, we have:

C = SpanR (v2, .., v7)

and

πCv1 = 0, πCvi = vi for i = 2, ..., 7.

Combining these equations with the relation:

πC = πC ◦ π27, (1.20)

we employ our knowledge of π27 to find:

πCϵ
12 = 0, πCϵ

13 = v2, πCϵ
14 = v3, πCϵ

15 = v4, πCϵ
16 = v5, πCϵ

17 = v6, πCϵ
18 = v7,

πCϵ
23 = v3, πCϵ

24 = −v2, πCϵ
25 = v5, πCϵ

26 = −v4, πCϵ
27 = v7, πCϵ

28 = −v6

πCϵ
34 = 0, πCϵ

35 = v6, πCϵ
36 = −v7, πCϵ

37 = −v4, πCϵ
38 = v5,

πCϵ
45 = −v7, πCϵ

46 = −v6, πCϵ
47 = v5, πCϵ

48 = v4,

πCϵ
56 = 0, πCϵ

57 = v2, πCϵ
58 = −v3,

πCϵ
67 = −v3, πCϵ

68 = −v2,

πCϵ
78 = 0.
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We are now interested in an explicit description of B and πB. To this end, we work as we

did for π27. We recall that the splitting in question is a feature of the full SU(4) structure,

rather than just the induced Spin(7) structure. This motivates us to replace Φ by Re (Ω)

in the definition of TΦ. We thus introduce the following endomorphism on Λ2:

TΩ : Λ2 → Λ2

α 7→ ⋆
(
Re (Ω) ∧ α

)
Evidently, TΩ is SU(4)-invariant and this property is inherited by its eigenspaces. These

are given by:

E0 = SpanR (ω)⊕ Λ1,1
0 ,

E2 = C,

E−2 = B.

Here the subscripts denote the associated eigenvalues. We therefore find that:

TΩ = 2πC − 2πB,

and consequently:

πB = πC − 1

2
TΩ. (1.21)

A long but tedious calculation yields the values of TΩ on the standard basis. Combining

the results with our knowledge of πC and equation (1.21) yields an explicit description of

πB. In hindsight, we introduce the—pairwise orthogonal—2-forms:

w1
def
=

1

4

(
ϵ13 − ϵ24 − ϵ57 + ϵ68

)
,

w2
def
=

1

4

(
ϵ14 + ϵ23 + ϵ58 + ϵ67

)
,

w3
def
=

1

4

(
ϵ15 − ϵ26 + ϵ37 − ϵ48

)
,

w4
def
=

1

4

(
ϵ16 + ϵ25 − ϵ38 − ϵ47

)
,

w5
def
=

1

4

(
ϵ17 − ϵ28 − ϵ35 + ϵ46

)
,

w6
def
=

1

4

(
ϵ18 + ϵ27 + ϵ36 + ϵ45

)
.
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We then have that:

B = SpanR (w1, ..., w6) ,

and furthermore:

πBϵ
12 = 0, πBϵ

13 = w1, πBϵ
14 = w2, πBϵ

15 = w3, πBϵ
16 = w4, πBϵ

17 = w5, πBϵ
18 = w6,

πBϵ
23 = w2, πBϵ

24 = −w1, πBϵ
25 = w4, πBϵ

26 = −w3, πBϵ
27 = w6, πBϵ

28 = −w5

πBϵ
34 = 0, πBϵ

35 = w5, πBϵ
36 = −w6, πBϵ

37 = −w3, πBϵ
38 = w4,

πBϵ
45 = −w6, πBϵ

46 = −w5, πBϵ
47 = w4, πBϵ

48 = w3,

πBϵ
56 = 0, πBϵ

57 = w1, πBϵ
58 = −w2,

πBϵ
67 = −w2, πBϵ

68 = −w1,

πBϵ
78 = 0.

We wish to remark that formula (1.21) simplifies when we restrict both sides to Λ2
21. In

particular, if α ∈ Λ2 is known to satisfy:

π27α = 0,

then:

πBα = −1

2
TΩ (α) . (1.22)

and therefore:

πB = 0 ⇐⇒ TΩ (α) = 0.

Finally, we note that the G2-structure ϕ on V yields an analogous decomposition:

Λ2V ⋆ = Λ2
7 ⊕ Λ2

14.

This can be derived by proceeding along the lines of the preceding computations. For

details, we refer the reader to [61].

1.1.2.4 Representations of the Clifford Algebra

Exceptional holonomy manifolds are naturally spin. At the linear level, this is captured by
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explicit characterizations of the spinor modules in terms of geometric data. We provide a

brief overview of the theory of Clifford algebras and then recast it in terms of the octonionic

linear algebra of the preceding sections.

In accordance with [61], we will opt for the “−” convention regarding the Clifford relations.

In particular, given a quadratic form Q on a (real or complex) vector space A, we let

Cl(A,Q) be the most general algebra (over R or C) satisfying:

v2 = −Q(v), for all v ∈ A.

Concretely, we set:

Cl(A,Q)
def
=

⊕∞
k=0

⊗k A

⟨v ⊗ v +Q(v) | v ∈ A⟩
(1.23)

and check that the resulting algebra satisfies the relevant universal property.

The map:

ϵ : A→ A

α 7→ −α

preserves Q and thus extends to an involution ϵ of the Clifford algebra. Its ±1-eigenspaces

E1, E−1 furnish a natural Z2-grading:

Cl(A,Q) = Cl+(A,Q)⊕ Cl−(A,Q)

def
= E1 ⊕ E−1.

The Pin group

Pin(A,Q) ⊂ Cl(A,Q)×

is generated by the unit sphere in A. Its positive elements form the corresponding Spin

group:

Spin(A,Q)
def
= Pin(A,Q) ∩ Cl+(A,Q).

We will typically be interested in Clifford algebras of positive-definite forms over real spaces.
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Consider such a pair (A,Q) where A has real dimension n. When Q is understood, we will

suppress it and write:

Cl(A)
def
= Cl(A,Q). (1.24)

Furthermore, we define:

Cl(n)
def
= Cl (Rn, gEuclidean) . (1.25)

This is identified with Cl(A,Q) upon selecting an orthonormal basis. Finally, note that we

can recover the complex Clifford algebras from the positive-definite real ones. In particular:

Cl(A⊗ C,QC) ∼= Cl(A,Q)⊗ C, (1.26)

where QC denotes the complex bi-linear extension of Q.

A natural first step towards the classification of a given class of associative semisimple

algebras is to understand their representations. The representation theory of Clifford

algebras is significantly simpler over the complex numbers. Consequently, one begins

by working over C· Real representations are subsequently approached by considering the

existence of equivariant real structures.

All quadratic forms on a complex vector space are isomorphic. Consequently, the complex

Clifford algebras are classified by the dimension of the underlying space. The resulting

classification is 2-periodic.

When n = 2k, Cl(2k) ⊗ C has a unique complex 2k-dimensional irrep /S2k. Appealing

to the structure theory of finite-dimensional complex semisimple associative algebras, we

conclude that:

Cl(2k)⊗ C ∼= EndC
(
/S2k

)
.

Restricting the action to the corresponding Spin group:

Spin(2k) ⊂ Cl(2k) ⊂ Cl(2k)⊗ C
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results in an irreducible splitting:

/S2k = /S
+
2k ⊕ /S

−
2k. (1.27)

The summands have equal (complex) dimension 2k−1. The module /S2k is known as the

spin representation. The summands /S+
2k, /S

−
2k are known as the positive and negative half-

spin representations. The action of C2k interchanges them. They are not representations

of Cl(2k)⊗ C.

When n = 2k − 1, the grading automorphism ϵ is outer. Every irrep V has a pair V ϵ

obtained by precomposition with ϵ. The complex Clifford algebra Cl(2k − 1) ⊗ C has

precisely two irreducible 2k−1-dimensional complex representations: /S2k−1 and /S
ϵ
2k−1. By

construction, their restrictions to Spin(2k − 1) are isomorphic. The resulting module is

known as the spin representation. There are no half-spin representations in odd dimensions.

By structure theory:

Cl(2k − 1)⊗ C ∼= EndC
(
/S2k−1

)
⊕ EndC

(
/S
ϵ
2k−1

)
. (1.28)

This is best understood when related to the even-dimensional picture. Let e1, ..., e2k denote

the standard basis of C2k. The space C2k−1 is embedded as the span of e1, ..., e2k−1.

Introduce the map:

C2k−1 ↪−→ Cl(2k)⊗ C (1.29)

v 7→ ve2k.

Appealing to the universal property, we extend it to an embedding:

Cl(2k − 1)⊗ C ↪−→ Cl(2k)⊗ C. (1.30)

Restricting the co-domain, we obtain an identification:

Cl(2k − 1)⊗ C ∼−→ Cl+(2k)⊗ C.
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Letting Cl(2k − 1) act on /S
+
2k and /S

−
2k recovers /S2k−1 and /S

ϵ
2k−1. We thus have:

Cl(2k − 1)⊗ C ∼= EndC

(
/S
+
2k

)
⊕ EndC

(
/S
−
2k

)
⊂ EndC

(
/S2k

)
, (1.31)

realizing Cl(2k−1)⊗C as the subalgebra of EndC
(
/S2k

)
consisting of those endomorphisms

that preserve the splitting (1.27).

In the real case, quadratic forms are characterized by their signature (p, q), p, q ∈ Z≥0.

The corresponding Clifford algebras are 8-periodic in p − q. Our interest lies in positive

definite forms on spaces of dimension 7 and 8 (i.e. p = 7, q = 0 and p = 8, q = 0). Luckily,

these cases are particularly simple. The spinor modules of the complex Clifford algebras

admit equivariant real structures, yielding real representations of Cl(7) and Cl(8). In turn,

we have:

Cl(7) ∼= EndR

(
Re(/S

+
2k)
)
⊕ EndR

(
Re(/S

−
2k)
)

(1.32)

and

Cl(8) ∼= EndR
(
Re(/S2k)

)
. (1.33)

In the sequel, we will only work in the real setting. As a result, we choose to suppress the

operation of taking real parts and use the symbol /S for real—rather than complex—spinor

modules.

The remainder of this section is concerned with recovering the spinor modules of Cl (O)

and Cl
(
Im (O)

)
in terms of linear algebraic structures related to the octonionic product.

In particular, we wish to understand (1.32) and (1.33) in terms of ϕ and Φ respectively.

Let V and W be the 7 and 8 dimensional vector spaces considered in the previous sections.

The spinor modules of W can be constructed by setting:

/SW
def
= /S

+
W ⊕ /S

−
W . (1.34)
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where:

/S
+
W

def
= Λ0W ⋆ ⊕ Λ2

7W
⋆,

/S
−
W

def
= Λ1W ⋆.

We then realize each w ∈W as an endomorphism:

w : /SW → /SW

interchanging the factors.

In particular, following [61], we view w ∈W as a map:

w : /S
+
W → /S

−
W

by declaring:

w · (λ, η) = λg (w, ·) + 2η (w, ·) , where w ∈W, (λ, η) ∈ /S
+
W

and

w : /S
−
W → /S

+
W

by declaring:

w · α =

(
−g(w,α#),−1

2
w♭ ∧ α− 1

2
Φ (u, v, ·, ·)

)
, where w ∈W, α ∈ /S

−
W .

The Clifford relations follow by an explicit calculation. Note that the adjoint of:

w : /S
+
W → /S

−
W

is given by:

− w : /S
−
W → /S

+
W .

We conclude that:

Cl (W ) ∼= EndR
(
/SW

)
. (1.35)
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A similar construction is available for V . In this case, the spinor modules can be con-

structed using the G2 structure ϕ. We set:

/SV = Λ0V ⋆ ⊕ Λ1V ⋆.

Each v ∈ V is then realized as an endomorphism:

v : /SV → /SV

by declaring:

v (λ, α) =
(
−g(v, α#), λα+ (v ×ϕ α

#)♭
)
, where v ∈ V, (λ, α) ∈ /SV .

The Clifford relations follow by an easy computation. The endomorphism corresponding

to each v ∈ V is skew-adjoint. Precomposing with the (outer) grading automorphism ϵ,

we obtain the second irrep /S
ϵ
V . Finally, we have:

Cl (V ) ∼= EndR
(
/SV

)
⊕ EndR

(
/S
ϵ
V

)
. (1.36)

Recall that our choice of octonionic unit induces an inclusion:

V = 1⊥ ⊂W.

We wish to emphasize that 1 (a negative element of the Clifford algebra) does not agree

with the Clifford unit. In turn, this gives rise to an embedding:

ι : Cl(V ) ↪−→ Cl(W ),

as in (1.30).

We can thus let Cl(V ) act on /S
+
W and /S

−
W . This recovers /SV and /S

ϵ
V . To see this, note

that there is an obvious identification:

Λ1W ⋆ ∼= Λ0V ∗ ⊕ Λ1V ⋆,
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relating /SV with /S
−
W . To relate /SV with /S

+
W , we note that ([61] p. 68):

Λ2
7W

⋆ =
{
1♭ ∧ α− ι1ιu♯Φ | u ∈ Λ1V ⋆

}
. (1.37)

Evidently, this provides us with an identification

Λ2
7W

⋆ ∼= Λ1V ⋆, (1.38)

as required.

Finally, we obtain:

Cl (V ) ∼= EndR

(
/S
+
W

)
⊕ EndR

(
/S
−
W

)
⊂ EndR

(
/SW

)
,

realizing Cl (V ) as those endomorphisms of /SW that preserve the grading (1.34).

1.1.3 The Global Picture: Asymptotically Conical CY Fourfolds and Related

Geometries

Having completed our discussion of the flat model, we are now ready to pass to the global

level by introducing manifolds locally modelled on the linear algebraic picture presented

thus far. We will introduce CY fourfolds, Sasaki-Einstein manifolds, Spin(7) manifolds

and nearly parallel G2 manifolds. We are primarily interested in CY fourfolds, but—as

evidenced by the flat picture—the other geometries play a central role in the theory. Indeed,

as we shall see, CY fourfolds are naturally Spin(7). Furthermore, the asymptotic links of

AC CY fourfolds are Sasaki-Einstein and the asymptotic links of AC Spin(7) manifolds are

nearly parallel G2.

1.1.3.1 Calabi-Yau (CY) Fourfolds

Let X8 be an 8-dimensional smooth manifold. Suppose that it is endowed with an almost

complex structure J . Let ω ∈ C∞ (Λ2T ⋆X8
)

be a compatible symplectic form. The frames

that restore J and ω to their standard version determine a smooth sub-bundle of Fr
(
TX8

)
with fiber U(4), i.e. a U(4)-structure. We have that:

U(4) ⊂ SO(8).
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This implies that J and ω induce a Riemannian metric and orientation. Indeed, J induces

the natural complex orientation and compatibility of ω with J is equivalent to:

g(u, v) = ω(u, Jv)

being symmetric and positive definite. The associated volume form can be recovered from

ω:

Volω =
ω4

4!
.

Suppose now that J is integrable so that X8 is complex. If ω and J are parallel:

∇gJ = ∇gω = 0,

the U(4) structure is said to be torsion-free. This is equivalent to the Kähler condition:

dω = 0.

A torsion-free U(4)-structure is known as a Kähler structure. Since parallel tensors are

stabilized by holonomy, Kähler metrics satisfy:

Hol (g) ⊆ U(4).

Suppose now that Ω is a trivialization of the canonical bundle Ω ∈ C∞ (Λ4,0T ⋆X8
)
. It

induces a trivialization of the top exterior power of X8 (i.e. a volume form):

VolΩ = (−1)
n(n−1)

2

(
i

2

)n

Ω ∧ Ω.

When the volume compatibility equation is satisfied:

VolΩ = Volω,

the frames that simultaneously restore J , ω and Ω to their standard form yield a further

reduction of the frame bundle to SU(4) (i.e. an SU(4) structure). When the associated
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U(4) structure is Kähler and Ω is holomorphic (i.e. ∂̄Ω = 0), it follows that:

∇gΩ = 0.

In this case Ω is termed a holomorphic volume form, the SU(4) structure is said to be

torsion-free and we have:

Hol (g) ⊆ SU(4).

Definition 1.1. A Calabi-Yau (CY) fourfold is a smooth 8-manifold equipped with a

torsion-free SU(4) structure.

Manifolds with holonomy contained in SU(4) are automatically Ricci flat i.e. they satisfy

the Einstein vacuum equations. In turn, they are of special interest to theoretical physicists:

compact CY manifolds play a prominent role in string compactifications.

1.1.3.2 Sasaki-Einstein 7-Manifolds and CY-4 Cones

We are primarily interested in noncompact CY fourfolds with a single end whose geometry

approaches that of a cone at infinity. Evidently, a preliminary step is to introduce the

asymptotic model for such objects: CY-4 cones. The latter naturally correspond to Sasaki-

Einstein 7-manifolds. We will not delve deep into the interesting field of Sasaki-Einstein

geometry, but rather introduce only the basics required for the sequel. For a comprehensive

introduction the reader is referred to (Sparks [66]).

Let (Σ7, gΣ7) be 7-dimensional Riemannian 7-manifold and set:

X8 def
= (0,∞)× Σ7.

Equip X8 with the conical metric:

gC(Σ7)
def
= dr2 + r2gΣ7 , (1.39)

where r is the natural coordinate on the first factor. It is often referred to as the radius

function of X8. The resulting Riemannian manifold is known as the cone over Σ7:

C(Σ7)
def
= (X8, gC(Σ7)).
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In this setting, the closed manifold Σ7 is referred to as the link of the cone. The copy of

Σ7 sitting at radius r > 0 is referred to as the slice of the cone at r and denoted by Σ7
r .

A contact form on (Σ7, g) is a smooth unit-norm one-form η such that:

η ∧ dη ∧ dη ∧ dη ̸= 0.

The form η equips Σ7 with a contact structure i.e. a maximally non-integrable (in the

sense of Frobenius), smoothly varying distribution of 6-planes:

Cp
def
= Ker(η|p) ⊂ TpΣ

7 for all p ∈ Σ7.

These are known as the contact elements of the structure. The kernel of dη is one-

dimensional and transverse to the contact distribution C. It is trivial and the unique

trivialization ξ satisfying:

η(ξ) = 1 (1.40)

is the Reeb vector field associated to η.

A contact structure on Σ7 is exactly what is required to guarantee that the cone C(Σ7) is

symplectic. Contact forms on on Σ7 correspond to symplectic forms on C(Σ7) using the

relation:

ω =
1

2
d(r2η). (1.41)

Since the contact elements Cp are even-dimensional one can consider almost complex struc-

tures on them. An endomorphism field that restricts to an almost complex structure on

each contact element is known as a transverse almost complex structure.

A Sasakian 7-manifold is a Riemannian, contact 7-manifold (Σ7, g, η, ξ) equipped with a
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transverse almost complex structure J satisfying the compatibility equations:

J 2 = −IdTM + η ⊗ ξ

g(JX,J Y ) = g(X,Y )− η(X)η(Y ),

∇Xξ = −JX,

(∇XJ )(Y ) = g(X,Y )ξ − η(Y )X.

A Sasakian structure on Σ7 is precisely what is required to guarantee that the cone C(Σ7)

is Kähler (and endow it with a preferred Kähler structure).

It is shown in [66] that if a Sasakian 7-manifold is Einstein then its Einstein constant must

be equal to 6, so that:

Ricg = 6g. (1.42)

Sasakian 7-manifolds satisfying condition (1.42) are said to be Sasaki-Einstein. A Sasaki-

Einstein structure on Σ7 is precisely what is required to guarantee that C(Σ7) is Calabi-Yau.

Furthermore, all the geometric data encoded in the CY-4 structure can be constructed

explicitly from the tensors comprising the Sasaki-Einstein structure. It is also possible to

reverse this: one can retrieve the Sasaki Einstein structure from the CY-4 structure on the

cone. In light of this correspondence, Sasaki-Einstein 7-manifolds (Σ7, g) are often defined

by asking for C(Σ7) to be Calabi-Yau.

1.1.3.3 Spin(7) Manifolds

Let X8 be an 8-dimensional smooth manifold and consider the (nonlinear) sub-bundle of

Λ4T ⋆X8 defined by:

AX8 def
=
∐
p∈X8

ApX
8,

where:

ApX
8 def
=
{
ω ∈ Λ4T ⋆

pX
8 : ∃ oriented linear isomorphism T : TpX

8 ∼−→ R8 taking ω to Φstandard

}
.

The standard fiber of this bundle is diffeomorphic to the 43 dimensional manifold GL+(8)/Spin(7)

and is thus of codimension 27 in Λ4T ⋆
pX

8 (Joyce [32] p.240).
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Definition 1.2. A Cayley calibration on X8 is a smooth section:

Φ ∈ C∞(AX8).

Note that since the bundle AX8 is not linear, the existence of a Cayley calibration is not

guaranteed. In fact, it may be obstructed topologically. An immediate constraint is that

X8 ought to be spin. In fact, the existence of a Cayley calibration is equivalent to the

existence of a nowhere-vanishing spinor.

A choice of Cayley calibration determines a Spin(7) structure. Since Spin(7) ⊂ SO(8), one

automatically obtains a Riemannian metric and orientation. This is achieved pointwise.

One simply writes down the standard Euclidean structures in any of the Spin(7) frames.

A Spin(7) structure is termed torsion-free if:

∇gΦ = 0.

In analogy to Kähler structures, a Spin(7) structure Φ is torsion-free if and only if (Joyce

[32] p.240):

dΦ = 0.

Since parallel tensors are stabilized by holonomy, the metric of a torsion-free Spin(7) struc-

ture satisfies:

Hol (g) ⊆ Spin(7).

Definition 1.3. A Spin(7) manifold is a smooth 8-manifold X8 equipped with a torsion-

free Spin(7) structure.

For constructions of Spin(7) manifolds see (Joyce [36]) in the compact case and (Bryant-

Salamon [7], Foscolo [23], Lehmann [39]) in the noncompact case. Closed examples are

scarce, very difficult to come by and non-explicit.

Similar to CY fourfolds, Spin(7) manifolds are automatically Ricci flat.
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We have the chain of inclusions:

SU(4) ⊂ Spin(7) ⊂ SO(8).

It follows that SU(4)-structures naturally induce Spin(7)-structures. At the flat level, this

is captured by our ability to express the standard Cayley calibration (1.15) in terms of

the standard symplectic form and holomorphic volume form. It follows that CY fourfolds

are—in a natural way—Spin(7) manifolds. This motivates our interest in Spin(7) geometry.

1.1.3.4 Nearly Parallel G2 Manifolds and Spin(7) Cones

Since Spin(7) geometry is intimately tied to CY-4 geometry, we naturally seek to identify

the type of geometric structure on the link Σ7 of a Spin(7) cone C(Σ7). The answer turns

out to be a weaker version of G2-geometry: Σ7 needs to be nearly parallel G2. We now

introduce both honest (parallel) G2-structures and their nearly parallel counterparts.

Let Σ7 be a 7-dimensional smooth manifold and consider the (nonlinear) sub-bundle of

Λ3T ⋆Σ7 defined by:

PΣ7 def
=
∐
p∈Σ7

PpΣ
7,

where:

PpΣ
def
=
{
ω ∈ Λ3T ⋆

pΣ : ∃ oriented linear isomorphism T : TpΣ
∼−→ R7 taking ω to ϕstandard

}
.

The standard fiber of this bundle is diffeomorphic to the 35 dimensional manifold GL+(7)/G2.

It is thus an open submanifold of Λ3T ⋆
pΣ (Joyce [32] p.240).

Definition 1.4. An associative calibration on Σ7 is a smooth section:

ϕ ∈ C∞(PΣ7).

Note that since the bundle PΣ7 is not linear, it is not always the case that associative

calibrations exist. Their existence amounts to Σ7 admitting a nowhere-vanishing spinor.

This is always the case on a 7-dimensional spin manifold. It follows that associative

calibrations exist if and only if Σ7 is spin.
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A choice of associative calibration yields a G2-structure. Since G2 ⊂ SO(7), one obtains a

Riemannian metric and orientation. This is done pointwise by writing down the standard

Euclidean structures in any of the G2-frames.

Let ϕ be an associative calibration. The corresponding coassociative calibration is defined

by:

ψ = ⋆ϕ.

A G2-structure is called torsion-free if:

∇gϕ = 0.

In analogy to Kähler structures, a G2 structure is torsion-free if and only if (Joyce [32]

p.229):

dϕ = d⋆ϕ = 0.

Since parallel tensors are stabilized by holonomy, the metric of a torsion-free G2-structure

satisfies:

Hol (g) ⊆ G2.

Definition 1.5. A G2 manifold is a smooth 7-manifold Σ7 equipped with a torsion-free

G2-structure.

For constructions of G2 manifolds see (Joyce [35], Joyce-Karigiannis [33]) in the compact

case and (Bogoyavlenskaya [5], Bryant-Salamon [7], Foscolo-Haskins-Nordström [24]) in the

noncompact case. Similar to Spin(7) manifolds, closed examples are scarce, very difficult

to come by and non-explicit.

G2 manifolds are automatically Ricci flat.

In the context of AC CY-4 geometry one naturally encounters G2 structures with nonva-

nishing (but controlled) torsion.

Definition 1.6. A nearly parallel G2 manifold (also known as a manifold of weak holonomy
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G2) is a smooth 7-manifold Σ7 equipped with a G2-structure satisfying:

dϕ = 4ψ.

For an introduction to nearly parallelG2-manifolds see [63]. In contrast to honest holonomy

G2-manifolds, they are not Ricci flat, but rather positive Einstein with Einstein constant

equal to 6. Furthermore, there exists a plethora of closed explicit examples many of

which are homogeneous. The homogeneous ones have been completely classified. For this

classification see [63] and [65].

The fundamental fact linking G2 geometry with the 8-dimensional geometries introduced

earlier is the following:

Proposition 1.7. The cone C(Σ7) is torsion-free Spin(7) if and only if Σ7 is nearly parallel

G2.

This feature is partially visible at the linear level. Indeed, the standard G2 structure lives

on the imaginary octonions Im (O), whereas the standard Spin(7) structure lives on the

full octonions O. The former is embedded in the latter as the orthogonal complement of

the unital element. At the global level, the radial unit vector ∂r will assume the role of the

octonionic unit and its orthogonal complement—i.e. the tangent space to Σ7—will host a

natural G2-structure.

Proof. Suppose that Σ7 is G2. Let ϕ be its associative calibration and let ψ be the corre-

sponding coassociative calibration. Introduce the following 4-form on C(Σ7):

Φ
def
= r3dr ∧ ϕ+ r4ψ.

The scaling has been selected to guarantee that gΦ is conical and:

|Φ|gC(Σ7)
= O(1) as r → ∞,

a necessary condition for Φ to turn out covariantly constant.

The form r3ϕ yields a G2 structure on every slice Σr. It corresponds to the rescaled metric
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r2gΣ7 . The linear algebra developed in our discussion of the flat model is sufficient to

establish that Φ is a Cayley calibration on every tangent space. It thus induces a Spin(7)-

structure on C(Σ7). Since the original G2 structure is nearly parallel, we have:

dϕ = 4ψ,

dψ = 0.

The Leibniz rule demonstrates that:

dΦ = dr ∧ r3(4ψ − dϕ) + r4dψ

= 0,

establishing that the induced Spin(7) structure is torsion-free. It follows that C(Σ7) is

Spin(7). The converse is proved similarly.

1.1.3.5 Sasaki-Einstein Manifolds as Nearly Parallel G2-Manifolds

The nearly parallel G2 condition is a relaxation of the Sasaki-Einstein condition. In fact,

nearly parallel G2 structures admit a spinorial characterization that naturally separates

them into three types [63]. These are distinguished by the dimension of the space of

Killing spinors. Type I nearly G2 manifolds have a single Killing spinor. Their cones

have holonomy contained in Spin(7) and are thus (incomplete) Spin(7) manifolds. Type

II nearly G2 manifolds have two linearly independent Killing spinors. These are precisely

the Sasaki-Einstein 7-manifolds. As we have seen, their cones have holonomy contained

in SU(4) and are thus (incomplete) Calabi-Yau fourfolds. Type III nearly G2 manifolds

have three linearly independent Killing spinors. They are known as 3-Sasakian Manifolds.

Their cones have holonomy contained in Sp(2) and are therefore (incomplete) hyperkähler

manifolds.

Observe that as the geometric structure of the link is refined, so is the geometric structure

of the corresponding cone. This is captured by successive holonomy reductions:

Sp(2) ⊂ SU(4) ⊂ Spin(7) ⊂ SO(8).
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The presence of two linearly independent Killing spinors on a Sasaki-Einstein 7-manifold

Σ7 results in a U(1)-family of compatible associative calibrations. Torsion-free associative

calibrations on Σ7 correspond to Killing spinors. Scaling an associative calibration by a

real number results in a corresponding rescaling of the compatible Riemannian metric.

Therefore, in order to find new associative calibrations compatible with the fixed metric

on Σ7 we are forced to rotate the natural one.

There is a more explicit way to understand this. We propose a natural parameterization

of the associative calibrations by the unit complex numbers. The natural holomorphic

volume form Ω on the cone can be rescaled by z ∈ U(1) to yield:

Ωz
def
= zΩ.

This is still compatible with g, ω and J and together they form an SU(4) structure on

C
(
Σ7
)
. Using Ωz one can build the corresponding Cayley calibration:

Φz
def
= Re (Ωz) +

ω2

2
.

The associative calibration ϕz is then determined using the equation:

Φz = dr ∧ r3ϕz + r4 ⋆Σ7 ϕz.

This retrieves the U(1) family constructed above.

1.1.3.6 Asymptotically Conical (AC) Manifolds and AC CY Fourfolds

We are finally set to introduce the geometric background for the gauge theoretic problems

we wish to study: asymptotically conical CY fourfolds.

Let (X8, gX8) be a non-compact smooth 8-manifold and (Σ7, gΣ7) a closed smooth 7-

manifold. Recall that we can form the cone C(Σ7), with metric gC(Σ7) as defined in (1.39).

Definition 1.8. The manifold X8 is said to be asymptotically conical (AC) with rate

µ < 2 and asymptotic link (Σ, gΣ) if there exists a compact K ⊂ X8, a positive R > 0 and
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a diffeomorphism:

Ψ : (R,∞)× Σ7 ∼−→ X \K

such that for any k ≥ 0 we have:

|∇k
gC(Σ7)

(Ψ⋆gX8 − gC(Σ7))|gC(Σ7)
= O(rµ−2−k). (1.43)

Asymptotically conical metrics are conical to leading order at infinity, but their asymp-

totic expansions can have nonvanishing lower order terms. The decay rate captures the

asymptotic behaviour of the dominant lower order term.

Note that the diffeomorphism Ψ appearing in the definition need not be unique. Composing

its inverse Ψ−1 with the natural coordinate r on (R,∞) we obtain a real valued map on

the complement of K. This is known as an asymptotic radius function. We will often

slightly abuse terminology by referring to r without fixing a particular choice of Ψ. All

statements made in this fashion will be valid for any Ψ satisfying (1.43) and hence any

choice of asymptotic radius function r.

When working on the complement of K, one often combines the coordinate vector field

∂r (dual to dr) with the pullback of a local frame X1, ..., X7 on Σ7. Frames of the form

(∂r, X1, ..., X7) are known as asymptotic frames on X8. All pointwise norms |Xi|gX8 are

O(r) at infinity, whereas |∂r|gX8 is O(1). To fix this asymmetry, it will often be preferable

to work with asymptotic logarithmic radius functions instead. Let r be an asymptotic

radius function on X8 and set:

t
def
= log(r).

Then t is said to be a asymptotic logarithmic radius function on X8. In terms of such a

radial coordinate, the limiting cone metric takes the form:

gC(Σ7) = e2t(dt2 + gΣ7).

All elements of the asymptotic frame are then O(et).

One naturally extends (1.43) to general tensor fields on X8 to introduce the class of AC
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tensors. Each AC tensor T of rank (p, q) approaches a limiting tensor T∞ along the

asymptotic cone. The latter is obtained by homogeneously extending the pullback of a

tensor on Σ7. The degree of the extension is specified to guarantee:

|T∞|gC(Σ7) = O(1). (1.44)

We say that T approaches T∞ with rate µ < q − p when:

|∇k
gC(Σ7)

(Ψ⋆TX8 − T∞)|gC(Σ7)
= O(rµ−(q−p)−k). (1.45)

We wish to warn the reader that our convention deviates from the standard one. In the

context of (1.43) and (1.45), it is customary to define the decay rates to be µ − 2 and

µ− (q− p) respectively. As a result, the rate then captures the asymptotics of the drop-off

of T − T∞ in the limiting conical metric. A desirable feature of the standard convention

is that all tensors encoding the geometric structure of an AC special holonomy manifold

have the same rate. A disadvantage is that the rate of a fixed tensor does not only depend

on the asymptotics of the components relative to an asymptotic frame, but also its rank.

When analyzing concrete examples, we typically fix an asymptotic frame and work directly

with the resulting components. This situation is so frequent in the sequel that we have

opted for (1.43) and (1.45) in place of the standard convention. Either way, translating

between the two is trivial.

The observant reader will notice that we have not restricted Σ7 to be connected. The

number of ends of X8 is defined by:

# of ends of X8 = rk H0(Σ7),

(i.e. the number of connected components of the asymptotic link). General AC manifolds

can have multiple ends. In fact, general noncompact manifolds can have multiple ends with

mismatching asymptotic geometry. We will be interested in noncompact CY fourfolds. It

follows from the Cheeger-Gromoll splitting theorem that such spaces can only have a single

end. Consequently, we will always take Σ7 to be connected.
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Arguing in analogy to the pure conical setting but keeping only higher order terms in the

asymptotic expansions, we find that CY-4 structures on X8 force Σ7 to be Sasaki-Einstein.

Similarly, Spin(7) structures on X8 force Σ7 to be nearly parallel G2. In the sequel, Σ7

will always be a closed, connected Sasaki-Einstein manifold (nearly parallel G2 of type II).

Note that all the tensors g, J, ω,Ω,Φ encoding the SU(4) structure on X8 are covariantly

constant and thus O(1) as r → ∞. An alternative way to see this is to notice that the

leading order terms in their asymptotic expansions are given by the corresponding conical

versions. For instance, the Cayley calibration on an AC CY fourfold is given by:

Φ = (r3 + lower order terms) dr ∧ ϕ+ (r4 + lower order terms) ψ

where ϕ and ψ are the natural associative and coassociative calibrations on Σ7.

1.2 Gauge Theoretic Aspects

Having introduced the geometric background required for our purposes we now turn to

the gauge theoretic equations of interest. For a general introduction to gauge theory see

(Hamilton [29]), (Bleecker [4]) and (Naber [53]). The appendices of (Wehrheim [84]) offer a

more concise exposition. For a self-contained overview of higher dimensional gauge theory

see the excellent recent book (Sá Earp-Fadel [22]).

Our first task is to define the natural instanton equations available on the four geometries

introduced thus far. We then present Lewis’s theorem [40] relating the Spin(7) instanton

and HYM systems over a closed CY fourfold. The next step is to compute the linearizations

of the Spin(7) and G2 instanton equations, relate them to the relevant twisted Dirac

operators and derive the appropriate Weitzenböck formulae. We conclude this section by

formally introducing the instanton moduli spaces we intend to study.

In the sequel, unless otherwise specified, G will be taken to be a real, linear, compact Lie

group and P a principal G-bundle over X8. We will always assume that ad(P ) is endowed

with an Ad-invariant fiber metric given by −Tr(·).
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1.2.1 Hermitian Yang-Mills (HYM) Connections

Let (X8, g, J, ω,Ω) be a Calabi-Yau fourfold. Recall from section 1 that Λ2O⋆ decomposes

into SU(4)-irreducible pieces:

Λ2O⋆ = SpanR(ωstandard)⊕ C ⊕ Λ1,1
0 ⊕ B. (1.46)

Fix p ∈ X8. We identify TpX
8 with the octonions by choosing a frame in the fiber of

the SU(4)-structure over p. We thus obtain a decomposition of Λ2T ⋆
pX

8 as above. This

decomposition doesn’t depend on the choice of frame: changing frame translates everything

by an element of SU(4), which leaves the irreducible pieces invariant. We therefore have a

vector bundle splitting:

Λ2T ⋆X8 = SpanR(ω)⊕ C ⊕ Λ1,1
0 ⊕ B.

where B and C are 6 dimensional real subspaces of Re
(
Λ2,0 ⊕ Λ0,2

)
and Λ1,1

0 is the 15-

dimensional subspace of Re
(
Λ1,1

)
defined as the orthogonal complement of the Kähler

form. The Hermitian Yang-Mills (HYM) connections are instantons defined using this

splitting.

Definition 1.9. Let (X8, g, J, ω,Ω) be a Calabi-Yau 4-fold. Let P be a principal G-bundle

over X8. A connection A ∈ A(P ) is HYM if:

FA ∈ C∞
(
Λ1,1
0 ⊗ ad(P )

)
.

Equivalently, the HYM equation can written in the following form, reminiscent of the

familiar 4-dimensional ASD equation from Donaldson theory:

1

2
⋆
(
ω2 ∧ FA

)
= −FA. (1.47)

To verify this statement, we use our explicit knowledge of the linear algebra involved in
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the flat model. We find that:

1

2
⋆
(
ω2 ∧ (·)

)
= ⋆

(
Φ ∧ (·)

)
− ⋆

(
Re(Ω) ∧ (·)

)
(1.48)

= 3π27 − π221 − 2π2C + 2π2B

= 3π2Span(ω) + π2C + π2B − π2
Λ1,1
0

.

Imposing (1.47) then yields:

4π2Span(ω)FA + 2π2BFA + 2π2CFA = 0.

This forces all but one of the components of FA with respect to the decomposition (1.46)

to vanish. The potentially nonvanishing component is the one in Λ1,1
0 . We thus recover

the HYM condition.

Taking exterior covariant coderivatives on both sides of (1.47) proves that HYM connec-

tions are Yang-Mills, justifying our terminology. In fact—over a closed CY4 base—they

are the absolute minima of the Yang-Mills action. Even though we have already set up

enough background to verify this fact, we defer the proof until our discussion of Spin(7)

instantons. Our claim will follow from a more general statement proved in that section.

One frequently encounters the HYM equation written in terms of the holomorphic volume

form Ω. To achieve this, we first observe that it is equivalent to:

FA ∧ ⋆ω = 0,

F 2,0
A = F 0,2

A = 0.

These equations are further recast as follows. Since FA is real, if its (0, 2) part vanishes,

so does its (2, 0) part. Since Ω is of bi-degree (4, 0), we have that:

FA ∧ Ω = F 0,2
A ∧ Ω

and furthermore:

F 0,2
A ∧ Ω = 0 ⇐⇒ F 0,2

A = 0
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From these remarks it follows that:

F 2,0
A = F 0,2

A = 0 ⇐⇒ FA ∧ Ω = 0

We thus find that a connection is HYM if and only if:

FA ∧ ⋆ω = 0 (1.49)

FA ∧ Ω = 0. (1.50)

In light of (1.47), (1.48), (1.59) and the fact that all HYM connections are automatically

Spin(7) instantons, we find that the HYM condition amounts to:

FA ∧ ⋆ω = 0 (1.51)

FA ∧Re(Ω) = 0. (1.52)

The Spin(7) instantons are introduced in section 1.2.3.

1.2.2 Contact Instantons and Conical HYM Connections

Let (Σ7, g, η, ξ,J ) be a Sasaki-Einstein 7-manifold. Let σ be the 3-form:

σ
def
= η ∧ dη.

Define the following endomorphism field on Λ2:

Tσ : α 7→ ⋆Σ(σ ∧ α). (1.53)

Portilla and Earp ([44] section 2.1.4) prove that Tσ decomposes Λ2 in smooth sub-bundles

spanned by its eigenvectors :

Λ2 = Λ2
H ⊕ Λ2

V

where:

ΛH = SpanR(dη)⊕ Λ2
8 ⊕ Λ2

6.
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Here, Λ2
H and Λ2

V are the spaces of horizontal and vertical 2-forms relative to the Reeb

foliation. We have:

dimR

(
Λ2
H

)
= 15,

dimR

(
Λ2
V

)
= 6.

The dimensions of the subspaces further decomposing ΛH have been encoded in the nota-

tion as subscripts.

The contact instantons are special Yang-Mills connections defined using the above splitting:

Definition 1.10. Let (Σ7, g, η, ξ,J ) be a Sasaki-Einstein 7-manifold. Let P be a principal

G-bundle over Σ7. A connection A ∈ A(P ) is a contact instanton if:

FA ∈ C∞
(
Λ2
8 ⊗ ad(P )

)
.

In our conventions, Λ2
8 is the −2-eigenspace of Tσ. Evidently, the contact instantons are

characterized by the PDE:

⋆ (σ ∧ FA) = −2FA. (1.54)

Consider the linear map:

dη2 ∧ (·) : Λ2 → Λ6

α 7→ dη2 ∧ α.

One can prove that it is surjective with kernel:

Ker
(
dη2 ∧ (·)

)
= Λ2

6 ⊕ Λ2
8.

It follows that the contact instantons satisfy the equation:

FA ∧ dη2 = 0. (1.55)

Taking exterior covariant coderivatives on both sides of (1.54) demonstrates that the con-

tact instantons are Yang-Mills. In fact, Portilla and Earp ([44] p.18) prove that—when Σ7
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is closed—they are precisely the absolute minima of the Yang-Mills action functional.

The contact instanton equations arise as a dimensional reduction of the HYM equations

along the radial direction in C(Σ7). To clarify what we mean by this statement, we work

as follows. First, recall that the cone C(Σ7) carries a natural SU(4) structure. The bundle

P can be pulled back to C(Σ7) through the natural map to yield:

PC(Σ7)
def
= π⋆P = (0,∞)× P. (1.56)

This carries an obvious lift of the natural dilation R>0-action on C(Σ7) (scaling the first

factor). A connection is dilation invariant if it is invariant under the dilation action as a

1-form over the total space.

Proposition 1.11. A dilation invariant connection A ∈ A(P ) in temporal gauge over

C(Σ7) is HYM if and only if its value on the link Σ7 is a contact instanton.

Proof. A is given a 1-parameter family of connections Ar over Σ, parameterized by the

values of the radius function. We compute:

FA = dr ∧ ∂rAr + FAr ,

where the second summand is the curvature of Ar along Σ7
r .

Dilation invariance implies that the first term vanishes and that all the Ar are equal to the

same connection over Σ7. We denote this constant value by AΣ. We then have:

FA = FAΣ
.

Using (1.41), we find that:
ω2

2
= dr ∧ r3

2
σ +

r4

8
dη2.

Expressing the Hodge-star on the cone with respect to the Hodge-star on its link, we find

that the HYM equation (1.47) takes the form:

dr ∧ r4

8
⋆Σ7

(
dη2 ∧ FAΣ

)
+
r3

2
⋆Σ7

(
σ ∧ FAΣ

)
= −FAΣ

(1.57)
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The link Σ7 sits inside the cone at radius r = 1. Restricting to this radius and equating

radial components we obtain:

dη2 ∧ FAΣ
= 0.

Equating tangential components recovers:

⋆
(
σ ∧ FAΣ

)
= −2FAΣ

.

We recognize the latter as the contact instanton equation. Recall that the former relation

is a property true of any contact instanton.

We conclude that (1.57) is equivalent to the contact instanton equation (1.54) imposed on

the constant value AΣ.

Note that the result does not hold without the temporal-gauge assumption. Even though

connections over a cone can always be brought to temporal gauge [54], it is not necessarily

possible to achieve this through a dilation invariant gauge transformation. The procedure

can spoil the dilation invariance of the instanton under consideration.

1.2.3 Spin(7) Instantons

Let (X8,Φ) be a Spin(7) manifold. Recall from section 1 that Λ2O⋆ decomposes into

Spin(7)-irreducible pieces:

Λ2O⋆ = Λ2
7 ⊕ Λ2

21. (1.58)

Reasoning as we did for the HYM equations, we obtain a vector bundle splitting:

Λ2T ⋆X8 = Λ2
7 ⊕ Λ2

21.

The Spin(7) instantons are special Yang-Mills connections defined using this splitting.

Definition 1.12. Let (X8,Φ) be a Spin(7) manifold. Let P be a principal G-bundle over

X8. A connection A ∈ A(P ) is a Spin(7) instanton if:

FA ∈ C∞
(
Λ2
21 ⊗ ad(P )

)
.

Interest in these connections stems from the hope that integrals over their moduli spaces
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will produce enumerative invariants of CY fourfolds/ Spin(7) manifolds [17]. Some general

moduli theory has been developed over compact bases. Lewis [40] proposes an index

formula for the virtual dimension, which is corrected and clarified by Walpuski in [79].

Orientability is studied in Munoz-Shahbazi [51] and Joyce [85]. Transversality is studied in

Munoz-Shahbazi [52]. The first examples of Spin(7) instantons over a compact base were

constructed by Lewis [40] using gluing techniques. Further examples were constructed

by Tanaka [68]. In both cases, the underlying spaces are Joyce’s Spin(7) manifolds [36].

Examples over noncompact bases are easier to come by (Fubini [27], Clarke-Oliveira [9],

Clarke [8]).

Recalling our study of the flat model, we find that when the Spin(7) structure on X8 is ob-

tained from a CY-4 structure (g, J, ω,Ω), the two associated vector bundle decompositions

are related by:

Λ2
7 = SpanR(ω)⊕ C,

Λ2
21 = Λ1,1

0 ⊕ B.

An immediate consequence is that HYM connections are automatically Spin(7): the HYM

equations are stronger. We shall shortly find that Spin(7) instantons are Yang-Mills and in

fact—over a compact base—precisely the minimizers of the Yang-Mills action functional.

It will then follow that HYM connections are Yang-Mills minimizers as well.

The following characterization of Λ2
21 can be derived from our analysis of the flat model:

Λ2
21 =

{
ω ∈ Λ2T ⋆X8 s.t. ⋆g (Φ ∧ ω) = −ω

}
.

It follows that the Spin(7) instantons are characterized by the PDE:

⋆g FA = −Φ ∧ FA. (1.59)

This is known as the Spin(7) instanton equation. We have the following immediate obser-

vation:

Proposition 1.13. Spin(7) instantons are Yang-Mills.
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Proof. This is a simple calculation reminiscent of the corresponding calculation for the

ASD case:

d⋆AFA = − ⋆g dA ⋆g FA

= − ⋆g dA (−Φ ∧ FA)

= ⋆g (dΦ ∧ FA +Φ ∧ dAFA) (1.60)

= 0

In the final step (1.60) we used the torsion-freeness of the Spin(7) structure and the gauge-

theoretic differential Bianchi identity.

On a compact manifold without boundary, proposition (1.13) can be significantly strength-

ened (Lewis [40] prop. 3.1):

Theorem 1.14. Let (M,Φ) be a compact Spin(7) manifold without boundary. Let G be a

compact linear Lie group and P a principal G-bundle over X8. Let A ∈ A(P ). We have

that:

YM(A) = Q(P, [Φ]) + 4

∫
M

|π27FA|2dVg, (1.61)

where Q(P, [Φ]) is a quantity independent of A and determined only by the Spin(7) structure

Φ and the topology of the bundle. In particular:

Q(P, [Φ]) = 8π2
∫
M
p1(P ) ∪ [Φ]

Proof. The proof relies on the following pointwise identity:

− Tr (α ∧ β) ∧ Φ =
(
⟨α, π221β⟩ − 3⟨α, π27β⟩

)
dVg. (1.62)

It can be easily verified in the flat model by expressing both sides in the standard frame

and using our explicit calculation of the projectors.

Using (1.62), pass to the associated quadratic form and integrate to obtain:

−
∫
X8

Tr(F 2
A) ∧ Φ =

∫
X8

|π221FA|2dVg − 3

∫
X8

|π27FA|2dVg.
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Recalling that:

p1(P ) = − 1

8π2
Tr(F 2

A),

we rewrite this as:

8π2
∫
X8

p1(P ) ∪ [Φ] =

∫
X8

|π221FA|2dVg − 3

∫
X8

|π27FA|2dVg.

Recalling the definition of Q(P, [Φ]) appearing in the statement of the theorem, we rewrite

this as:

Q(P, [Φ]) =

∫
X8

|π221FA|2dVg − 3

∫
X8

|π27FA|2dVg. (1.63)

Finally, we recall that the decomposition of Λ2 is orthogonal so that for any A ∈ A(P ) we

have:

YM(A) =

∫
X8

|π221FA|2dVg +

∫
X8

|π27FA|2dVg. (1.64)

Identity (1.61) follows by combining (1.63) and (1.64).

Corollary 1.15. Let (M,Φ) be a compact Spin(7) manifold without boundary. Let G be

a compact Lie group and P a principal G-bundle over X8. The Spin(7) instantons are

precisely the absolute minimizers of the Yang-Mills action functional on A(P ).

Proof. The Yang-Mills energy of a connection A is given by (1.61). The Spin(7) instantons

are precisely the connections for which the second term vanishes. As such, if A is any

connection and ASpin(7) is a Spin(7) instanton, we have:

YM(ASpin(7)) ≤ YM (A) .

In fact, the Spin(7) instantons all share the same minimal Yang-Mills energy equal to:

YMmin = Q(P, [Φ]).

1.2.4 G2 Instantons and Conical Spin(7) Instantons

Let (Σ7, ϕ) be a nearly parallel G2 manifold.
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Recall from section 1 that the G2 structure induces a decomposition of Λ2Im(O)⋆ into

G2-irreducible pieces:

Λ2Im(O)⋆ = Λ2
7 ⊕ Λ2

14. (1.65)

This globalizes to a vector bundle splitting:

Λ2T ⋆Σ7 = Λ2
7 ⊕ Λ2

14.

The G2 instantons are special Yang-Mills connections defined using this splitting.

Definition 1.16. Let (Σ7, ϕ) be a nearly parallel G2 manifold. Let P be a principal

G-bundle over M . A connection A ∈ A(P ) is a G2 instanton if:

FA ∈ C∞
(
Λ2
14 ⊗ ad(P )

)
.

In recent years, a considerable volume of work has been completed both on the construction

(Walpuski [77], [81], [19], [78], Walpuski-Sá Earp [20], [59], Lotay-Oliveira [43], Clarke [8])

and the deformation theory (Driscoll [18], Singhal [65], [64], Waldron [76], Alexandrov-

Semmelmann [2]) of G2 instantons. Interest in the subject can be primarily attributed to

the Donaldson-Segal program [16].

Of course, the G2 instanton problem can be set up on an honest torsion-free G2 manifold.

For the purposes of this thesis we restrict attention to the nearly parallel setting.

Recalling our study of the flat model, we find that when the G2 structure on Σ7 is obtained

canonically from a Sasaki-Einstein structure (g, η, ξ,J ), the two associated vector bundle

decompositions are related by:

Λ2
7 = SpanR(dη)⊕ Λ2

6,

Λ2
14 = Λ2

8 ⊕ Λ2
V .

An immediate consequence is that contact instantons are automatically G2. In fact, in the

compact Sasaki-Einstein setting, a connection A is a contact instanton if and only if it is a

G2 instanton with respect to all associative calibrations in the U(1)-family of compatible
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nearly parallel G2 structures on Σ7 (Singhal [64]).

The following characterization of Λ2
21 can be derived from our analysis of the flat model:

Λ2
14 =

{
ω ∈ Λ2T ⋆Σ7 s.t. ⋆g (ϕ ∧ ω) = −ω

}
=
{
ω ∈ Λ2T ⋆Σ7 s.t. ω ∧ ψ = 0

}
.

It follows that the G2 instantons are characterized by either of the PDEs:

⋆gFA = −ϕ ∧ FA.

FA ∧ ψ = 0. (1.66)

Either of these two equivalent systems is referred to as the G2 instanton equation. We have

the following immediate observation:

Proposition 1.17. G2 instantons are Yang-Mills.

Proof. This is a simple calculation reminiscent of the corresponding calculation for the

ASD case:

d⋆AFA = ⋆gdA ⋆g FA

= ⋆gdA (−ϕ ∧ FA)

= − ⋆g (dϕ ∧ FA + ϕ ∧ dAFA)

= −4 ⋆g (ψ ∧ FA)

= 0

where we used the differential Bianchi identity, the nearly parallel condition for the G2

structure and the G2 instanton equations in both of their forms.

Suppose that Σ7 is closed. If the G2 structure ϕ is torsion-free, the G2 instantons are

precisely the Yang-Mills minimizers. This follows by topological bounds obtained in the

same fashion as the ones in the Spin(7) case. The proof does not carry over to the nearly

parallel setting as the associative calibration ϕ fails to define a cohomology class. In fact,

G2 instantons over nearly parallel G2 manifolds need not be minimizing. A counterexample
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is given by the canonical invariant connection on the isotropy bundle of S7 corresponding

to its exceptional homogeneous structure:

S7 =
Spin(7)

G2
.

The bundle is trivial, implying that the minimal energy is equal to 0. The canonical

connection is a non-flat G2 instanton. See section 4 for a detailed exposition.

As an aside, note that this yields an example of a non-minimizing Yang-Mills field. A result

of Bourguignon and Lawson ([6], p.216, Thm 7.7) guarantees that it is a saddle point for

the Yang-Mills action. Non-minimizing Yang-Mills fields were first constructed by Parker

[57] in dimension 4. Parker’s examples are of cohomogeneity-one. The example on S7 is

homogeneous and therefore more elementary.

Recall that the cone C(Σ7) has a natural Spin(7) structure. The bundle P can be pulled

back to C(Σ7) through the natural map. The G2 instanton equations arise as a dimensional

reduction of the Spin(7) instanton equations along the radial direction in C(Σ7).

Proposition 1.18. A dilation invariant connection A ∈ A(P ) in temporal gauge over

C(Σ7) is a Spin(7) instanton if and only if its value on the link Σ7 is a G2 instanton.

Proof. A is given by a 1-parameter family of connections Ar over Σ7, parameterized by

the values of the radius function. We compute:

FA = dr ∧ ∂rA+ F̄Ar ,

where the second summand is the curvature of Ar along Σ7
r .

Dilation invariance implies that the first term is annihilated, and that all the Ar are equal

to the same connection over Σ7. We denote this constant value by AΣ. We then have:

FA = FAΣ
.

Recalling that:

Φ = dr ∧ r3ϕ+ r4ψ,
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and expressing the Hodge-star on the cone with respect to the Hodge-star on its link, we

find that the Spin(7) instanton equation (1.59) takes the form:

dr ∧ r3 ⋆Σ7 FAΣ
= −dr ∧ r3ϕ ∧ FAΣ

− r4ψ ∧ FAΣ
. (1.67)

The link Σ7 sits inside the cone at radius r = 1. Restricting to this radius and equating

radial components we obtain:

⋆Σ7 FAΣ
= −ϕ ∧ FAΣ

.

Equating tangential components recovers:

ψ ∧ FAΣ
= 0.

It follows that (1.67) is equivalent to the G2 instanton equation (1.66) for the constant

value AΣ.

As in the HYM case, the result does not hold without the temporal-gauge assumption.

The full dimensional reduction of the Spin(7) instanton equation is captured by the more

general G2-monopole equation (see section 1.2.7.1).

1.2.5 Relationship of the Equations over a Compact Base: Lewis’s Energy

Estimate

Let X8 be a CY fourfold. We have seen that the SU(4) structure gives rise to the HYM

system. Similarly, the induced Spin(7) structure gives rise to the Spin(7) instanton system.

There are thus two natural gauge-theoretic equations available on X8. As noted earlier, it

is immediate from the definitions that the HYM condition is stronger. Lewis ([40] Thm.

3.1) establishes the converse when the base is compact and HYM solutions exist (so that

a certain cohomological invariant vanishes).

Recall that the curvature tensors of Spin(7) instantons take values in:

Λ2
21 ⊂ Λ2.
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This space further decomposes under the SU(4) structure:

Λ2
7 = Λ1,1

0 ⊕ B.

The HYM connections are characterized by having vanishing component in the B summand.

Motivated by this, we introduce the failure of a Spin(7) instanton A ∈ A(P ) to be HYM:

E(A) def
=

∫
X8

|π2BFA|2dVg.

We then have the following theorem due to Lewis.

Theorem 1.19 (Lewis’s Energy Estimate). Let (X8, g, J, ω,Ω) be a closed CY fourfold, G

a compact Lie group and P a principal G-bundle over X8. All smooth Spin(7) instantons on

P share the same finite failure from being HYM. This quantity is a cohomological invariant,

depending on the topology of the bundle and the geometry of the base.

Proof. The proof relies on the following pointwise identity:

− Tr (α ∧ β) ∧Re(Ω) =
(
2⟨α, π2Bβ⟩ − 2⟨α, π2Cβ⟩

)
dVg. (1.68)

It can be easily verified in the flat model by expressing both sides in the standard frame

and using our explicit calculation of the projectors.

Using (1.68), pass to the associated quadratic form and integrate to obtain:

−
∫
X8

Tr(F 2
A) ∧Re(Ω) = 2

∫
X8

|π2BFA|2dVg − 2

∫
X8

|π2CFA|2dVg.

If A is a Spin(7) instanton, its curvature tensor has vanishing Λ2
7 component and therefore

vanishing C ⊂ Λ2
7 component. Consequently, Spin(7) instantons satisfy:

E(A) =
∫
X8

|π2BFA|2dVg

= −1

2

∫
X8

Tr(F 2
A) ∧Re(Ω)

= 4π2
∫
X8

p1(P ) ∪ [Re(Ω)].

The proof is complete since the right hand side depends only on the topology of the bundle
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and the geometry of the base.

We immediately obtain the following:

Corollary 1.20. Let (X8, g, J, ω,Ω) be a closed CY fourfold and P a principal G-bundle

over X8. Suppose that:

p1(P ) ∪ [Re(Ω)] = 0 in H4(X8). (1.69)

Then all Spin(7) instantons on P are HYM.

The following slightly weaker result will be relevant in the sequel:

Corollary 1.21. Let (X8, g, J, ω,Ω) be a closed CY fourfold, G a compact Lie group and

P a principal G-bundle over X8. Suppose that P admits an HYM connection. Then all

Spin(7) instantons on P are HYM.

Proof. The failure is a topological invariant. The HYM connections have vanishing failure.

Let A be the HYM connection promised by the assumptions. Use this to compute the

invariant and find that it vanishes. This forces all Spin(7) instantons to be HYM.

1.2.6 The Dirac Operator on a Spin(7) Manifold and the Linearized Spin(7)

Instanton Equation

Let (X8,Φ) be a Spin(7) manifold. Since Spin(7) is simply connected, we can lift the

inclusion into SO(8) through the natural covering:

Spin(8)

Spin(7) SO(8)

π

ι

ι̃

This allows us to associate a spin structure to the Spin(7) structure PΦ ⊂ FrSO(TX
8)

(consisting of those orthonormal frames that restore Φ to its standard form):

Spin(TX8)
def
= PΦ ×ι̃ Spin(8)

It follows that X8 is naturally spin.
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The results of section (1.1.2.4) allow us to get a more concrete handle on the corresponding

spinor bundle. In particular, we set:

/S
def
= /S

+ ⊕ /S
−
.

where:

/S
+ def

= Λ0 ⊕ Λ2
7,

/S
− def

= Λ1.

We then define a Clifford action of TX8 on /S interchanging the factors. Fix p ∈ X8, we

view each tangent vector w ∈ TpX
8 as a map:

w : /S
+
p → /S

−
p

by declaring:

w · (λ, η) = λg (w, ·) + 2η (w, ·)

and

w : /S
−
p → /S

+
p

by declaring:

w · α =

(
−g(w,α#),−1

2
w♭ ∧ α− 1

2
Φ (u, v, ·, ·)

)
.

Note that the adjoint of:

w : /S
+ → /S

−

is given by:

− w : /S
− → /S

+
.

The spin connection ∇spin on /S is obtained by lifting the Levi-Civita connection ∇LC to

the spin structure Spin(TX8) and then pushing it forward to the Dirac bundle /S. Here we

view /S as being associated to Spin(TX8) via the spin representation. Using the fact that

the constant function f = 1 is a harmonic spinor, ∇spin can be seen to agree with ∇LC on

Λ0 ⊕Λ1 ⊕Λ2
7. The corresponding negative Dirac operator can be computed directly using
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the standard formula:

/D =
8∑

i=1

ei · ∇ei

and the explicit characterization of the Clifford action. Ultimately, one finds that it is

given by:

/D
−
: C∞(/S

−
) → C∞(/S

+
)

α 7→ (d⋆α,−2π27dα). (1.70)

Taking adjoints, we find that the positive Dirac operator is given by:

/D
+
: C∞(/S

+
) → C∞(/S

−
)

(f, ω) 7→ df − 2d⋆ω. (1.71)

When we twist the spin structure by a vector bundle (E,∇), the Dirac operators combine

with ∇ to yield twisted Dirac operators /D
−
∇ and /D

+
∇. They can be written down by

replacing exterior derivatives with exterior covariant derivatives in the formulae expressing

/D
− and /D

+.

Fix a Spin(7) instanton A ∈ A(P ). The Spin(7) instanton equations (1.59) correspond to

looking at the zero level-set of the nonlinear operator

FA : C∞(Λ1 ⊗ ad(P )) → C∞(Λ2
7 ⊗ ad(P ))

α 7→ π27FA+α

Using the standard formula for the curvature of the perturbation of a connection by an

arbitrary ad(P )-valued 1-form, we find that:

FA(α) = π27dAα+
1

2
π27 [α, α] .

Consequently, the linearization of the Spin(7) instanton equation FAα = 0 centered at the

Spin(7) instanton A ∈ A(P ) is given by:

dFA : α 7→ π27dAα.
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We incorporate the Coulomb gauge-fixing condition:

d⋆Aα = 0. (1.72)

This guarantees—at least in the closed manifold setting—that any potential infinitesi-

mal deformations are "honest" in the sense that they are L2-orthogonal to the directions

spanned by the infinitesimal gauge-action centered at A. Since the exterior covariant

derivative and exterior covariant coderivative take values in different spaces, we have that:

dFAα = 0 and d⋆Aα = 0 ⇐⇒ /D
−
Aα = 0,

where /D
−
A denotes the negative Dirac operator (1.70) twisted by A. It follows that gauge-

fixed (not induced by gauge transformations) infinitesimal deformations of A to nearby

Spin(7) instantons correspond to (twisted) negative harmonic spinors on X8. In the sequel

we will slightly abuse terminology by suppressing the epithet gauge-fixed to refer to

/D
−
Aα = 0 (1.73)

as the linearized Spin(7) instanton equation.

Recall that the symbol of a Dirac operator is given by the fiberwise action of cotangent

vectors through Clifford multiplication. This is invertible and the Dirac operator is then

elliptic. We thus obtain ellipticity for the (gauge-fixed) Spin(7) instanton equation. On an

AC space, it is uniformly elliptic and asymptotic to the linearized G2-monopole operator

in the sense of [42], [46]. The upshot is that we do not have to worry about regularity

issues.

The above can be neatly packaged in a three-term deformation complex, reminiscent of

the AHS complex from Donaldson theory ([3],[15]):

0 C∞(ad(P )) C∞(Λ1 ⊗ ad(P )) C∞(Λ2
7 ⊗ ad(P )) 0.

dA π27dA

Folding and considering our earlier observations, we immediately find that this is elliptic.
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Over a closed base, the index is easily computed using the Atiyah-Singer index theorem

([79] p.7 eq 2.24):

Index = rk(ad(P ))(−b0 + b1 − b27) +
1

24

〈
p1(P ) ∪ p1(TX8)− 2p1(P )

2 + 4p2(P ), [X
8]
〉
.

Over a noncompact base, there are geometric (spectral) contributions to the index. These

are determined by the APS theorem (Melrose [47], Atiyah-Patodi-Singer [48], [49], [50]).

Since gauge-fixed infinitesimal deformations/ obstructions are controlled by Dirac opera-

tors, Weitzenböck-type formulae become available tools for tackling the linear problem. In

this setting they take the following form:

On /S
− ⊗ ad(P ) we have:

/D
+
A /D

−
Aα = ∇⋆

A∇Aα+ 2R/S
−

A [α]. (1.74)

Here, the curvature error term R/S
−

A is the order zero operator:

R/S
−

A : Λ1 ⊗ ad(P ) → Λ1 ⊗ ad(P )

α 7→ R/S
−

A [α]

defined as:

R/S
−

A [α](X)
def
= − [FA⌞α] (X)

=
∑
i

[
FA (ei, X) , α (ei)

]
.

The sum is taken over an orthonormal frame for the tangent space.

On /S
+ ⊗ ad(P ) we have:

/D
−
A /D

+
A(f, ω) = ∇⋆

A∇A(f, ω) + 2R/S
+

A [ω]. (1.75)
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Here, the curvature error term on /S
+ ⊗ ad(P ) is the order zero operator:

R/S
+

A : Λ2
7 ⊗ ad(P ) → Λ2

7 ⊗ ad(P )

ω 7→ R/S
+

A [ω]

defined as:

R/S
+

A [ω] = π27R
/S
+

A [ω] ,

where:

R
/S
+

A [ω] (X,Y ) =
∑
i

[
FA (ei, X) ∧ ω (ei, Y )

]
.

The formulae we have obtained are strongly reminiscent of the ones derived by Bourguignon

and Lawson in [6].

1.2.7 The Dirac Operator on a G2 Manifold and the Linearized G2 Instanton

Equation

We will perform a similar analysis for G2 manifolds. We begin with the simpler torsion-free

case and proceed to the nearly parallel case once this is settled.

1.2.7.1 The Torsion-Free Case

Let (Σ7, ϕ) be a G2 manifold. An argument analogous to the one employed in the Spin(7)

setting—using the fact that G2 is is simply connected—demonstrates that Σ7 is naturally

spin. The results of section (1.1.2.4) allow us to get a concrete handle on the corresponding

spinor bundle. In particular, we set:

/S = Λ0 ⊕ Λ1. (1.76)

Fix p ∈ Σ7. Each v ∈ V is realized as an endomorphism:

v : /Sp → /Sp

by declaring:

v (λ, α) =
(
−g(v, α#), λv♭ + (v × α#)♭

)
.

This defines a skew-adjoint Clifford action of TΣ7 on /S.
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The connection on /S is obtained by lifting the Levi-Civita connection to a principal connec-

tion on the spin structure and pushing it forward to the Dirac bundle using the associated

vector bundle construction. Using the fact that the constant function f = 1 is a harmonic

spinor, ∇spin can be seen to agree with the Levi-Civita connection on Λ0 ⊕ Λ1.

The corresponding Dirac operator can be computed directly using the standard formula:

/D =

7∑
i=1

ei · ∇ei .

Carrying out the calculation yields:

/D : C∞(/S) → C∞(/S)

f + α 7→ d⋆α+ df + ⋆(ψ ∧ dα). (1.77)

This is concisely presented in matrix form using the splitting /S = Λ0 ⊕ Λ1:

/D =

0 d⋆

d ⋆Σ(ψ ∧ d(·))


Twisting the spin structure by a vector bundle (E,∇) affects the Dirac operator by replac-

ing exterior derivatives with exterior covariant derivatives:

/D∇ =

 0 d⋆∇

d∇ ⋆Σ(ψ ∧ d∇(·))



Let A ∈ A(P ) be a G2 instanton. Working as we did in the previous section, we find that

the linearized (at A) G2 instanton equation takes the form:

ψ ∧ dAα = 0. (1.78)

As it stands, equation (1.78) is not elliptic. This issue persists even when we supplement it

with the Coulomb gauge-fixing condition. Fortunately, the deformation theory is governed

by an elliptic complex, and is thus well-behaved. The catch is that in contrast to the
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familiar ASD and Spin(7) pictures, one has to use more than three terms. Following [13],

we introduce the differential complex:

0 C∞(ad(P )) C∞(Λ1 ⊗ ad(P ))

0 C∞(Λ7 ⊗ ad(P )) C∞(Λ6 ⊗ ad(P ))

dA

ψ ∧ dA(·)

dA

Passing to the level of symbols, exactness can be verified by direct computation. It follows

that the complex is elliptic. Over a closed base, its index is zero: when the moduli space

is smooth, it is zero-dimensional. This will always be the case in the applications we have

in mind: Σ7 will be the asymptotic link of an AC CY fourfold.

If one insists on working with a single elliptic system, the G2 instanton equations should

be replaced by the G2 monopole equations. The latter arise naturally as the dimensional

reduction of the Spin(7) instanton equations along the radial direction of a cone.

Given a pair (A,Φ), where A ∈ A(P ) and Φ ∈ C∞(ad(P )), the G2-monopole equations

read:

⋆ (ψ ∧ FA) = −∇AΦ.

It is clear that each G2 instanton defines a G2-monopole by taking Φ to vanish identically.

In fact, any Higgs field that is covariantly constant with respect to the instanton will work.

Suppose now that Σ7 is closed. Applying ∇⋆
A to both sides of theG2 monopole equation and

integrating by parts shows that the Higgs field Φ of any G2 monopole (A,Φ) is covariantly

constant:

∇AΦ = 0.

The G2 monopole equation then implies that A is a G2 instanton.

⋆ (ψ ∧ FA) = −∇AΦ = 0.
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This yields the following characterization of the space of G2 monopoles over Σ7: they form

a fibration over the space of G2 instantons, where the fiber over A is given by:

Ker(∇A) = Lie
(
Stab (A)

)
⊂ Lie

(
G (P )

)
= C∞ (ad(P )) .

In particular, if the structure group has trivial center, then the fiber over every irreducible

G2 instanton is given by a single point. This results in a one-to-one correspondence between

irreducible G2 instantons and irreducible G2 monopoles.

Linearizing the G2-monopole equation at a G2 instanton (A, 0), we obtain:

∇Af + ⋆(ψ ∧ dAα) = 0

Incorporating the Coulomb gauge-fixing condition, we get:

d⋆Aα+∇Af + ⋆(ψ ∧ dAα) = 0.

We recognize the left hand side of this equation as the (twisted) Dirac operator /DA.

We conclude that the gauge-fixed G2 monopole equation is elliptic. Furthermore, gauge-

fixed infinitesimal deformations of a G2 instanton A through G2 monopoles correspond to

(twisted) /DA-harmonic spinors (f, α). The Λ0 component f corresponds to an infinitesimal

motion along the fiber parameterizing the compatible Higgs-fields. The Λ1 component α

corresponds to an infinitesimal deformation of the underlying instanton. Over a closed

base, simple integration by parts shows that:

/DA(f, α) = 0 ⇒ /DA(0, α) = 0. (1.79)

In [76], Waldron derives a Weitzenböck-type formula for the square of the linearized G2-

monopole equation on nearly parallel G2-manifolds ( [76] Prop. 2.8). Restricting this to

the torsion-free case, we find that the operator /DA satisfies:

/D
2
A(f, α) = ∇⋆

A∇Af ++∇⋆
A∇Aα− 2 [FA⌞α] .
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1.2.7.2 The Nearly Parallel Case

Suppose now that ϕ is nearly parallel. Most of the above carry over so that we obtain

a natural spin structure /S and a fiberwise action of TΣ7 defined in the exact same way.

However, the constant function 1 is now not a harmonic spinor, but a −1
2 -Killing spinor:

∇X1 = −1

2
X · f

= −1

2
g(X, ·). (1.80)

It follows that when we view spinors as differential forms using our explicit construction

(1.76), the lift of the Levi-Civita connection to the spin connection on /S disagrees with the

Levi-Civita connection on Λ0 ⊕Λ1. In fact, we see that—unlike the torsion-free case—the

spin connection no longer preserves the splitting (1.76).

Equation (1.80) determines the order 0 offset of ∇spin from ∇LC on Λ0:

∇spin
X f = Xf − f

2
g(X, ·).

To determine ∇spin on Λ1 we follow the same strategy as the one employed in the torsion-

free case. This time we obtain order 0 corrections since 1 is not harmonic, but Killing.

Using the explicit formula for the Clifford action ·, the fact that · is covariantly constant

for ∇spin and the fact that 1 is a −1
2 -Killing spinor, we obtain:

∇spin
X v = ∇spin

X (v# · 1) =

= ∇LC
X v · 1 + v# · ∇spin1

= ∇LC
X v − 1

2
v# ·X · 1

= ∇LC
X v − 1

2
v# · g(X, ·)

= ∇LC
X v +

1

2
g(v#, X)− 1

2
(v# ×X)♭

= ∇LC
X v +

1

2
g(v#, X)− 1

2
ϕ(v♯, X, ·)

=
1

2
v(X) +∇LC

X v +
1

2
ϕ(X, v♯, ·).
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The spin Dirac operator can then be determined by summing over an orthonormal frame:

/D =

8∑
i=1

ei · ∇spin
ei .

Carrying out the calculation yields:

/D =

0 d⋆

d ⋆Σ(ψ ∧ d·)

+

7
2 0

0 −5
2


Twisting this by a connection ∇ on a vector bundle E yields:

/D∇ =

 0 d⋆∇

d∇ ⋆Σ(ψ ∧ d·)

+

7
2 0

0 −5
2


Let A be a G2-instanton. The linearization of the G2-instanton equation at A takes the

same form as in the torsion-free case. It follows that gauge-fixed infinitesimal deformations

correspond to spinors:

s = (0, α) ∈ C∞ (/S ⊗ ad(P )
)
,

such that:

/DAs = −5

2
s.

In particular, we identify the gauge-fixed infinitesimal deformation space for a G2-instanton

A as the intersection of the −5
2 -eigenspace of /DA and the space of spinors with vanishing

Λ0 component. This recovers a result of Singhal ([65] Prop. 3.1).

Waldron establishes the following identity ([76] Prop. 2.8):

 0 d⋆A

dA ⋆Σ(ψ ∧ dA·)


2

=

∇⋆
A∇A 0

0 ∇⋆
A∇A + 2 ⋆Σ (ψ ∧ d·) + Ric(·)− 2[FA⌞(·)]


=

∇⋆
A∇A 0

0 ∇⋆
A∇A + 2 ⋆Σ (ψ ∧ d·) + 6− 2[FA⌞(·)],


where we recall that the nearly parallel G2 manifolds are Einstein with Einstein constant
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equal to 6. This allows us to easily compute the square of the twisted Dirac operator /DA:

/D
2
A =

∇⋆
A∇A + 49

4 d⋆A

dA ∇⋆
A∇A + 49

4 − 3 ⋆Σ (ψ ∧ d·)− 2[FA⌞(·)]


The appearance of order 1 terms is expected as the Laplacian on the spin structure:

/S = Λ0 ⊕ Λ1

disagrees with the standard one on functions and forms. This is due to the disparity

between ∇LC and its lift ∇spin.

1.2.8 Moduli Spaces of AC Spin(7) Instantons over AC CY Fourfolds

Our final task for this section is to formally introduce the instanton moduli spaces we

wish to study. Let Σ7 be a closed Sasaki-Einstein space. Let X8 be an AC CY fourfold

asymptotic to the cone C(Σ7). Fix K ⊂ X8 compact, T > 0 and a diffeomorphism:

Ψ : X8 \K ∼−→ (T,∞)× Σ7,

such that the metric on X8 \K approaches the conical metric on the target. Let πi denote

the projection to the ith factor and let

t
def
= π1 ◦Ψ.

Extend this on the whole of X8 by smoothly interpolating between 0 and t using a bump

function. Slightly abuse notation by using the same symbol for the extension. The function

t is an asymptotic logarithmic radius function.

Let G be a compact Lie group and PΣ7 a principal G-bundle over Σ7. Let P be a principal

G-bundle over X8 such that there is a bundle isomorphism:

Ξ : P|X8\K

∼−→ Ψ⋆π⋆2PΣ7 .

Such bundles are termed admissible: they respect the asymptotic geometry of the base.

71



1.2 Gauge Theoretic Aspects

Finally, let A∞ ∈ A(PΣ7) be a contact instanton over Σ7.

The weighted Sobolev space W k,2
µ (ad(P )) with k weak derivatives, integrability 2 and weight

µ is defined by looking at the space of smooth sections s ∈ C∞(ad(P )) such that:

∥s∥2k,2,µ
def
=

k∑
j=0

∫
X8

|e(j−µ)t∇js|2e−8tdVg <∞ (1.81)

and subsequently taking the completion under this norm. The definition is designed so

that the leading order asymptotic behaviour of a section s ∈W k,2
µ (ad(P )) is:

|s| = O(e−αt), where a < µ. (1.82)

For a detailed discussion of weighted Sobolev spaces see [18], [42], [46]. The latter offers

a thorough account of regularity issues for elliptic operators respecting the asymptotic

geometry (i.e. uniformly elliptic operators).

The space of W k,2
µ connections on P asymptotic to A∞ is defined by:

Ak,µ(P,A∞) = A∞ +W k,2
µ (ad(P )). (1.83)

Naturally, C∞ connections with the appropriate asymptotics are obtained by taking:

Aµ(P,A∞)
def
= ∩k≥0Ak,µ(P,A∞). (1.84)

The corresponding space of gauge transformations is built by exponentiating decaying

sections of the adjoint bundle. The resulting gauge transformations are asymptotic to the

identity. For k > 4 (to guarantee continuity), we define:

Gk,µ(P )
def
=
{
s = exp(ξ) s.t. ξ ∈W k,2

µ (ad(P ))
}
. (1.85)

The space of smooth gauge transformations is obtained by taking:

Gµ(P )
def
= ∩k≥4Gk,µ(P ). (1.86)
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The gauge action preserves Aµ(P,A∞). This allows us to define the moduli space of AC

Spin(7) instantons on P asymptotic to A∞:

Mµ(P,A∞) =

{
A ∈ Aµ(P,A∞) s.t. ⋆g (Φ ∧ FA) = −FA

}
Gµ(P )

.

Minor modifications are possible and lead to other moduli spaces of interest. For instance,

one could replace the Spin(7) instanton equations by the HYM equations. Alternatively,

one could expand the search for AC Spin(7) instantons by looking for ones that approach

a G2 instanton, without insisting that it be contact. To justify our choices, we recall

propositions (1.11) and (1.18). Cutting out K ⊂ X8, transforming to temporal gauge,

expanding at infinity and keeping track of only the highest order terms establishes the

following:

Proposition 1.22. Let X8 be an AC CY fourfold with Sasaki-Einstein asymptotic link

Σ7. The limit of an AC Spin(7) instanton on X8 is a G2 instanton on Σ7. The limit of

an AC HYM connection on X8 is a contact instanton on Σ7.

Since we have taken A∞ to be contact, Mµ(P,A∞) contains the corresponding HYM

moduli space. Our primary concern is the structure of this locus. Motivated by Lewis’

estimate, the most basic question one could ask is whether it exhausts the whole space.

The examples constructed in section 5 establish—–for the first time—–that this need not

be the case.
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2 Homogeneous Bundles and Invariant Connections

In this section, our aim is to provide a rapid introduction to gauge theory in the presence

of symmetries. After a quick overview of general homogeneous space theory we move on

to homogeneous principal bundles and invariant connections. Our discussion culminates

with a complete classification of these objects in terms of representation-theoretic data

(Wang [82]). The underlying principle is that the high degree of symmetry enjoyed by

a homogeneous space typically reduces differential geometric questions to representation

theory.

2.1 Naturally Reductive Homogeneous Spaces and the Canonical In-

variant Connection

Let M be a smooth manifold and G a Lie group acting on the left by diffeomorphisms.

When the action is transitive M is termed a G-homogeneous space. Choose a reference

point p ∈M . Since M is Hausdorff, the isotropy subgroup:

H
def
= StabG(p) = {g ∈ G such that gp = p}

is closed in G. The natural right action of H on G is smooth, free and proper. It is then an

application of the quotient manifold theorem (Lee [38] p.545) that the space of left cosets:

G/H = {gH such that g ∈ G}

inherits a unique smooth structure such that the natural projection is a smooth submersion

(Kobayashi, Nomizu [37] p.43). Ultimately, we find that fixing p ∈ M yields a diffeomor-

phism:

ϕ : G/H
∼−→M,

gH 7→ gp.

Thus, without loss of generality, when discussing homogeneous spaces we can restrict our

attention to left coset manifolds.

Over a homogeneous space G/H there is a natural H-principal bundle. The total space
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2.2 Invariant Tensor Fields

is given by G and the projection map is the canonical projection to the quotient. This is

known as the isotropy bundle.

For our purposes, it is sufficient to consider naturally reductive homogeneous spaces:

Definition 2.1. A homogeneous space G/H is naturally reductive if the Lie algebra h

admits a vector space complement in g that is stable under the restriction of AdG to H.

The space m is known as a reductive complement. A choice of m endows the canonical

H-bundle with a natural connection: the canonical invariant connection. In particular,

one notices that the left invariant extension m over G is AdH equivariant for the right H

action. Furthermore, it gives a vector space complement for the left translate of h over

every point i.e. it is complementary to the distribution of vertical vectors. Consequently,

it is a connection.

The isotropy group H stabilises the reference point p. Differentiating the action gives us

a linear representation of H on TpM . This is known as the isotropy representation. The

canonical invariant connection sets up a correspondence between tangent vectors on the

base and tangent vectors on G. This allows us to capture the isotropy representation purely

at the level of the group. We denote the representation of H on m through the adjoint

action of G as (m,AdH).

Proposition 2.2. Let G/H be a naturally reductive homogeneous space. Let m be a re-

ductive complement. The isotropy representation is isomorphic to (m,AdG|H ). In other

words, the following square commutes for all h ∈ H:

m m

TpM TpM

dpG

Adh

dpG

dlh

2.2 Invariant Tensor Fields

We wish to describe G-invariant tensor fields over M by tensor fields over G. We select a

reference point p ∈M . Since the action is not free, the left invariant extension of a tensor

T over p is not—in general—well defined. However we have an easy characterization for

when it is. Essentially, the only problem is that a particular point may be connected to
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2.3 Homogeneous Principal Bundles

p through multiple group elements, each of which translate T differently. However, all of

these elements lie in the same orbit of the H-action. If H acts trivially, the issue is resolved.

Recalling the correspondence between the isotropy representation and the restriction of the

adjoint action to H (proposition 2.2) we obtain:

Theorem 2.3. Let G/H be a naturally reductive homogeneous space. Let m be the reductive

complement. G-invariant tensor fields over M correspond to elements of (appropriate

tensor powers of) m stabilized by AdG|H .

2.3 Homogeneous Principal Bundles

Let M = G/H be a homogeneous space. Let S be a Lie group. We are interested in

studying principal S-bundles over M that are compatible with its symmetry. We begin

with the following definition:

Definition 2.4. A homogeneous S-bundle over M is a principal S-bundle equipped with

a left action G → G(P ) that lifts the G-action on M . Explicitly, for any g ∈ G we have

the following commutative square:

P P

M M.

π

lg

π

lg

Note that the action on the total space is by global gauge transformations (S-bundle

automorphisms), not just diffeomorphisms. The following observation is immediate from

the definition:

Proposition 2.5. Let G and S be Lie groups. Let M be a homogeneous space for G. Let P

be a homogeneous principal S-bundle over M . Then P is a homogeneous space for G× S.

Proof. We need to display a transitive left action of G× S on P . Define:

(g, s)p
def
= gps−1. (2.1)

This is clearly transitive. Since the left G-action lifts the action on M , it is fiber-transitive.

Since P is a principal S-bundle, the right S-action is transitive on each fiber.
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2.3 Homogeneous Principal Bundles

We wish to explore the homogeneous structure exhibited in proposition (2.5). We begin

by computing the stabiliser. Fix a reference point p ∈ P and note that:

gps−1 = p ⇐⇒ gp = ps.

Since the action of S is fiber preserving and the action of G lifts the action on M , we must

have that:

g ∈ StabG(π(p)).

The base space stabilizer is isomorphic to H. Consequently:

StabG×S(p) ∼= H. (2.2)

Our earlier remarks now imply that (at the level of smooth manifolds):

P ∼=
G× S

H
. (2.3)

We are interested in refining this conclusion by determining the precise embedding in G×S.

Since H preserves the fiber pS, for each h ∈ H there is a unique s ∈ S such that:

hp = ps.

This yields a Lie group homomorphism λ : H → S uniquely determined by the equation:

hp = pλ(h). (2.4)

The map λ is known as the isotropy homomorphism. It depends on the choice of reference.

Varying p will conjugate λ by a fixed element of S. We now observe that:

StabG×S(p) =
{
(h, λ(h)) such that h ∈ H

}
< G× S.

Using λ we may define the following left action of H on S:

hs
def
= sλ(h)−1. (2.5)
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2.3 Homogeneous Principal Bundles

Using the structure of G as an H-bundle over M , the action (2.5) allows us to define the

associated fiber bundle with standard fiber S:

G×(H,λ) S = (G× S)/ ∼ , where (g, s) ∼ (gh, h−1s).

This quotient agrees with (2.3) and thus recovers P .

We now draw from this construction to classify homogeneous bundles up to their natural

notion of isomorphism. This is as follows:

Definition 2.6. A G-homogeneous bundle isomorphism is a G-equivariant principal bun-

dle isomorphism.

Note that the corresponding classification is finer than the usual one (i.e. a given prin-

cipal bundle isomorphism type might fragment into several distinct homogeneous bundle

isomorphism types). It is settled in the following theorem:

Theorem 2.7. Let M = G/H be a homogeneous space. Homogeneous principal S-bundles

over M are classified by element-conjugacy classes of Lie group homomorphisms:

λ : H → S.

Here, element-conjugacy means conjugation by a fixed element of S. In view of this

classification, we denote the homogeneous bundle corresponding to λ by Pλ.

The various agents involved in the definition of a homogeneous bundle can be packaged

in a useful diagram. Let P be a homogeneous S bundle. Let π : P ↠ M denote the

projection map. Choosing a reference point x ∈ M and a reference point p ∈ P lifting x,

we obtain natural maps:

pG : G→M,

pG×S : G× S → P, (2.6)

Ψ : G→ P.

78



2.4 Vector Valued ρ-Invariant Forms and Wang’s Theorem

The compatibility of the actions gives:

pG = π ◦Ψ.

The explicit form of the G× S-action on P reveals that:

Ψ = pG×S ◦ ι,

where ι denotes the inclusion in the first factor. Ultimately, we get the following diagram:

G× S

G G×(H,λ) S

G/H.

pG×S

pG

Ψ

ι

π

2.4 Vector Valued ρ-Invariant Forms and Wang’s Theorem

Our ultimate goal is to study invariant connections and invariant curvature forms on ho-

mogeneous principal bundles. We begin with a definition:

Definition 2.8. Let Pλ be a homogeneous S-bundle over a homogeneous space G/H. A

tensorial k-form of type Ad (in the sense of [37]) is invariant if it is G-invariant as a k-form

on Pλ. A connection A ∈ A(Pλ) is invariant if it is G-invariant as a 1-form on Pλ.

Tensorial forms and connections—regardless of whether or not they are invariant—satisfy

a right equivariance property with respect to the right S-action on the bundle:

r⋆sω = Ads−1 (ω) . (2.7)

We may capture property (2.7) and G-invariance simultaneously by introducing a repre-

sentation ρ of G× S on s. Invariant tensorial forms then correspond to ρ-invariant forms.

In what follows, we work for a general representation of some group G on a vector space

V . When we return to the setting of homogeneous bundles, the role of G will be played

by G× S and the role of V will be played b s.
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2.4 Vector Valued ρ-Invariant Forms and Wang’s Theorem

Definition 2.9. Let M = G/H be a homogeneous space. Let ρ : G → GL(V ) be a

representation. A form ω ∈ C∞
(
ΛkT ⋆M ⊗ V

)
is ρ-invariant if:

l⋆gω = ρg (ω) . (2.8)

We can capture ρ-invariant forms as forms over G satisfying an algebraic condition at the

identity.

Proposition 2.10. Let M = G/H be a naturally reductive homogeneous space. Let m be a

reductive complement. Let ρ : G → GL(V ) be a representation. The ρ-invariant V -valued

forms on M correspond to elements α ∈ Λkm⋆ ⊗ V satisfying:

Ad⋆hω = ρh(ω) for all h ∈ H. (2.9)

Perturbing the canonical invariant connection by invariant tensorial forms encoded using

proposition (2.10), one arrives at a complete classification of invariant connections. The

following theorem is due to (Wang [82] p.8):

Theorem 2.11. Let M = G/H be a naturally reductive homogeneous space. Let m be a

reductive complement. Let Pλ be a homogeneous S-bundle over M . There is a one to one

correspondence between invariant connections A over Pλ and linear maps:

Λ : m → s

satisfying:

Λ ◦Adh = Adλ(h) ◦ Λ for any h ∈ H. (2.10)

In the above classification the canonical invariant connection corresponds to Λ = 0.
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3 Asymptotically Conical Lewis Energy Estimate

Asymptotically conical manifolds admit a natural compactification obtained by adding

in the asymptotic link as the boundary at infinity. The metric does not extend to this

compactification: AC growth implies that it blows up near the boundary.

Imposing decay at infinity furnishes a hierarchy of boundary conditions. These refine the

standard Dirichlet condition. Evidently, they become stronger as the rate is decreased.

They are all weaker than having compact support in the interior. Analysis in the presence

of the latter condition will generally resemble the closed manifold case. This is essentially

because integration by parts (Stoke’s theorem) works in the same way. We expect this to

persist under sufficiently strong decay. In particular, we expect to be able to obtain an AC

version of Lewis’s theorem.

Even though ordinary characteristic classes still make sense in the AC setting, their inte-

grals do not. Integration no longer descends to cohomology: integrals of different Chern-

Weil representatives of a fixed characteristic class (Tu [72]) differ by a boundary term.

We truncate the base space at radius T < t <∞ to obtain a manifold with boundary. We

then integrate by parts to change representative and track the boundary term as t → ∞.

We are interested in determining conditions on the rate µ that will guarantee convergence

to 0.

Let (X8, g, J, ω,Ω) be an AC CY fourfold with given asymptotic logarithmic radius function

t ≥ T . For fixed s > T set:

X8
s

def
=
{
p ∈ X8 | t(p) ≤ s

}
⊂ X8

Σ7
s

def
=
{
p ∈ X8 | t(p) = s

}
⊂ X8,

so that:

Σ7
s = ∂X8

s .

It is a well known fact from the theory of characteristic classes that a primitive for the
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difference of two representatives of p1 is given by the corresponding Chern-Simons form:

Tr
{
F 2
A1

}
− Tr

(
F 2
A0

)
= d

(
Tr
{(
FA1 + FA0

)
∧ (A1 −A0)

}
− 1

3
Tr
{
(A1 −A0)

3
})

.

Since Ω is closed, we obtain:

Tr
{
F 2
A1

}
∧Re (Ω)−Tr

(
F 2
A0

)
∧Re (Ω) =

d

(
Tr
{(
FA1 + FA0

)
∧ (A1 −A0)

}
∧Re (Ω)− 1

3
Tr
{
(A1 −A0)

3
}
∧Re (Ω)

)

The following is immediate by Stokes’ Theorem:

∫
X8

t

Tr
{
F 2
A1

}
∧Re (Ω)−

∫
X8

t

Tr
{
F 2
A0

}
∧Re (Ω) =

∫
Σt

Tr
{(
FA1 + FA0

)
∧ (A1 −A0)

}
∧Re (Ω)

−1

3

∫
Σt

Tr
{
(A1 −A0)

3
}
∧Re (Ω) . (3.1)

The integral identity (3.1) provides the foundation for all subsequent results in this section.

Motivated by it, we assume the existence of an HYM connection AHYM on P . For each

connection A over P we introduce a function:

CSΩ [A] : [T,∞) → [0,∞) (3.2)

CSΩ [A] (t)
def
=

1

2

∫
Σt

Tr
{
FA ∧ (A−AHYM)− 1

3
(A−AHYM)3

}
∧Re (Ω) .

Our choice of notation reflects that the integrand is essentially a higher-dimensional ana-

logue of the Chern-Simons form. In this respect, HYM connections formally adopt the role

of flat connections. We thus expect CSΩ [A] to be independent of the choice of AHYM. The

following result guarantees that this is indeed the case.

Proposition 3.1. Let
(
X8, g, J, ω,Ω

)
be an AC CY fourfold with given logarithmic radius

function t ≥ T . Let G be a real compact linear group and P an admissible principal G-

bundle over X8. Suppose that P admits an HYM connection. Let A be a connection on P .

The function CSΩ [A]—introduced in (3.2)—satisfies:

CSΩ [A] (t) =

∫
X8

t

|πBFA|2 dVg −
∫
X8

t

|πCFA|2 dVg for any t ≥ T.

It is thus clearly independent of the choice of HYM connection involved in its definition.
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Proof. For α ∈ Λ2, we have the following well-known formula easily following from the

octonionic linear algebra discussed in section 1:

⋆ (Ω ∧ α) = 2πCα− 2πBα.

This allows us to analyze the pointwise symmetric bilinear form on Λ2⊗ad (P ) defined by:

(α, β)Ω
def
= ⋆

(
Tr {α ∧ β} ∧Re (Ω)

)
.

In particular, we have:

(α, β)Ω = ⋆
(
Tr {α ∧ β} ∧Re (Ω)

)
= ⋆

(
Tr
{
α ∧Re (Ω) ∧ β

})
= Tr

{
⋆
(
α ∧ ⋆ (2πCβ − 2πBβ)

)}
= 2Tr

{
⋆ (α ∧ ⋆πCβ)

}
− 2Tr

{
⋆ (α ∧ ⋆πBβ)

}
The pointwise fiber metric on the adjoint bundle is given by:

⟨α, β⟩ = −Tr
{
⋆ (a ∧ ⋆β)

}
.

Incorporating this in the above calculation, we find that:

(α, β)Ω = 2 ⟨α, πBβ⟩ − 2 ⟨α, πCβ⟩ .

Consequently:

(FA, FA)Ω = 2 |πBFA|2 − 2 |πCFA|2 .

This finally yields:

∫
X8

t

Tr
{
F 2
A

}
∧Re (Ω) =

∫
X8

t

⋆

(
Tr
{
F 2
A

}
∧Re (Ω)

)
dVg

=

∫
X8

t

(FA, FA)Ω dVg

= 2

∫
X8

t

|πBFA|2 dVg − 2

∫
X8

t

|πCFA|2 dVg. (3.3)
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We now appeal to (3.1). We take A1 = A to be the connection in question and A0 = AHYM.

The HYM equations allow us to rewrite (3.1) as:

∫
X8

t

Tr
{
F 2
A

}
∧Re (Ω) = 2CSΩ [A] (t). (3.4)

The result follows by combining (3.3) and (3.4).

The following corollary demonstrates that CSΩ [A] (t) is a natural quantity to consider

when comparing Spin(7) instantons to HYM connections over AC CY fourfolds.

Corollary 3.2. In the context of Proposition 3.1, suppose that A is a Spin(7) instanton.

We then have:

CSΩ [A] (t) =

∫
X8

t

|πBFA|2 dVg for any t ≥ T.

In particular, the function CSΩ [A] (t) is non-decreasing in t.

The following result is the heart of the matter:

Proposition 3.3. [AC Lewis Energy Estimate] Let
(
X8, g, J, ω,Ω

)
be an AC CY

fourfold with Sasaki-Einstein asymptotic link
(
Σ7, gΣ7 , η, ξ,J

)
and given logarithmic radius

function t ≥ T . Let G be a real compact linear group and P an admissible principal G-

bundle over X8. Let A∞ be a contact instanton over Σ7 and fix µ ≤ −4
3 . Suppose that the

moduli space Mµ (P,A∞) contains an HYM connection. Let A be an AC Spin(7) instanton

in Mµ (P,A∞) with rate α i.e.:

|A−A∞| = O(e(α−1)t) where α < µ. (3.5)

Suppose further that:

|ι∂tπBFA| = O(e(β−1)t) where β < −4− µ. (3.6)

Then A is HYM.

Proof. A calculation similar to the one in the proof of Proposition 3.1 demonstrates that

as t→ ∞:

CSΩ [A] (t) = I1 [A] (t) ·O(e−t)− I2 [A] (t), (3.7)
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where:

I1[A](t)
def
=

∫
Σt

〈
(A1 −AHYM) , ι∂tπBFA

〉
|Σt

dVg|Σt

and

I2 [A] (t)
def
=

1

6

∫
X8

t

Tr
{
(A1 −AHYM)3

}
∧Re (Ω) .

The factor of e−t appearing next to the first integral arises form the relation of the Hodge

⋆ on the slice at radius t to the Hodge ⋆ on X8.

The task is to understand the leading order asymptotic behaviour of I1 and I2.

We begin by expressing the first integral as an integral over the asymptotic link—rather

than the slice at radius t. Since the growth of the 7-dimensional slices is asymptotically

conical, their volume forms grow like O(e7t). Similarly, the fiber metric on 1-forms scales

like O(e−2t). Viewing 2-forms along the non-compact end of X8 as curves of 2-forms along

the asymptotic slice we obtain:

I1 [A] (t) = O(e5t)

∫
Σ

〈
(A1 −AHYM) , ι∂tπBFA

〉
|Σ
dVg|Σ .

The t-dependence of I1 arising from the geometry of the base X8 has been absorbed in the

coefficient O(e5t). By (3.6), we have that the leading order term of ι∂tπBFA at infinity is

O(eβt). Consequently:

I1 [A] (t) = O(e(5+α+β)t).

We now treat I1 [A] (t). Since Ω is covariantly constant, its norm is O(1). Consequently,

the leading order term in its asymptotic expansion is O(e4t). We therefore have:

I2 [A] (t) = O(e(4+3α)t).

Incorporating these results into (3.7) we find that:

CSΩ [A] (t) = O(e(4+α+β)t) +O(e(4+3α)t).

Condition (3.5) implies that the second summand vanishes as t → ∞. Condition (3.6)

implies that the first summand vanishes as well. Applying corollary 3.2 and the monotone

85



convergence theorem we finally obtain:

∫
X8

|πBFA|2 dVg = lim
t→∞

∫
X8

t

|πBFA|2 dVg

= lim
t→∞

CSΩ [A] (t)

= 0. (3.8)

This completes the proof.

Proposition 3.3 applies to AC Spin(7) instanton moduli spaces Mµ (P,A∞) that host HYM

connections and have appropriately low decay parameter µ. In this setting, it essentially

provides a lower bound on the asymptotic decay rate β of the failure of a pure AC Spin(7)

instanton to be HYM. It asserts that unless this failure is severe (decays slowly), it doesn’t

exist at all. In fact, it constrains the decay of the radial part of the failure ι∂tπBFA. This is

stronger than the corresponding statement involving the full tensor πBFA: the latter drops

off only as fast as its slowest component. The lower the value of µ, the better the lower

bound obtained. The crudest bound yielded is β ≥ −8
3 and it corresponds to µ = −4

3 . It

is improved to β ≥ −4− µ as µ is decreased.

The following theorem distils the essence of the work carried out thus far:

Theorem 3.4 (Coexistence of AC Spin(7) Instantons and AC HYM Connections). Let(
X8, g, J,Ω

)
be an AC CY fourfold with Sasaki-Einstein asymptotic link

(
Σ7, gΣ7 , η, ξ,J

)
and given logarithmic radius function t ≥ T . Let G be a real compact linear group and P

an admissible principal G-bundle over X8. Let A∞ be a contact instanton over Σ7.

• The space M−2 (P,A∞) is either empty, comprised entirely of HYM connections, or

comprised entirely of pure Spin(7) instantons. They all share the same finite failure.

• The space:

M−2 (P,A∞) =
⋂
ϵ>0

M−2+ϵ (P,A∞)

is either empty, comprised entirely of HYM connections, or comprised entirely of pure

Spin(7) instantons.

• Let −2 < µ ≤ −4
3 . Suppose that Mµ (P,A∞) contains both HYM and pure Spin(7)
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solutions simultaneously. The pure Spin(7) solutions satisfy:

ι∂tπBFA = O(tβ) where − 4− µ ≤ β < µ. (3.9)

• Let µ > −4
3 . The space Mµ (P,A∞) can contain both HYM and pure Spin(7) solu-

tions simultaneously.

Proof. For the first assertion, note that:

πBFA = πBdAHYM (A−AHYM) +
1

2
πB [A−AHYM, A−AHYM] .

It follows that πBFA decays at least as fast as A−AHYM i.e. strictly faster than µ. When

the decay parameter is decreased to µ = −2, the bound provided by proposition 3.3 yields

a contradiction.

The finitude of the failure follows from the observation that −2 is the L2 rate for AC two-

forms. Its invariance follows by a slight modification of the integration by parts calculation

of proposition 3.3.

For the second assertion we wish to infinitesimally strengthen the above to hold for decay

rates precisely equal to α = −2 (rather than just α < µ ≤ −2). To this end, suppose

that M−2 (P,A∞) contains both HYM connections and pure Spin(7) instantons. Let A

be a pure Spin(7) instanton in M−2 (P,A∞) with failure tensor having rate β. Since

A ∈ M−2+ϵ (P,A∞), proposition 3.3 guarantees that:

− 2− ϵ ≤ β < −2 + ϵ for all ϵ > 0. (3.10)

It follows that β = −2. Since −2 is the L2 rate for AC two-forms, πBFA is not in L2 i.e.

A has infinite failure. However, we have that:

lim
t→∞

CSΩ [A] (t) <∞. (3.11)

Monotone convergence and corollary 3.2 furnish the requisite contradiction.
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The third assertion is merely the bound provided by proposition 3.3.

The final assertion is obtained by considering the explicit examples constructed in sec-

tion 5. These decay with rate precisely equal to α = −4
3 . Consequently, they live in

M− 4
3
+ϵ (P,A∞) for any ϵ > 0.

Remark 3.5. The extension of the first assertion provided by the second one is not vacuous.

The standard octonionic instanton on R8 (the subject of section 4) decays with rate α = −2

and lives in a moduli space with no HYM connections. Nevertheless, it doesn’t provide an

ideal example: its limiting connection is G2 but not contact. In particular, we know a priori

that there are no HYM connections in any Mµ (P,A∞) for µ < 0, not just M−2 (P,A∞).

Remark 3.6. To the author’s knowledge, there are no known examples illustrating the

third assertion. The hope would be to use (3.9) in order to extend the incompatibility result

all the way up to µ = −4
3 .

Remark 3.7. Due to the structure of the second term I2(t) in (3.7), the methods employed

in this section could never reveal information for µ > −4
3 . The final assertion establishes

that this is no mere coincidence: the value µ = −4
3 is critical.

Remark 3.8. One might conjecture that the only thing that can go wrong for slower rates

is the unboundedness of the failure: i.e. that the failure is invariant when it is finite.

Our examples on the Stenzel metric presented in section 5 disprove this: the failure is a

non-constant, bounded, smooth function along the family.

To conclude this section, we propose a potential application of Theorem 3.4. It might be

able to exclude the existence of AC HYM connections when this is not already achieved

by the asymptotic boundary condition (i.e. the choice of A∞). The method would involve

the construction of a suitable Spin(7) instanton. In particular:

• If we exhibit a pure Spin(7) instanton in M−2 (P,A∞), then this moduli space con-

tains no HYM connections at all.

• If we exhibit a pure Spin(7) instanton in Mµ (P,A∞) with −2 < µ ≤ −4
3 such that

β < −4− µ, then Mµ (P,A∞) contains no HYM connections at all.

Note that in the first case, it is arguably more natural to approach the problem using

Lewis’ cohomological invariant. To the author’s knowledge, there is currently no known
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example of a pure AC Spin(7) instanton satisfying either set of requirements (supercritical

decay to a limit compatible with the HYM equation). If such objects do exist, this result

would interestingly constitute a purely Spin(7) technique to address a classical problem

in complex geometry: the existence of HYM connections over noncompact CY fourfolds

(where the Donaldson-Uhlenbeck-Yau theorem [73] doesn’t apply).
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4 Spin(7)-Equivariant Instantons on Flat Space

We now turn to the construction of our first example of a non-trivial AC Spin(7) instanton

over an AC CY fourfold: the so called standard octonionic instanton on R8. While this

example is not new, we offer an alternative derivation that we hope elucidates the underly-

ing geometry. The octonionic instanton first appeared in the Physics literature and is the

subject of the article [27] by Fubini and Nicolai. Nevertheless -to the author’s knowledge-

it has not appeared in the mathematics literature thus far. We follow a method analogous

to that in [43] to give an alternative construction, which we hope will be quicker and easier

to understand by a mathematical audience. An advantage of our approach is the ability to

just read off the asymptotic behaviour and other mathematical properties of interest. We

find that the octonionic instanton is AC of rate −2. Its asymptotic limit is given by the

canonical invariant connection on S7 induced by the exceptional homogeneous structure:

S7 =
Spin(7)

G2
.

In [27], the authors construct a single instanton. We find that the octonionic instanton lives

in a 1-parameter family MSpin(7)
inv (PId) of invariant solutions that is noncompact at both

ends. The family can be obtained by pulling the Fubini-Nicolai instanton back through

the natural dilation action.

The non-compactness phenomena encountered as we approach either end of MSpin(7)
inv (PId)

differ. This provides us with two distinct ways in which a family of AC Spin(7) instantons

may degenerate.

4.1 The Spin Representation of Spin(7)

Owing to the results of section 1.1.2.4, Spin(7) has a unique real irreducible 8-dimensional

representation /S: the spin representation. The standard octonionic instanton lives on

/S and the Spin(7)-action preserves it. We are thus interested in recasting /S in a way

amenable to calculations. In the sequel, we follow the notation established in section 1.

The imaginary octonions Im (O) act on O from the left by octonionic multiplication. This
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4.1 The Spin Representation of Spin(7)

can be easily seen to satisfy the Clifford relations:

v2 = −g(v, v) · 1 in End (O) . (4.1)

The universal property gives rise to a commutative diagram:

Im (O) Cl
(
Im (O)

)

End (O)

Using the basis of O introduced in section 1 we obtain identifications:

O ∼= R8

Cl
(
Im (O)

) ∼= Cl(7).

Composing with the inclusion of Spin(7) in Cl(7), we finally obtain the spin representation:

Spin(7) → Gl(R8).

Explicit computation demonstrates that this is faithful and that it preserves the metric

and orientation. It is thus an embedding:

Spin(7) ↪→ SO(8).

One can also check that the spinor action preserves the standard Cayley calibration Φ. It

follows that we could have alternatively defined it by composing the standard embedding

of Spin(7) in SO(8) with the vector action of SO(8). While this is perhaps easier to state,

our description—using octonionic multiplication—facilitates calculations.

Since Spin(7) ⊂ SO(8), the spinor action preserves the 7-sphere S7
r of radius r > 0. In

fact, the restricted action remains transitive for any r. We thus obtain a cohomogeneity

one structure on R8. The principal orbits are the spheres of positive radius. The origin
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4.2 The Exceptional Homogeneous Structure on the Round S7

constitutes the unique (0-dimensional) singular orbit. Note that we have effectively reduced

the symmetries provided by the rotations of 8-space to a smaller group, while maintaining

transitivity along the 7-spheres. There exist no Spin(7) instantons on R8 enjoying full

rotational symmetry. As we will see however, it is possible to find instantons invariant by

those rotations of 8-space comprising Spin(7). The fact that transitivity is maintained for

the smaller group is crucial. It allows us to reduce the number of free variables to just one,

ultimately simplifying the problem no less than dimensional reduction by full rotational

symmetry.

4.2 The Exceptional Homogeneous Structure on the Round S7

The stabilizer of:

pr
def
= (r, 0, 0, 0, 0, 0, 0, 0)⊺ ∈ S7

r (4.2)

is a copy of G2 ⊂ Spin(7) [61] exhibiting S7
r as a homogeneous space:

S7
r =

Spin(7)

G2
.

In the sequel we will denote S7
1 simply as S7. We are interested in obtaining a reductive

decomposition:

spin(7) = g2 ⊕m.

The Lie algebra of Spin(7) naturally sits inside Cl(7) as:

spin(7) =
〈
eiej

〉
i<j, i,j=2,...,8

⊂ Cl (e2, ..., e8) .

We study the inclusion G2 ⊂ Spin(7) at the linear level. Consider the natural homogeneous

projection map identifying S7
1 with a coset space:

π : Spin(7) ↠ S7

g 7→ gp1.

The relevant copy of g2 in spin(7) is given by:

g2 = Ker
(
dπ|1

)
.

92



4.2 The Exceptional Homogeneous Structure on the Round S7

Letting · denote the octonionic product, we use our construction of the spinor representa-

tion and the definition of π to explicitly characterize dπ:

dπ : eiej 7→ ei · ej .

The relevant kernel can now be easily computed by observing the octonionic multiplication

table provided in section 1. We find that g2 is given by:

g2 =<e2e3 + e5e8, e2e3 + e6e7, e2e4 + e5e7, e2e4 − e6e8, (4.3)

e2e5 − e3e8, e2e5 − e4e7, e2e6 − e3e7, e2e6 + e4e8,

e2e7 + e3e6, e2e7 + e4e5, e2e8 + e3e5, e2e8 − e4e6,

e3e4 − e5e6, e3e4 − e7e8 > .

Since the exceptional homogeneous structure on S7 is normal, the orthogonal complement

of g2 under (any scalar multiple of) the Killing form is reductive. Therefore we take:

m = g⊥2 ⊂ spin(7).

The basis vectors of spin(7) given by the products eiej correspond to (twice) the natural

basis vectors of so(7) ∼= spin(7) given by the elementary antisymmetric matrices. In

particular:

eiej ↔ −2Eij .

Here Eij denotes the elementary antisymmetric matrix with (k, l) entry equal to:

(
Eij

)
kl
= δikδjl − δilδjk.
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4.2 The Exceptional Homogeneous Structure on the Round S7

These matrices are pairwise orthogonal for the Killing form, implying the same for the

basis vectors eiej . Armed with the above observations, we introduce:

X1
def
=

1

3
(e3e4 + e5e6 + e7e8)

X2
def
=

1

3
(e5e7 − e2e4 − e6e8)

X3
def
=

1

3
(e2e3 − e5e8 − e6e7)

X4
def
=

1

3
(e4e8 − e2e6 − e3e7)

X5
def
=

1

3
(e2e5 + e3e8 + e4e7)

X6
def
=

1

3
(e3e5 − e2e8 − e4e6)

X7
def
=

1

3
(e2e7 − e3e6 − e4e5)

Furthermore, we label the ordered basis (4.3) of g2 as X8, ..., X21. Finally, we introduce

the dual basis by (θi)i=1...21 so that:

θi
(
Xj

)
= δij for i, j = 1...21.

This completes the explicit description of the sought reductive decomposition.

The stabilizer G2 acts on the reductive complement through the adjoint action of Spin(7)

to yield the isotropy representation. This agrees with the lowest-dimensional non-trivial

irrep of G2. Hence, the exceptional homogeneous structure on S7 is isotropy irreducible.

Note that:

⟨X1, ..., X7⟩ and
〈
θ1, ..., θ7

〉
can be pushed forward by dπ to provide (co)frames for the tangent and cotangent spaces

of S7 at p1. This process can also be carried out for 0 < r ̸= 1. In terms of the standard
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4.2 The Exceptional Homogeneous Structure on the Round S7

basis of R8 (introduced in section 1), the resulting frames and coframes take the form:

X1 7→ re2, θ1 7→ ϵ2, (4.4)

X2 7→ re3, θ2 7→ 1

r
ϵ3, (4.5)

X3 7→ re4, θ3 7→ 1

r
ϵ4, (4.6)

X4 7→ re5, θ4 7→ 1

r
ϵ5, (4.7)

X5 7→ re6, θ5 7→ 1

r
ϵ6, (4.8)

X6 7→ re7, θ6 7→ 1

r
ϵ7, (4.9)

X7 7→ re8, θ7 7→ 1

r
ϵ8. (4.10)

In the sequel we slightly abuse notation by omitting the application of dπ. Note however

that these vectors/ covectors do not admit well defined left invariant extensions. Indeed,

the isotropy representation has no fixed points (it is irreducible). This demonstrates that

while S7 is parallelizable (for topological reasons) its tangent bundle doesn’t admit an

SO(8) invariant (not even Spin(7) invariant) trivialization. This is a consequence of the

failure of associativity for the octonionic product and the corresponding insufficiency of

the latter to equip S7 with a Lie group structure.

Nevertheless, the standard Spin(7) structure (g,Φ) on R8 is Spin(7) invariant. Conse-

quently, g and Φ show up as fixed points of appropriate tensor powers of the isotropy

action. Note however that all other tensors involved in the flat CY-4 model are not Spin(7)-

invariant.

Incorporating the radial unit vector ∂r to the frame ⟨X1, ..., X7⟩ and its dual dr to the

coframe
〈
θ1, ..., θ7

〉
, we obtain bases for TprR8 and Tpr(R8)⋆ along the reference ray (pr)r>0.

Using (4.4)-(4.10) and the expressions found in section 1, we find:

ω = dr ∧ rθ1 + r2
(
θ23 + θ45 + θ67

)
,

g = dr2 + r2
(
θ23 + θ45 + θ67

)
,

95



4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles and
Invariant Connections

J =
1

r
dr ⊗X1 − rθ1 ⊗ ∂r + θ2 ⊗X3 − θ3 ⊗X2 + θ4 ⊗X5 − θ5 ⊗X4 + θ6 ⊗X7 − θ7 ⊗X6,

Re (Ω) = dr ∧ r3
(
θ246 − θ257 − θ347 − θ356

)
+ r4

(
θ1247 − θ1256 − θ1346 + θ1357

)
,

Im (Ω) = dr ∧ r3
(
θ247 + θ256 + θ346 − θ357

)
+ r4

(
θ1246 − θ1257 − θ1347 − θ1356

)
.

Finally, the standard Cayley calibration takes the form:

Φ = dr∧r3
(
θ246 − θ257 − θ347 − θ356 + θ123 + θ145 + θ167

)
+r4

(
θ1247 − θ1256 − θ1346 + θ1357 + θ2345 + θ2367 + θ4567

)
,

Observe that only g and Φ are stabilized by G2—i.e. are extendable by left translations.

The other tensors extend smoothly, but not Spin(7)-equivariantly.

4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles

and Invariant Connections

Having completed our discussion of the geometry that hosts the standard octonionic in-

stanton, we now address the gauge-theoretic setup of the construction.

We take the structure group of the gauge theory to be equal to Spin(7). As we shall

see, all non-flat Spin(7) invariant Spin(7) instantons over R8 with structure group Spin(7)

are irreducible, meaning that choosing any smaller compact Lie group that occurs as a

subgroup of Spin(7) would be futile.

4.3.1 The Homogeneous Bundle

Homogeneous bundles with fiber Spin(7) over the exceptional homogeneous structure on

S7 are classified by Lie group maps:

λ : G2 → Spin(7).

We do not go through the process of classifying all such maps and instead focus on the

bundle Pι corresponding to the inclusion ι of G2 in Spin(7) as the stabilizer of p1 ∈ S7.

Our first task is to identify this bundle topologically.
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4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles and
Invariant Connections

In general, for a naturally reductive homogeneous space G/H with reductive complement

m, the isotropy representation yields a map:

λ : H → Gl(m).

In the presence of a compatible metric and orientation the target becomes SO(m). The

bundle Pλ corresponding to the homomorphism λ is then the (oriented orthonormal) frame

bundle of G/H. In this case, the isotropy representation is the unique 7-dimensional irrep

of G2. Identifying it with R7 using the Xi basis and noting that we do indeed have a

compatible metric and orientation, we obtain a map:

µ1 : G2 → SO(7).

This corresponds to the orthonormal oriented frame bundle of S7. Since the latter is

parallelizable, this bundle is trivial. Note however that µ1 is not trivial (i.e. not identically

equal to 1). It follows that the even though:

Pµ1
∼= FrSO

(
S7
)
∼= S7 × SO(7)

holds at the topological level, the homogeneous structure on Pµ1 doesn’t match up with

the trivial one on the right-hand-side. In particular, there is no Spin(7) equivariant trivi-

alization -an observation we arrived at earlier as well.

Composing the inclusion:

ι : G2 ↪→ Spin(7)

with the two sheeted covering map:

πSpin(7) : Spin(7) ↠ SO(7),

we obtain a map:

µ2 : G2 ↪→ Spin(7) ↠ SO(7).

This yields a 7-dimensional representation of G2. There is precisely one non-trivial irrep of

G2 with dim(V ) ≤ 7. Since µ2 is non-trivial, it must be isomorphic to µ1. In particular, the
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4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles and
Invariant Connections

maps µ1 and µ2 are element-conjugate and hence define equivariantly isomorphic bundles.

We conclude that after applying πSpin(7), ι corresponds to Pµ1 : the topologically trivial

(oriented orthonormal) frame bundle of S7 with the non-trivial homogeneous structure

associated to µ1. In particular, the diagram:

Spin(7)

G2 SO(7)
µ2

ι πSpin(7)

exhibits Pι as the (unique) spin structure of S7. Representing both bundles by the standard

quotient construction, the 2-sheeted covering map:

Pι ↠ Pµ2

can be constructed explicitly from the homomorphism πSpin(7). Since the spin structure of

S7 is trivial, we finally conclude that (topologically):

Pι
∼= Spin

(
TS7

)
∼= S7 × Spin(7).

Since ι is not trivial, this identification is not equivariant.

4.3.2 The Canonical Invariant Connection

We now turn to the classification of invariant connections on P1. Notice that in the context

of our study, the symmetry group matches the structure group. This is a coincidence, and

there is no relationship between the corresponding Lie algebras. To avoid confusion, we

distinguish them by introducing the alternative notation:

spin(7) = ⟨β1, ..., β21⟩

for the Lie algebra of the structure group. These vectors are defined exactly likeX1, ..., X21,

but live in a different copy of the Lie algebra. This prompts us to distinguish them

notationally.

98



4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles and
Invariant Connections

We also introduce the following notation for the structure constants of spin(7) in the

X1, ..., X21 frame: [
Xi, Xj

]
= Ck

ijXk.

The constants Ck
ij can be computed explicitly. The calculation is long and tedious so we

choose to omit it. However, we wish to remark the following two properties that will play

a central role in subsequent computations. First, we have:

Ck
ij = 0 when k = 1, ..., 7, i, j = 8, ..., 21. (4.11)

This follows by noting that the vectors ⟨X8, ..., X21⟩ span g2, which is a subalgebra. Fur-

thermore, we have:

Ck
ij = 0 when i = 1, ..., 7, j, k = 8, ..., 21. (4.12)

The canonical invariant connection corresponds to the differential of the classifying homo-

morphism. In this case, we obtain:

Acan = dι =
21∑
i=8

θi ⊗ βi.

We wish to compute its curvature. We have:

FAcan = dAcan +
1

2
[Acan, Acan] .

The first term is computed as follows:

dAcan = d

21∑
k=8

θk ⊗ βk

=

21∑
k=8

dθk ⊗ βk

= −1

2

21∑
k=8

Ck
ijθ

ij ⊗ βk.

= −
∑

i,j=1...21
i<j

k=8...21

Ck
ijθ

ij ⊗ βk.
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For the second term, we calculate:

1

2
[Acan, Acan] =

1

2

 ∑
i=8...21

θi ⊗ βi,
∑

j=8...21

θj ⊗ βj


=

1

2

∑
i,j=1...21

θij ⊗
[
βi, βj

]
=

∑
i,j=1...21

i<j

θij ⊗
[
βi, βj

]

=
∑

i,j=1...21
i<j

k=1...21

Ck
ijθ

ij ⊗ βk.

Summing and using properties (4.11) and (4.12), we obtain:

FAcan = −
∑

i,j=1...21
i<j

k=8...21

Ck
ijθ

ij ⊗ βk +
∑

i,j=1...21
i<j

k=1...21

Ck
ijθ

ij ⊗ βk

= −
∑

i,j=1...7
i<j

k=8...21

Ck
ijθ

ij ⊗ βk. (4.13)

We see that Acan is not flat. Inspecting (4.13) we find that its curvature tensor spans

g2 ⊂ spin(7), implying that:

Hol (A) = G2.

The reduction theorem then guarantees that A is reducible to a sub-bundle with fiber

G2. This bundle is homogeneous and corresponds to the identity map. The inclusion

ι : G2 ↪→ Spin(7) extends the range of IdG2 to Spin(7). Describing PIdG2
and Pι by the

standard quotient construction, ι defines an explicit embedding of the former in the latter.

We thus have at our disposal an explicit description of the G2-bundle that Acan reduces to.

One might wonder why we did not choose to work directly with PIdG2
. Even though Acan

is reducible, all (non-flat) Spin(7) invariant Spin(7) instantons over Pι are irreducible, as

we shall shortly discover.
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4.3 Spin(7) Equivariant Gauge Theory on S7: Homogeneous Bundles and
Invariant Connections

4.3.3 The Space of Invariant Connections

Invariant connections on Pι correspond to G2 equivariant maps:

(m,Ad ◦ ι) →
(
spin(7),Ad ◦ ι

)
.

Noting that the domain is just an irrep appearing in the decomposition of the target, and

that Schur’s lemma applies in full to odd-dimensional real representations, we find that:

HomG2

(
m, spin(7)

)
= R.

Here, the scalar λ corresponds to λιm, where ιm is the inclusion of the reductive complement

m in spin(7).

The space of invariant connections is a 1-dimensional affine space:

Ainv (Pι) = Acan +HomG2

(
m, spin(7)

)
.

A general element A ∈ Ainv (Pι) takes the form:

A = Acan + Λ,

where:

Λ = a
7∑

k=1

θk ⊗ βk, a ∈ R.

The associated curvature tensor is given by:

FA = FAcan + dAcanΛ +
1

2
[Λ,Λ] . (4.14)

We compute the second and third summands individually. For the second one, note that

by definition:

dAcanΛ = dΛ + [Acan,Λ] .
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The first term takes the following form:

dΛ = d

7∑
k=1

a θk ⊗ βk

= a
7∑

k=1

dθk ⊗ βk

= −a
2

7∑
k=1

Ck
ijθ

ij ⊗ βk

= −a
∑

i,j=1...21
i<j

k=1...7

Ck
ijθ

ij ⊗ βk

= −a
∑

i,j=1...7
i<j

k=1...7

Ck
ijθ

ij ⊗ βk − a
∑

i=1...7
j=8...21
k=1...7

Ck
ijθ

ij ⊗ βk,

where we have used the Maurer-Cartan relations and property (4.11). We perform analo-

gous calculations for the second term:

[Acan,Λ] =

 21∑
i=8

θi ⊗ βi, a
7∑

j=1

θj ⊗ βj


= a

∑
i=8...21
j=1...7

θij ⊗
[
βi, βj

]
= a

∑
i=1...7
j=8...21

θij ⊗
[
βi, βj

]

where in the final step we used that both θij and
[
βi, βj

]
are antisymmetric in i and j, so

that their tensor product is symmetric. Continuing, we find:

[Acan,Λ] = a
∑

i=1...7
j=8...21
k=1...21

Ck
ijθ

ij ⊗ βk

= a
∑

i=1...7
j=8...21
k=1...7

Ck
ijθ

ij ⊗ βk.
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Summing, we finally complete our calculation of the second summand in (4.14):

dAcanΛ = −a
∑

i,j=1...7
i<j

k=1...7

Ck
ijθ

ij ⊗ βk − a
∑

i=1...7
j=8...21
k=1...7

Ck
ijθ

ij ⊗ βk + a
∑

i=1...7
j=8...21
k=1...7

Ck
ijθ

ij ⊗ βk

= −a
∑

i,j=1...7
i<j

k=1...7

Ck
ijθ

ij ⊗ βk. (4.15)

The third summand takes the following form:

1

2
[Λ,Λ] =

1

2

 7∑
i=1

aθi ⊗ βi,
7∑

j=1

aθj ⊗ βj


=

∑
i,j=1...7

i<j
k=1...21

a2Ck
ijθ

ij ⊗ βk (4.16)

Finally, using (4.13), (4.14), (4.15) and (4.16), we obtain:

FA =
7∑

k=1

 ∑
i,j=1..7
i<j

Ck
ij

(
a2 − a

)
θij

⊗ βk +
21∑
k=8

 ∑
i,j=1..7
i<j

Ck
ij

(
a2 − 1

)
θij

⊗ βk. (4.17)

4.4 The Standard Octonionic Instanton

The Spin(7) action on R8 and the choice of reference points pr (introduced in (4.2)) induce

a polar coordinate system:

R8 − {0} ∼= (0,∞)× S7.

Projecting to the second factor (i.e. remembering only the angular coordinates), we obtain

a map:

π : R8 − {0} ↠ S7.

Pulling Pι back to R8−{0} through π we obtain a Spin(7) bundle π⋆Pι. We slightly abuse

notation by suppressing the pullback operation and denoting this simply by Pι. Its smooth

homogeneous extensions across the origin are parameterized by Lie group maps:

λ : Spin(7) → Spin(7)
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4.4 The Standard Octonionic Instanton

extending the inclusion ι : G2 ↪→ Spin(7). One such map is given by the identity:

IdSpin(7) : Spin(7) → Spin(7).

The associated smooth homogeneous Spin(7) bundle PIdSpin(7) over R8 hosts the standard

octonionic instanton. Note that it is trivial, but not equivariantly so.

Invariant connections over the complement of the origin restrict to invariant connections

on each homogeneous principal orbit S7. These objects have been classified in the previous

section. Since invariant connections may always be brought to temporal gauge (no dr com-

ponent) through an equivariant gauge transformation [54], a general invariant connection

is -up to gauge- given by:

A = Acan + Λ,

where we have slightly abused notation to denote by Acan the pullback by π of the canonical

invariant connection on Pι. Furthermore:

Λ = a(r)

7∑
k=1

θk ⊗ βk.

Using formula (4.17) and the Leibniz rule for the exterior derivative, we arrive at:

FA =

7∑
k=1

dadr dr ∧ θk + ∑
i,j=1..7
i<j

Ck
ij

(
a2 − a

)
θij

⊗ βk

+

21∑
k=8

 ∑
i,j=1..7
i<j

Ck
ij

(
a2 − 1

)
θij

⊗ βk. (4.18)

We now wish to impose the Spin(7) instanton equations on FA:

π27FA = 0. (4.19)

Note that the projector π27 has been explicitly computed in section 1—albeit in a different

coordinate system. Using (4.4)-(4.10), we translate the results to the relevant frame and
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4.4 The Standard Octonionic Instanton

find that for k = 1...7, equation (4.19) amounts to the ODE:

1

r

da

dr
=

2

r2
a (a− 1) . (4.20)

Furthermore, all components corresponding to k = 8...21 are annihilated by π27 with no

constraint on a. It follows that the Spin(7) instanton equation for Spin(7) invariant con-

nections on PIdSpin(7) is equivalent to the ODE (4.20). This is a nonlinear, nonautonomous

singular equation with an order 1 pole at r = 0. Luckily it can be solved explicitly. Other

than the trivial solution a = 0, there is a one parameter family of solutions:

aλ(r) =
1

λr2 + 1
, λ ∈ R. (4.21)

Inspecting (4.21), we find that as λ→ ±∞, aλ converges pointwise for r > 0 to a = 0. This

motivates us to include the trivial solution a = 0 in the family αλ for λ = ∞. Ultimately,

the aλ exhaust all possible local solutions when λ varies in the circle R ∪ {∞}.

Let Aλ denote the corresponding Spin(7) instanton. We immediately observe that when

λ < 0, Aλ blows up in finite time:

rblowup (λ) = |λ|−
1
2 .

Furthermore when λ = +∞ (i.e. α = 0), we obtain the dilation invariant solution equal to

Acan on each principal orbit S7. We use (4.18) and the Euclidean metric to find that:

|FAλ
| = O(r−2) as r → 0.

In particular, the curvature tensor blows up so that Aλ has an essential singularity at

r = 0: it does not smoothly extend across the origin on any Spin(7) bundle.

Since we are interested in global instantons we restrict to 0 ≤ λ <∞. One can follow the

technique of Eschenburg and Wang [21] to establish that—in this case—the asymptotics

of αλ near r = 0 are suitable for smooth extension across the origin. Furthermore, these
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4.4 The Standard Octonionic Instanton

solutions are evidently smooth for r > 0. It follows that:

Aλ = Acan +
1

λr2 + 1

7∑
k=1

θk ⊗ βk where 0 ≤ λ <∞, (4.22)

is a globally smooth Spin(7) instanton.

When λ = 0 one can use (4.18) to find that Aλ is flat. Since R8 is simply connected,

PIdSpin(7) has a unique flat connection up to gauge. It is given by the product structure.

This solution is trivial and we ignore it. Note that it is asymptotic to Acan +
∑7

k=1 θ
k ⊗βk

rather than Acan.

When 0 < λ < ∞, Aλ is known as the standard octonionic instanton. The Fubini-Nicolai

solution [27] sits at λ = 1. The other elements of the family are obtained by dilation.

Examining (4.18) and varying the input tangent vectors, we find that FAλ
spans the full

Lie algebra spin(7). The Ambrose-Singer holonomy theorem then implies that:

Hol (Aλ) = Spin(7) for λ > 0.

Consequently, Aλ is irreducible. This finally justifies our choice of large structure group:

choosing a smaller group would not yield any results at all.

It is clear from (4.22) that the standard octonionic instanton is asymptotically conical of

rate −2 and with limiting connection given by Acan. The latter is G2, but not contact.

The above considerations are sufficient to obtain a complete characterization of the moduli

space of invariant Spin(7) instantons in this context. Equivariant gauge transformations

on PIdSpin(7) are parameterized by the center of Spin(7), which is empty. It follows that all

the Aλ lie in distinct equivariant gauge equivalence classes. Since Spin(7) is semisimple,

modding out invariant solutions by equivariant gauge transformations retrieves the invari-

ant locus in the full moduli space [54]. It follows that the invariant Spin(7) instantons

form—up to gauge—a copy of the positive real line (0,∞). Note that this moduli space is

entirely contained in Mµ(PIdSpin(7) , Acan) with rate µ = −2+ ϵ for any ϵ > 0. Furthermore,
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4.4 The Standard Octonionic Instanton

it is noncompact with missing limits at both its left and right endpoints.

As λ → 0 the noncompactness is manifested by a shift in the limiting connection. The

missing limit is the product structure. It is AC (in fact dilation invariant), but—as observed

earlier—it converges to Acan +
∑7

k=1 θ
k ⊗ βk, rather than Acan. This is an interesting

noncompactness phenomenon special to the open manifold case: energy escapes toward

infinity modifying the limiting connection, but this leads to no topological shift. Perhaps

this behaviour is typical of Spin(7) instantons over AC CY fourfolds. The next chapter is

concerned with a similar analysis on the Stenzel space where this sort of phenomenon will

be met once more.

As λ → ∞ the instantons Aλ attempt to converge to the dilation invariant extension of

Acan. This solution has an essential point-singularity at the origin as demonstrated by the

unboundedness of its curvature tensor. It thus does not smoothly extend to any bundle

and convergence is only local.
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5 SO(5)-Equivariant Instantons on the Stenzel Space

5.1 The Stenzel Space

The smooth manifold underlying the Stenzel space is T ⋆S4. We introduce the natural

cohomogeneity-one SO(5)-action on it and derive general formulae expressing invariant

Kähler structures coming from global invariant Kähler potentials. We finally solve the

(dimensionally reduced) Monge-Ampère equation associated to the Calabi-Yau condition

to obtain the Stenzel CY-4 structure. The overall technique for finding invariant objects

in cohomogeneity one is essentially the same as in the paper (Lotay-Oliveira [43]). The

calculations for SO(4)-invariant Kähler structures on T ⋆S3 have been carried out in the

paper (Oliveira [55]). Our notation is the same as the one employed there.

5.1.1 Models for T ⋆S4 and the Cohomogeneity One SO(5) Action

We will work with two different models for the space T ⋆S4. It is helpful to introduce both

of them, as they capture different aspects of the structures we wish to study. The first

model elucidates the SO(5) symmetry; the second the complex structure.

The manifold T ⋆S4 admits a natural embedding into R10 as follows:

T ⋆S4 =
{
(x, y⊺) | |x| = 1, ⟨x, y⟩ = 0

}
⊂ T ⋆R5.

The group SO(5) acts on the left through its natural vector action (and its linearization

on forms):

g (x, y⊺)
def
=
(
gx, y⊺g−1

)
. (5.1)

We now compute the orbits and isotropy groups of (5.1):

Proposition 5.1. The principal orbits of (5.1) are the positive radius sphere bundles of

T ⋆S4 in the metric inherited by R10. They are 7 dimensional Stiefel manifolds with isotropy

group isomorphic to SO(3). The singular orbit is S4 sitting in its cotangent bundle as the

zero section. Its isotropy subgroup is isomorphic to SO(4).
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5.1 The Stenzel Space

Proof. Let pR− =
(
x, yR−

)
∈ T ⋆S4 be the point:

x
def
= (1, 0, 0, 0, 0)⊺ , yR−

def
= (0, R−, 0, 0, 0) . (5.2)

An element g ∈ SO(5) stabilizes pR− if and only if:

gx = x and yg−1 = y.

The first equation forces the first column of g to vanish. Since the columns are orthonormal,

this forces g to lie in the lower right diagonal copy of SO(4). Repeating the same argument,

we see that the second equation forces the SO(4) block to lie in the lower right diagonal

copy of SO(3). Matrices lying in this subgroup definitely stabilise pR− and hence we have:

StabSO(5)(pR−) = SO(3).

Since the action of SO(5) is transitive on S4 and the action of SO(4) is transitive on S3,

the orbit of pR− is precisely the R−-sphere bundle in T ⋆S4:

OR− = SO(5)pR− = SR−

(
T ⋆S4

)
=

SO(5)

SO(3)
. (5.3)

Now work with the point:

p0 = (x, 0)

where x is as in (5.2). Applying the same argument used in the positive radius case we see

that:

StabSO(5)(p0) = SO(4).

Using the same reasoning as above, we immediately see that the orbit is the zero section:

SO(5)p0 = S4 =
SO(5)

SO(4)
.

For any vector bundle E over a manifold M , we can write the following decomposition at

the topological level:

E −M ∼= (0,∞)× S (E)
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5.1 The Stenzel Space

where S(E) denotes the unit sphere bundle of E. In our case, this splitting takes the form:

T ⋆S4 − S4 ∼= (0,∞)× S1

(
T ⋆S4

)
(5.4)

where the subscript 1 denotes the radius. This identification is explicitly given by:

(R−, ω) 7→ R−ω.

where ω ∈ S1
(
T ⋆S4

)
and R− > 0.

Equation (5.2) provides us with a natural choice of reference point on each principal orbit

OR− . This choice identifies OR− with the left coset space SO(5)
SO(3) as in (5.3). Combining the

above we may write:

T ⋆S4 − S4 ∼= (0,∞)× SO(5)

SO(3)
,

where: (
R−, g SO(3)

)
7→ gpR− . (5.5)

Note however, that the unit sphere bundle is twisted as can be shown, for instance, by the

hairyball theorem.

We may also realise T ⋆S4 as a complex submanifold of C5. Consider the quadratic poly-

nomial:

F
def
= z21 + ...+ z25 .

Since F is holomorphic, we may compute its derivative as:

dF = ∂F =

5∑
j=1

2zidz
i. (5.6)

Since every point p in F−1(1) must have a non-zero coordinate, dF|p does not vanish. It

follows that 1 is a regular value for F . Since F is holomorphic, we see that:

X8 def
= F−1(1) (5.7)

is a complex submanifold of C5 and hence Kähler. We split the complex coordinates of C5
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5.1 The Stenzel Space

into their real and imaginary parts:

zj = xj + iyj .

We introduce the functions:

r2
def
= |z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2.

R2
+

def
= x21 + x22 + x23 + x24 + x25.

R2
−

def
= y21 + y22 + y23 + y24 + y25.

The following relations follow:

R2
+ =

r2 + 1

2
, R2

− =
r2 − 1

2
, r2 = R2

+ +R2
−.

Define the map:

Ψ : C5 → R10,

(z1, ..., z5) 7→
(
x

R+
, y⊺
)
. (5.8)

It may be easily seen that this cuts down to a diffeomorphism:

X8 ∼−→ T ⋆S4.

We therefore conclude that:

Proposition 5.2. The complex quadric X8 is diffeomorphic to the total space T ⋆S4.

This identification endows T ⋆S4 with a complex structure. Seeing as we are interested in

studying T ⋆S4 as a CY 4-fold, from here on we mostly work in the complex model. The

minimum value of r on X8 is r = 1 and the associated level set corresponds to the singular

orbit SO(5)
SO(4) . The latter sits inside X8 as an embedded totally real submanifold (Patrizio

[58]). When working in the complex model, we will modify the notation of the previous

subsection and relabel the point pR− by pr. We then have:

pr
def
= (R+, iR−, 0, 0, 0)

⊺ . (5.9)
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5.1 The Stenzel Space

With this definition pr corresponds to pR− under the identification (5.8). Furthermore, we

will denote the principal orbit at radius r > 1 as Or.

Our next task it to understand how to work with invariant tensors on X8. The goal is

to obtain a natural frame for TprX8 along the reference ray. To begin with, the following

proposition is an immediate consequence of (5.6):

Proposition 5.3. At a point p ∈ X8 ⊂ C5, with p5 ̸= 0 we have:

TpX
8 =

{(
v1, v2, v3, v4,−

1

p5
(p1v1 + p2v2 + p3v3 + p4v4)

)⊺

s.t. vj ∈ C

}
. (5.9)

We introduce a natural choice of a radial vector ∂r on the complement of the singular orbit:

Proposition 5.4. There exists a unique smooth vector field ∂r on X8 − S4 characterised

by the following properties:

1. The vector field ∂r is tangent to (0,∞) in the splitting (5.4).

2. dr (∂r) = 1.

Let (x, y) ∈ X8. The vector field ∂r can be expressed as follows in terms of the standard

coordinate vector fields on C5:

∂r|(x,y)
=

r

2R2
+

 5∑
j=1

xj∂
xj
|(x,y)

+
r

2R2
−

 5∑
j=1

yj∂
yj|(x,y)

 (5.10)

Evaluating the expression (5.10) at pr we obtain:

∂r =
r

2R+
∂x1 +

r

2R−
∂y2 . (5.11)

To complete the frame, we study the symmetries along the principal orbits. The Lie algebra

so(5) consists of all 5×5 antisymmetric matrices under the commutator bracket. It is given

by:

so(5) = Span
{
Cij | 1 ≤ i < j ≤ 5

}
,

where Cij = eij − eji and eij is the matrix with ij entry equal to 1 and all other entries
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5.1 The Stenzel Space

vanishing. The bracket is characterized by:

[
Cij , Cik

]
= −Cjk, (5.12)[

Cij , Ckl

]
= 0 for i ̸= j ̸= k ̸= l. (5.13)

We write:

X1 = C12, X2 = C13, X3 = C14, X4 = C15, X5 = C23

X6 = C24, X7 = C25, X8 = C34, X9 = C35, X10 = C45.

and we denote the dual one-form of Xi by θi.

The adjoint representation of SO(5) on its Lie algebra can be restricted to SO(3)< SO(5).

An element g ∈ SO(3) then acts on A ∈ so(5) by conjugation. It can be easily seen that

this representation splits as:

so(5) = ⟨X1⟩ ⊕ ⟨X2, X3, X4⟩ ⊕ ⟨X5, X6, X7⟩ ⊕ ⟨X10,−X9, X8⟩ (5.14)

The first summand is the trivial representation. The other three are isomorphic to the

vector representation of SO(3) on R3: the order in which the vectors appear corresponds

to the standard basis (∂x, ∂y, ∂z). The Lie algebra of the stabilizer is given by the final

summand. We define the natural reductive complement:

m = ⟨X1⟩ ⊕ ⟨X2, X3, X4⟩ ⊕ ⟨X5, X6, X7⟩. (5.15)

Owing to (5.14), this is closed under the action of AdSO(3) and its left invariant extension

gives the canonical invariant connection on the SO(3)-bundle:

SO(3) ↪−→ SO(5) ↠ Or.

Given our choice of pr, the right arrow is given by:

π : g 7→ gpr.
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Using (5.1) and (5.8), we find that:

dπ|Id : m
∼−→ TprOr

acts on a matrix A by:

A 7→
(
R+c1(A),−R−r2(A)

)
, (5.16)

where c1(·) denotes the operation of taking the first column and r2(·) denotes the operation

of taking the second row. Using (5.16) we obtain the equations:

dπ|IdX1 = −R+∂x2
|pr

+R−∂y1|pr
(5.17)

dπ|IdX2 = −R+∂x3
|pr

(5.18)

dπ|IdX3 = −R+∂x4
|pr

(5.19)

dπ|IdX4 = −R+∂x5
|pr

(5.20)

dπ|IdX5 = −R−∂y3|pr
(5.21)

dπ|IdX6 = −R−∂y4|pr
(5.22)

dπ|IdX7 = −R−∂y5|pr
(5.23)

Evidently, X1, X2, X3, X4 correspond to infinitesimal motions in the horizontal directions

along the base S4. The vectors X5, X6, X7 correspond to infinitesimal vertical motions

along the fiber of the sphere bundle.

The only vector invariant under AdSO(3) is X1. It extends to a globally defined, SO(5)-

invariant vector field over Or. Ultimately, it will show up as the Reeb field over the

asymptotic link of the Stenzel space. Its dual is related to the canonical cotangent sym-

plectic structure. Since the tautological (Liouville) 1-form θL on T ⋆S4 is invariant under

diffeomorphisms lifted from the base, it ought to show up among the invariant 1-forms.

An easy calculation demonstrates that it is given by:

θL = −R−θ
1. (5.24)
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Using (5.11) and (5.17)-(5.23) we conclude that (at pr):

dx1 =
r

2R+
dr dy1 = R−θ

1 (5.25)

dx2 = −R+θ
1 dy2 =

r

2R−
dr (5.26)

dx3 = −R+θ
2 dy3 = −R−θ

5 (5.27)

dx4 = −R+θ
3 dy4 = −R−θ

6 (5.28)

dx5 = −R+θ
4 dy5 = −R−θ

7 (5.29)

Using equations (5.25)-(5.29) we obtain:

dz1 =
r

2R+
dr + iR−θ

1 (5.30)

dz2 = −R+θ
1 + i

r

2R−
dr (5.31)

dz3 = −R+θ
2 − iR−θ

5 (5.32)

dz4 = −R+θ
3 − iR−θ

6 (5.33)

dz5 = −R+θ
4 − iR−θ

7 (5.34)

5.1.2 SO(5)-Invariant Kähler Structures

We now turn to the problem of finding SO(5)-invariant Kähler structures on X8. Since

the second cohomology group vanishes, any Kähler structure comes from a global Kähler

potential. We therefore seek a Kähler form ω on X8 coming from a potential function

F(r2):

ω ∈ Λ1,1T ⋆M,

ω =
i

2
∂∂F(r2).

This is automatically SO(5)-invariant. The formulae from the previous section allow us to

write ω|pr in terms of invariant combinations of the θi. We calculate:

ω =
i

2
∂∂F(r2) =

i

2
∂
(
F ′(r2)∂r2

)

=
i

2

(
F ′′(r2)∂r2 ∧ ∂r2 + F ′(r2)∂∂r2

)
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=
i

2
F ′(r2)

5∑
j=1

dzj ∧ dzj + i

2
F ′′(r2)

5∑
j=1

zjdzj ∧
5∑

j=1

zjdzj . (5.35)

In the last step we have explicitly calculated ∂r2, ∂r2 and ∂∂r2 using the standard coor-

dinates in C5. For this calculation, it is useful to write:

r2 =
5∑

j=1

zjzj

We now substitute (5.30)-(5.34) into (5.35) to obtain:

ω = P (r)dr ∧ θ1 +Q(r)
(
θ25 + θ36 + θ47

)
, (5.36)

where we have introduced the functions:

P (r)
def
=
r

2

(
R+

R−
+
R−
R+

)
F ′(r2) + 2rR+R−F ′′(r2), (5.37)

Q(r)
def
= R+R−F ′(r2). (5.38)

Direct calculation shows that the volume form associated to the Kähler structure defined

by ω is given by:

Volω =
ω4

4!
= −PQ3dr ∧ θ1234567. (5.39)

We observe that ordering the basis vectors at pr in increasing index and with the radial

vector coming first gives a negatively oriented basis.

Having expressed the Kähler form in terms of invariant forms and the invariant potential

(formula in (5.36)), we now write down the complex structure J in this language and

proceed to derive an expression for the associated Kähler metric.

Recall that X8 is a complex submanifold of C5. As such, the complex structure J is

induced from the standard complex structure of the ambient space:

∂xj 7→ ∂yj , ∂yj 7→ −∂xj .
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Using equations (5.17)-(5.10), we discover:

JX1 = −2R+R−
r

∂r J∂r =
r

2R+R−
X1 (5.40)

JX2 =
R+

R−
X5 JX5 = −R−

R+
X2 (5.41)

JX3 =
R+

R−
X6 JX6 = −R−

R+
X3 (5.42)

JX4 =
R+

R−
X7 JX7 = −R−

R+
X4. (5.43)

The associated metric is given by:

g(·, ·) = ω(·, J ·).

Using this formula in conjunction with (5.36) and (5.40)-(5.43) we find that all the off-

diagonal components vanish and:

g(X1, X1) =
2R+R−

r
P, g(∂r, ∂r) =

r

2R+R−
P, (5.44)

g(X2, X2) = g(X3, X3) = g(X4, X4) =
R+

R−
Q, (5.45)

g(X5, X5) = g(X6, X6) = g(X7, X7) =
R−
R+

Q. (5.46)

We hence obtain:

g =
rP

2R+R−
dr ⊗ dr +

2R+R−P

r
θ1 ⊗ θ1

+
R+Q

R−

(
θ2 ⊗ θ2 + θ3 ⊗ θ3 + θ4 ⊗ θ4

)
(5.47)

+
R−Q

R+

(
θ5 ⊗ θ5 + θ6 ⊗ θ6 + θ7 ⊗ θ7

)
.

5.1.3 The Stenzel Calabi-Yau Structure

We are now interested in imposing the Calabi-Yau condition on the invariant Kähler struc-

tures discussed above. We begin by studying the canonical bundle of X8. We first prove it

is trivial by constructing an explicit holomorphic trivialization. We then derive a formula
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for this trivialization in terms of invariant forms.

Proposition 5.5. The bundle KX8 is holomorphically trivial.

Proof. Let Si ⊂ C5 be the open subset where zi ̸= 0. Introduce the following (n, 0)-form

on Si:

Ωi
def
=

1

zi
dzi+1 ∧ dzi+2 ∧ ... ∧ dzi−1 (5.48)

where the indices in 5.48 are reduced mod 5.

The forms ι⋆X8Ωi glue to a global holomorphic volume form on X8.

The first coordinate of pr does not vanish and hence we have:

Ω = Ω1 =
1

R+
dz2 ∧ ... ∧ dz5

Using formulae (5.30)-(5.34) and performing a lengthy calculation, we discover that:

Re(Ω) = R3
+θ

1234 −R+R
2
−

(
θ1267 + θ1537 + θ1564

)
+
r

2
dr ∧

(
R+

(
θ237 + θ264 + θ534

)
−
R2

−
R+

θ567

)
(5.49)

Im(Ω) =−R3
−θ

1567 +R2
+R−

(
θ1237 + θ1264 + θ1534

)
+
r

2
dr ∧

(
R−

(
θ267 + θ537 + θ564

)
−
R2

+

R−
θ234

)
(5.50)

Finally, we calculate the volume form associated to Ω. We first compute:

Ω ∧ Ω =
(
Re(Ω) + iIm(Ω)

)
∧
(
Re(Ω)− iIm(Ω)

)
= Re(Ω) ∧Re(Ω) + Im(Ω) ∧ Im(Ω)

We then use (5.49) and (5.50) to see that:

Ω ∧ Ω = −8rR2
+R

2
−dr ∧ θ1234567
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We can now easily compute:

VolΩ = (−1)
n(n−1)

2

(
i

2

)n

Ω ∧ Ω = −r
2
R2

+R
2
−dr ∧ θ1234567 (5.51)

The CY-4 condition is equivalent to volume compatibility:

Volω = VolΩ. (5.52)

This boils down to a Monge-Ampère-type equation for F(r2) with right hand side deter-

mined by Ω. In SO(5)-symmetry this reduces to an ODE. We derive the ODE and obtain

the solution explicitly. The Calabi-Yau metric obtained through this process is known as

the Stenzel metric (Stenzel [67], Oliveira [55]). Using (5.39) and (5.51), we see that (5.52)

is equivalent to the ODE:

PQ3 =
r

2
R2

+R
2
−. (5.53)

Unpacking the definitions of P (5.37) and Q (5.38), translates the equation to:

1 = r2F ′(r2)4 + (r4 − 1)F ′(r2)3F ′′(r2) (5.54)

We thus obtain a second order nonlinear ODE for F . Observe that the metric only depends

on F ′. This motivates us to introduce:

G(r2) def
= F ′(r2)4 (5.55)

Writing (5.54) in terms of G we obtain:

1 = r2G(r2) + (r4 − 1)

4
G′(r2) (5.56)

We thus reduce the equation to a first order linear ODE for F ′. This is soluble by hand

using the integrating factor technique. We write u = r2 and multiply the equation by
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4(u2 − 1) to obtain:

(u2 − 1)2
dG
du

+ 4u(u2 − 1)G(u) = 4(u2 − 1)

⇒ d

du

(
(u2 − 1)2G(u)

)
= 4(u2 − 1)

⇒(u2 − 1)2G(u) = 4

3
u3 − 4u+ C

⇒G(u) = 4

3

u3 − 3u+ C

(u2 − 1)2

(5.57)

We therefore have the solution:

F ′(r2) =

(
4

3

) 1
4

(
r6 − 3r2 + C

(r4 − 1)2

) 1
4

.

We would like to select the constant so that F ′ extends continuously at r2 = 1. This forces

us to take C = 2, so that the numerator of the fraction vanishes at r2 = 1. We obtain:

F ′(r2) =

(
4

3

) 1
4
(
r2 + 2

) 1
4(

r2 + 1
) 1

2

. (5.58)

Our task is to write down the functions P and Q in terms of r. The relation (5.54) gives:

F ′′(r2) =
1− r2F ′(r2)4

(r4 − 1)F ′(r2)3
.

Combining this with the relation (5.37) we obtain:

P (r) =
r

2

(
R+

R−
+
R−
R+

)
F ′(r2) + 2rR+R−

1− r2F ′(r2)4

(r4 − 1)F ′(r2)3
.

A short calculation gives:

P (r) =
r

2R+R−F ′(r2)3
.

Incorporating (5.58) we obtain:

P (r) =

(
3

4

) 3
4 r(r2 + 1)

(r2 + 2)
3
4 (r + 1)

1
2 (r − 1)

1
2

. (5.59)
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Similarly, we determine Q(r). Using (5.38) we obtain:

Q(r) =
1

2

(
4

3

) 1
4

(r2 + 2)
1
4 (r + 1)

1
2 (r − 1)

1
2 . (5.60)

Note that as r → 1, we have that P (r) → ∞ monotonically. This is merely a coordinate

singularity: ω is constructed using a globally smooth Kähler potential.

The Stenzel metric is left SO(5) invariant but not bi-invariant: its restriction on the prin-

cipal orbits does not agree with the Killing form. It does, however, enjoy a right U(1)

symmetry. This is in direct analogy to the Berger metrics on the Hopf fibration (Hitchin

[30]).

We now study how the norms of the basis vectors vary with r. Using (5.47) we observe

the following results:

|X1|2 =
(
3

4

) 3
4 (r2 + 1)

3
2

(r2 + 2)
3
4

, (5.61)

|∂r|2 =
(
3

4

) 3
4 r2(r2 + 1)

1
2

(r2 + 2)
3
4 (r + 1)(r − 1)

, (5.62)

|X2|2 = |X3|2 = |X4|2 =
1

2

(
4

3

) 1
4

(r2 + 1)
1
2 (r2 + 2)

1
4 , (5.63)

|X5|2 = |X6|2 = |X7|2 =
1

2

(
4

3

) 1
4 (r2 + 2)

1
4 (r + 1)(r − 1)

(r2 + 1)
1
2

. (5.64)

We observe that as r → 1, |∂r|2 blows up monotonically, |X1|2, |X2|2, |X3|2 and |X4|2

approach 1 and |X5|2, |X6|2, |X7|2 tend to 0. Recall that over the singular orbit, the kernel

of the projection map (5.16) extends to so(4) and X5, X6, X7 project to 0. Consequently,

the decay of their norms as r → 1 is a property true of any smooth metric on T ⋆S4.

The SO(4) orbit of pr is the round 3-sphere S3
ρ of radius:

ρ2 =
1

2

(
4

3

) 1
4 (r2 + 2)

1
4 (r + 1)(r − 1)

(r2 + 1)
1
2

.
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The 3-dimensional volume of S3
ρ is given by:

Vol
(
S3
ρ

)
= 2π2ρ3 =

2
1
4π2

3
3
8

(r2 + 2)
3
8 (r + 1)

3
2 (r − 1)

3
2

(r2 + 2)
3
4

.

The singular orbit is the round unit radius 4-sphere S4
1 with 4-dimensional volume equal

to 8π2

3 .

As discussed in section 1, a CY 4-fold is in a natural way a Spin(7) manifold. Recall

that the induced Cayley calibration can be written in terms of the Kähler form and the

holomorphic volume form:

Φ =
ω2

2
+Re(Ω). (5.65)

Using (5.36), we find that:

ω2 = 2PQdr ∧
(
θ125 + θ136 + θ147

)
+ 2Q2

(
θ2536 + θ2547 + θ3647

)
. (5.66)

Combining this with (5.49) and incorporating the results into (5.65), we obtain:

Φ = dr ∧

[
PQ

(
θ125 + θ136 + θ147

)
+
rR+

2

(
θ237 + θ264 + θ534

)
−
rR2

−
2R+

θ567

]

+R3
+θ

1234 −R+R
2
−

(
θ1267 + θ1537 + θ1564

)
+Q2

(
θ2536 + θ2547 + θ3647

)
. (5.67)

We immediately make the following observation. When we pull back Φ to the singular S4

by the inclusion map, only the θ1234 term survives. Furthermore, on S4 we have r = 1.

We therefore get:

ι⋆S4Φ = θ1234. (5.68)

We conclude that the singular orbit is calibrated for Φ and is therefore a Cayley submanifold

of the Spin(7) manifold (X8,Φ). As such, it is volume minimizing in its homology class

(Joyce [32]).

Modifying the radial coordinate so that the corresponding radial vector is asymptotically of

unit length and expanding the Stenzel metric at infinity, one finds that it is asymptotically
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5.2 SO(5)-Invariant Instantons with Structure Group U(1)

conical of rate µ = −8
3 . In fact, this is the optimal rate in the sense that it cannot be

improved upon by deforming the chosen diffeomorphism (Conlon–Hein [10]):

Ψ : X8 \ S4 ∼−→ (0,∞)× SO(5)

SO(3)
.

In particular, on setting:

s
def
=

(
4

3

) 5
8

r
3
4 , (5.69)

one finds that:

|g − hcone|hcone = O(s−
8
3 ) as s→ ∞. (5.70)

Here, the conical metric:

hcone = ds⊗ ds+ s2h (5.71)

is defined over X8 \ S4 and it is built on the homogeneous link
(
SO(5)
SO(3) , h

)
, where:

h =
9

16
θ1 ⊗ θ1 +

3

8

7∑
j=2

θj ⊗ θj .

We briefly consider uniqueness issues for the above construction. The form Ω is not the only

possible choice of holomorphic trivialization for KX8 . Others may be constructed through

multiplication by a nowhere-vanishing holomorphic function. Scaling by non-trivial SO(5)-

invariant functions will yield new SO(5)-invariant holomorphic trivializations. Changing

Ω can affect the resulting metric and Cayley calibration through (5.52) and (5.65). An

obvious modification is to scale by non-zero complex numbers. Scaling by non-negative

reals modifies the Calabi–Yau equation, which ultimately results in rescaling the metric.

Scaling by elements of U(1) does not affect (5.52) and hence leaves the metric unaltered.

It does however alter the Cayley calibration. The trivialization Ω has been chosen in

hindsight for the special geometric features it entails: it makes the radius of the round S4

equal to 1 (which serves as a natural normalization condition for the rescaling freedom)

and furthermore guarantees that the latter is calibrated for the induced Spin(7) structure.

5.2 SO(5)-Invariant Instantons with Structure Group U(1)

We now have all the ingredients required to study invariant instantons on
(
T ⋆S4, J, ω,Ω

)
.

We begin by studying the abelian case. The first task is to apply the results of section 2
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5.2 SO(5)-Invariant Instantons with Structure Group U(1)

in order to classify the relevant bundles and connections. Once this is settled, we proceed

to derive the ODEs describing the evolution of invariant solutions to the gauge theoretic

equations of interest. The SO(5)-invariant Spin(7) instanton equations turn out to be

identical to the SO(5)-invariant HYM equations: the two problems are locally equivalent.

We are able to solve the ODEs explicitly. Using the explicit solution, we observe that the

corresponding local instantons blow up near the singular orbit S4. We thus obtain a global

nonexistence result.

5.2.1 Homogeneous Bundles and Invariant Connections with Structure Group

U(1)

Let r > 1. The homogeneous U(1) bundles over the orbit Or correspond to element-

conjugacy (i.e. conjugation by a fixed element in the target) classes of Lie group homo-

morphisms:

λ : SO(3) → U(1). (5.72)

Since the target is abelian, the element-conjugacy relation is trivial: the classes are single-

tons. The only map of type (5.72) is λ = 1. Consequently, the only homogeneous U(1)

bundle over Or -up to equivariant principal bundle isomorphism- is the trivial one:

P1 = Or × U(1) =
SO(5)

SO(3)
× U(1). (5.73)

SO(5)-invariant U(1)-connections on P1 are parameterised by representation morphisms:

Λ :

(
m,AdSO(5)|SO(3)

)
→
(
u(1),AdU(1) ◦ λ

)
= (iR, 1) . (5.74)

Recalling the decomposition (5.15) and applying Schur’s lemma, we obtain that:

HomSO(3)

(
m, u(1)

)
= iR. (5.75)

Here, the imaginary number iα corresponds to:

Λα
def
= iαθ1. (5.76)
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5.2 SO(5)-Invariant Instantons with Structure Group U(1)

The cohomogeneity one bundle over X8 \ S4 associated to P1 is obtained by pulling back

along the map:

X8 \ S4 ∼−→ (1,∞)× SO(5)
SO(3)

↠
SO(5)
SO(3)

.

We slightly abuse notation by suppressing the pullback symbol and denoting the resulting

bundle by P1. It is trivial and it admits a unique extension across the singular orbit given

by X8 × U(1).

Connections over X8 \S4 can be put in temporal gauge (vanishing dr component) through

an equivariant gauge transformation (Lotay-Oliveira [43] p. 973, Remark 3). Consequently,

each invariant connection on P1 is equivariantly gauge equivalent to one lying in the space:

Ainv (P1) =
{
iα(r)θ1 | a ∈ C∞ (1,∞)

}
⊂ A (P1) . (5.77)

Such connections can only be related by an r-independent gauge transformation. If such a

gauge transformation is equivariant, it is given by a fixed element of U(1) and it stabilises

all connections. It follows that no two distinct elements of Ainv (P1) are equivariantly

gauge equivalent.

We compute the curvature of A ∈ A (P1):

FA = dA

= i
dα

dr
dr ∧ θ1 + iα(r)dθ1. (5.78)

To simplify the second term we use the Maurer-Cartan relations (Kobayashi–Nomizu [37]

p. 41). For this calculation we require the structure constants of so(5). They can be

computed using (5.12) and (5.13). Carrying out the calculation gives:

dθ1 = θ25 + θ36 + θ47.

Incorporating this into (5.78), we obtain:

FA = i
dα

dr
dr ∧ θ1 + iα(r)

(
θ25 + θ36 + θ47

)
. (5.79)
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5.2 SO(5)-Invariant Instantons with Structure Group U(1)

The Ambrose-Singer holonomy theorem implies that any non-flat U(1) connection is ir-

reducible. Consequently, all elements of Ainv (P1) -excluding the trivial connection- are

irreducible.

5.2.2 The Invariant ODEs on P1: Dimensional Reduction and Explicit Solu-

tion

The Spin(7) instanton equation reads:

⋆g FA = −Φ ∧ FA (5.80)

We use the formulae obtained in the previous sections to express each side in terms of

invariant forms. We work on TprX
8 with the Xi frame. Since the metric diagonalises we

have:

⋆g θ
i0 ∧ ... ∧ θik = ±

√
det(g)

gi0i0 ...gikik
θik+1 ∧ ... ∧ θi7 , (5.81)

where i1, ..., in is an even permutation of 1, ..., n. Using (5.81) and (5.47) we obtain the

results:

⋆g dr ∧ θ1 = −Q
3

P
θ234567,

⋆g θ
25 = −PQdr ∧ θ13467,

⋆g θ
36 = −PQdr ∧ θ12356.

Using these expressions we obtain:

⋆g FA = −iQ
3

P

dα

dr
θ234567 − iPQαdr ∧

(
θ13467 + θ12457 + θ12356

)
. (5.82)

We now use (5.67) and (5.79) to compute:

Φ ∧ FA = −3iQ2α(r)θ234567 − i

(
Q2dα

dr
+ 2PQα(r)

)
dr ∧

(
θ13467 + θ12457 + θ12356

)
.

(5.83)

Imposing (5.80) and comparing coefficients gives two equations. These are the same and

read:
dα

dr
= −3

P

Q
α. (5.84)
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The HYM equations read:

FA ∧ ⋆ω = 0,

FA ∧ Ω = 0.

The latter statement holds identically. This can be seen by direct computation using (5.49),

(5.50) and (5.79).

Over a Hermitian manifold of complex dimension n, we have:

⋆g ω =
ωn−1

(n− 1)!
, (5.85)

where g is the Kähler metric associated to ω by the complex structure. Using (5.36) and

(5.66) we compute:

ω3 = 6PQ2dr ∧
(
θ12536 + θ12547 + θ13647

)
+ 6Q3θ253647. (5.86)

Using (5.85), (5.86) and (5.79) we calculate:

FA ∧ ⋆ω = FA ∧ ω3

3!

= −i
(
Q3dα

dr
+ 3PQ2α(r)

)
dr ∧ θ1234567.

It follows that an SO(5)-invariant U(1)-connection is HYM if and only if:

dα

dr
= −3

P

Q
α. (5.87)

We observe that this equation is the same as (5.84).

Using the uniqueness part of the standard Picard theorem, we obtain:

Theorem 5.6. An SO(5)-invariant U(1)-connection over X8−S4 equipped with the Stenzel

Calabi-Yau structure is a Spin(7) instanton if and only if it is HYM.
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We study the ODE (5.87). Using (5.59) and (5.60) we write it as:

da

dr
= −9

2

r(r2 + 1)

(r2 + 2)(r + 1)(r − 1)
α(r). (5.88)

We integrate (5.88) directly to see that the solution takes the following form for some

K ∈ R:

α(r) =
K

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

(5.89)

An elementary calculation yields:

da

dr
= −9K

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

. (5.90)

Recalling the formulae (5.77) and (5.79) and incorporating (5.89) and (5.90), we formulate

the following theorem:

Theorem 5.7. Let X8 − S4 be equipped with the Stenzel Calabi-Yau structure (ω,Ω, J).

Let P be the unique homogeneous U(1) bundle over X8−S4 (i.e. the trivial bundle). There

exists a one-parameter family of smooth SO(5)-invariant Spin(7) instantons AK ∈ Ainv(P ):

AK =
iK

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

θ1, where K ∈ R. (5.91)

The curvature of AK is given by:

FAK
= iK

(
−9

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

dr ∧ θ1 + θ25 + θ36 + θ47

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

)
. (5.92)

Using (5.62), (5.61), (5.63) and (5.64), we find that:

|FA|2g = O
(
|r − 1|−4

)
as r → 1 (5.93)

In particular:

lim
r→1

|FA|2g = +∞

i.e. the pointwise norm of the invariant Spin(7) instanton AK -measured using the Stenzel

metric- blows up as r → 1. Since the metric extends smoothly to the singular orbit, this

behaviour is precluded for connections that are smooth over the whole space. We therefore

obtain the following global nonexistence result:
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Theorem 5.8. There exist no global, abelian, SO(5)-invariant Spin(7) instantons/ HYM

connections on the Stenzel manifold X8 apart from the trivial connection A = 0 (corre-

sponding to K = 0).

This non-existence result has to do with abelian gauge theory being too coarse to cap-

ture the behaviour we would like to see. In the following section we study the nonlinear

equations associated to the structure group SO(3). The nonlinearity induced by the non-

commutativity of the group smoothes the equations and we are able to obtain solutions

that extend over the singular orbit S4.

As a closing remark, we note that—even though the singular locus of AK is Cayley—these

instantons do not provide examples of the interesting removable singularity/ bubbling

phenomena introduced in the end of section (4.4). Their singularity is essential rather

than removable and this is captured by the failure of |FAK
|g to be globally bounded. We

have already seen that the loci of essential singularities need not be Cayley: on flat space

we encountered essential point-singularities. An explicit removable singularity/ bubbling

phenomenon will be encountered in the subsequent section.

5.3 SO(5)-Invariant Instantons with Structure Group SO(3)

In this section we study the nonabelian equations corresponding to the structure group

SO(3). We begin by classifying the SO(3) bundles of cohomogeneity one. There are

precisely two bundles of this kind on X8 − S4: P1 and PId. They correspond to the

trivial map and the identity map from SO(3) to itself respectively. We classify their

smooth homogeneous extensions over S4 and their invariant connections. We then compute

expressions for the curvature fields of these connections in terms of the standard framing

⟨X1, ..., X7, ∂r⟩. We proceed to deal with the instanton equations on the trivial bundle

P1. The situation here is simple: no new phenomena are encountered. The picture is

essentially equivalent to the abelian case.

In preparation for analysis of the instanton equation on PId, we apply the technique of Es-

chenburg and Wang (Eschenburg-Wang [21]) to develop a necessary and sufficient condition

for connection 1-forms on PId to smoothly extend over the singular orbit.
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We proceed to derive the equations describing the evolution of invariant Spin(7) instantons

and invariant HYM connections on the non-trivial bundle PId.

The HYM equations consist of a decoupled ODE system together with a set of constraint

equations. These are easily solved to give precisely two explicit AC HYM connections on

the complement of the singular orbit. We prove that they extend over S4 and study their

extensions, which we find to be topologically distinct.

The Spin(7) instanton equations yield a 2 dimensional coupled system of ODEs. It is thus

already evident—at least at the local level—that Spin(7) instantons are more general than

HYM connections. In fact, we can get a global result: we give an explicit formula for a

1-parameter family of AC Spin(7) instantons on X8, only one of which is HYM. We thus

(negatively) resolve the question regarding the equivalence of the two problems.

We finally analyze the full ODE system. We determine all solutions that are smooth and

global in time, thus giving a construction of the moduli space MSpin(7)
inv

(
X8
)

of invariant

Spin(7) instantons in this setting. This involves an interesting removable singularity/

bubbling phenomenon that we analyze in detail. We discover that the HYM connections

play a role in its resolution and consequently in the compactification of MSpin(7)
inv

(
X8
)
.

We note that we have not studied the asymptotics of these non-explicit solutions and have

thus not established that they are AC. Nevertheless, we expect that this is the case.

5.3.1 Homogeneous Bundles and Invariant Connections with Structure Group

SO(3)

5.3.1.1 Bundles and Bundle Extensions

Let r > 1. The homogeneous SO(3) bundles over the orbit Or correspond to element-

conjugacy classes of Lie group homomorphisms:

λ : SO(3) → SO(3). (5.94)
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There are two such classes. They are represented by the trivial map and the identity

respectively. Consequently, there are precisely two homogeneous principal SO(3) bundles

over Or -up to equivariant principal bundle isomorphism. We denote these by P1 and PId.

Slightly abusing notation, we also denote by P1 and PId the pullbacks of the respective

bundles along the map:

X8 \ S4 ∼−→ (1,∞)× SO(5)
SO(3)

↠
SO(5)
SO(3)

.

We now classify smooth homogeneous extensions of P1 and PId across the singular orbit

S4. These correspond to element-conjugacy classes of Lie group homomorphisms:

µ : SO(4) → SO(3). (5.95)

Once such a map is chosen, one uses it to form the associated homogeneous bundle Pµ

over S4. The extension is then determined by pulling Pµ back over X8 through the natural

projection:

X8 ∼= T ⋆S4 ↠ S4.

The element-conjugacy class of the restriction of µ to the lower right block copy of SO(3)

determines which bundle is being extended.

We are therefore required to classify element-conjugacy classes of homomorphisms of type

(5.95). Natural representatives are described by passing through the respective universal

covers. We have the two-sheeted covering maps:

πSpin(4) : Sp(1)2 ↠ SO(4),

πSpin(3) : Sp(1) ↠ SO(3),

where:

πSpin(4)(x, y) : H → H,

q 7→ xqy−1, (5.96)

πSpin(3)(x) = πSpin(4)(x, x)|Im(H)
. (5.97)
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Considering (5.96) and (5.97), we obtain:

SO(4) =
Sp(1)2{

(1, 1), (−1,−1)
} , SO(3) =

Sp(1)
±1

.

There are precisely three element-conjugacy classes of homomorphisms of type (5.95), one

of them being that of the trivial map. The two non-trivial classes are represented by the

two projections:

π1, π2 : SO(4) =
Sp(1)2{

(1, 1), (−1,−1)
} ↠

Sp(1)
±1

× Sp(1)
±1

↠
Sp(1)
±1

= SO(3).

The resulting representations correspond to the action of SO(4) on Λ2
±T

⋆R4.

We conclude that there are precisely three principal SO(3)-bundles of cohomogeneity-one

over X8. We denote these as P1, Pπ1 and Pπ2 . The first is the trivial bundle. It extends

the trivial bundle on X8 \ S4. The other two bundles are non-trivial (see section 5.3.4.2).

They provide distinct extensions of PId.

5.3.1.2 Invariant Connections on the Complement of the Singular Orbit

We now classify the invariant connections on the bundles P1 and PId over X8\S4. For each

of these connections we compute the associated curvature tensor in terms of the standard

framing.

We introduce the following basis for so(3):

e1
def
= C12, e2

def
= C13, e3

def
= C23. (5.98)

Here the matrices Cij are defined as in section 1.2.1 and obey the commutation relations

(5.12) and (5.13). The adjoint representation of SO(3) takes the form:

AdSO(3) = so(3) = ⟨e3,−e2, e1⟩. (5.99)

Here SO(3) acts by its natural irreducible vector representation on R3 and we maintain the

convention that the ordering in the bracket reflects the associated identification so(3) ∼= R3.
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In general, an invariant connection A ∈ Ainv (Pλ) corresponds to a map of representations:

Λ :

(
m,AdSO(5)|SO(3)

)
→
(
so(3),AdSO(3) ◦ λ

)
. (5.100)

Given such a map, we use the canonical invariant connection dλ as a reference and write:

A = dλ+ Λ. (5.101)

We first deal with P1. In this case λ = 1 and the target representation is trivial. Recalling

the splitting (5.15) and applying Schur’s lemma, we see that Λ must take the form:

Λ = θ1 ⊗
(
a1 e1 + a2 e2 + a3 e3

)
. (5.102)

The canonical invariant connection Acan
1 is represented by d 1 = 0. Evidently, it is flat.

Any connection over X8 \ S4 can be brought to temporal gauge by an equivariant gauge

transformation [54]. It follows that any invariant connection on P1 is equivariantly gauge

equivalent to one lying in the space:

Ainv (P1) =

{
θ1 ⊗

(
a1(r) e1 + a2(r) e2 + a3(r) e3

)
| a1, a2, a3 ∈ C∞ (1,∞)

}
. (5.103)

A gauge transformation relating two elements of Ainv (P1) must be r-independent. If it is

equivariant, it is given by a fixed element of SO(3) acting on Ainv (P1) by conjugation. It

follows that the elements of Ainv (P1) need not lie in distinct equivariant gauge equivalence

classes.

A calculation analogous to the one in section 2.1 yields:

FA =

(
dai

dr
dr ∧ θ1 + ai

(
θ25 + θ36 + θ47

))
⊗ ei. (5.104)

The Ambrose-Singer holonomy theorem implies that the elements of A (P1) need not be

irreducible. This happens -for instance- if one of the components ai vanishes identically,

in which case ei does not lie in the holonomy algebra.
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We now work on PId. In this case, the target representation is the adjoint representation

of SO(3). Recalling the decomposition (5.15) and applying Schur’s lemma, we see that

equivariant maps of type (5.100) always vanish on the first summand and either restrict to

isomorphisms or the zero map on the second and third summands. The automorphisms of

AdSO(3) are given by multiplication by fixed scalars. We conclude that for λ = Id, maps

of type (5.100) look like:

Λ = a
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+ b

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
, a, b ∈ R.

Written over the symmetry group SO(5), the canonical invariant connectionAcan
Id = d IdSO(3)

on PId takes the form:

Acan
Id = θ8 ⊗ e1 + θ9 ⊗ e2 + θ10 ⊗ e3.

It is not flat. Its curvature is given by:

FAcan
Id

= dAcan
Id +

1

2

[
Acan

Id ∧Acan
Id
]

=
(
θ23 + θ56

)
⊗ e1 +

(
θ24 + θ57

)
⊗ e2 +

(
θ34 + θ67

)
⊗ e3.

The radial component of an invariant tensorial 1-form is an invariant section of the ad-

joint bundle. In this context, these objects correspond to fixed points of AdSO(3). This

representation has no fixed points, implying that all invariant connections are already in

temporal gauge. Consequently, the space of invariant connections is given by:

Ainv (PId) ={
Acan

Id + a(r)
(
θ2e3 − θ3e2 + θ4e1

)
+ b(r)

(
θ5e3 − θ6e2 + θ7e1

)
|a, b ∈ C∞ (1,∞)

}
.

(5.105)

Equivariant gauge transformations correspond to central elements of SO(3). Since SO(3)

is centerless, the only possibility is the identity. Consequently, each invariant connection

constitutes its own equivariant gauge equivalence class.

To compute the curvature of a general element A = Acan
Id + Λ ∈ Ainv(PId), we use the
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formula:

FA = FAcan
Id

+ dAcan
Id

Λ +
1

2
[Λ ∧ Λ] .

Routine calculation yields:

dAcan
Id

Λ = dΛ +
[
Acan

Id ∧ Λ
]
=(

b θ14 − a θ17
)
⊗ e1 +

(
a θ16 − b θ13

)
⊗ e2 +

(
b θ12 − a θ15

)
⊗ e3

+
da

dr
dr ∧

(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
db

dr
dr ∧

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

(5.106)

The final summand is also easily seen to take the form:

1

2
[Λ ∧ Λ] =

(
−a2 θ23 − ab θ26 + ab θ35 − b2 θ56

)
⊗ e1(

−a2 θ24 − ab θ27 + ab θ45 − b2 θ57
)
⊗ e2(

−a2 θ34 − ab θ37 + ab θ46 − b2 θ67
)
⊗ e3. (5.107)

Overall, we obtain the following expression for the curvature:

FA = (5.108)(
(1− a2) θ23 + (1− b2) θ56 − ab θ26 + ab θ35 + b θ14 − a θ17 +

da

dr
dr ∧ θ4 + db

dr
dr ∧ θ7

)
⊗ e1

+

(
(1− a2) θ24 + (1− b2) θ57 − ab θ27 + ab θ45 − b θ13 + a θ16 − da

dr
dr ∧ θ3 − db

dr
dr ∧ θ6

)
⊗ e2

+

(
(1− a2) θ34 + (1− b2) θ67 − ab θ37 + ab θ46 + b θ12 − a θ15 +

da

dr
dr ∧ θ2 + db

dr
dr ∧ θ5

)
⊗ e3.

The Ambrose-Singer holonomy theorem implies that all elements of Ainv (PId) are irre-

ducible. Since gauge equivalent, irreducible, invariant connections are equivariantly gauge

equivalent (Oliveira [54] Corollary 4.5), the elements of Ainv (PId) all lie in distinct gauge

equivalence classes.

5.3.1.3 Invariant Connections on the Extended Bundles

It remains to understand how to describe invariant connections on the extensions of P1 and

PId over S4. For P1 this is easy. The unique extension is given by the trivial bundle. The

canonical invariant reference connection is still equal to the product structure. It follows
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that the ad(P1)-valued forms (5.103) are still meaningful over the extended bundle and

describe the relevant invariant connections with this choice of reference.

The situation is slightly more subtle for PId. The canonical invariant connection of PId

disagrees with those of Pπ1 and Pπ2 . In fact, Acan
Id does not smoothly extend on either

bundle extension. To see this, we compute the canonical invariant connections of Pπ1 , Pπ2 .

These are given by:

Acan
π1

= dπ1

=
(
θ8 + θ7

)
⊗ e1 +

(
θ9 − θ6

)
⊗ e2 +

(
θ10 + θ5

)
⊗ e3

= Acan
Id +

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
, (5.109)

Acan
π2

= dπ2

=
(
θ8 − θ7

)
⊗ e1 +

(
θ9 + θ6

)
⊗ e2 +

(
θ10 − θ5

)
⊗ e3

= Acan
Id −

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (5.110)

Now, an invariant connection A ∈ Ainv(PId) over X8 \ S4 takes the form:

A = Acan
Id + a(r)

(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+ b(r)

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

(5.111)

We rewrite it using Acan
π1

and Acan
π2

as the reference. This yields:

A = Acan
π1

+ a(r)
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r)− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
,

(5.112)

A = Acan
π2

+ a(r)
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

(5.113)

The forms θ5, θ6 and θ7 blow up as r → 1. We conclude that a necessary condition for A

to extend to Pπ1 is:

lim
r→1

b(r) = 1. (5.114)
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Similarly, if A extends to Pπ2 we have:

lim
r→1

b(r) = −1. (5.115)

The connection Acan
Id corresponds to a = b = 0. Both conditions (5.114) and (5.115) fail.

Consequently Acan
Id does not extend to either Pπ1 or Pπ2 .

5.3.2 The Invariant ODEs on P1: Dimensional Reduction and Explicit Solu-

tion

A general invariant connection A ∈ Ainv (P1) defined over X8 − S4 takes the form:

A = θ1 ⊗ ai(r) ei.

The associated curvature tensor is given by:

FA =

(
dai

dr
dr ∧ θ1 + ai

(
θ25 + θ36 + θ47

))
⊗ ei.

These expressions are manifestly similar to (5.77) and (5.79). An identical computation to

the one carried out in the abelian case gives:

FA ∧ Ω = 0,

FA ∧ ⋆ω = −

(
Q3da

i

dr
+ 3PQ2ai(r)

)
dr ∧ θ1234567 ⊗ ei.

Consequently, the invariant Hermitian Yang-Mils equations take the form:

dai

dr
= −3

P

Q
ai

Using (5.67) and computing as in the abelian case we obtain:

Φ∧FA = −

3Q2ai(r)θ234567 +

(
Q2da

i

dr
+ 2PQα(r)

)
dr ∧

(
θ13467 + θ12457 + θ12356

)⊗ei.
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Similarly, we compute:

⋆g FA = −

[
Q3

P

dai

dr
θ234567 + PQaidr ∧

(
θ13467 + θ12457 + θ12356

)]
⊗ ei

Consequently, the invariant Spin(7) instanton equations take the form:

dai

dr
= −3

P

Q
ai (5.116)

The two equations are identical. We thus obtain the following local equivalence result:

Theorem 5.9. An SO(5)-invariant SO(3)-connection A ∈ Ainv (P1) over T ⋆S4 − S4

equipped with the Stenzel Calabi-Yau structure is a Spin(7) instanton if and only if it

is HYM.

The ODE (5.116) has already been studied in the context of the abelian equations. We

thus immediately obtain a result analogous to the one we got for structure group U(1):

Theorem 5.10. Let X8 − S4 be equipped with the Stenzel Calabi-Yau structure. There is

a 3-parameter family of invariant Spin(7) instantons AK1,K2,K3 ∈ Ainv (P1):

AK1,K2,K3 =

3∑
i=1

Ki

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

θ1 ⊗ ei where Ki ∈ R

The curvature of AK1,K2,K3 is given by:

FAK1,K2,K3
=

3∑
i=1

Ki

(
−9

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

dr ∧ θ1 + θ25 + θ36 + θ47

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

)
⊗ei

The Ambrose-Singer holonomy theorem implies that all the instantons of theorem 5.10 are

reducible. In particular, the holonomy algebra of AK1,K2,K3 is given by:

hol
(
AK1,K2,K3

)
=
〈
Kiei

〉
< so(3).

When AK1,K2,K3 ̸= 0, at least one of the parametersKi does not vanish and hol
(
AK1,K2,K3

)
is one-dimensional. The holonomy group Hol

(
AK1,K2,K3

)
is the associated one-parameter

subgroup. Recalling the elementary fact that the one-parameter subgroups of SO(3) are

embedded circles, we conclude that (when AK1,K2,K3 ̸= 0) the holonomy group is a copy of

U(1) in SO(3). Let Q ⊂ P1 denote the trivial U(1)-subbundle with fiber Hol
(
AK1,K2,K3

)
.
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The reduction theorem implies that AK1,K2,K3 restricts to an irreducible connection on

Q|X8\S4
. The resulting instanton is one of those promised by theorem 5.10. This makes

rigorous the apparent similarities with the abelian setting.

Unless K1 = K2 = K3 = 0, the pointwise curvature norm of AK1,K2,K3 is unbounded as

r → 1. We thus obtain:

Theorem 5.11. There are no global invariant Spin(7) instantons (and therefore also no

HYM connections) on the trivial SO(3)- bundle P1 over X8 apart from the trivial connection

A=0.

5.3.3 Extendibility of Connections Across the Singular Orbit

In this section we develop necessary and sufficient conditions for invariant connections to

extend smoothly over S4. We begin with some general remarks setting up the framework

for the problem. This preparation allows us to state the criterion of Eschenburg and Wang

in the context of gauge theory. Once this is done, we analyze the extension problem for

the SO(3)-bundles of the preceding sections.

5.3.3.1 Extendibility of Tensorial Forms

Let S be a Lie group and let µ be a Lie group homomorphism:

µ : SO(4) → S.

Denote by λ the restriction of µ to the bottom right copy of SO(3).

Let P be the cohomogeneity one principal S-bundle over T ⋆S4 obtained by pulling Pµ ↠ S4

back through the cotangent bundle projection map. Its restrictions over each orbit Or

(r ≥ 1) are given by:

P|Or
=

 SO(5)×(SO(4),µ) S if r = 1

SO(5)×(SO(3),λ) S if r > 1.

Let (V, ρ) be a representation of the group S. We can form the associated vector bundle

over X8:

ρ (P )
def
= P ×ρ V.
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We consider the problem of extending SO(5)-invariant ρ (P )-valued k-forms across the

singular orbit S4.

Eschenburg and Wang give necessary and sufficient conditions for extending invariant linear

tensors across the singular orbit of a cohomogeneity one space. Since we are interested

in bundle-valued forms, their technique does not apply directly. We resolve this issue by

passing to the total space P and working with V -valued forms instead. In this section we

set up the requisite framework to implement this idea.

The manifold P is a cohomogeneity one space for the group SO(5)×S. Its principal orbits

are isomorphic to Pλ and its singular orbit is the bundle Pµ.

Define the reference points:

xr
def
=

 [1, 1] ∈ Pµ if r = 1

[1, 1] ∈ Pλ if r > 1.

With this definition, the point xr lies in the fiber above pr ∈ Or for all r ≥ 1.

Using these reference points, the isotropy subgroups corresponding to the principal and

singular orbits are respectively given by:

Stab (xr) =
{
(h, λ(h)) ∈ SO(5) × S such that h ∈ SO(3)

} ∼= SO(3), (5.117)

Stab (x1) =
{
(h, µ(h)) ∈ SO(5) × S such that h ∈ SO(4)

} ∼= SO(4). (5.118)

In formulae (5.117) and (5.118), SO(4) and SO(3) denote the bottom right inclusions of

these groups in SO(5). In what follows, when we consider the action of SO(4) on P , it will

be through its embedding in SO(5)× S as the singular isotropy group (5.118).

Let ω be an invariant, tensorial form of type ρ. Its extendibility can be decided by studying

the restriction ω|W along a particularly simple embedded submanifold W ⊂ P . This will
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make the problem tractable. Let W be the union of the SO(4)-orbits of all points xr in P :

W
def
=
⋃
r≥1

Stab (x1) xr. (5.119)

This is a 4-dimensional linear SO(4)-representation. The SO(4)-action is obvious. The

linear structure is inherited from T ⋆S4
p1 through the projection map:

π : P ↠ X8.

In particular, the inverse function theorem implies that π restricts to a diffeomorphism:

π :W
∼−→ T ⋆

p1S
4 ⊂ X8. (5.120)

The latter is a smoothly embedded submanifold ofX8 stable under the action of SO(4). The

equivariance of π implies that W and T ⋆
p1S

4 are isomorphic SO(4)-representations. Since

T ⋆
p1S

4 is a vector space, it can be naturally identified with the tangent space at its origin

(e.g. by the exponential map of the underlying additive group). Endowing the latter with

the isotropy action, this identification becomes equivariant. These considerations allow us

to view W as the vector representation of SO(4):

W ∼=
〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉
. (5.121)

The extendibility problem for invariant tensors is addressed by examining their restrictions

along W . We are thus interested in finding a useful way to describe these restrictions. Pull

the bundle

ΛkT ⋆P ⊗ V

back toW using the inclusion map (here we denote by V the trivial vector bundle with fiber

V ). Since W is linear, the pullback is trivial. We will now give a particular trivialization

that elucidates the action of SO(4). Using an invariant connection to decompose TP into

vertical and horizontal distributions, we obtain an equivariant identification:

TP ∼= π⋆TX8 ⊕ s. (5.122)
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Furthermore, there is an obvious SO(4)-equivariant trivialization:

TX8
|π(W )

∼= π(W )×
(
⟨X1, ..., X4⟩ ⊕

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉)
. (5.123)

Putting these together we have:

(
ΛkT ⋆P ⊗ V

)
|W

∼=W×
(
Λk ⟨X1, ..., X4⟩⋆ ⊗ V ⊕ Λk

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉⋆
⊗ V ⊕ Λks⋆ ⊗ V

)
.

Here, the action of SO(4) is as follows: The action on s is trivial. The action on V is

obtained by composing µ and ρ. Finally, the spaces ⟨X1, ..., X4⟩⋆ and
〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉⋆
are vector representations.

We study the restriction of ω along W0: the vector space W punctured at its origin

W0
def
= W − {x1} .

Since tensorial forms vanish on vertical vectors, ω|W0
is a section of the trivial bundle with

fiber equal to:

E
def
= Λk ⟨X1, ..., X4⟩⋆ ⊗ V ⊕ Λk

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉⋆
⊗ V.

Due to the triviality of the bundle, the form ω|W0 amounts to an SO(4)-equivariant func-

tion:

f :W0 → E.

The equivariance of ω implies that no information is lost in passing to f . In turn, f is

completely determined by its values on the reference points xr—forming a ray from the

origin of W to infinity. This recovers our usual description of equivariant forms as curves

in a group representation:

f ◦ xr : (1,∞) → E. (5.124)

Eschenburg and Wang prove that the extendibility of ω is contingent to a representation-

theoretic condition on the formal Taylor series expansion of an appropriate reparameteri-

zation of f ◦ xr. This series reflects the behaviour of f near x1 and—by equivariance—of

ω near the singular orbit.
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The requisite reparameterization is obtained as follows. Using (5.121), the Euclidean metric

on R10 induces an inner product on W . We consider the radial function of the associated

norm. Concretely, we set:

t
def
= R− =

(
r2 − 1

2

) 1
2

, r(t) =
(
2t2 + 1

) 1
2
. (5.125)

We thus obtain the reparameterization:

γ
def
= f ◦ xr(t)

The result of Eschenburg and Wang (Eschenburg-Wang [21], Lemma 1.1, p.113) asserts

that ω extends smoothly over the singular orbit if and only if the following hold:

• The curve γ is smooth from the right at t = 0

• The formal Taylor series of γ at t = 0 can be written as:

γ ∼
∑
k≥0

uk

(
xr(1)

)
tk,

where xr(1) ∈W ⊂ P denotes the reference point located at t = 1 and:

uk :W → E

is a homogeneous equivariant polynomial of degree k.

Note that we have provided explicit descriptions of the SO(4)-actions on W and E. These

descriptions facilitate the computations required for applications.

5.3.3.2 Application: Extendibility of Connections

We are interested in studying the extendibility of tensorial forms ω describing connections

on P (relative to the canonical invariant connection). Therefore—in the context of our

application—we have:

S = SO(3), V = so(3) , ρ = AdSO(3), k = 1.
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Given our setup, ω will usually be available in the form (5.124). Given this data, we need

to pass to the associated curve γ(t) and express it in a basis of E coming from evaluation

of homogeneous equivariant polynomials at xr(1) ∈W . To achieve this, we need to be able

to find appropriate equivariant polynomials. This task can be simplified if we understand

the relevant representations in terms of quaternions. To this end, we identify the spaces

W and ⟨X1, ..., X4⟩ with H by:

〈
X1, X2, X3, X4

〉
∼= ⟨1, i, j, k⟩ ∼=

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉
.

Furthermore, we lift the action of SO(4) to Sp(1)2 using the covering map πSpin(4). Under

these identifications, the SO(4)-action is captured by the usual vector representation of

Sp(1)2 on H.

General points p ∈W and q ∈ ⟨X1, ..., X4⟩ can be written as:

p = p0X1 + p1X2 + p2X3 + p3X4, q = q0∂y2 + q1∂y3 + q2∂y4 + q3∂y5

= p0 + p1i+ p2j + p3k = q0 + q1i+ q2j + q3k.

With this choice of coordinates we have:

xr(1) = 1 ∈ Sp(1) ⊂ H.

The Lie algebra so(3) can be naturally identified with sp(1) = Im (H) using the differential

of the covering map πSpin(3) (defined in (5.97)). This identification is Ad-equivariant.

Explicitly, it takes the following form:

dπSpin(3)|1
: i 7→ −2e3, j 7→ 2e2, k 7→ −2e1. (5.126)

These considerations demonstrate that we require homogeneous Sp(1)2-equivariant poly-

nomials:

u : H → H⋆ ⊗ Im (H)⊕H⋆ ⊗ Im (H)

with prescribed value at x = 1. Separating the components in the target, such maps take
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the form:

u (x) (p, q) = u1 (x) (p) + u2 (x) (q) , x, p, q ∈ H.

The Sp(1)2-equivariance condition for u :W → E translates to the following:

u1

(
axb
)
(p) = Adµ◦πSpin(4)(a,b)u1 (x) (apb) for all (a, b) ∈ Sp(1)2, (5.127)

u2

(
axb
)
(q) = Adµ◦πSpin(4)(a,b)u2 (x) (aqb) for all (a, b) ∈ Sp(1)2. (5.128)

The Case of Pπ1

In this case µ = π1. The action of Sp(1)2 on Im (H) is given by projecting the group element

to the first factor and conjugating by the result. Conditions (5.127), (5.128) become:

u1

(
axb
)
(p) = au1 (x) (apb) a for all (a, b) ∈ Sp(1)2, (5.129)

u2

(
axb
)
(q) = au2 (x) (aqb) a for all (a, b) ∈ Sp(1)2. (5.130)

Using (5.112), we write a general invariant connection over X8 \ S4 as Acan
π1

+ ω, where:

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t))− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

Using (5.26)-(5.29) and (5.126) we find that the form θ2⊗e3−θ3⊗e2+θ4⊗e1 corresponds

to:

(p, q) 7→ −1

2

(
p1i+ p2j + p3k

)
= −1

2
Im(p)

=
⟨p, 1⟩ − p

2
. (5.131)

Similarly, using (5.26)-(5.29), (5.125) and (5.126), we find that the form θ5⊗e3−θ6⊗e2+

θ7 ⊗ e1 corresponds to:
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(p, q) 7→ 1

2t

(
q1i+ q2j + q3k

)
=

1

2t
Im(q)

=
q − ⟨q, 1⟩

2t
. (5.132)

Any equivariant polynomial u satisfying:

u (1) (p, q) =
⟨p, 1⟩ − p

2
(5.133)

has the following restriction on S3 ⊂ H:

u (x) (p) =
⟨x, p⟩ − px

2
. (5.134)

Similarly, any equivariant polynomial v satisfying:

v (1) (p, q) =
q − ⟨q, 1⟩

2
(5.135)

has the following restriction on S3 ⊂ H:

v (x) (q) =
qx− ⟨x, q⟩

2
. (5.136)

As soon as u and v are specified on the unit sphere, they are extended to H by homogeneity.

The extensions depend on the degree d, which is yet unspecified. Given d, we define:

ud (x) (p)
def
=

 |x|du
(

x
|x|

)
(p) if x ̸= 0

0 if x = 0,

vd (x) (p)
def
=

 |x|dv
(

x
|x|

)
(p) if x ̸= 0

0 if x = 0.

The admissible values of d are constrained: not all choices yield polynomial extensions.

Equations (5.134) and (5.136) demonstrate that u0 and v0 are not constant functions. If

they were polynomials they would have homogeneous degree d = 0 and would thus be

constant. We conclude that the choice d = 0 is not admissible. However, it is clear that
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we could choose d = 1. This would correspond to defining the extensions by the formulae

(5.134) and (5.136) on the whole of H. Now, if two homogeneous polynomials agree on

the unit sphere, they are related through multiplication by the homogeneous degree 2k

polynomial |x|2k. Consequently, all other admissible choices of d are obtained by adding

even integers to d = 1. We conclude that for each odd positive integer:

d = 1 + 2k (5.137)

we have precisely one homogeneous equivariant polynomial ud of degree d satisfying (5.133)

and precisely one homogeneous equivariant polynomial vd of degree d satisfying (5.135).

We rewrite the form ω as:

ω = a(r(t)) ud (1) +
b(r(t))− 1

t
vd (1) . (5.138)

Applying the criterion of Eschenburg and Wang we obtain:

Proposition 5.12. Let A ∈ Ainv (PId) be an invariant connection defined over X8 \ S4.

Let

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t))− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)

be the tensorial form expressing A with respect to the canonical invariant connection of

Pπ1. Then A extends over the singular orbit on Pπ1 if and only if the following hold:

• The function a(r(t)) is smooth from the right at t = 0, odd and O (t).

• The function b(r(t))− 1 is smooth from the right at t = 0, even and O
(
t2
)
.

The Case of Pπ2

In this case µ = π2. The action of Sp(1)2 on Im (H) is given by projecting the group

element to the second factor and conjugating by the result. Conditions (5.127), (5.128)

become:

u1

(
axb
)
(p) = bu1 (x) (apb) b for all (a, b) ∈ Sp(1)2, (5.139)

u2

(
axb
)
(q) = bu2 (x) (aqb) b for all (a, b) ∈ Sp(1)2. (5.140)
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Using (5.113), we write a general invariant connection over X8 \ S4 as Acan
π2

+ ω, where:

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t)) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

Recalling (5.131) and (5.132) we seek homogeneous equivariant polynomials u and v satis-

fying (5.133) and (5.135) respectively. Equivariance specifies their restrictions on S3 ⊂ H:

u (x) (p) =
⟨x, p⟩ − xp

2
, v (x) (q) =

xq − ⟨x, q⟩
2

. (5.141)

Arguing as in the case of Pπ1 we find that there is precisely one homogeneous equivariant

polynomial ud and precisely one homogeneous equivariant polynomial vd satisfying the

requisite conditions in each odd degree d = 1 + 2k.

We rewrite the form ω as:

ω = a(r(t)) ud (1) +
b(r(t)) + 1

t
vd (1) . (5.142)

Applying the criterion of Eschenburg and Wang we obtain:

Proposition 5.13. Let A ∈ Ainv (PId) be an invariant connection defined over X8 \ S4.

Let

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t)) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)

be the tensorial form expressing A with respect to the canonical invariant connection of

Pπ2. Then A extends over the singular orbit on Pπ2 if and only if the following hold:

• The function a(r(t)) is smooth from the right at t = 0, odd and O (t).

• The function b(r(t)) + 1 is smooth from the right at t = 0, even and O
(
t2
)
.

5.3.4 The Invariant HYM ODEs on PId

5.3.4.1 Dimensional Reduction and Explicit Solution We analyze the invariant

HYM equation on the bundle PId. We obtain precisely two invariant HYM connections

over X8 − S4. One of them extends on Pπ1 , the other on Pπ2 .
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A general invariant connection A ∈ Ainv (PId) takes the form:

A = Acan
Id + a(r)

(
θ2e3 − θ3e2 + θ4e1

)
+ b(r)

(
θ5e3 − θ6e2 + θ7e1

)
.

The curvature tensor associated to A is given by:

FA = F j
A ⊗ ej ,

F 1
A

def
= (1− a2) θ23 + (1− b2) θ56 − ab θ26 + ab θ35 + b θ14 − a θ17 +

da

dr
dr ∧ θ4 + db

dr
dr ∧ θ7,

F 2
A

def
= (1− a2) θ24 + (1− b2) θ57 − ab θ27 + ab θ45 − b θ13 + a θ16 − da

dr
dr ∧ θ3 − db

dr
dr ∧ θ6,

F 3
A

def
= (1− a2) θ34 + (1− b2) θ67 − ab θ37 + ab θ46 + b θ12 − a θ15 +

da

dr
dr ∧ θ2 + db

dr
dr ∧ θ5.

Using (5.86) we obtain:

⋆g ω = PQ2dr ∧
(
θ12536 + θ12547 + θ13647

)
+Q3θ253647.

We then have:

FA ∧ ⋆gω = 0. (5.143)

In particular, part of the HYM system is enforced by the symmetry ansatz. Consequently,

the HYM equations reduce to:

FA ∧Re(Ω) = 0. (5.144)

We write:

FA ∧Re(Ω) = F j
A ∧Re (Ω)⊗ ej

and derive the relevant equations component-wise.

Using (5.49) and (5.50) we obtain the results:
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F 1
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123456 − 2R+R

2
−ab θ

123567 (5.145)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ23567 + rR+ab dr ∧ θ23456

+

(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12347 −

(
rR2

−
2R+

b+R+R
2
−
db

dr

)
dr ∧ θ14567

−
(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12467 +

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13457,

F 2
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123457 − 2R+R

2
−ab θ

124567 (5.146)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ24567 + rR+ab dr ∧ θ23457

−
(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12346 +

(
rR2

−
2R+

b+R+R
2
−
db

dr

)
dr ∧ θ13567

+

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12367 −

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13456,

F 3
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123467 − 2R+R

2
−ab θ

134567 (5.147)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ34567 + rR+ab dr ∧ θ23467

+

(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12345 −

(
rR2

−
2R+

b+R+R
2
−
db

dr

)
dr ∧ θ12567

−
(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12357 +

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12456,

Observe that there are similarities among the various components. In particular the van-

ishing of any one of them is equivalent to the full HYM system (5.144). We obtain the

invariant HYM equations:
da

dr
= − r

2R2
−
a, (5.148)

db

dr
= − r

2R2
+

b, (5.149)

R2
+(1− b2) = R−(1− a2), (5.150)

ab = 0. (5.151)
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Consequently, invariant HYM connections over PId obey the differential equations (5.148),

(5.149) and satisfy the algebraic constraints (5.150), (5.151). Observe that the coefficients

of the Stenzel metric do not appear anywhere in these equations.

The equations (5.148)-(5.151) can be solved explicitly. We obtain precisely two solutions:

aHYMπ1
= 0, bHYMπ1

=
1

R+
,

aHYMπ2
= 0, bHYMπ2

= − 1

R+
,

yielding two HYM connections:

AHYMπ1

def
= Acan

Id +
1

R+

(
θ5e3 − θ6e2 + θ7e1

)
, (5.152)

AHYMπ2

def
= Acan

Id − 1

R+

(
θ5e3 − θ6e2 + θ7e1

)
. (5.153)

The notation has been chosen in hindsight to reflect the bundle on which these connections

extend. In particular, we claim that AHYMπ1
extends to Pπ1 , while AHYMπ2

extends to

Pπ2 .

We treat AHYMπ1
in detail. We shall apply proposition 5.12. In this case, the a-component

vanishes and we have:

bHYMπ1
(r(t))− 1 =

1

R+(r(t))
− 1

=

√
2√

r2(t) + 1
− 1

=
1√
t2 + 1

− 1,

=
1−

√
t2 + 1√

t2 + 1
.

The conditions on aHYMπ1
(r(t)) are trivially satisfied. The function bHYMπ1

(r(t)) − 1 is

obviously smooth from the right at t = 0. It is even, since t only appears in power 2.

One easily computes that both bHYMπ1
(r(t)) − 1 and its first derivative vanish at t = 0.

Consequently, bHYMπ1
(r(t)) − 1 = O(t2). The criterion of Eschenburg and Wang (in the

form of proposition 5.12) implies that AHYMπ1
smoothly extends over the singular orbit to
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give an element:

AHYMπ1
∈ Ainv

(
Pπ1

)
.

An analogous calculation using proposition 5.13 shows that AHYMπ2
smoothly extends over

the singular orbit to give an element:

AHYMπ2
∈ Ainv

(
Pπ2

)
.

Using (5.108) we compute the curvature tensors of the solutions:

FAHYMπ1
=

(
θ23 +

R2
−

R2
+

θ56 +
1

R+
θ14 − r

2R3
+

dr ∧ θ7
)

⊗ e1 (5.154)

+

(
θ24 +

R2
−

R2
+

θ57 − 1

R+
θ13 +

r

2R3
+

dr ∧ θ6
)

⊗ e2

+

(
θ34 +

R2
−

R2
+

θ67 +
1

R+
θ12 − r

2R3
+

dr ∧ θ5
)

⊗ e3,

FAHYMπ2
=

(
θ23 +

R2
−

R2
+

θ56 − 1

R+
θ14 +

r

2R3
+

dr ∧ θ7
)

⊗ e1 (5.155)

+

(
θ24 +

R2
−

R2
+

θ57 +
1

R+
θ13 − r

2R3
+

dr ∧ θ6
)

⊗ e2

+

(
θ34 +

R2
−

R2
+

θ67 − 1

R+
θ12 +

r

2R3
+

dr ∧ θ5
)

⊗ e3.

We study the curvature norm of the connections AHYMπ1
and AHYMπ2

. The curvature

tensors (5.154), (5.154) only differ by certain signs. Consequently, it suffices to treat

AHYMπ1
.

We make the following crucial technical remark. In order to compute the norm of the

curvature, we must endow the adjoint bundle of Pπ1 with a fiber metric. To this end, it

suffices to choose an Ad-invariant inner product on so(3). In general, the choice of such

an inner product is free. However, we shall choose ⟨·, ·⟩ so that:

ei ⊥ ej if i ̸= j, |ei|2 = 2. (5.156)
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This is the unique inner product on so(3) such that:

|ξ|2 = −Tr
(
ξ2
)
. (5.157)

This identity is required to relate the Yang-Mills energy of instantons to characteristic

classes of the underlying bundle. It shall be crucial in the next section.

With this choice of inner product, we use (5.61), (5.62), (5.63), (5.64) and (5.154) to

compute:

∣∣∣FAHYMπ1

∣∣∣2 = 2

3∑
i=1

∣∣∣F i
AHYMπ1

∣∣∣2
= 8

√
3

3r4 + 10r2 + 11(
r2 + 1

)3 (
r2 + 2

) 1
2

.

In particular, we see that as r → ∞:

|FAHYMπ1
| = O(r−

3
2 ) = O(s−2).

Here we have used the radial coordinate s(r) introduced in (5.69) to exhibit the asymp-

totically conical growth of the Stenzel metric. This decay rate is not sufficient for the

Yang-Mills energy to be finite: on an asymptotically conical n-manifold, a function is

integrable when it decays faster than O(s−n). Indeed:

YM
(
AHYMπ1

)
=

∫
X8

∣∣∣FAHYMπ1

∣∣∣2 dVg
=

∫
X8

∣∣∣FAHYMπ1

∣∣∣2 PQ3θ1234567 ∧ dr

=

∫ ∞

0
O
(
r2
)
dr = +∞. (5.158)

In fact, the decay rate of the curvature norm could have been inferred directly from (5.152)

and (5.153). When a connection defined over an asymptotically conical manifold decays

to a dilation invariant limit, it is itself termed asymptotically conical (Driscoll [18], p. 38).

Such connections always have curvature tensors decaying like O(s−2). Both HYM solutions

are asymptotically conical seeing as they decay to the dilation invariant limit Acan
Id .
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5.3.4.2 Pullbacks to the Singular Orbit S4 Since both HYM solutions AHYMπ1
,

AHYMπ2
smoothly extend to the singular orbit, we can study their restrictions along S4.

The solution AHYMπ1
restricts to an invariant self dual (SD) instanton on Pπ1 , while the

solution AHYMπ2
restricts to an invariant anti-self dual (ASD) instanton on Pπ2 . The

bundles Pπ1 and Pπ1 have opposite charge of magnitude 1 and the two 4-dimensional

instantons are essentially equivalent: they are the SD and ASD versions of the unique

rotationally invariant charge one instanton on S4.

The connection AHYMπ1
pulls back to the canonical invariant connection of Pπ1 over S4:

ASD
def
= AHYMπ1|

S4

=
(
θ8 + θ7

)
⊗ e1 +

(
θ9 − θ6

)
⊗ e2 +

(
θ10 + θ5

)
⊗ e3. (5.159)

Its curvature is given by:

FASD =
(
θ23 + θ14

)
⊗ e1 +

(
θ24 − θ13

)
⊗ e2 +

(
θ34 + θ12

)
⊗ e3. (5.160)

An explicit calculation demonstrates thatASD is a self-dual instanton (Donaldson–Kronheimer

[15]) on S4. This justifies our choice of notation.

The connection AHYMπ2
pulls back to the canonical invariant connection of Pπ2 :

AASD
def
= AHYMπ2|

S4

=
(
θ8 − θ7

)
⊗ e1 +

(
θ9 + θ6

)
⊗ e2 +

(
θ10 − θ5

)
⊗ e3. (5.161)

Its curvature is given by:

FAASD =
(
θ23 − θ14

)
⊗ e1 +

(
θ24 + θ13

)
⊗ e2 +

(
θ34 − θ12

)
⊗ e3. (5.162)

An explicit calculation demonstrates that AASD is an anti-self-dual instanton (Donaldson–

Kronheimer [15]) on S4. This justifies our choice of notation.

Using the Stenzel metric and the fiber metric (5.156) we see that the curvature norms of

154



5.3 SO(5)-Invariant Instantons with Structure Group SO(3)

the two connections have the same constant value on all points of S4:

|FASD |
2 = |FAASD |

2 = 12.

Since the restriction of the Stenzel metric on the singular orbit is round of unit radius, we

have:

YM (ASD) = YM (AASD)

=

∫
S4

|FASD |
2dVg

= 12Vol
(
S4
)

(5.163)

= 32π2.

Owing to (5.157), any SO(3)-connection satisfies:

Tr
(
F 2
A

)
= −

(
|F+

A |2 − |F−
A |2
)
dVg. (5.164)

By Chern-Weil theory, the first Pontryagin class of the underlying SO(3)-bundle is the

cohomology class of the 4-form:

p1 = − 1

8π2
Tr
(
F 2
A

)
. (5.165)

Using (5.164) and (5.165), we conclude that the self-dual SO(3)-instantons on S4 have

Yang-Mills energy equal to 8π2 times the integral of the first Pontryagin class of the

underlying bundle. Similarly, the anti-self-dual instantons have Yang-Mills energy equal

to −8π2 times the integral of the first Pontryagin class. Using (5.163) we obtain:

p1
(
Pπ1

)
= 4, (5.166)

p1
(
Pπ2

)
= −4. (5.167)

We already knew that Pπ1 and Pπ2 are not equivariantly trivial nor equivariantly isomorphic

to each other. The above calculation demonstrates that they are genuinely non-trivial and

non-isomorphic (even if we drop the requirement that the identification be equivariant).
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Over a manifold with vanishing second cohomology, each SO(3)-bundle is associated to

a unique SU(2)-bundle through the natural two sheeted covering projection. The second

Chern class of the lift is related to the first Pontryagin class of the original bundle by the

equation (Donaldson–Kronheimer [15], p.41-42):

p1 = −4c2. (5.168)

Consequently, the SU(2)-lift of AASD has topological charge equal to 1. The compactified

moduli space of charge-one anti-self-dual instantons with structure group SU(2) over S4

can be identified with the closed 5-ball B5 (Donaldson–Kronheimer [15], p.126). The lift

of AASD coincides with the center of B5. It is the only SO(5)-invariant instanton in this

moduli space. Analogous remarks hold for ASD. This can be seen by reversing orientation

to make it anti-self-dual.

5.3.5 The Invariant Spin(7) Instanton ODEs on PId

5.3.5.1 Dimensional Reduction A general invariant connection A ∈ Ainv (PId) takes

the form:

A = Acan
Id + a(r)

(
θ2e3 − θ3e2 + θ4e1

)
+ b(r)

(
θ5e3 − θ6e2 + θ7e1

)
.

The curvature tensor associated to A is given by:

FA = F j
A ⊗ ej , where

F 1
A

def
= (1−a2) θ23+(1−b2) θ56−ab θ26+ab θ35+b θ14−a θ17+da

dr
dr∧θ4+db

dr
dr∧θ7, (5.169)

F 2
A

def
= (1−a2) θ24+(1−b2) θ57−ab θ27+ab θ45−b θ13+a θ16−da

dr
dr∧θ3−db

dr
dr∧θ6, (5.170)

F 3
A

def
= (1−a2) θ34+(1−b2) θ67−ab θ37+ab θ46+b θ12−a θ15+da

dr
dr∧θ2+db

dr
dr∧θ5. (5.171)

We write:

Φ ∧ FA = Φ ∧ F i
A ⊗ ei.
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Using (5.67) we compute:

Φ ∧ F 1
A =

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12347 (5.172)

+

(
PQ(1− b2)−

rR2
−

2R+
b−R+R

2
−
db

dr

)
dr ∧ θ14567

+

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ12467 +

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13457

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ23567 +

(
rR+ab−Q2da

dr

)
dr ∧ θ23456

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123456 +

(
−2R+R

2
−ab+Q2a

)
θ123567,

Φ ∧ F 2
A =−

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12346 (5.173)

+

(
−PQ(1− b2) +

rR2
−

2R+
b+R+R

2
−
db

dr

)
dr ∧ θ13567

+

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12367 +

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ13456

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ24567 +

(
rR+ab−Q2da

dr

)
dr ∧ θ23457

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123457 +

(
−2R+R

2
−ab+Q2a

)
θ124567,

Φ ∧ F 3
A =

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12345 (5.174)

+

(
PQ(1− b2)−

rR2
−

2R+
b−R+R

2
−
db

dr

)
dr ∧ θ12567

+

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ12357 +

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12456

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ34567 +

(
rR+ab−Q2da

dr

)
dr ∧ θ23467

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123467 +

(
−2R+R

2
−ab+Q2a

)
θ134567.

We now wish to compute the Hodge dual of the curvature. We will require the Hodge

duals of all 2-forms θij . These can be computed using (5.44), (5.45), (5.46) and the

formula (5.81). We write:

⋆g FA = ⋆gF
i
A ⊗ ei
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and compute:

⋆gF
1
A =− (1− a2)

PQR2
−

R2
+

dr ∧ θ14567 − (1− b2)
PQR2

+

R2
−

dr ∧ θ12347 (5.175)

+ abPQdr ∧ θ12467 − abPQdr ∧ θ13457

− rQ2

2R2
+

b dr ∧ θ23567 − a
rQ2

2R2
−
dr ∧ θ23456

+
da

dr

2R2
−Q

2

r
θ123567 − db

dr

2R2
+Q

2

r
θ123456,

⋆gF
2
A =(1− a2)

PQR2
−

R2
+

dr ∧ θ13567 + (1− b2)
PQR2

+

R2
−

dr ∧ θ12346 (5.176)

− abPQdr ∧ θ12367 + abPQdr ∧ θ13456

− rQ2

2R2
+

b dr ∧ θ24567 − a
rQ2

2R2
−
dr ∧ θ23457

+
da

dr

2R2
−Q

2

r
θ124567 − db

dr

2R2
+Q

2

r
θ123457,

⋆gF
3
A =− (1− a2)

PQR2
−

R2
+

dr ∧ θ12567 − (1− b2)
PQR2

+

R2
−

dr ∧ θ12345 (5.177)

+ abPQdr ∧ θ12357 − abPQdr ∧ θ12456

− rQ2

2R2
+

b dr ∧ θ34567 − a
rQ2

2R2
−
dr ∧ θ23467

+
da

dr

2R2
−Q

2

r
θ134567 − db

dr

2R2
+Q

2

r
θ123467.

The Spin(7) Instanton equations are given by:

⋆g FA = −Φ ∧ FA.

Separating the components of the Lie algebra we obtain:

⋆g F
i
A = −Φ ∧ F i

A. (5.178)
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The set of equations given by imposing (5.178) is the same for each i = 1, 2, 3. It is as

follows:

da

dr
=

2PQ

R+R2
−
ab− r

2R2
−
a (5.179)

da

dr
=
rR+

Q2
ab− r

2R2
−
a (5.180)

db

dr
=

PQ

R2
−R+

(1− b2)− PQ

R3
+

(1− a2)− r

2R2
+

b, (5.181)

db

dr
=
rR+

2Q2
(1− b2)−

R2
−r

2R+Q2
(1− a2)− r

2R2
+

b. (5.182)

This system is overdetermined unless the metric coefficients satisfy the condition:

PQ3 =
r

2
R2

+R
2
−. (5.183)

We recognize this as the SO(5)-invariant Monge–Ampère equation (5.53) distinguishing the

Stenzel metric among the Kähler metrics induced from SO(5)-invariant potentials. Using

this equation, we obtain the system:

da

dr
=

√
6

r(r2 + 1)
1
2

(r − 1)(r + 1)(r2 + 2)
1
2

ab− r

(r − 1)(r + 1)
a, (5.184)

db

dr
=

√
6

r

(r − 1)(r + 1)(r2 + 1)
1
2 (r2 + 2)

1
2

−
√
6

2

r(r2 + 1)
1
2

(r − 1)(r + 1)(r2 + 2)
1
2

b2

+

√
6

2

r

(r2 + 1)
1
2 (r2 + 2)

1
2

a2 − r

r2 + 1
b.

It is useful to work in coordinates compatible with the Eschenburg-Wang analysis. We

therefore switch to the variable t = R− introduced earlier. Recall that we have the relation:

r =
√
2t2 + 1. (5.185)

Note that this transformation is not smooth. This is not a pathology and is—in fact—

precisely the reason we are interested in it. Smoothness (at r=1) of solutions written

in terms of r is not related to smoothness of the associated connections. This anomaly

disappears when we replace r by t.
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Noting that
d

dr
=

√
2t2 + 1

2t

d

dt

and performing an elementary calculation, we find that the system takes the form:

da

dt
=

Pa
t

(
b− 1

P

)
, (5.186)

db

dt
=

P
2t

(
1− b2

)
− PQ

2

(
1− a2

)
−Qb.

where we have introduced the functions P,Q ∈ C∞ [0,∞) defined by:

P(t)
def
=

√
6
√
2t2 + 2√

2t2 + 3
, (5.187)

Q(t)
def
=

t

t2 + 1
. (5.188)

5.3.5.2 Elementary Observations on the Dynamics We begin our analysis of the

system (5.186). In this section we make a few elementary observations about the dynamics.

First, we have the following:

Proposition 5.14. The dynamics (5.186) preserve the vanishing of a and correspondingly

if a(t) ̸= 0 for some t > 0, then a(t) ̸= 0 for all t > 0.

Proof. The first statement is trivial. The second follows by the uniqueness part of the

standard Picard theorem.

Next we observe a symmetry in the solution space:

Proposition 5.15. Suppose that the pair (a, b) solves the system (5.186). Then so does

(−a, b).

Proof. This follows from a trivial calculation.

We conclude the following: either a = 0 for all time, or a has a fixed sign throughout

its lifespan. Furthermore, it suffices to study the case a > 0 as—owing to the above

observation—all solutions (a, b) with a < 0 can be obtained by considering a solution

where a > 0 and reversing its sign.

The next proposition establishes that if one solution lies above another at some instant t⋆,

the inequality persists for all time. Here, ‘lying above’ is interpreted componentwise.
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Proposition 5.16. Suppose that (a, b), (ã, b̃) are two solutions to the system (5.186) such

that a(t) > 0 and ã(t) > 0 for all t > 0. Suppose further that for some time t⋆ > 0 we have

a(t⋆) > ã(t⋆) and b(t⋆) > b̃(t⋆). These inequalities remain true for all t ≥ t⋆ for which both

solutions exist.

Proof. Suppose not. Let tf be the first time for which the inequality fails. There are three

cases:

1. ã(tf ) = a(tf ) and b̃(tf ) = b(tf ),

2. ã(tf ) = a(tf ) and b̃(tf ) < b(tf ),

3. ã(tf ) < a(tf ) and b̃(tf ) = b(tf ).

Case 1 contradicts the uniqueness part of the standard Picard theorem.

Suppose case 2 holds. Consider the evolution of a− ã:

d

dt
(a− ã) =

Pab
t

− a

t
−

(
P ãb̃
t

− ã

t

)
.

At t = tf we have ã(tf ) = a(tf ) = s > 0 and b̃(tf ) < b(tf ). Consequently:

d

dt
(a− ã)|tf

=
Ps
t

(
b(tf )− b̃(tf )

)
> 0.

It follows that a(t) < ã(t) for some time t < tf and the intermediate value theorem

contradicts the fact that tf is the first time for which the inequalities fail.

Suppose case 3 holds. Consider the evolution of b− b̃:

d

dt

(
b− b̃

)
=

P
2t

(
1− b2

)
− PQ

2

(
1− a2

)
−Qb−

(
P
2t

(
1− b̃2

)
− PQ

2

(
1− ã2

)
−Qb̃

)
.

At t = tf we have b̃(tf ) = b(tf ) and ã(tf ) < a(tf ). Consequently:

d

dt

(
b− b̃

)
|tf

=
PQ
2

(
a(tf )− ã(tf )

) (
a(tf ) + ã(tf )

)
> 0. (5.189)

which leads to a contradiction as above.
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Proposition 5.17. Suppose that (a, b) is a solution of (5.186) defined in a neighbourhood

of t0 > 0. Take initial data at t0 satisfying a(t0) > 0, b(t0) < 0 and flow backwards. Either

the solution (a, b) blows-up as t→ tblowup > 0 or a→ +∞ as t→ 0.

Proof. We will bound a from below by a function v satisfying v → +∞ as t→ 0.

Consider the evolution of the product ab. Using the equations (5.186), compute:

d

dt
(ab)|t =

.
ab+ a

.
b

=
P

2t
ab2 +

P
2t
(
t2 + 1

)a+ PQ
2
a3 −

(
Q+

1

t

)
ab > −

(
Q+

1

t

)
ab, (5.190)

where in the last line we used the fact that a > 0 for all time. By comparison, flowing

backwards in time, ab stays below the solution of the I.V.P:


.
u(t) = −

(
Q+ 1

t

)
u,

u(t0) = a(t0)b(t0).

By assumption, the initial data satisfy:

a(t0)b(t0) < 0.

Consequently, u < 0 for all 0 < t < t0 and we conclude that the same is true of ab.

This allows us to estimate:
.
a(t) =

Pab
t

− a

t
< −a

t
.

Consequently, a lies above the solution to the following I.V.P backwards of t0:
.
v(t) = −v

t ,

v(t0) = a(t0).

This is easily solved explicitly and we obtain the inequality:

a(t) ≥ a(t0)t0
t

for all 0 < t ≤ t0.
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Corollary 5.18. Let T > 0 and let (a, b) ∈ C1[0, T ] be a solution of (5.186) satisfying

a ̸= 0. We have that b(t) > 0 for all t ≥ 0 for which the solution exists.

Proof. Trivially, b(0) = ±1. If not, then
.
b(t) blows up as t→ 0. Hence it suffices to prove

the result for t > 0. If we achieve this, the possibility that b(0) = −1 is excluded by

continuity and thus we have that b(0) = 1.

Suppose that for some t0 > 0, b(t0) < 0. We have that a(t0) ̸= 0 by assumption. If

a(t0) > 0, the above proposition implies that a blows up to +∞ near t = 0 contradicting

the boundedness of the solution. If a(t0) < 0, then −a(t0) > 0. Since (−a, b) is a solution,

−a blows up to +∞ near t = 0. Hence, a blows up to −∞ near t = 0.

Suppose that b(t0) = 0 for some t0 > 0. At such a point we have:

.
b(t0) =

P(t0)

2t0(t20 + 1)
+

P(t0)Q(t0)

2
a2(t0) > 0.

It follows that b(t) < 0 for some 0 < t < t0 and this brings us to the previous case.

Putting the above together: if (a, b) is a global solution of (5.186), either a = 0 identically

or the sign of a is fixed and b > 0.

The final proposition in this section asserts that -when a ̸= 0- the long-term behaviour of

(5.186) is essentially driven by a.

Proposition 5.19. Let (a, b) ∈ C1[0, T ] be a solution of (5.186). Suppose that a ̸= 0.

Either (a, b) survives for all t > 0, or there exists a finite blowup time 0 < tblowup < ∞

such that:

|a| → +∞ as t→ t−blowup.

Proof. By the preceding results of this section, we have that b > 0 and the sign of a is

fixed. Proposition 5.15 permits us to assume a > 0 without loss of generality. By the

standard escape lemma, either the solution is global, or its phase space norm blows up to

+∞ at some finite time 0 < t∗ <∞.
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The task is to prove that when the latter occurs, we have that a→ +∞ as t→ t−∗ . Suppose

not. Then b→ +∞ as t→ t−∗ . Let ϵ1 > 0 be such that:

b(t) >
1

P(t)
for t∗ − ϵ1 < t < t∗. (5.191)

The equation governing a implies that it is monotonically increasing past t∗ − ϵ1. Since it

doesn’t converge to +∞, it must be bounded above. We then have that:

M := sup
t∗−ϵ1<t<t∗

(
P
2Qt

+
P
2
a2
)
<∞.

Let 0 < ϵ2 < ϵ1 be such that:

b(t) > M for t∗ − ϵ2 < t < t∗. (5.192)

Using the equation governing b, we find that for times past t∗ − ϵ2:

db

dt
=

P
2t

(
1− b2

)
− PQ

2

(
1− a2

)
−Qb.

< Q
(

P
2Qt

+
P
2
a2 − b

)
< Q (M − b)

< 0.

It follows that b is bounded above. This yields the requisite contradiction, establishing the

claim with tblowup = t∗.

5.3.5.3 Solutions Extending on Pπ2: An Explicit Family of Spin(7) Instantons

Containing a Unique HYM Connection We analyze the invariant Spin(7) instanton

equations on the bundle Pπ2 . The system (5.186) reduces to a single nonlinear ODE that

we can solve explicitly. We thus exhibit a 1-parameter family of Spin(7) instantons only

one of which is HYM. This resolves (negatively) the question of equivalence of the two

gauge theoretic problems.

Owing to proposition 5.13, solutions extending to Pπ2 must satisfy b(0) = −1. Due to
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corollary 5.18, the a-component of such a solution must vanish identically. The system

(5.186) reduces to the following ODE:

db

dt
= −PQ

2
+

P
2t

(
1− b2

)
−Qb (5.193)

This can be solved explicitly. We fix a positive reference time and parameterize solutions

by their value at that time. We choose to work with tref =
√
6
2 (corresponding to rref = 2).

This choice is arbitrary.

Writing:

ν = b (tref) ,

the associated solution to (5.193) takes the form:

bν(t) =

√
2

2

1 +

√
6− ν

√
10t2 + 15

√
30ν +

√
6−

(√
5ν + 2

)√
2t2 + 3

 1√
t2 + 1

. (5.194)

Corresponding to bν there is a local Spin(7) instanton on the restriction of PId over an

open submanifold of the form:

(tref − δ, tref + δ)× SO(5)

SO(3)
⊂ X8. (5.195)

This instanton is given by:

Aν
def
= Acan

π2
+
(
bν(t) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (5.196)

An elementary calculation yields the values of ν for which there exists a time t ≥ 0 such

that:

lim
t→t0

b(t) = ±∞

We obtain the following:

Proposition 5.20. Let ν ∈ (−∞,−2
√
5

5 ) ∪ (
√
10
5 ,∞). The connection Aν blows up (as

witnessed—for instance—by a blowup of the pointwise curvature norm) at the time tblowup(ν)
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given by:

tblowup(ν) =

√
6

2

√
5ν2 − 2

|
√
5ν + 2|

. (5.197)

In flowing away from the reference point t=tref we have forced our solutions to be bounded

at t=tref and thus neglected solutions that blow up at this time. Such solutions correspond

to the limit ν → ±∞. We can obtain an explicit formula for them by working with

a different reference time. We are not interested in this calculation since the resulting

solutions cannot yield global instantons.

For ν outside of the range considered in the proposition, the solutions stay bounded for all

time. These considerations lead to the following existence/classification result:

Theorem 5.21. Let ν ∈ [−2
√
5

5 ,
√
10
5 ). The connection Aν is a smooth Spin(7) instanton

on the extended bundle Pπ2. Furthermore, these are all the invariant Spin(7) instantons

on Pπ2.

Proof. For ν ∈ [−2
√
5

5 ,
√
10
5 ], the function bν is of class C∞[0,∞). We need to verify the

extension conditions of proposition 5.13. In particular we need to prove that bν(t)+1 is even

and O(t2) at t = 0. We immediately exclude ν =
√
10
5 as the associated solution satisfies

b(0) = 1 and consequently fails the second extension condition. For ν ∈ [−2
√
5

5 ,
√
10
5 ), the

first condition is clear by looking at the formula for bν . The second condition is easily

established by computing that:

bν(0) + 1 =
.
b(0) = 0 (5.198)

For uniqueness, we note that any invariant Spin(7) instanton on Pπ2 obeys (5.193) and all

other solutions of this equation blow up.

In particular, we resolve (negatively) the primary question we set out to answer: the two

natural gauge-theoretic systems available on a CY4 space do not coincide.

Theorem 5.22. Let (M8, g, J,Ω) be a geodesically complete Calabi-Yau 4-fold (i.e. Hol(g)=

SU(4)). It is possible for Spin(7) instantons on X8 not to satisfy the HYM equation. We

shall refer to such connections as pure Spin(7) instantons. When X8 is non-compact—
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in direct contrast to the compact case—pure Spin(7) instantons can live on a principal

G-bundle admitting HYM solutions.

The HYM connection AHYMπ2
(introduced in (5.153)) lies in the interior of this family and

corresponds to the choice ν = −
√
10
5 . It is the only HYM connection in the family.

The boundary point ν∂ = −2
√
5

5 corresponds to the solution:

bν∂ (t) = −
√
3

3

√
2t2 + 3√
t2 + 1

.

The associated Spin(7) instanton Aν∂ differs from the other elements in the family in that

it yields a different connection over the Stiefel manifold at infinity.

For ν ∈
(
−2

√
5

5 ,
√
10
5

)
it is easily seen that:

lim
t→∞

bν(t) = 0. (5.199)

Consequently, the corresponding instantons approach the canonical invariant connection

of PId:

A∞
ν = Acan

PId
.

The solution corresponding to ν = ν∂ satisfies:

lim
t→∞

bν∂ (t) = −
√
6

3
. (5.200)

It follows that the associated connection at infinity is given by:

A∞
ν∂

= Acan
PId

−
√
6

3

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
(5.201)

In the study of gauge theoretic moduli problems over noncompact manifolds, it is common

practice to fix the limiting connection at infinity. With this perspective in mind, we could

view the family of Theorem 5.21 as having a missing endpoint in both directions. The non-

compactness at the left endpoint is then mended by adding in the instanton Aν∂ (the latter

lying in another moduli space because of its different asymptotic behaviour). Perhaps, sim-

ilar noncompactness phenomena (jump discontinuities of the limiting G2 instanton over
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the asymptotic link) occur in general Spin(7) instanton moduli spaces.

We briefly comment on the asymptotic behaviour of the connections (Aν). We have already

computed the pointwise curvature norm of AHYMπ2
. It is of order O(s−2) at infinity.

Equations (5.199) and (5.200) imply that all elements of the family are AC. Consequently,

all the associated curvature tensors decay like O(s−2).

We conclude this section by noting that the limits t → 0 and ν →
√
10
5 do not commute.

Notably, the value bν(0) jumps from −1 to +1. Propositions 5.12 and 5.13 suggest that

this signifies a topological shift—i.e. change of the underlying principal bundle. In fact,

this is the first sign of the occurrence of an interesting removable singularity/ bubbling

phenomenon and the development of a corresponding Fueter section. This is the subject

of section 5.3.5.6.

5.3.5.4 Solutions Extending on Pπ1 We now wish to classify solutions that smoothly

extend over Pπ1 . In the previous section we saw that the only global-in-time solution

satisfying a = 0, b(0) = 1 corresponds to ν =
√
10
5 . This is given by:

bν(t) =
1√
t2 + 1

.

We recognize this as the HYM connection AHYMπ1
(introduced in (5.152)), which—as we

have already seen—extends to Pπ1 .

Any other solution would have nonvanishing a-component. Consequently, we have to deal

with the full system (5.186). The first task is to obtain short time existence and uniqueness

near the pole of the ODE. This will prove that the moduli space is at most 1 dimensional.

The rest of the section will deal with characterizing which of these local solutions survive

for all time to yield global Spin(7) instantons.

5.3.5.4.1 Short Time Existence and Uniqueness The analysis in this section relies

on the method of Eschenburg and Wang ([21], section 6). We have adapted their existence

result to our equation system and refined it to include continuous dependence on initial

data. This does not follow from the standard Grönwall estimate, as the I.V.P under
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consideration is singular. The continuity proof is based on the technique employed by

McLeod, Smoller, Wasserman and Yau in ([31], p.147]).

Theorem 5.23. Let a0 be a fixed real number. There exists a unique solution:

(a, b)a0 ∈ C∞[0, tmax(a0))

to the system (5.186) such that a is odd at t = 0, b is even at t = 0 and furthermore:

a(0) = 0, (5.202)

.
a(0) = a0, (5.203)

b(0) = 1. (5.204)

This solution satisfies the extension conditions of proposition 5.12 and thus yields a local

Spin(7) instanton on the restriction of Pπ1 over the open submanifold defined by 0 ≤ t <

tmax(a0).

Furthermore, we have that for any K > 0:

TK
def
= inf

{
tmax(a0) | a0 ∈ [−K,K]

}
> 0 (5.205)

and the following mapping is continuous:

[−K,K] → C0
(
[0, TK ],R2

)
,

a0 7→ (a, b)a0 . (5.206)

We will prove this result in four stages. The first step is to study the formal Taylor series

of smooth solutions at t = 0. The second step is to derive and analyze ODEs governing

perturbations of high order polynomial truncations of the series. The idea is to show that,

if the order is high enough, the resulting ODEs are uniquely soluble for sufficiently short

time in suitable Banach spaces. The third step is to argue that the solutions so obtained

are smooth and have the correct formal series at t = 0. The final step is to understand how

this existence/ uniqueness argument behaves under change of initial data. This involves

proving that the estimates can be made to be uniform in a0 for a0 in compact sets and
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establishing the desired continuity result.

Proposition 5.24. Fix a0 ∈ R. There exists a unique (a, b)a0 ∈ R[[t]]2 solving the system

(5.186) and satisfying the conditions (5.202), (5.203), (5.204). Here, differentiation is

understood in the formal sense (as a derivation of the formal power series ring).

Proof. Considering our assumptions on a and b, we introduce their formal Taylor series at

t = 0:

a =

∞∑
k=0

ak
(2k + 1)!

t2k+1, b =

∞∑
k=0

bk
(2k)!

t2k, where b0 = 1. (5.207)

Using the parity of a, b and the coefficient functions, we introduce the series:

a (Pb− 1) =
∞∑
k=0

ck
(2k + 1)!

t2k+1,
PQ
2

(
1− a2

)
=

∞∑
k=0

ek
(2k + 1)!

t2k+1,

P
2

(
1− b2

)
=

∞∑
k=0

dk
(2k)!

t2k where d0 = 0, Qb =
∞∑
k=0

fk
(2k + 1)!

t2k+1.

The ODE for a translates to the condition:

ak =
ck

2k + 1
for all k ≥ 0. (5.208)

We compute ck in terms of a0, ..., ak, b0, ..., bk. This yields:

ck =
d2k+1

dt2k+1 |t=0

(
a(Pb− 1)

)
,

= ak + G(a0, ..., ak−1, b0, ..., bk).

Here G denotes some function of coefficients of lower order. We will slightly abuse notation

and maintain use of the symbol G in subsequent calculations -even though the particular

function may not be the same. Using (5.208) we obtain:

2k

2k + 1
ak = G(a0, ..., ak−1, b0, ..., bk). (5.209)

This determines ak in terms of coefficients of lower order provided that k ̸= 0. We conclude

that we are allowed to choose a0 freely.

We perform a similar calculation for b. The second equation in (5.186) translates to the

relation:
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bk+1 =
dk+1

2k + 2
− ek − fk for all k ≥ 0. (5.210)

We note that ek and fk only involve terms depending on a0, ..., ak, b0, ..., bk and it is thus

unnecessary to compute them. We compute dk+1 in terms of a0, ..., ak, b0, ..., bk+1:

dk+1 =
d2k+2

dt2k+2 |t=0

(
P
2
(1− b2)

)
,

= −2bk+1 + G(b0, ..., bk).

Using (5.210), we obtain:

k + 2

k + 1
bk+1 = G(a0, ..., ak, b0, ..., bk).

It follows that bk+1 is determined by lower order coefficients for each k ≥ 0.

The above calculations demonstrate that the formal Taylor series at 0 is uniquely deter-

mined by induction given a choice of a0 ∈ R.

Although the content of the preceding proposition is enough for the purposes of our exis-

tence theorem, continuity requires more refined knowledge of the formal Taylor series. In

particular, we are interested in the dependence of its coefficients on a0. We explicitly cal-

culate the first few terms of the series associated to some fixed choice of a0. The resulting

expressions will also prove useful in our global existence analysis–the proof of proposition

5.37, in particular.

a(t) = a0t−
a0
3
t3 +

(
5a0
36

+
a30
12

)
t5 +O(t7), (5.211)

b(t) = 1− t2

2
+

(
3

8
+
a20
6

)
t4 +O(t6). (5.212)

In fact, we are able to obtain the following:

Proposition 5.25. The coefficients of the formal Taylor series (a, b)a0 are polynomials

(possibly of order 0) in a0.

Proof. This is certainly true for a0, b0 and b1. Repeating the calculations of the preceding

proposition, but keeping track of the lower order terms yields the following recurrence
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relations for the coefficients:

ak =
1

2k

k∑
m=1

m∑
l=0

(
2k + 1

2m

)(
2m

2l

)
P(2(m−l))
|t=0

ak−m bl,

bk+1 =− 1

4k + 8

k∑
m=1

m∑
l=0

(
2k + 2

2m

)(
2m

2l

)
P(2(k−m)+2)
|t=0

bm−l bl −
1

2k + 4

k∑
l=1

(
2k + 2

2l

)
bk+1−l bl

− k + 1

2k + 4
(PQ)

(2k+1)
|t=0

+
k + 1

2k + 4

k∑
m=1

m−1∑
l=0

(
2k + 1

2m

)(
2m

2l + 1

)
(PQ)

(2(k−m)+1)
|t=0

am−l−1 al

− k + 1

k + 2

k∑
m=0

(
2k + 1

2m

)
Q(2(k−m)+1)

|t=0
bm.

The result follows by induction.

We now discuss how to use this formal series in order to obtain an honest solution of the

system (5.186). For ease of exposition, we introduce the following functions:

F1(t, u, v)
def
= u

(
P(t) v − 1

)
,

F2(t, v)
def
=

P(t)

2
(1− v2),

F3(t, u, v)
def
= −P(t) Q(t)

2
(1− u2)−Q(t) v.

We rewrite the ODE system (5.186) as:

da

dt
=
F1 (t, a, b)

t
, (5.213)

db

dt
=
F2 (t, b)

t
+ F3 (t, a, b) . (5.214)

Further, we let pam(t, a0), pbm(t, a0) denote the order m Taylor polynomials corresponding

to the initial data a0. These are obtained by truncating the respective series. We also

introduce the following error functions capturing the failure of the Taylor polynomials to

solve (5.186):

Ea
m(t, a0)

def
=

d

dt
pma (t, a0)−

F1

(
t, pam(t, a0), p

b
m(t, a0)

)
t

,

Eb
m(t, a0)

def
=

d

dt
pmb (t, a0)−

F2

(
t, pbm(t, a0)

)
t

− F3(t, p
a
m(t, a0), p

b
m(t, a0)).
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They are smooth and O(tm) at t = 0. To see this, recall that the full formal series was

constructed by matching derivatives at the origin. Consequently, the first m−1 derivatives

of the error functions vanish at t = 0.

We now introduce the Banach spaces we will be working with. For any real T > 0 and

integer m ≥ 0 we define:

OT (m)
def
=

{
f ∈ C0[0, T ] s.t. sup

t∈[0,T ]

|f(t)|
tm

<∞

}
, (5.215)

∥f∥OT (m)
def
= sup

t∈[0,T ]

|f(t)|
tm

. (5.216)

Fix T > 0. We immediately observe that the error functions Ea
m, E

b
m lie in OT (m) (they

are O(tm) at t = 0). Furthermore, the functions pam, pbm − 1 lie in OT (1). In fact -in light

of proposition 5.25- we have:

Corollary 5.26. Ea
m(t, ·), Eb

m(t, ·) define continuous mappings from the space of initial

data (the real numbers) into OT (m). Similarly, pam(t, ·), pbm(t, ·) − 1 define continuous

mappings from the space of initial data into OT (1).

We finally recast the problem as an integral equation for a perturbation of the polynomials

(pam, p
b
m). Given a pair of functions (u, v) ∈ O⊕2

T (m) we define:

Θ1
m,a0 (u, v) (s)

def
=

∫ s

0

F1

(
t, pam(a0, t) + u(t), pbm(a0, t) + v(t)

)
t

− .
pam(a0, t)

 dt,

Θ2
m,a0 (u, v) (s)

def
=

∫ s

0

F2

(
t, pbm(a0, t) + v(t)

)
t

+ F3(t, p
a
m(a0, t) + u(t), pbm(a0, t) + v(t))− .

pbm(a0, t)

 dt.

It can be easily checked (by expanding out the integrands, counting order of vanishing and

noting that integration raises this by one) that we obtain a nonlinear integral operator:

Θm,a0
def
= Θ1

m,a0 ×Θ2
m,a0

: O⊕2
T (m) → O⊕2

T (m). (5.217)

The following proposition is the heart of the matter:

Proposition 5.27. Let a0 be fixed. Fix R > 0. For sufficiently large m (depending on

F1, F2, F3, R) and sufficiently small T (depending on m and a0), the operator Θm,a0 has a
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unique fixed point (u, v) in BR(0) ⊂ O⊕2
T (m). Furthermore, this fixed point is smooth on

[0, T ] and the associated solution

(a, b)
def
= (pam + u, pbm + v)

to the system (5.186) satisfies (5.202), (5.203), (5.204).

Proof. In what follows, our notation suppresses dependence on a0. Fix R > 0. We will

select m and T such that Θm is a contraction on BR(0) ⊂ O⊕2
T (m).

Consider the domain:

DR
def
= [0, 1]×B2R(0, 1) ⊂ R3. (5.218)

Let L > 0 be a Lipschitz constant in the (u, v) variables for the restrictions of F1, F2, F3

on DR. The constant L is controlled by L∞ bounds on the restrictions of the derivatives

of the Fi on DR. Choose:

m > max {2L, 1} .

Pick T such that:

T < min

1,
(m+ 1)R

2
(
∥Ea

m∥O1(m) +
∥∥Eb

m

∥∥
O1(m)

) , R

∥pam∥O1(m)

,
R∥∥pbm − 1
∥∥
O1(m)

 .

Clearly, for t ∈ [0, T ] we have:

|pam(t)| ≤ R, |pbm(t)− 1| ≤ R. (5.219)

We claim that we also have: ∥∥Θm(0, 0)
∥∥
OT (m)

≤ R

2
. (5.220)
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To see this, we estimate as follows:

∥∥Θm(0, 0)
∥∥
OT (m)

=
∥∥∥Θ1

m(0, 0)
∥∥∥
OT (m)

+
∥∥∥Θ2

m(0, 0)
∥∥∥
OT (m)

=

∥∥∥∥∫ r

0
Ea

m(t)dt

∥∥∥∥
OT (m)

+

∥∥∥∥∫ r

0
Eb

m(t)dt

∥∥∥∥
OT (m)

≤ sup
r∈[0,T ]

1

rm

∫ r

0
|Ea

m(t)|dt+ sup
r∈[0,T ]

1

rm

∫ r

0
|Eb

m(t)|dt

≤ sup
r∈[0,T ]

∥Ea
m∥OT (m)

rm

∫ r

0
tmdt+ sup

r∈[0,T ]

∥∥∥Eb
m

∥∥∥
OT (m)

rm

∫ r

0
tmdt

≤ sup
r∈[0,T ]

∥Ea
m∥OT (m)

m+ 1
r + sup

r∈[0,T ]

∥∥∥Eb
m

∥∥∥
OT (m)

m+ 1
r

≤
∥Ea

m∥OT (m) +
∥∥∥Eb

m

∥∥∥
OT (m)

(m+ 1)
T ≤ R

2
. (5.221)

We now prove contraction estimates for Θ1
m and Θ2

m. Fix 0 ≤ r ≤ T and compute:

∣∣∣Θ1
m(u, v)(r)−Θ1

m(ũ, ṽ)(r)
∣∣∣ ≤ ∫ r

0

1

t

∣∣∣∣F1

(
t, pam + u, pbm + v

)
− F1

(
t, pam + ũ, pbm + ṽ

)∣∣∣∣ dt
≤
∫ r

0

L

t

(
|u− ũ|+ |v − ṽ|

)
dt

≤ L
(
∥u− ũ∥OT (m) +∥v − ṽ∥OT (m)

)∫ r

0
tm−1dt

≤ Lrm

m

(
∥u− ũ∥OT (m) +∥v − ṽ∥OT (m)

)
.

In this calculation, the L-Lipschitz estimate is valid due to (5.219) and the fact that the

uniform norm is controlled by the OT (m) norm when 0 < T < 1. We conclude that:

∥∥∥Θ1
m(u, v)−Θ1

m(ũ, ṽ)
∥∥∥
OT (m)

≤ L

m

(
∥u− ũ∥OT (m) +∥v − ṽ∥OT (m)

)
. (5.222)

A similar calculation yields:

∥∥∥Θ2
m(u, v)−Θ2

m(ũ, ṽ)
∥∥∥
OT (m)

≤
(
L

m
+

LT

m+ 1

)
∥v − ṽ∥OT (m) +

LT

m+ 1
∥u− ũ∥OT (m)

≤ 1

2

(
∥u− ũ∥OT (m) +∥v − ṽ∥OT (m)

)
. (5.223)

Due to (5.220), (5.222) and (5.223), the closed R-ball in O⊕2
T (m) is stable under Θ. The

contraction mapping theorem (CMT) yields a unique fixed point (u, v) in this ball.
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This fixed point is necessarily of class C1[0, T ] (by the fundamental theorem of calculus).

Consequently (a, b) is C1 and it therefore constitutes an honest solution of (5.186) on [0, T ].

Considering the order of vanishing of u at 0 and looking at the equations, we observe that
.
u(t) = O(tm−1). Conditions (5.202), (5.203), (5.204) follow.

Full regularity follows by a simple bootstrap procedure. Since flows of smooth (non-

autonomous) vector fields are smooth, (u, v) is smooth on (0, T ]. The task is to establish

smoothness at 0. Smoothness on (0, T ] legitimizes differentiation of the equations for t > 0.

This gives an expression for the second derivatives of u and v involving terms in u
t2

, v
t2

,
.
u
t and

.
v
t . It is thus clear that u(2)(t), v(2)(t) → 0 as t → 0. Hence u, v are of class

C2[0, T ] with vanishing second derivative at 0. We can iterate this argument to conclude

that u, v are of class Cm−1[0, T ] with vanishing derivatives at 0 up to order m − 1. The

only constraint on m required for the contraction argument to run is m > max {2L, 1}. It

follows that the operator Θl is a contraction for arbitrarily large l > m (perhaps for shorter

time T ). Fixing l > m, we let (ul, vl) be the associated fixed point. Repeating the argument

above, it lies in C l−1[0, T ] with vanishing derivatives up to order l− 1. It is thus O(tm+1).

It follows that (ul + pal − pam, vl + pbl − pbm) is also O(tm+1). Consequently -by further

decreasing T as necessary- we can arrange that the latter has as small O⊕2
T (m) norm as we

like. In particular, we take this to be less than R. Furthermore, (ul+pal −pam, vl+pbl −pbm)

is a fixed point of Θm. But Θm has a unique fixed point in the closed R-ball. It follows

that:

(u, v) = (ul + pal − pam, vl + pbl − pbm) (5.224)

and hence that u, v lie in C l−1. Since l was arbitrary, the proof is complete.

We now have enough for the first part of theorem 5.23. The preceding proposition guar-

antees the existence of a smooth solution (a, b) satisfying (5.202), (5.203), (5.204). The

algebraic calculation in the start of this section uniquely specifies its full formal Taylor se-

ries at t = 0 so that it passes the extension criterion in proposition 5.12. Finally, suppose

that there is another smooth solution (ã, b̃) satisfying (5.202), (5.203), (5.204). Arguing

as above, we find that the two solutions share the same formal Taylor series at 0 (the

series discovered in proposition 5.24). Let m be as in proposition 5.27. We have that
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(a − pam, b − pbm), (ã − pam, b̃ − pbm) are O(tm+1). For short enough time T , the O⊕2
T (m)

norms of these functions are less than R. Since both functions are fixed points of Θm and

lie in the closed R-ball, they are equal. Hence (a, b) = (ã, b̃).

It remains to study the dependence of solutions on variations of the initial data a0. We

immediately obtain:

Proposition 5.28. Fix K > 0. We have:

TK = inf
{
tmax(a0) | a0 ∈ [−K,K]

}
> 0.

Proof. In our existence proof, once, R,L,m are fixed, T needs to be controlled from above

by quantities decreasing with the O1(m) norms of the error functions and the O1(1) norms

of pam, pbm − 1. By corollary 5.26, these norms depend continuously on a0 and are hence

bounded for a0 in a compact set. It follows that we can choose T small enough so that the

contraction argument works for all a0 ∈ [−K,K].

Note that the contraction constant can be taken to be the same across all a0 ∈ [−K,K].

This is vital for the continuity proof, which we now discuss.

Proposition 5.29. The mapping defined by:

[−K,K] → C0
(
[0, TK ],R2

)
a0 7→ (a, b)a0 (5.225)

is continuous.

Proof. Consider the trivial (infinite-rank) vector bundle over [−K,K]:

E
def
= [−K,K]×O⊕2

TK
(m).

The following map is fiber-preserving and continuous:

S : E → E,(
a0, (u, v)

)
7→
(
a0,Θm,a0(u, v)

)
.
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There is a unique section s of E that is fixed by S (the one assigning to each choice of

initial data the associated fixed point of Θa0,m). The task is to prove that s is continuous.

To this end, we fix x ∈ [−K,K] and prove that s is continuous at x. Fix ϵ > 0 and define

the following (continuous) section of E:

ux(a0)
def
= (a0, s(x)).

We will run the CMT iteration on each fiber with initial condition determined by ux.

Letting 0 < C < 1 be the contraction constant of Θa0,m and using the standard convergence

rate estimate of the CMT we have:

∥∥∥ΘN
m,a0(ux(a0))− s(a0)

∥∥∥
O⊕2

TK
(m)

≤

∥∥Θm,a0(ux(a0))− ux(a0)
∥∥
O⊕2

TK
(m)

1− C
CN

≤ 2R

1− C
CN . (5.226)

Fix N large enough so that this quantity is controlled by ϵ
2 . Since S and u are continuous,

we have:

lim
a0→x

SNux(a0) = SNux(x) = (x, s(x)).

Consequently, for a0 sufficiently close to x, we can achieve:

∥∥∥ΘN
m,a0

(
ux(a0)

)
− s(x)

∥∥∥
O⊕2

TK
(m)

<
ϵ

2
. (5.227)

Using (5.226), (5.227) and the triangle inequality completes the proof.

Uniqueness implies that the solution associated to a0 = 0 corresponds to AHYMπ1
. This

instanton will play a central role in the analysis of the global properties of the system.

5.3.5.4.2 Global Existence for Small Initial Data The previous section yields a

characterization of short-time solutions near the pole. We are now tasked with understand-

ing which of these solutions are global. In this section we establish that:

Theorem 5.30. There exists an ϵ > 0 such that for |a0| < ϵ, the short-time solutions of

theorem 5.23 are global.

Combining this with theorem 5.33 (presented in the subsequent section), we get a complete

description of the invariant instanton moduli space. Note that we have not studied the
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precise long-time asymptotics of the global solutions. In the notation of theorem 5.33, we

expect those in (−x, x) to be AC, asymptotic to a contact instanton at infinity. We expect

the limiting instanton to jump as we approach the boundary points.

The heart of the small-data global existence argument lies in the following proposition. Its

conditions are subsequently easily verified (for small initial data) by a continuity argument.

Proposition 5.31. Suppose that a0 > 0 and let (a, b)a0 be a solution to the system (5.186)

such that a attains a critical point in the spacetime region:

t >

√
6

2
√
1− 2a2

, 0 < a <

√
2

2
. (5.228)

Then tmax(a0) = +∞.

Proof. By proposition 5.14, a(t) > 0 for all 0 < t < tmax(a0). Looking at the ODE for a, we

conclude that the critical points of a are precisely the points where b = P−1. We seek an

expression for the second derivative of a at a critical point occurring at time t = tcrit > 0.

Differentiating the ODE for a and setting b = P−1, we obtain:

d2a

dt2 |t=tcrit

=
3 a (tcrit)

2t2crit
(
2t2crit + 3

) [(4 a (tcrit)2 − 2
)
t2crit + 3

]
. (5.229)

The first factor is strictly positive. Consequently, the nature of the critical point depends

on the sign of:

F (t, a)
def
=
(
4a2 − 2

)
t2 + 3 (5.230)

at
(
tcrit, a (tcrit)

)
. For (t, a) in the spacetime region (5.228), we have F (t, a) < 0. Hence,

any critical point occurring in the region is a maximum.

Suppose that a maximum does occur inside the region (5.228). For a short amount of time

thereafter a is decreasing. The only way that a can ever increase again is if it reaches a

minimum. A minimum can only occur if (t, a(t)) exits the spacetime region (5.228). For

this to occur, a has to increase. It follows that a decreases for as long as the solution

survives. Consequently a is bounded from above. Since a > 0, it follows that a is also

bounded from below. Since a consistently decreases after the maximum point, we have

that b(t) < P(t)−1 for t > tcrit. By corollary 5.18, b > 0 for all time. Hence both a and b
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are bounded and thus survive for all time t ≥ 0.

Proposition 5.31 applies provided that the initial data is small enough:

Proposition 5.32. There exists ϵ > 0 such that if 0 ≤ a0 < ϵ, then aa0 attains a critical

point in the spacetime region (5.228).

Proof. The idea is to use a continuity argument and compare with the solution correspond-

ing to a0 = 0:

aHYM(t) = 0, bHYM(t) =
1√
t2 + 1

. (5.231)

Note that P(0) = 2 and b(0) = 1 (independently of the choice of a0). Hence b always starts

above P−1. For a0 = 0, the solution bHYM crosses P−1 at the time: t = 3
√
2

2 . For a0 > 0,

formulae (5.211) and (5.212) show that -at least for a very short time- to the right of t = 0

we have

(a, b) > (aHYM, bHYM) , (5.232)

where the inequality is understood componentwise. By proposition 5.16, this inequality

persists for as long as the solutions exist. Consequently, if a0 > 0, ba0 can only cross P−1

strictly after t = 3
√
2

2 .

Consider only |a0| ≤ 1. By the second assertion of theorem 5.23, the maximal existence

time of the resulting solutions is bounded below by a positive number T1. Furthermore,

these solutions depend continuously on a0 (in the C0[0, T1] norm). Composing with the

local flow associated to taking initial conditions at t = T1, we see that the maximal

existence time is lower semicontinuous in a0. Furthermore, we see that if a particular

choice of a0 yields a solution surviving past some time t = T , the mapping sending initial

conditions to their associated solutions is continuous from an open neighbourhood of a0

into C0[0, T ].

Since (aHYM, bHYM) (associated to a0 = 0) is global, initial data close to 0 lead to solutions

that survive arbitrarily long. In particular, we can choose ϵ > 0 to be small enough so

that solutions associated to 0 < a0 < ϵ survive past t = 4. Furthermore -at the expense of
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taking ϵ to be even smaller- we can appeal to continuity to arrange that:

sup
t∈[0,4]

∣∣aa0(t)∣∣ < 1

2
, (5.233)

sup
t∈[0,4]

∣∣∣∣ba0(t)− 1√
t2 + 1

∣∣∣∣ < 1

2
inf

t∈[3,4]

∣∣∣∣ 1√
t2 + 1

− 1

P(t)

∣∣∣∣ . (5.234)

Condition (5.233) implies that for any
√
3 < t ≤ 4 the point (t, a(t)) lies in the spacetime

region (5.228). Condition (5.234) implies that for any 3 ≤ t ≤ 4 we have:

ba0(t) <
1

P(t)
.

By the intermediate value theorem, there exists a 0 < tcrit < 3 where ba0 crosses P−1. But

we have seen that this time must be after t = 3
√
2

2 and consequently after t =
√
3. Hence,

the critical point at t = tcrit occurs in the spacetime region (5.228).

Theorem 5.30 easily follows from the preceding two propositions and the symmetry of the

system (5.186)—as formulated in proposition 5.15.

Proof (of Theorem 5.30): Proposition 5.32 yields a threshold ϵ > 0 such that for any 0 ≤

a0 < ϵ, the a component of the associated solution attains a critical point in the region

(5.228). Proposition 5.31 then implies that (a, b)a0 is global. Finally, proposition 5.15

proves that solutions associated to −ϵ < a0 ≤ 0 are global too.

5.3.5.4.3 Finite Time Blowup for Large Initial Data We now wish to study the

development of large initial data. We will obtain the following:

Theorem 5.33. Suppose that:

|a0| >
1

2 arctanh
(
1
2

) .
Then (a, b)a0 blows up in finite time at most equal to:

tblowup (a0)
def
=

3
√
2

2

(
1− tanh2

(
1

2|a0|

)) 1
2

1− 2 tanh
(

1
2|a0|

) . (5.235)
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Furthermore, the blowup set:

Sblowup
def
=
{
a0 ∈ R s.t. (a, b)a0 blows up in finite time

}
(5.236)

is of the form:

Sblowup = (−∞,−x) ∪ (x,∞) (5.237)

for some 0 < x ≤ 1
2 arctanh( 1

2)
.

Our analysis relies on an a priori bound for b
a :

Proposition 5.34. For any a0 ≥ 0, the solution (a, b)a0 satisfies the following inequality

for all 0 ≤ t < tmax(a0):

b(t) >
t

2
√
t2 + 1

a(t). (5.238)

Proof. Estimate (5.238) is clearly satisfied at t = 0. To show that it persists for as long as

solutions survive, we let t⋆ > 0 be any time such that:

b(t⋆) =
t⋆

2
√
t2⋆ + 1

a(t⋆)

and we compute:

d

dt |t=t⋆

(
b(t)− t

2
√
t2 + 1

a(t)

)
=

√
6
b(t⋆)

2 t2⋆ + b(t⋆)
2 + 1

t⋆
√
2t2⋆ + 2

√
2t2⋆ + 3

> 0. (5.239)

Proposition 5.34 allows us to estimate:

.
a =

Pa
t

(
b− 1

P

)
>

Pa
t

(
ta

2
√
t2 + 1

− 1

P

)
. (5.240)

Fix a positive reference time t0 > 0. Estimate (5.240) implies that -past t0- a is bounded

below by the solution of the following I.V.P. of Riccati type:


.
u(t) = u(t)

( √
3√

2t2+3
u(t)− 1

t

)
,

u(t0) = a(t0).

(5.241)
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Setting x0
def
= a(t0) > 0, equation (5.241) can be solved explicitly to give:

ut0,x0(t) =
t0x0

t

(
t0x0 arctanh

( √
3√

2t2+3

)
− t0x0 arctanh

( √
3√

2t20+3

)
+ 1

) . (5.242)

The task is now to determine conditions on t0 > 0, x0 > 0 such that the lower bound ut0,x0

blows up to +∞ in finite time past t0.

We introduce the threshold function:

R (t)
def
=

1

t arctanh
( √

3√
2t2+3

) . (5.243)

An elementary calculation demonstrates that the denominator of (5.242) has a zero in the

non-negative real line if and only if:

x0 > R(t0). (5.244)

Furthermore, when (5.244) is satisfied, this zero is unique and located at the time given

by:

T (t0, x0)
def
=

√
6

2

(
1− 3

2t20 + 3

) 1
2

(
1− tanh2

(
1

t0x0

)) 1
2

√
3√

2t20+3
− tanh

(
1

t0x0

) . (5.245)

Consequently, the lower bound ut0,x0 will exhibit the requisite behaviour provided that:

x0 > R(t0) and T (t0, x0) > t0. (5.246)

As it turns out, the second condition is vacuous:

Proposition 5.35. Fix t0 > 0. We have:

T
(
t0,R(t0)

)
= +∞

and T (t0, x0) decreases monotonically to t0 (as a function of x0) for x0 > R(t0). In
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particular, we have the following pointwise limit:

lim
x0→∞

T (t0, x0) = t0.

Proof. The proof is an elementary explicit calculation which we omit.

Incorporating the content of proposition 5.35 to our earlier discussion, we arrive at the

following conclusion. For each time t0 > 0, the value R(t0) provides a threshold (justifying

our terminology), such that if u solves (5.241) and satisfies

u(t0) > R(t0),

then it blows up in finite time equal to T (t0, u(t0)) > t0. Fix t0 > 0. For u(t0) close

to (but above) the threshold, the blowup time can be arbitrarily large. As u(t0) → ∞,

the blowup time approaches t0 from above. Consequently, for very large initial data, the

solution survives for arbitrarily short time past t0.

Since ut0,x0 bounds a from below, we obtain:

Proposition 5.36. Suppose that (a, b)a0 is a solution of the system (5.186) satisfying:

a(t0) > R(t0) for some t0 > 0.

Then a blows up to +∞ in finite time at most equal to T (t0, a(t0)).

The task is then to verify that for large initial data a0, the a-component of the solution

eventually crosses the threshold R, depicted below:

1 2 3 4 5

0.5

1

1.5

2

t

R(t)
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Figure 1: Graph of the threshold function R.

We will use the reference time t0 = 3
√
2

2 . This is the time where bHYM -introduced in

(5.231)- crosses P−1. We are able to obtain the following bound:

Proposition 5.37. Fix a0 > 0. Let (a, b)a0 be the development of the initial data a0. We

have:

a

(
3
√
2

2

)
>

2
√
2

3
a0. (5.247)

Proof. Fix a0 > 0. Formula (5.212) demonstrates that -at least for a short time-, ba0

exceeds bHYM to the right of t = 0. Proposition 5.16 establishes that ba0 > bHYM until

t = tmax(a0). Incorporating this bound with the ODE governing a, we estimate (for t > 0):

.
a(t) =

Pa
t

(
b− 1

P

)
>

Pa
t

(
1√
t2 + 1

− 1

P

)
=
a(t)

t

(
2
√
3√

2t2 + 3
− 1

)
. (5.248)

Motivated by this computation, we introduce the following (singular) I.V.P:



.
v(t) = v(t)

t

(
2
√
3√

2t2+3
− 1
)
,

v(0) = 0,

.
v(0) = a0.

The problem is well-posed (solutions exist and are uniquely determined by the prescribed

initial data) and v takes the form:

va0(t) =
36 a0 t(

3 +
√
6t2 + 9

)2 . (5.249)

The function va0 has a global maximum at time t = t0 =
3
√
2

2 with value 2
√
2

3 a0.

If the I.V.P. (5.249) were not singular, we could invoke estimate (5.248) to conclude that va0

bounds aa0 from below for as long as the latter survives. By virtue of the above remarks,

this would complete the proof. However, the standard ODE comparison argument (for

nonsingular I.V.Ps) does not apply directly.
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We sketch this well-known argument to identify where things go wrong. Suppose that

we have two initial value problems on the real line associated to two smooth (potentially

non-autonomous) vector fields F1 and F2 such that:

F1(t, x) > F2(t, x) for all t ≥ 0, x ∈ R. (5.250)

Let s1(t) and s2(t) be solutions satisfying the same initial condition:

x0 = s1(0) = s2(0). (5.251)

Since F1(0) > F2(0) there is an open interval to the right of t = 0 where s1 > s2. Suppose,

for a contradiction that this inequality does not persist for all time. At the first future

crossing the difference s1 − s2 is increasing, which yields a contradiction.

Attempting to run this argument for I.V.P’s with a first order singularity at t = 0, we

observe that the initial derivatives of s1 and s2 match. We thus run into trouble getting s1

to exceed s2 in the immediate future of the initial time. The rest of the argument carries

through successfully.

Fortunately, the situation can be mended by comparing higher order data at the pole. The

function va0 has the following formal Taylor series at t = 0:

va0 = a0t−
a0
3
t3 +

5a0
36

t5 +O(t7). (5.252)

Comparing this with (5.211), and recalling that a0 > 0 we conclude that aa0 exceeds va0

in the immediate future of the initial time. The rest of the standard comparison argument

carries through, ultimately establishing the requisite estimate.

The upshot is that by choosing a0 to be sufficiently large, we can arrange that a(t0) exceeds

any number we like. In particular, we can arrange that a(t0) exceeds the threshold R(t0).

We now have enough to complete the proof of theorem 5.33.
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Proof (of Theorem 5.33): Evaluating (5.243) and (5.245) at the reference time t0 = 3
√
2

2

we obtain:

R (t0) =

√
2

3 arctanh
(
1
2

) , T (t0, x) =
3
√
2

2

(
1− tanh2

(√
2

3x

)) 1
2

1− 2 tanh
(√

2
3x

) . (5.253)

Let (a, b) be a solution of the system (5.186) satisfying:

a (t0) >

√
2

3 arctanh
(
1
2

) . (5.254)

Using (5.253) and proposition 5.36, we conclude that the solution blows up to +∞ in finite

time at most equal to T
(
t0, a (t0)

)
. Proposition 5.37 guarantees that (5.254) is satisfied

provided that we take:

a0 >
1

2 arctanh
(
1
2

) . (5.255)

By proposition 5.35, when x > R(t0) we have that the function T (t0, x) is monotonic in

x. Condition (5.255) guarantees that the right hand side of (5.247) exceeds R (t0) and is

thus large enough for the monotonicity statement to apply. We obtain:

T
(
t0, a (t0)

)
< T

(
t0,

2
√
2

3
a0

)
=

3
√
2

2

(
1− tanh2

(
1

2|a0|

)) 1
2

1− 2 tanh
(

1
2|a0|

) .

Defining tblowup(a0) to be equal to the right hand side of this inequality, we have established

the first assertion of theorem 5.33.

Define the positive and negative blowup sets as:

S+
blowup

def
=
{
a0 ∈ R s.t. aa0 blows up to +∞ in finite time

}
,

S−
blowup

def
=
{
a0 ∈ R s.t. aa0 blows up to −∞ in finite time

}
.

Proposition 5.19 implies that:

Sblowup = S+
blowup ∪ S−

blowup.
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The last assertion of theorem 5.33 will follow from proposition 5.15 if we establish the

existence of x > 0 such that:

S+
blowup = (x,∞). (5.256)

We first prove that the positive blowup set is open. Let a0 ∈ S+
blowup and let t⋆ be the

blowup time of the associated solution. By definition:

lim
t→t⋆

a(t) = +∞.

Consequently, there is a time T ∈ [ t⋆2 , t⋆) such that:

a (T ) > 2 sup
t∈[ t⋆

2
,t⋆]

R(t).

By continuity with respect to variation of the initial data, we obtain a δ > 0 such that for

ã0 ∈ (a0 − δ, a0 + δ):
a(T )

2
< ã(T ) <

3

2
a(T ).

Consequently:

ã(T ) > sup
t∈[ t⋆

2
,t⋆]

R(t) ≥ R(T ). (5.257)

By proposition 5.35, the initial data ã0 lead to finite-time blowup and S+
blowup is indeed

open.

Finally, by proposition 5.16, if a certain choice of a0 > 0 leads to finite-time blowup, so do

all ã0 > a0. Together with openness, this property yields (5.256) for some x ≥ 0. Theorem

5.30 implies that x > 0.

5.3.5.5 The Moduli Space

The results of the preceding sections are sufficient to obtain a complete description of the

moduli space of SO(5) invariant Spin(7) instantons with structure group SO(3) on the

Stenzel manifold. We denote this object as MSpin(7)
inv

(
X8
)
. The trivial bundle P1 doesn’t

contribute to this moduli space. This is due to the nonexistence theorem 5.11. Here we

ignore the trivial solution A = 0.
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Let P be a G-homogeneous (or cohomogeneity one) principal S-bundle. There are two

natural ways to set up a moduli space of G-invariant solutions to a gauge-theoretic problem

on P . One is to quotient the set of invariant solutions by the group of equivariant gauge

transformations. The other is carried out in two steps. Initially one quotients the set of

all (not necessarily invariant) solutions by the set of all (not necessarily equivariant) gauge

transformations. The action of G on the total space P induces an action on the set of all

connections. This action restricts to the set of solutions and passes to the quotient. The

moduli space is then defined to be the G-invariant locus. There is an obvious map from the

first construction to the second construction. If the fiber S is semisimple and we restrict

attention to irreducible connections, this map is an isomorphism (Oliveira [54] Corollary

4.5).

In our setting, the structure group is SO(3) (which is indeed semisimple) and furthermore,

all solutions are irreducible. It follows that the two constructions coincide. We will follow

the first. Recall that each invariant connection constitutes its own equivariant gauge

equivalence class. Consequently, the moduli spaces on the individual bundles are:

M
(
Pπ1

) def
=
{
A ∈ Ainv

(
Pπ1

)
s.t. ⋆g FA = −Φ ∧ FA

}
,

M
(
Pπ2

) def
=
{
A ∈ Ainv

(
Pπ2

)
s.t. ⋆g FA = −Φ ∧ FA

}
.

Due to the results of section 5.3.5.4, we have that M
(
Pπ1

)
is a compact interval. It can

be parameterized by initial conditions a0 =
.
a(0) leading to global solutions. Using this

parameterization, theorem 5.33 gives us a number x > 0 such that:

M
(
Pπ1

) ∼= [−x, x]. (5.258)

The space M
(
Pπ1

)
contains a unique HYM connection AHYMπ1

corresponding to a0 = 0.

It is represented by the red dot in the following diagram. The black dots represent the

boundary points ±x.
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Figure 2: The Moduli Space M
(
Pπ1

)
Due to the results of section 5.3.5.3, we have that M

(
Pπ2

)
is a half-open half-closed

interval. We can parameterize it by the value ν = b(t0) at time t0 =
√
6
2 . Using this

parameterization and setting:

ν∂
def
= −2

√
5

5
, ν∗

def
=

√
10

5
,

we have that:

M
(
Pπ2

)
=
{
Aν s.t. ν ∈ [ν∂ , ν∗)

} ∼= [ν∂ , ν∗). (5.259)

The space M
(
Pπ2

)
contains a unique HYM connection AHYMπ2

corresponding to ν =

−
√
10
5 . It is represented by the green dot in the following diagram. The black dot represents

the boundary point ν∂ .

Figure 3: The Moduli Space M
(
Pπ2

)

We observe that M
(
Pπ2

)
is not compact. Interestingly, it admits a natural compacti-

fication. To understand the noncompactness phenomenon, we study the (missing) limit

ν →
√
10
5 . To identify what the limit should be we work on X8 \ S4. Using the explicit

formula (5.194) with ν =
√
10
5 yields the HYM connection AHYMπ1

. We conclude that (over

X8 \ S4):

lim
ν→ν∗

Aν = AHYMπ1
. (5.260)

Formally, this limit should be understood in the C∞ topology on compact sets not inter-

secting the (Cayley) singular orbit S4.

We conclude that the Spin(7) instantons in M
(
Pπ2

)
are trying to converge to the (unique)
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HYM connection of M
(
Pπ1

)
, but fail to do so as this connection does not smoothly extend

to the bundle on which they live. Notably the singularity happens around a codimension 4

Cayley submanifold (in fact a special Lagrangian). This reasoning motivates us to glue in

M
(
Pπ1

)
, by forcing the point a0 = 0 to be the missing endpoint of M

(
Pπ2

)
. This leads

to the following picture of the moduli space. Crucially, it is compact.

Figure 4: The Moduli Space MSpin(7)
inv

(
X8
)

This suggests a potential relationship between Spin(7) instantons and HYM connections.

Indeed, they are not equivalent in general; but furthermore, the structure of MSpin(7)
inv

(
X8
)

hints that the latter might play a role in the compactification of Spin(7) instanton moduli

spaces. In particular, the HYM connections might show up after resolving removable singu-

larities developed by families of Spin(7) instantons through energy concentration (bubbling)

near special Lagrangians.

5.3.5.6 Bubbling: Energy Conservation and Fueter Section We now perform a

detailed analysis of the removable singularity forming as the Spin(7) instantons (Aν)ν1≤ν<ν2

(living on Pπ2) approach the HYM connection AHYMπ1
(living on Pπ1). We begin by

providing a brief summary of the situation. We then proceed to formulate and prove the

associated results.

As the parameter ν approaches its limiting value ν2, the Yang-Mills energy density splits in

two parts: terms approaching the energy density of AHYMπ1
(uniformly in all derivatives

over compact sets) and terms concentrating near the singular orbit. The latter form a

bubble: they converge to 0 uniformly over compact sets not meeting the Cayley, their L∞

norm blows up, and while their L2 norm is identically equal to +∞, if we only integrate

up to a fixed positive radius T it converges to a finite positive number independent of T .

This is the energy trapped in the bubble.
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Seeking a higher resolution description of the singularity formation, we zoom in near the

Cayley. We find that -in the limit- ASD instantons develop along the normal directions.

These instantons weave together to give a section of a fiber bundle with standard fiber

given by the framed moduli space of charge-one instantons on R4 (Cork [11]). The latter

has real dimension 8 (it is given by the trivial S3-bundle over the closed 5-ball B5) and

carries a natural hyperkähler metric. This structure is responsible for the availability of

a natural equation known as the Fueter equation (Walpuski [80]). The aforementioned

section satisfies it: it is an example of a Fueter section [80], [79], [81].

This explains the energy concentration phenomenon: the difference Aν −AHYMπ1
doesn’t

converge to 0, but rather a nontrivial limiting object living over the 4-dimensional com-

pact Cayley. Correspondingly, the difference of the associated curvature densities doesn’t

converge to 0 globally but only over compact sets not meeting the Cayley. The Fueter

section obtained is -in an appropriate sense- constant and equal to the instanton of charge

1 centered at 0 with scale determined by the chosen rescaling. The energy trapped in the

bubble is then equal to the energy of this instanton (i.e. 32π2).

By taking the limit to be AHYMπ1
, we are effectively discarding the relevant Fueter section

and thereby dispensing with the energy trapped in the bubble. When the curvature tensors

of the degenerating family lie in L2, Tian’s compactness theory (Tian [70]) guarantees

that the total curvature loss matches the drop in the first Pontryagin class. This doesn’t

quite make sense in our setting. Nevertheless, Tian’s energy identity can be salvaged

provided that it is reinterpreted appropriately. Lotay and Oliveira [43] produce an explicit

Fueter section developing as Clarke’sG2 instantons [8] concentrate near the unique compact

associative in the Bryant-Salamon space [7]. Clarke and Oliveira produce a similar example

in the Spin(7) setting [9]. In both of these cases, the curvature densities are not integrable.

The authors get around this issue by noticing that their difference is. In particular:

∫
M

∣∣∣|FAν |2 − |FAlim |
2
∣∣∣ dVg <∞. (5.261)

They then renormalize Tian’s energy identity by commuting integration and subtraction.
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Our example differs in that even (5.261) fails. We resolve the issue by cutting off at a fixed

positive radius T > 0. Energy concentration implies that the answer does not depend on

the choice of T > 0 and Tian’s identity is salvaged.

We begin by establishing the following:

Theorem 5.38. Let (Aν)ν1≤ν<ν2 be the explicit family of Spin(7) instantons on Pπ2 from

theorem 5.21. As ν → ν2, the following hold:

• |FAν |
2 → |FAHYMπ1

|2 uniformly in all derivatives over compact sets not meeting S4.

• |FAν |
2 → |FAHYMπ1

|2 + 32π2δS4 in the sense of distributions. i.e. for any compactly

supported smooth function ϕ ∈ C∞
c

(
X8
)
:

lim
ν→ν2

∫
X8

ϕ |FAν |2dVg =

∫
X8

ϕ |FAHYMπ1
|2dVg + 32π2

∫
S4

ϕ dVg|
S4
.

Note here that the factor 32π2 in theorem 5.38 matches the Yang-Mills energy of the

standard BPST instanton (Belavin, Polyakov, Schwartz, Tyupkin [1]) over R4 (this is four

times the usual 8π2 since we are using conventions compatible with Pontryagin rather than

Chern classes).

Proof. Using (5.105), we obtain:

FA = F i
A ⊗ ei,

where:

F 1
A = θ23 + (1− bν(t)

2) θ56 + bν(t)θ
14 +

dbν
dt

dt

dr
dr ∧ θ7

F 2
A = θ24 + (1− bν(t)

2) θ57 − bν(t)θ
13 − dbν

dt

dt

dr
dr ∧ θ6

F 3
A = θ34 + (1− bν(t)

2) θ67 + bν(t)θ
12 +

dbν
dt

dt

dr
dr ∧ θ5

Using (5.47), we find that all three components have equal pointwise norm. Using (5.156),

we obtain:

|FAν |2 = 6|F 1
A|2
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Incorporating (5.125), (5.61), (5.62), (5.63)and (5.64), we obtain:

|FAν |2 =
6
√
3(t2 + 1)

t4
√
2t2 + 3

(
1− b2ν(t)

)2
+ 2

√
3

√
2t2 + 3

(t2 + 1)2
b2ν(t) + 2

√
3

√
2t2 + 3

t2
(
∂tbν(t)

)2
Using (5.194), we write:

bν(t) =
Uν(t)√
t2 + 1

,

where:

Uν(t)
def
=

√
2

2

1 +

√
6− ν

√
10t2 + 15

√
30ν +

√
6−

(√
5ν + 2

)√
2t2 + 3

 .

Using the ODE (5.193) to simplify the derivative term, and noting that ν = ν2 =
√
10
5

recovers AHYMπ1
, we finally arrive at:

|FAν |2 − |FAHYMπ1
|2 = 12

√
3√

2t2 + 3(t2 + 1)

(
1− U2

ν

)2
t4

+
12

√
3√

2t2 + 3(t2 + 1)

(
1− U2

ν (t)
)

t2

− 2
√
3

√
2t2 + 3

(t2 + 1)3

(
1− U2

ν (t)
)
− 6

(t2 + 1)3

(
1− U2

ν (t)
)
− 12

√
3√

2t2 + 3(t2 + 1)2
Uν(t)

(
1− U2

ν (t)
)

t2
.

Evidently, we are interested in studying the behaviour of the functions 1−U2
ν (t) as ν → ν2.

We compute:

1− U2
ν (t) =

(
√
2 +

√
5ν)

2
(√

5ν + 2
)2
(√

2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)2
(√

2−
√
5ν
)
t2t2 + 3−

(√
30ν+

√
6√

5ν+2

)2

2

2 . (5.262)

It is the immediate that Uν → 1 uniformly in all derivatives over compact sets not including

t = 0 (the corresponding level set being S4). This establishes the first claim.

For the second claim, fix T > 0 and test against the indicator function of the set defined

by 0 ≤ t ≤ T . The volume form of the Stenzel metric is given by:

dVg =
r

2
R2

+R
2
−θ

1234567 ∧ dr

= t3(t2 + 1)θ1234567 ∧ dt.
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Weighing it by the difference of the curvature densities we obtain:

(
|FAν |2 − |FAHYMπ1

|2
)
dVg = Iν(t)θ

1234567 ∧ dt,

where:

Iν(t)
def
=

12
√
3√

2t2 + 3

(
1− U2

ν

)2
t

+
12

√
3√

2t2 + 3
t
(
1− U2

ν (t)
)
− 2

√
3

√
2t2 + 3

(t2 + 1)2
t3
(
1− U2

ν (t)
)

− 6

(t2 + 1)2
t3
(
1− U2

ν (t)
)
− 12

√
3 Uν(t)√

2t2 + 3(t2 + 1)
t
(
1− U2

ν (t)
)
. (5.263)

Consequently, we have:

lim
ν→ν2

1

Vol(S4)

∫
X8

≤T

(
|FAν |2 − |FAHYMπ1

|2
)
dVg =

Vol
(

SO(5)
SO(3)

)
Vol

(
S4
) lim

ν→ν2

∫ T

0
Iν(t)dt

= Vol
(
S3
)

lim
ν→ν2

∫ T

0
Iν(t)dt

= 2π2 lim
ν→ν2

∫ T

0
Iν(t)dt (5.264)

Recall that 1− U2
ν → 0 pointwise for a.e. t ≥ 0. The following is the heart of the matter:

certain terms in (5.263) are not uniformly bounded for 0 < ν < ν2, 0 ≤ t ≤ T . Intuitively,

as the bubble gets squished near S4, the L∞ norm of these terms blows up. They may

therefore yield a non-zero contribution in the limit. All other terms may be ignored as their

respective contributions vanish by dominated convergence (DCT). Furthermore, since all

terms are uniformly bounded away from t = 0, the DCT guarantees that the answer is

independent of the choice of T > 0.

We now wish to understand which terms in Iν(t) are uniformly bounded for 0 < ν < ν2,

0 ≤ t ≤ T . We claim that this holds for 1− U2
ν (t). Using (5.262), we write:

1− U2
ν (t) =

(
√
2 +

√
5ν)

2
(√

5ν + 2
)2
(√

2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)2

Vν(t), (5.265)
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where all factors other than Vν are evidently bounded and:

Vν(t)
def
=

(√
2−

√
5ν
)
t2t2 + 3−

(√
30ν+

√
6√

5ν+2

)2

2

2 .

We claim that Vν is uniformly bounded as well. To see this, we note that Vν(t) is non-

negative -hence uniformly bounded below- and we estimate:

Vν(t) =
4
(
2 +

√
5ν
)4 (√

2−
√
5ν
)
t2

4
(√

5ν + 2
)4
t4 + 12

(√
5ν + 2

)2 (√
5ν +

√
2
)(√

5ν −
√
2
)
t2 + 9

(√
2 +

√
5ν
)2 (√

2−
√
5ν
)2

≤
4
(
2 +

√
5ν
)4 (√

2−
√
5ν
)
t2

12
(√

5ν + 2
)2 (√

5ν +
√
2
)(√

5ν −
√
2
)
t2

=

(√
5ν + 2

)2
3
(√

2 +
√
5ν
) .

The final expression is evidently bounded above. This establishes the claim.

Applying the reasoning outlined above and using (5.263) and (5.264) we find that:

lim
ν→ν2

1

Vol(S4)

∫
X8

≤T

(
|FAν |2 − |FAHYMπ1

|2
)
dVg

= 2π2 lim
ν→ν2

∫ T

0

12
√
3√

2t2 + 3

(
1− U2

ν

)2
t

dt

= 2π2 lim
ν→ν2

∫ T

0

12
√
3(
√
2 +

√
5ν)2

4
(√

5ν + 2
)4√

2t2 + 3

(√
2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)4
V 2
ν (t)

t
dt

=
48π2(

2 +
√
2
)4 lim

ν→ν2

∫ T

0
ην(t)

V 2
ν (t)

t
dt, (5.266)

where,

ην(t)
def
=

√
3√

2t2 + 3

(√
2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)4

.

The functions ην(t) are all C∞ with ν-independent bounds on their derivatives at 0. Hence,

for t smaller than a ν-independent threshold T ⋆ > 0, Taylor’s theorem gives:

ην(t) =

(
√
3 +

√
30ν +

√
6√

5ν + 2

)4

+O(t). (5.267)
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Here, O(t) denotes a function bounded above by Ct, where C > 0 is a constant independent

of ν.

Recall that (5.266) does not depend on T , and we are thus justified to assume that T < T ⋆

so that the bound (5.267) holds. Otherwise we integrate up to T ⋆ instead. Incorporating

this bound in (5.266) we obtain:

lim
ν→ν2

1

Vol(S4)

∫
X8

≤T

(
|FAν |2 − |FAHYMπ1

|2
)
dVg

=
48π2(

2 +
√
2
)4 lim

ν→ν2

∫ T

0

(
√
3 +

√
30ν +

√
6√

5ν + 2

)4
V 2
ν (t)

t
dt+

48π2(
2 +

√
2
)4 lim

ν→ν2

∫ T

0
O(t)

V 2
ν (t)

t
dt

=
48π2(

2 +
√
2
)4 lim

ν→ν2

∫ T

0

(
√
3 +

√
30ν +

√
6√

5ν + 2

)4
V 2
ν (t)

t
dt

=
6912π2(
2 +

√
2
)4 lim

ν→ν2

∫ T

0

V 2
ν (t)

t
dt (5.268)

In the third line we have dropped the second summand as its integrand is uniformly

bounded. We are finally left with the task of computing the integral of t−1V 2
ν (t). Note

that these functions may not be uniformly bounded. As we shall see, this is indeed the

case: they yield a non-zero contribution in the limit.

Integration by parts reveals that:

∫ ϵ

0

t3(
t2 +A

)4dt = 3Aϵ4 + ϵ6

12A2
(
A+ ϵ2

)3 ϵ > 0, A ∈ R.
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Consequently, we obtain:

lim
ν→ν2

∫ T

0

V 2
ν (t)

t
dt = lim

ν→ν2

(√
2−

√
5ν
)2 ∫ T

0

t3t2 + 3−
(√

30ν+
√

6√
5ν+2

)2

2

4dt

= lim
ν→ν2

(√
2−

√
5ν
)2 3

2

(
3−

(√
30ν+

√
6√

5ν+2

)2)
T 4 + T 6

12

3−
(√

30ν+
√

6√
5ν+2

)2

2

23−
(√

30ν+
√

6√
5ν+2

)2

2 + T 2

3

= lim
ν→ν2

4
(√

5ν + 2
)8((

10ν2 + 8
√
5ν + 8

)
T 2 + 18− 45ν2

)
T 4

27

((
10ν2 + 8

√
5ν + 8

)
T 2 + 6− 15ν2

)3 (√
2 +

√
5ν
)2

=

(
2 +

√
2
)4

216
.

We note here that the limit is independent of the choice of cutoff T > 0, as expected.

Incorporating this into (5.268), we finally obtain:

lim
ν→ν2

1

Vol(S4)

∫
X8

≤T

(
|FAν |2 − |FAHYMπ1

|2
)
dVg = 32π2. (5.269)

Distributional convergence follows from L1 approximation of compactly supported smooth

functions by indicators of compact sets.

We now zoom in near the concentration locus to understand the development of the relevant

Fueter section. We find that there exists a suitable rescaling rate such that when we pull

Aν back to NpS
4 we recover the unique SO(5)-invariant, charge one, scale λ ASD instanton

AASD
λ on NpS

4 ∼= R4.

Theorem 5.39. Let Aν be the explicit family of instantons on Pπ2 . Fix a scale λ > 0

and a point p on the compact Cayley S4. Write expNS4
p for the composition of the normal

exponential map with the ♭ map of the round unit-radius metric and:

sµ :NpS
4 → T ⋆

pS
4 ⊂ X8

x 7→ expNS4

p (µx)

for its µ-rescaling. There exists a monotonically decreasing sequence of positive real num-
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bers δν(λ) satisfying δν(λ) → 0 as ν → ∞ and encoding the appropriate rescaling speed in

the sense that:

lim
ν→ν2

s⋆δνAν|p
= AASD

λ .

Proof. By SO(5) invariance, it suffices to take p to be the standard reference point p0 ∈ S4.

The normal exponential map induces a natural identification between Np0S
4 and Tp0S

4.

Left composition with the isomorphism TS4 ∼= T ⋆S4 induced by the round unit-radius

metric yields:

expNS4

p0
: Np0S

4 ∼−→ T ⋆
p0S

4 ⊂ X8. (5.270)

Our first task is to make (5.270) explicit. The vector space Np0S
4 carries an inner product

given by the value of the Stenzel metric at the point p0. This allows us to identify:

Np0S
4 − {0} = (0,∞)× S3, (5.271)

where S3 is the unit sphere and we have normalised the radial direction so that (1, 0) has

unit length.

Even though T ⋆
p0S

4 possesses the structure of a vector space, in this context we are viewing

it as an embedded submanifold ofX8. As such, the Stenzel metric restricts to a Riemannian

metric on T ⋆
p0S

4, rather than a fixed inner product. Recall that we have a ray of reference

points (pt)0<t<∞ embedded in T ⋆
p0S

4 ⊂ X8 and orthogonal to the three-spheres arising as

the orbits of the SO(4)-action. This results to an identification:

T ⋆
p0S

4 − {0} = (0,∞)× S3. (5.272)

Here, the first factor encodes the parameter t and the second factor corresponds to the

orbit at that value of t. Recall that we have natural frames for the tangent spaces to X8

along the reference ray (pt)0<t<∞:

TptX
8 = Span(∂t, X1, ..., X8).
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Forgetting X1, X2, X3, X4 yields frames for the tangent spaces to T ⋆
p0S

4 along (pt)0<t<∞:

Tpt

(
T ⋆
p0S

4
)
= Span(∂t, X5, X6, X7).

The metric takes the form:

g|pt =
tP (t)

2
√
t2 + 1

√
2t2 + 1

dt⊗ dt+
tQ(t)√
t2 + 1

(
θ5 ⊗ θ5 + θ6 ⊗ θ6 + θ7 ⊗ θ7

)
.

By solving an ODE, one may introduce a new radial coordinate s = s(t) defined by

imposing:

g(∂s, ∂s) = 1. (5.273)

This results in a modification of the identification (5.272) by a diffeomorphism on the first

factor.

Fix a non-zero v ∈ Np0S
4. Using the splitting (5.271) write this as:

v =

(
|v|gp0 ,

v

|v|gp0

)
. (5.274)

Using the modified splitting (5.272), introduce the curve:

γv :(0,∞) → T ⋆
p0S

4

x 7→

(
|v|x, v

♭

|v|

)
. (5.275)

A moment’s thought reveals that γv is the unique geodesic passing through p0 with velocity

v.

Using the modification of (5.272) on the RHS and (5.271) on the LHS, we have that:

expNS4

p0

(
|v|gp0 ,

v

|v|gp0

)
=

(
|v|gp0x,

v♭

|v|gp0

)
.

In our choice of coordinates the normal exponential map becomes the identity function.

From here on, we will not distinguish between the two vector spaces. All structures present

on one vector space can be passed over to the other using expNS4

p0 . In particular, we obtain

200



5.3 SO(5)-Invariant Instantons with Structure Group SO(3)

a reference ray in Np0S
4 and a linear frame along it.

A trivial computation allows us to determine the δ-rescaled exponential map:

sδ(v) = δv♭.

Before proceeding we make the following crucial observation. The ODE characterizing

s = s(t) is not easy to solve explicitly. However, one can easily establish that s and t agree

to first order at t = 0:

s(t) = t− 1

120
t5 +

5

756
t7 +O(t9).

The bubbling pheonomenon we wish to study involves blowing up near p0 ∈ S4. The

rescaling we perform annihilates all higher order terms in the limit. It therefore suffices

to work with t rather than s and the radial modification in the identification (5.271) is

unnecessary.

Having set up the geometric framework for the proof, we need to determine the appropriate

rescaling rate and compute the relevant limit.

Using (5.108), (5.110) and (5.265) we find that the pullback of the canonical reference

connection Acan
π2

to Tp0S
4 is flat. In fact, it is the product structure associated to the

obvious SO(4)-equivariant trivialization of Pπ2 along Tp0S4 ∼= R4. Using it as a reference,

restricting the instantons (Aν)ν1≤ν<ν2
along Tp0S4 and zooming-in near S4 (pulling back

by sδ), we obtain:

s⋆δAν|pt
=

(
Uν(δt)√
δ2t2 + 1

+ 1

)(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (5.276)

By (5.262) we have:

U2
ν (δt) = 1− (

√
2 +

√
5ν)

2
(√

5ν + 2
)2
(√

2δ2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)2
(√

2−
√
5ν
)
δ2t2δ2t2 + 3−

(√
30ν+

√
6√

5ν+2

)2

2

2

= 1−

(√
2δ2t2 + 3 +

√
30ν +

√
6√

5ν + 2

)2
2C(ν)

(
√
2−

√
5ν)

δ2
t2(

2t2 + 3C (ν)
(
√
2−

√
5ν)

δ2

)2
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where:

C (ν)
def
=

(√
2 +

√
5ν
)

(√
5ν + 2

) .

Setting:

δν(λ)
def
=

√
2

2

(
3C (ν)

(√
2−

√
5ν
)
λ

) 1
2

,

we find that:

U2
ν (δνt) = 1−

(√
2δ2νt

2 + 3 +

√
30ν +

√
6√

5ν + 2

)2 4
3λ t

2(
2t2 + 2

λ

)2
As ν → ν2, we have:

lim
ν→ν2

U2
ν (δνt) = 1− lim

ν→ν2

(√
2δ2νt

2 + 3 +

√
30ν +

√
6√

5ν + 2

)2 4
3λ t

2(
2t2 + 2

λ

)2
=

(
t2 − 1

λ

)2
(
t2 + 1

λ

)2
Consequently, (5.276), yields:

lim
ν→ν2

s⋆δνAν|pt
= lim

ν→ν2

(
t2 − 1

λ

t2 + 1
λ

1√
δ2νt

2 + 1
+ 1

)(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
=

2λt2

λt2 + 1

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)

Finally, using (5.126) to translate the result from the (e1, e2, e3) basis of so(3) to its basis

provided by the unit quaternions, we find:

lim
ν→ν2

s⋆δνAν|pt
= − λt2

λt2 + 1

(
θ5 ⊗ i+ θ6 ⊗ j + θ7 ⊗ k

)
.

We recognize this expression as the gauge potential of the standard BPST instanton [1] on

R4 centered at 0 with scale λ > 0. This completes the proof.
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