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1 Riemann Surfaces as complex 1-manifolds

A surface may be broadly defined as a topological space which locally resembles a disc in
the complex plane. The following definition formalises this notion:

Definition 1.1. A surface S is a connected, second countable, Hausdorff topological space
with a family of homeomorphisms φα : Uα → Dα from domains Uα that form an open cover
of S to open subsets Dα in the complex plane.

The homeomorphisms are called charts, and the family they belong to is called an atlas
A on S. We write A = {(φα, Uα)}.

If the chart maps onto the open disc ∆ = {z ∈ C : |z| < 1}, we call it a coordinate
disc, since we can associate all points in the domain with points in ∆, hence providing a
coordinate system to use within the domain on our surface.

Such a space is often referred to as a real 2-manifold; that is to say it is locally
homeomorphic to the Euclidean space of 2 dimensions, R2, which is of course trivially home-
omorphic to C. However, a further addition to the definition is required to transform our
surface into a complex 1-manifold. Though our charts maps domains of S into subsets of
the complex plane, this alone does not guarantee that our surface has a complex structure.

The issue lies in the intersection of the domains of S: If Uα1 ∩ Uα2 6= ∅, then φα2 ◦ φ−1α1
:

φ(Uα1)→ φ(Uα2) is, by composition, a homeomorphism. Such a map is called a transition
map. The nature of the transition maps determines the structure of S.

Definition 1.2. If R is a surface with an atlas A, and if all transition maps determined by
the atlas are holomorphic, then R is called a Riemann surface. A is then known as an
analytic atlas.

This definition motivates the obvious question of whether all surfaces admit a complex
structure. It is in fact impossible to construct a complex structure on a non-orientable
surface, such as the Möbius strip, the Klein bottle, or the real projective plane P2. This
is essentially a consequence of holomorphic maps preserving orientation (recall that maps
such as z 7→ z̄ are not holomorphic on C as a simple application of the Cauchy-Riemann
equations.)

2 Functions on Riemann Surfaces

With our definition for an atlas on a Riemann Surface in mind, we notice that we potentially
could give a surface two different complex structures. For example, by shifting the domains
Dα in the plane, we would have two different atlases on R; yet for such a trivial change, we
would hope that they were still compatible somehow. This motivates the following definition:

Definition 2.1. Let R1 and R2 be Riemann surfaces with atlases A1 = {(φα, Uα)} and A2 =
{(ψβ, Vβ)} respectively. A function f : R1 → R2 is called holomorphic if the composition
ψβ ◦ f ◦ φ−1α : φ(Uα ∩ f−1(Vβ))→ ψ(Vβ) is holomorphic for each α and β.

This is, in some ways, a generalisation of the definition of transition maps. We would
hope that we may use such a definition to form an equivalence class on Riemann surfaces.
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Indeed this is the case: if R1 and R2 are Riemann surfaces with a biholomorphic map f
between them (that is to say, a holomorphic map with a holomorphic inverse), we say that
R1 and R2 are conformally equivalent.

Proposition 2.2. Conformal equivalence is an equivalence relation.

Note that if we have two equivalent atlases on a surface S, then their union is also an
atlas on S and belongs to the same equivalence class. By combining all atlases on a surface,
we may obtain a maximal atlas on a surface.

Conformal equivalence is for Riemann surfaces the means of classification, similar to
how homeomorphisms are used to classify topological spaces and diffeomorphisms are used
to classify smooth manifolds. Of course, conformal equivalence requires the spaces to be
homeomorphic, so it is at least as strong a condition. Indeed, we shall see in a later example
that there are important spaces that are homeomorphic but not conformally equivalent.

3 Examples of Riemann Surfaces

At this point we introduce the three most important Riemann surfaces, and illustrate the
primary method by which one can construct other more complicated Riemann surfaces.

It is immediately obvious from the definition that the complex plane C is a Riemann
surface; the atlas containing the single chart, the identity map, is analytic.

Similarly, the unit disc, ∆ = {z ∈ C : |z| < 1} is also a Riemann surface under a similar
atlas. In fact, any open connected subset of the complex plane is a Riemann surface.

Figure 1: Stereographic projection - Identifying A on the sphere and Z in the complex plane

Our final example comes from the one point compactification of C. By adding a point
at infinity, we construct a compact topological space C∞, known as the Riemann sphere.
Under an appropriately constructed atlas, this too may be shown to be a Riemann surface.
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It may not be immediately obvious why we use the term sphere to describe this abstract
space. Figure 1 shows how the standard 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

may be identified with the complex plane through stereographic projection; the south
pole of the sphere takes the value 0 and the north pole takes the value ∞.

General Riemann surfaces may be constructed using the quotient topology, as the fol-
lowing theorem demonstrates:

Theorem 3.1. Let R be a Riemann surface, and let G be a group of holomorphic auto-
morphisms acting on R. Then R/G under the quotient topology inherits a natural analytic
atlas.

Figure 2: (Torus Construction)

The construction of the torus T 2 as a quotient illustrates this idea: Let ω1 and ω2 be
complex numbers linearly independent over R, G = {γ(z) = z+mω1 +nω2 : m,n ∈ Z}. G is
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then a lattice group in C, and the quotient C/G gives a torus, which by the above theorem
inherits an analytic atlas through the quotient topology. This process can be thought of as
an identification of sides of a parallelogram, as shown in Figure 2.

One may ask the question of whether any of the surfaces we have introduced so far are
homeomorphic or conformally equivalent. Understanding when two surfaces are conformally
equivalent is the major focus of this document. Understanding equivalence in a topological
sense is somewhat easier. The primary tools used to tackle such questions topologically are
topological invariants. These are properties invariant under homeomorphisms; therefore,
if S1 and S2 do not share such a property, they are not homeomorphic. Later we shall
construct a more complicated topological invariant, the fundamental group. For now, we
show compactness is a topological invariant:

Proposition 3.2. Compactness is a topological invariant.

Proof. Suppose A and B are homeomorphic topological spaces, and suppose A is compact.
Let {Mβ} be an open cover for B. If f : B → A is a homeomorphism, {f(Mβ)} is an open
cover for A, and therefore has a finite subcover. Mapping this subcover under f−1 gives a
finite subcover for B.

Therefore, since C∞ is compact, the Riemann sphere is not homeomorphic to either
the plane or to any open subset of the complex plane. Of course, they are therefore not
conformally equivalent either. However such a line of reasoning will not be able to distinguish
between the plane C and an open subset of the complex plane such as the unit disc ∆. In
fact, these spaces are topologically equivalent: this follows from the well known existence of
a bijection between the unit interval [0, 1) and the positive reals [0,∞). However, the two
are not conformally equivalent, as the argument below shows:

Recall Liouville’s Theorem from complex analysis: Any entire function must be un-
bounded or constant. Suppose f : C → ∆ is a conformal equivalence. Then f is by defini-
tion holomorphic and thus is an entire function. Therefore since |f(z)| < 1, by Liouville’s
theorem f must be constant, a contradiction since f is by definition a surjection.

4 Homotopy and the Fundamental Group

Definition 4.1. A curve in a surface S is a continuous map γ : [0, 1] → S. A curve is
closed if γ(0) = γ(1), and simple if γ(x) = γ(y) =⇒ x = y for x ∈ (0, 1) (that is to say,
there are no other points of self-intersection).

From now on we shall assume if unstated that γ denotes a curve from the unit interval.
Suppose we have two curves γ1 and γ2 that satisfy γ1(1) = γ2(0). By concatenation,

we can join these two curves together:

γ2 ∗ γ1(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2

γ2(2t− 1), 1/2 ≤ t ≤ 1

We want to try and characterise the topology of a surface by the nature of the curves
that lie within it. As a motivating example, consider two curves in C:

γ1 : [0, 1]→ C, γ1(t) = exp(iπt)
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γ2 : [0, 1]→ C, γ2(t) = exp(−iπt)

Both are circular arcs traversed from 1 to −1, and we see that by a process of continuous
deformation, we can move one to the other. In that sense, the curves are equivalent. However,
if we were to replace C with C−{0}, the same deformation is not possible, since the path of
deformation runs through the origin. The following definition makes these notions precise:

Definition 4.2. (For maps between general spaces) Let X, Y be topological spaces. Let
f, g : X → Y be continuous. A homotopy is a continuous map H : [0, 1] × X → Y such
that for all x ∈ X, H(0, x) = f(x) and H(1, x) = g(x). If such a map exists, f and g are
said to be homotopic.

(For maps from the unit interval, i.e. curves) Let γ0 : [0, 1] → S and γ1 : [0, 1] → S be
curves in a surface S. A homotopy (of curves) is a continuous map H : [0, 1]× [0, 1]→ S
such that H(0, t) = γ0(t) and H(1, t) = γ1(t). If such a map exists, γ0 and γ1 are called
homotopic.

We only need homotopy of curves in order to develop the fundamental group.
Homotopy forms an equivalence relation ∼ between curves on a space. We will denote

the equivalence class by [γ] = {µ : [0, 1] → S : µ ∼ γ}. We now construct the fundamental
group:

Definition 4.3. Let S be a surface, and let z ∈ S be the base point. Let Γ = {γ : [0, 1]→
S : γ(0) = γ(1) = z} (i.e. closed curves with z as the base point). Under concatenation ∗, Γ
forms a group. We define the fundamental group of S based at z to be π1(S, z) = Γ/ ∼.

Simply put, the fundamental group is the group of closed curves based at a point in a
space with respect to the homotopy class. In order for the quotient to be well-defined, we
should have that [γ] ∗ [µ] = [γ ∗ µ], and indeed this is so. We have that the null curve is the
identity element, and the inverse element is simply the same curve traced in the opposite
direction.

We would like the fundamental group to be a topological invariant, yet this seems unlikely
from the definition since it seems it depends on the base point chosen. The following result
shows that this is not a concern for surfaces and other path-connected spaces.

Theorem 4.4. If S is a path-connected space, then for any z0, z1 ∈ S, we have that
π1(S, z0) = π1(S, z1). Hence, we shall write simply π1(S).

Proof. Let γ : [0, 1]→ S satisfy γ(0) = z0 and γ(1) = z1, and let γ̃(t) = γ(1− t). If [µ] is a
homotopy class at z0, [γ ∗ µ ∗ γ̃] is a homotopy class at z1, and vice-versa.

If the fundamental group is trivial (i.e. all curves are homotopic to the base point) then
we say that the space is simply connected. Of the surfaces we have met so far, C∞, C
and ∆ are simply connected. In fact, these three surfaces are, up to conformal equivalence,
the only simply connected Riemann surfaces. This is the content of the uniformisation
theorem, an incredibly important result which shall be the main focus of the upcoming
sections.
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5 Covering Spaces, Lifts, the Universal Cover

Though we shall only consider covering spaces in the context of Riemann surfaces, we intro-
duce them more generally as a topological concept:

Definition 5.1. Let S be a space. A covering space is a connected surface S̃ with a
projection map p : S̃ → S such that p is continuous and surjective, and for every point
x ∈ S, there exists an open neighbourhood U of x with p−1(U) being a union of disjoint
open sets in S̃. Such a neighbourhood is called evenly covered. On each of these disjoint
open sets, p is a homeomorphism (so we say that the spaces are locally homeomorphic).

Covering surfaces may be thought of as layered, with each layer being projected onto the
base surface. This is best illustrated with the example of the torus. From the construction
of a torus as a quotient of the plane with a lattice group, we deduce that the torus is covered
by the plane. The layers are the quadrilaterals of the lattice.

It is obvious from the definition that the covering space for a surface is also a surface.
The following argument shows that complex structure also transfers, and in fact does so
uniquely:

Let S be a Riemann surface with a given atlas A, and let it be covered by p : S̃ → S.
Let φ : U → D be an arbitrary chart in A, and Ũ ⊂ S̃ be an open set such that p is
a homeomorphism when restricted to Ũ . Then define an atlas on S̃ with members the
charts given by φ ◦ p : Ũ → D. This is obviously an analytic atlas on S̃. Then S̃ is a
Riemann surface, and in fact p is holomorphic. This complex structure is also unique: p
is biholomorphic locally (since coverings are local homeomorphisms), so the identity map
between any two complex structures is biholomorphic also.

Definition 5.2. Let p : S̃ → S be a cover, and let γ : [0, 1] → S be a curve in S. Then a
lift of γ is a function γ̃ : [0, 1]→ S̃ such that γ = p ◦ γ̃

If, for any curve γ : [0, 1]→ S and any x ∈ S̃ with p(x) = γ(0), there exists a lift of γ to
S̃ with initial point x, then we say the covering surface is regular.

We shall assume from now on that all coverings are regular.
Lifts provide us with a way to analyse the path-related properties of a surface (such as the

fundamental group or analytic continuation) through consideration of the covering surface.
The following lemma characterises the unique placement of lifts in the layers of the cover,
and is essential for further discussion of lifts.

Lemma 5.3. In the set-up of the previous definition, suppose γ̃1 and γ̃2 are both lifts of γ,
and suppose γ̃1(0) = γ̃2(0). Then γ̃1 = γ̃2.

Proof. Suppose γ̃1(a) = γ̃2(a) for some a ∈ [0, 1]. Then for some ε > 0, γ([a, a+ ε)) lies in an
evenly covered neighbourhood, and so γ̃1(t) = γ̃2(t) for t ∈ [a, a + ε). Therefore, if γ̃1 6= γ̃2,
there is a first point where they are not equal, say b ∈ [0, 1]. However, at such a point, we
can find an evenly covered neighbourhood, then we have that γ̃1(b) and γ̃2(b) are in disjoint
open sets, yet by assumption for ε > 0 we have that γ̃1(b − ε) = γ̃2(b − ε). So we find that
either γ̃1 or γ̃2 is discontinuous, a contradiction.
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Ideally, in order to discuss concepts like the fundamental group in the context of covers,
we would have that homotopy be preserved by lifts, and indeed we find this is so:

Lemma 5.4. Let γ0 and γ1 be curves on a surface S that are homotopic by H : [0, 1]×[0, 1]→
S, and let p : S̃ → S be a cover. Then if γ̃0 is a lift of γ0, there is a unique lift H̃ of H with
H̃(0, t) = γ̃0.

The proof is somewhat more involved than that of the previous lemma though it follows
a similar route, and so is omitted. A proof may be found in [9].

With these two lemmas in mind, we are now able to prove the monodromy theorem, an
important result that demonstrates the equivalence of homotopy between curves and their
lifts.

Theorem 5.5 (Monodromy). Let γ0 and γ1 be curves on a surface S with γ0(0) = γ1(0) and
γ0(1) = γ1(1), and let p : S̃ → S be a cover. Let γ̃0 and γ̃1 be lifts with the same starting
point. Then γ0 ∼ γ1 iff γ̃0 ∼ γ̃1; if γ0 ∼ γ1, then the lifts have the same end point.

Proof. Projection trivially preserves homotopy, so one way is obvious. If γ0 ∼ γ1, then we
have a homotopy H that may be lifted by the homotopy lemma to a homotopy H̃ between
γ̃0 and a γ̃1 by the lifting lemma. The second statement follows trivially.

Now that we have the concept of lifts, we can consider how the fundamental group
interacts with covering spaces. If p : S̃ → S is a cover, it induces a map p∗ from the
fundamental group of S̃, π1(S̃, x), to the fundamental group of S, π1(S, p(x)). By the
monodromy theorem, this map is well-defined (indeed, a homomorphism) and injective.
Therefore, the fundamental group of a covering surface is isomorphic to a subgroup of the
fundamental group of the base surface.

We now define an important interaction of the fundamental group and a covering map.
The monodromy action is given by letting π1(S, x) act on the set p−1(x): If [γ] ∈ π1(S, x),
we define the monodromy action as [γ] ∗ y = γ̃y(1), where γ̃y(1) is the end point of the lift
of γ starting at y ∈ p−1(x). The monodromy action is well-defined as a consequence of the
monodromy theorem. It is also transitive (that is to say, for any pair a, b ∈ p−1(x) there is
a unique element in π1(S, x) that takes a to b) as a consequence of S̃ being path connected.

The action has an important consequence: The stabiliser subgroup of y ∈ p−1(x) under
the monodromy action is given by p∗π1(S̃, y). As a corollary, we obtain that if the base
surface S is simply connected, p is a homeomorphism.

If a covering surface is simply connected, we call it the universal cover. This al-
ludes to the uniqueness of the simply connected cover and suggests that it is somehow the
“largest” cover for our original surface. The following three theorems demonstrate maximal-
ity, uniqueness and existence of simply connected surfaces, hence justifying the use of the
word “universal”. The proofs are omitted; they may be found in a general topological sense
in [9] or in the case of Riemann surfaces in [4]. The proofs of maximality and uniqueness
are rather straightforward given the material covered above. The proof of existence how-
ever is fairly long and technical, and only an outline is presented below. In particular, the
construction of the space will prove useful later.
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Theorem 5.6 (Maximality). Let p : S̃ → S be a cover with S̃ simply connected, and let
p′ : S̃ ′ → S also be a cover. Then there exists a unique covering map p′′ : S̃ → S̃ ′ such that
p = p′ ◦ p′′.

Theorem 5.7 (Uniqueness). If p : S̃ → S is a cover with S̃ simply connected, then S̃ is
unique up to conformal equivalence.

Theorem 5.8 (Existence). Every Riemann surface S has a simply connected cover.

Proof. This proof involves constructing a space consisting of equivalence classes of paths in
the base space with a projection dependent on the end point of the paths, then demonstrating
that this space satisfies the requirements: it is topological, Hausdorff, path-connected, simply
connected, and justifying that the projection map is indeed a cover.

The space is constructed as follows:
Fix a base point in R, say x0. We form equivalence classes [γ, x1] of curves in R starting

at x0 and ending at x1. Two such pairs are equivalent if they end at the same point, and
the paths are homotopic. We claim this space of equivalence classes is a simply connected
cover for R with the projection p([γ, x1]) = x1 ∈ R.

6 The Riemann Mapping Theorem and The Uniformi-

sation Theorem

The uniformisation theorem is a broad classification of all Riemann surfaces. It gives us the
three unique simply connected surfaces and, in addition, gives us the means to classify all
other Riemann surfaces as quotients of their universal cover. This section shall largely deal
with the uniformisation theorem and its corollaries and consequences, but first we tackle an
important precursor: The Riemann mapping theorem.

Theorem 6.1 (Riemann Mapping Theorem). Let S be a simply connected domain in C such
that S 6= C. Then S is conformally equivalent to ∆. In fact, for any z0 ∈ S, one can find
an analytic map f : S → ∆ such that f(z0) = 0

Proof. (Sketch(1)) We start with F = {f : S → ∆, f analytic, injective, f(z0) = 0}. It
suffices to show there exists a surjective member of F .

First, we show F is non-empty. We use the fact that a point (arbitrarily 0 by translation)
is missing, and that the complement C∞\S is simply connected to construct a branch cut
from 0 to ∞. This allows us to define a square root function f analytic on S. A square root
function necessarily only hits half of the complex plane; that is to say, if z is in the image,
−z is not. By the open mapping theorem, we may take find an open disc about −z /∈ f(S)
disjoint from f(S), and then apply Möbius transformations composed with f to form g such
that the disc under g is ∆. Then 1/g maps S into ∆. By a Möbius transformation, we may
be assured that F is non-empty.

(1)A particularly clear and straightforward version of this proof may be found in full at
http://people.reed.edu/~jerry/311/rmt.pdf
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The next step involves showing that if a function in F has the maximal derivative at
z0, then it is a surjection. Supposing f ∈ F fails to surject at w ∈ ∆, we may pursue
an argument by contradiction, again exploiting properties of the square and square root
functions.

The final step is the application of the Arzelà-Ascoli theorem to F to find a subsequence
converging to the maximal function. This requires first showing that F is equicontinuous,
which may be demonstrated by use of the Cauchy integral formula. Then we may use
the Hurwitz theorem to guarantee the injectivity of the limit function and the Weierstrass
theorem to guarantee that the limit function is analytic.

The Riemann mapping theorem is a very powerful result, and immediately hints at the
more general uniformisation theorem.

Theorem 6.2 (Uniformisation Theorem). Let S be a simply connected Riemann surface.
Then S is conformally equivalent to either C∞, C or ∆.

Furthermore, if R is any Riemann surface, then R is conformally equivalent to S/G where
S is one of the three simply connected surfaces and G is a discrete subgroup of Aut(S). In
addition, G ∼= π1(R).

The first half of the theorem is significantly more difficult to prove than the second
half, though the second half is very important in its own right since it goes a long way
towards classifying all Riemann surfaces, provided we have sufficient understanding of the
automorphism group and its subgroups. This is the content of a later chapter. The theorem
distinctly classifies all surfaces by their universal cover.

We present now a (very much abridged) version of the standard proof of the first half
of the uniformisation theorem. Since the proof isn’t particularly illuminating, and the tools
developed are not of interest for the rest of the paper, many of the details are skated over
or omitted completely. Full proofs using this method may be found in [2] and [6], a briefer
proof along the same lines in [4]. The original proof using this approach was due to Koebe.

Proof. Note we have already shown via Liouville’s theorem and simple topological arguments
that no two of the three spaces are equivalent. We first introduce the central idea in the
proof: Green’s functions. The motivation comes from a somewhat physical viewpoint: it
is possible to solve the partial differential equation (Poisson’s equation, a generalisation of
Laplace’s equation)

∇2φ = f

for complex functions φ and f under suitable boundary conditions using Green’s functions.
This is also known as the Dirichlet problem, and can be summarised in complex analytic
terms as follows: for a domain D, f continuous on ∂D, can we find F harmonic on D such
that F = f on ∂D? The boundary conditions are of interest here: We find ourselves able to
solve the equation on subsets of the complex place such as ∆ or H = {z ∈ C : =(z) > 0} but
not on the whole plane C (or for that matter C∞). This suggests that maybe only proper
subsets of the complex plane support Green’s functions.

We define subharmonic function: a continuous (real-valued) function g is subharmonic
on a surface S if for every harmonic function u on a domain U ⊂ S, g = u or g < u on
U . We construct a Perron family of F subharmonic functions defined by two properties:
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(i) if two functions g1 and g2 are in F so is max(g1, g2), and (ii) if h is harmonic on a
domain and agrees with g ∈ F on the boundary of a domain and on the complement of the
domain, then h ∈ F . Perron families have the key property that the function u defined by
u(p) = sup{g(p) : g ∈ F} is harmonic or positive infinite everywhere.

We need a special Perron family to define Green’s functions on S: take a point p ∈ S
contained in a coordinate disc (φ, U) with φ(p) = 0. Define Fp as the family of subharmonic
functions on S − {p} such that each has compact support and if u ∈ Fp then v(z) =
u(z)+log|φ(z)| is subharmonic on a neighbourhood of p. A Green’s function with singularity
at p is defined by gp(z) = sup{u(z) : u ∈ Fp}, provided the supremum is strictly less than
infinity on S.

This lengthy set-up leads to the key proposition(2): If S is a simply connected surface
with a Green’s function gp for any p ∈ S(3), then there exists a conformal map from S to ∆.

What then remains to classify is the surfaces which do not admit a Green’s function.
This may be done by defining an alternative to a Green’s function with singularities at two
points. This may then be used to construct a meromorphic function on S, the image of
which may be shown to be either empty or a single point. If empty, the surface is C∞. If a
single point, we may move the point to infinity by a Möbius transform, and so the surface
is C.

We will refer to each of the three cases {C∞,C,∆} as elliptic, parabolic and hyperbolic
respectively. Of the surfaces we have met so far, only C∞ is covered by C∞. C, C − 0 and
T 2, the torus, are covered by C. All other surfaces are covered by ∆, so the vast majority of
surfaces are of hyperbolic type.

We postpone the second half of the proof pending a discussion of some group theory in
the next section.

7 Kleinian Groups And Fuchsian Groups

From the statement of second half of the uniformisation theorem, it is necessary to under-
stand the automorphism structure of a given Riemann surface. We begin with the auto-
morphism groups for the three simply connected surfaces, which are all groups of Möbius
transformations. Möbius transforms may be associated with complex matrices by the fol-
lowing correspondence: {

f(z) =
az + b

cz + d
: a, b, c, d ∈ C, ad− bc 6= 0

}
l{(

a b
c d

)
: a, b, c, d ∈ C, ad− bc 6= 0

}
= GL(2,C)

The restriction to ad− bc = 1 gives the special linear group SL(2,C). Since we obtain
the same Möbius transform with {−a,−b,−c,−d} as with {a, b, c, d}, one can quotient to

(2)See http://www.math.mcgill.ca/gantumur/math580f11/downloads/uniformisation.pdf, p15 for a
detailed proof using this method.

(3)In fact, if a Green’s function exists for one point p in S, it exists for all points in S.
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obtain the projective special linear group PSL(2,C) = SL(2,C)/{I,−I}(4). This is
the group of automorphisms of the Riemann sphere C∞. The automorphism groups for the
three simply connected Riemann surfaces are summarised below:

Aut(C∞) ∼= PSL(2,C)

Aut(C) = {f(z) = az + b : a, b ∈ C, a 6= 0} ∼= P∆(2,C)

Aut(∆) =

{
f(z) =

az + b

b̄z + ā
: a, b ∈ C, |a|2 + |b|2 = 1

}
∼= SU(1, 1)

∼= Aut(H) =

{
f(z) =

az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

}
/{I,−I} ∼= PSL(2,R)

Note the last two are automatically isomorphic since due to the uniformisation theorem,
∆ is conformally equivalent to H = {z ∈ C : =(z) > 0}. We shall in general refer to the
automorphism group of ∆ as PSL(2,R) rather than SU(1, 1).

Definition 7.1. A topological group is a group G with a Hausdorff (5) topology on G that
respects the group structure: that is to say, the group operation and inverses are continuous
functions on G.

Of course, all the groups encountered in this section are topological groups. For example,
GL(2,C) may be given a topology by identifying it with C2. SL(2,C) inherits the subspace
topology from GL(2,C), and PSL(2,C) is a topological group under the quotient topology.
In fact, the structure of these topological groups can be shown to be that of a manifold.
Most important are the discrete subgroups of the automorphism groups (recall from the uni-
formisation theorem that all Riemann surfaces are given as quotients of a simply connected
surface S with a discrete subgroup of Aut(S)).

Definition 7.2. Let H be a subgroup of G, a topological group. H is said to be a discrete
subgroup of G if it inherits a discrete topology from G (that is to say, all subsets of H are
open under the topology of G).

In particular, special names are given to the discrete subgroups of Aut(C∞) and Aut(∆):

Definition 7.3. A Kleinian group is a discrete subgroup of Aut(C∞) ∼= PSL(2,C). A
Fuchsian group is a discrete subgroup of Aut(∆) ∼= PSL(2,R).

The discrete topology encodes notions of the separation of elements (in this case, functions
on the Riemann sphere). A definition that categorises the action of a group on a set in terms
of separation of elements is the following:

Definition 7.4. Let G be a subgroup of Aut(S). G acts properly discontinuously on S
if for any compact subset K of S there are finitely many g ∈ G such that g(K) ∩K 6= ∅.

(4)In general, the projective subgroup is defined by quotienting out scalar transformations. In fact,
PGL(2,C) = PSL(2,C). This follows from the fact that C is an algebraically closed field.

(5)The requirement that the topology be Hausdorff is included for ease of use.

11



It is a consequence of the definition that for a subgroup to act properly discontinuously,
it must be discrete. For the specific case of Aut(H) = PSL(2,R), the inverse holds:

Proposition 7.5. Let G be a subgroup of Aut(H) = PSL(2,R). G is Fuchsian (discrete) if
and only if it acts properly discontinuously on H.

Proof. Suppose G does not act properly discontinuously on H. Then there is a K, a compact
set, and a sequence of distinct maps gn ∈ G such that for each n, gn(K) ∩ K is non-
empty. Take a pair of points (xn, yn) ∈ K × K for each n with gn(xn) = yn. Since K
is compact, so is K × K and so (potentially after reducing to subsequences) we have that
(xn, yn)→ (x, y) ∈ K×K, and since gn are holomorphic, gn(x)→ y. By considering G acting
on ∆ now, we see that {gn} is locally bounded and hence converges uniformly on compact
sets by Morera’s theorem to a holomorphic function g on ∆ (and hence to a holomorphic
function g on H(6)).

To see that g ∈ Aut(H), again consider the functions as acting on ∆. The maximum
principle implies that either |g| < 1 or g is constant with |g| = 1. If the former, g ∈ Aut(H)
since g−1n also converges uniformly (after subsequences) to a holomorphic function g−1 with
|g−1| < 1 and g ◦ g−1 = g−1 ◦ g = id. If the latter, the functions converge to a boundary
point of H, but by assumption, g(x) = y ∈ K ⊂ H. So g ∈ Aut(H).

Finally, we show this implies G is not Fuchsian. We have that gn → g ∈ Aut(H), and
so g−1n → g−1 ∈ Aut(H). Since gn are pairwise distinct, id 6= g−1n ◦ gn+1 ∈ G for any n, yet
g−1n ◦ gn+1 → id, and therefore id is not isolated, which implies G is not Fuchsian.

This is not however a general property. The Kleinian group below does not act properly
discontinuously on C∞, since (for example) 0 is fixed by infinitely many transformations:{

f(z) =
az + b

cz + d
: a, b, c, d ∈ Z + iZ, ad− bc 6= 0

}
⊂ PGL(2,C) = Aut(C∞)

We now return to the proof of the second half of the uniformisation theorem. First,
note that each Riemann surface R is covered by a unique simply connected surface S by
Theorems 5.7 and 5.8. Let p : S → R be such a covering. We define the universal
covering transformation group G to be the automorphisms of S that commute with p:
that is to say, g ∈ G if and only if p ◦ g = p (such transformations are known as deck
transformations). Clearly G is a subgroup of Aut(S). It is an important fact that if
p(x1) = p(x2) then there exists a unique transformation g ∈ G such that g(x1) = x2.

Proposition 7.6 (Uniformisation). Let R be a Riemann surface, and let p : S → R be a
universal cover. Then R is conformally equivalent to S/G, and G is a subgroup of Aut(S)
acting properly discontinuously on S (and hence G is discrete).

Proof. For each z ∈ R, the set p−1(z) is an equivalence class in S/G. Therefore the projection
map z 7→ p−1(z) is a well-defined map from R to S/G. It is surjective automatically. It is
injective since if p−1(z1) = p−1(z2) then p ◦ p−1(z1) = p ◦ p−1(z2) and therefore z1 = z2.
Finally, it is conformal since it is the composition of two conformal maps: p−1 and canonical
projection (which is conformal under the quotient topology).

(6)This is an abuse of notation, the functions g on ∆ and g on H are of course conjugate rather than equal.
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G acts properly discontinuously on S by an argument similar in nature to Proposition
7.5.

Two subgroups of Aut(S) acting discontinuously on S generate conformally equivalent
surfaces after quotienting if and only if they are conjugate subgroups.

Theorem 7.7. Let p : S → R, with S simply connected. Then the universal covering
transformation group G of p is isomorphic to π1(R).

Proof. (7) Let x0 be any point in R, . Recall the construction of S as a space with points of
the form [γ, x1], with γ a curve in R with initial point x0 and end point x1. We define an
action of G on S as follows: For [γ, x1] ∈ S, and any [µ] ∈ π1(R, x0), define an action ∗ by
concatenation of curves:

[µ] ∗ ([γ, x1]) = [µ ∗ γ, x1]

This is a deck transformation of S since it does not alter the projection. Hence, this is indeed
an action of G for each [µ] ∈ π1(R, x0). This generates a correspondence: [µ] 7→ [µ]∗. We
show it is an isomorphism of π1(R, x0) and G.

First, it is a homomorphism by construction. It is injective since the kernel is trivial:
if [µ]∗ is the identity in G, it is homotopic to the zero path, and hence [µ] is identity in
π1(R, x0).

Finally, it is surjective by a lifting argument: Let g ∈ G and let I0 be the zero curve in R
at x0 (i.e. I0 = x0). Let γ̃ be a curve in S with initial point [I0, x0] and final point g([I0, x0]).
Project γ̃ to R to get a curve γ, a closed path on R with base point x0, and hence is in
π1(R, x0). By lifting γ to S, we get that [γ]∗ = g.

8 Classifying Riemann Surfaces of Exceptional Type

We have seen in the previous section how Riemann surfaces are generated as quotients of
their fundamental group with one of the three simply connected surfaces. Our principle aims
are to classify the type and number (up to conformal equivalence) of Riemann surfaces by
analysing group structure. We have already seen the only Riemann surfaces with a trivial
fundamental group are C∞, C and H. Since they cover all other Riemann surfaces, this a
good starting point.

Of particular importance to the classification are the fixed points of Möbius transforma-
tions.

We begin with two important but elementary lemmata that will prove useful for further
discussion. The first demonstrates the lack of fixed points in the cover group, the second the
number of fixed points of a general member of the cover group.

Lemma 8.1. Let p : S → R be a universal cover, with universal cover transformation group
G. Then for each x ∈ S, one can find a neighbourhood U ⊂ S such that g(U) ∩ U 6= ∅ =⇒
g = id.

(7)Here we follow the line of proof in [7].
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Lemma 8.2. Let g : C∞ → C∞ be a Möbius transformation. Then g has either one or two
fixed points. For h ∈ Aut(C∞), g = h ◦ f ◦ h−1 (i.e. is conjugate to) one of two Möbius
transforms: If one fixed point, f(z) = z + b, b 6= 0. If two fixed points, f(z) = az, a 6= 0, 1.

Instantly, we can use these two lemmata to classify all the Riemann surfaces of elliptic
type:

Theorem 8.3. The only Riemann surface covered by C∞ is C∞.

Proof. Suppose R is covered by C∞, with universal cover group G. By Lemma 8.2, each
element in G has fixed points. By Lemma 8.1, each element in G is therefore the identity,
which implies G is trivial and hence R = C∞/G = C∞.

What about the surfaces covered by C? The situation is more complicated, but still
relatively simple:

Theorem 8.4. The only Riemann surfaces covered by C are the whole plane itself C, the
punctured plane C− {0} and tori given by T 2 = C/G, where G is a lattice group.

Proof. Suppose R is covered by C, with universal cover group G. Recall elements in G are
of the form g(z) = az + b, with a, b ∈ C, a 6= 0. By Lemma 8.1, g can have no fixed points
in C so g of the form (technically, conjugate to) g(z) = z+ b by Lemma 8.2. So all elements
in G are translations (i.e. they fix infinity when considered over the whole complex plane).

1. If G is trivial, we obviously recover R = C.

2. If all the translations in G are parallel, then since G is discrete, it is generated by a
translation g(z) = z + b. Then clearly G = Z, and we get R = C− {0}. (Think of the
quotienting as creating an infinite cylinder, which is then homeomorphic to a sphere
with two points removed, say the north and south pole.)

3. If we have two translations in G not parallel, we can find two generating translations,
as in the construction of the lattice group in section 3. Then G = Z ⊕ Z and R is a
torus.

It is a simple exercise to show that the first two of these surfaces have C as their universal
cover.

For the torus(8), if the universal cover is not C then, by Theorem 8.3, it must be H.
Then G = Z ⊕ Z is a discrete subgroup of PSL(2,R). Suppose f and g generate G. Since
G is abelian, they commute with one and other. Then f(z) = z + b1 =⇒ g(z) = z + b2,
and f(z) = a1z =⇒ g(z) = a2z. If the former, we can assume b1 = 1. Then b2 must be
irrational, else pf = qg, for b2 = p/q. But if b2 is irrational, G is certainly not discrete!

If the latter, we must have a1, a2 > 0 and an1 6= am2 for n,m 6= 0. Taking logarithms, we
get log f(z) = log a1 + log z and log g(z) = log a2 + log z, with the condition that n log a1 6=
m log a2. This is the same problem as above. We can always find non-discrete pairs generated
by log f and log g, and hence G cannot be discrete either (if we can make points of log f and
log g arbitrarily close, we can do so for f and g also).

(8)We follow the proof given on pg.210 of [6]
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What of the surfaces covered by H? All Riemann surfaces with the exception of the
sphere, the plane, the punctured plane and tori are covered by H - the vast majority of
Riemann surfaces are of hyperbolic type. They are far more diverse and difficult to classify.
The classification theorem for compact surfaces(9) gives every compact, connected, (real)-2-
manifold as either the sphere, a connected sum of tori T 2 or a connected sum of projective
planes P2. Since projective planes (and sums of) are non-orientable, we cannot give them
a complex structure. So the only compact Riemann surfaces are the sphere, the torus, and
the n-holed torus, for n ≥ 2. So we have classified the compact Riemann surfaces to some
extent (we don’t know yet whether we can impose two conformally distinct structures on
topologically equivalent surfaces, so our understanding is far from complete.) For the non-
compact hyperbolic surfaces, the situation is significantly more difficult. Though topological
classification theorems do exist, they are significantly more complex.

There is one final point to make on this subject. All of the surfaces of elliptic and
parabolic type have Abelian fundamental groups. The 2-holed torus, like the majority of
hyperbolic surfaces, does not(10). However, there are two remaining surfaces which do have
Abelian fundamental groups.

Theorem 8.5. The punctured disc ∆0 = ∆−{0} and the annulus ∆r = {z ∈ C : r < z < 1}
are hyperbolic Riemann surfaces, and have fundamental group Z.

Theorem 8.6. All other hyperbolic Riemann surfaces have non-Abelian fundamental groups.

9 The Moduli Problem

In the following sections(11), all surfaces shall be assumed to be compact (i.e. n-holed tori).
We call n the genus of the surface.

A (simplified) statement of the moduli problem is this: when are two conformal struc-
tures on topologically equivalent surfaces conformally equivalent? We have already seen
in detail how topological equivalence is necessary but not sufficient to guarantee conformal
equivalence. To be more precise, suppose R1 and R2 are homeomorphic, and have universal
cover S, with covering maps p1 and p2. Can we find a conformal map f : R1 → R2 with a
lift f̃ : S → S such that the diagram below commutes?

S S

R1 R2

p1

f̃

f

p2

(9)See for example [9], [10] or any other introductory topology book
(10)The fundamental group of the 2-holed torus may be calculated using the Seifert-van Kampen theorem; it

is (Z∗Z∗Z∗Z)/N , where ∗ is the free product, and N is the normal subgroup generated by aba−1b−1dcd−1c−1.
Clearly this is pretty far from Abelian!
(11)We present a short introduction to the basic concepts of moduli and Teichmüller theory, as discussed in

the opening chapters of [7].
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We denote by Mg the set of all equivalence classes of a (compact) Riemann surface of
genus g. We call Mg the moduli space of genus g. It’s not obvious at this point that the
use of the word space is justified.

Firstly, by the uniqueness of universal covers, all the simply connected surfaces are unique
up to conformal equivalence. In particular, the moduli space of the Riemann sphere is trivial.

We consider the remaining surfaces of parabolic type. It is obvious that any two punc-
tured planes are conformally equivalent (consider a Möbius transformation mapping the two
punctures to each other whilst preserving infinity.) It is less obvious whether the same is
true for tori. The following theorem shows there is not one, but an uncountable number
of conformally distinct tori. First however, it helps to normalise the lattice group given in
section 3. If C/G is a torus with lattice group G = {mω1 +nω2 : m,n ∈ Z}, it is conformally
equivalent to a torus given by lattice group Γ = {m+ nτ : m,n ∈ Z}, with τ ∈ H.

Theorem 9.1. Let C/G1 and C/G2 be two tori given respectively by the lattice groups
G1 = {m + nτ1 : m,n ∈ Z} and G2 = {m + nτ2 : m,n ∈ Z}. Then they are conformally
equivalent if and only if

τ2 =
aτ1 + b

cτ1 + d
, a, b, c, d ∈ Z, ad− bc = 1

.

Before the proof, note that the condition above is equivalent to saying that τ2 = g(τ1),
where g ∈ PSL(2,Z). PSL(2,Z) is a discrete subgroup of PSL(2,R), and hence a Fuchsian
group. Therefore, as a corollary to the above theorem we obtain that the moduli space of
the torus is given by the quotient:

M1
∼= H/PSL(2,Z)

Proof. The proof of the reverse direction is simple: we can construct a map f̃ : C→ C with
f̃(z) = (cτ1 + d)z. This projects to a biholomorphic map f : C/G2 → C/G1.

For the forward direction, assume we have such a map f : C/G2 → C/G1. Using the
monodromy theorem, we obtain a lift f̃ in C that commutes with the projections and f as
per the diagram above. f̃ ∈ Aut(C), so we may assume f̃(z) = αz, α ∈ C (we may safely
drop the constant term). f(τ2) = f(1) = f(0), so f̃(τ2), f̃(1) ∈ G1. Then:

f̃(τ2) = ατ2 = aτ1 + b,

f̃(1) = α = cτ1 + d

for a, b, c, d ∈ Z. The result follows after a standard argument to show ad− bc = 1.

It can be shown through a cutting and pasting argument that M1
∼= H/PSL(2,Z) is in

fact the complex plane. See [8] for details. Though the moduli space has been proven to be
relatively simple to obtain in the case of a torus, the situation is bleak for surfaces of higher
genus. For this purpose, we introduce the related Teichmüller space.
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10 Teichmüller Space

We begin with a discussion of the Teichmümller space for the torus(12).
In the above argument when calculating the moduli space, two conformally equivalent

tori (with a conformal map f between them) were generated by the action of a lattice group
on C. The map f lifted to a map f̃ on C, which transformed the lattice group of one torus
to the lattice group of the other.

The lattice group is generated by two translations: by assumption, these were z 7→
z + 1 and z 7→ z + τ . When projected down to the torus, they become generators for the
fundamental group of the torus. Fix a base point x for the fundamental group. The map
f induces an isomorphism f∗ on the fundamental group of the torus (with base point x),
mapping pairs of generators to each other.

For any torus R, take a pair of generators Σx = {[A1], [B1]} for the fundamental group
π1(Rτ , x), where τ ∈ H gives the lattice generating the fundamental group. Σx is called
a marking on R. The construction of the Teichmüller space T1 for genus 1 goes as
follows: consider the space with points [(R,Σx)] (i.e. equivalence classes of marked tori.)
Two markings Σx and Σy are equivalent if and only if there is a continuous curve C0 joining
x and y on R which induces an isomorphism TC0 between the respective fundamental groups
with [C] 7→ [C−10 ∗ C ∗ C0] under TC0 , sending the generators to each other.

Figure 3: A (potential) equivalence construction for markings on a torus

(12)Again, we follow [7].
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Two marked tori, (R1,Σx1) and (R2,Σx2) are then equivalent if and only if there is a
conformal equivalence f : R1 → R2, with the induced map f∗ on the fundamental group
producing a marking on R2 that is equivalent to Σx2 .

Now, suppose we have a compact Riemann surface of arbitrary genus g. The fundamental
group for a g-holed torus is given by a system of 2g generators: {[A1], [B1], ..., [Ag], [Bg]}.
The Teichmüller space Tg of genus g is constructed in an analogous way to that of the torus;
its points are equivalence classes of marked g-holed tori, with the equivalence set-up the
same as with the torus.

We can see that the definition Teichmüller space is more restrictive than that of the
moduli space: for two surfaces to be equivalent, we require that not only are they conformally
equivalent, but also that the conformal equivalence preserves the marking on the torus.
Therefore there are points equivalent in the moduli space that are inequivalent in Teichmüller
space. The map φ : Tg → Mg, φ([R,Σx]) = [R] simply forgets the marking and is an
injection. In fact, the moduli space may be given as a quotient of the Teichmüller space by
the mapping class group(13), Modg :

Mg = Tg /Modg

To conclude, we sketch how the Teichmüller space Tg (g > 1) can be associated with a
subspace of R6g−6 via Fricke coordinates(14).

Let R be a compect surface of genus g > 1. Then R is covered by H by a covering
p : H → R. Recall from Theorem 7.7 that the universal covering transformation group G
of p is isomorphic to π1(R). Since the universal covering transformation group is necessarily
a discrete subgroup of PSL(2,R), we shall call it a Fuchsian model of R. The Fuchsian
model is therefore generated by 2g transformations {α1, β1, ..., αg, βg} corresponding to the
generators of the fundamental group of R.

Under a certain normalisation condition on the Fuchsian model (we insist that the trans-
formations have certain fixed points to remove ambiguity caused by equivalence of conjuga-
tion in Aut(H), see [7]), we find that a system of generators is uniquely determined by a
point [R,Σx] in Tg.

We write each transformation for j = 1, ..., g − 1 in the Fuchsian model as a Möbius
transformation:

αj =
ajz + bj
cjz + dj

, aj, bj, cj, dj ∈ R, cj > 0, ajdj − bjcj = 1

βj =
a′jz + b′j
c′jz + d′j

, a′j, b
′
j, c
′
j, d
′
j ∈ R, c′j > 0, a′jd

′
j − b′jc′j = 1

We then define the Fricke coordinations Fg : Tg → R6g−6 by:

Fg([R,Σx]) = (a1, c1, d1, a
′
1, c
′
1, d
′
1, ..., ag−1, cg−1, dg−1, a

′
g−1, c

′
g−1, d

′
g−1)

(13)For a detailed exposition of the relationship between Teichmüller space, moduli space and the mapping
class group, see [5].
(14)In fact, Teichmüller space can be given a complex manifold structure of (complex) dimension 3g − 3.

For a detailed version of this proof, see [7].
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We claim the Fricke coordinates are injective. First, note bj is determined by the relation
ajdj − bjcj = 1, and thus αj (and similarly βj) is uniquely determined by a point in R6g−6,
for j = 1, ..., g − 1.

We now have to show that αg and βg are determined also. This follows (with some work)
from the normalisation conditions and the fundamental group giving the following relation
on G:

α1β1α
−1
1 β−11 ...αgβgα

−1
g β−1g = id

Thus we may relate the Teichmüller space to points in the much simpler real space R6g−6,
the Fricke space Fg(Tg). Remarkably, the Fricke space is simply connected, and we can
give Tg a topology simply by associating it with Fg(Tg) ⊂ R6g−6.
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