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Abstract. The symmetry group of a differential equation is the largest group
of transformations acting on independent and dependent variables with the
property that it transforms solutions to other solutions. The symmetry group
often gives us greater insight into the differential equation. We would demon-
strate the symmetry groups of the heat and wave equation.
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Introduction

A symmetry group of a differential equation is a group which transforms solutions
to other solutions. Typical examples include groups of translations, rotations and
scaling. For example, if y = f(x) is a solution to d2y

dx2 = 0, then for any real constant
ϵ, y = f(x)+ϵ and y = eϵf(x) are solutions as well. Other less well-behaved groups
such as nonlinear or locally defined groups could be subgroups of the full symmetry
group as well. (e.g. Lorentz group).

Understanding the symmetry group gives us greater insight into the differential
equation. Using symmetries, we could reduce the order of them, generate new
solutions from existing ones (e.g. generating the fundamental solutions to the heat
equation from the constant solution), or seek group-invariant solutions which are
easier to compute. (e.g. rotationally invariant solutions to the Laplace’s equation
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are well known). Symmetries are also deeply related to seperation of variables
methods [Mil84] and first integral methods [Hyd00].

In section 1, we aim to understand how a change of coordinates affects the
derivatives of functions. In section 2, we understand how choosing one-off transfor-
mations could simplify ordinary differential equations (e.g. integrating factors). In
sections 3 - 4, we construct a general theory of using and finding Lie symmetries
of ordinary differential equations. Our main example would be to find the symme-
tries of d2y

dx2 = 0 [Example 4.5]. In sections 5 - 6, we briefly introduce variational
symmetries and demonstrate how they could give us conserved quantities through
Noether’s theorem [Theorem 6.9]. In section 7, we extend our theory of symmetries
to partial differential equations and discuss the symmetry groups of the heat and
wave equation. [Example 7.9 and 7.10]

Almost all ideas (including the project’s title) are borrowed from a book by Olver
[Olv93]. We also make extensive references to a more accesssible book by Hydon
[Hyd00]. I make no claim to the originality of the material presented here. Material
in the report that is not cited should be common knowledge or simple applications
/ calculations of theorems previously discussed.

1. Transformations and Derivatives

Symmetries in diffeerential equations could be immensely useful. For example
given dy

dx = d
dxf(x), we know that y = f(x) + C for some constant C ∈ R. This

means that if we can find a solution to the differential equation, we can find all
the solutions by applying the symmetry of adding constants to the function. We
could imagine that the real numbers under addition form the symmetry group of
the differential equation.

More complicated differential equations are associated with more complicated
symmetries as we would see later.

To apply transformations to differential equations, we first need to understand
how transformations alter the derivative. Given a transformation from ϕ : (x, y) →
(x̂, ŷ), what’s the relationship between dŷ

dx̂ and dy
dx?

Explicitly, given some function y(x) on the (x, y) plane and some function ϕ :
(x, y) → (x̂(x, y), ŷ(x, y)). Suppose {ϕ(x, y(x))|x ∈ U} coincides with {(x̂, ŷ(x̂))|x̂ ∈
V } for some intervals U, V and some diff. function ŷ. Then at some point (c, y(c)),
what is dŷ

dx̂ at ϕ(c, y(c))?

Example 1.1 (Polar coordinates). Suppose we’re given y =
√
1− x2 we would like

to find dy
dx .

Instead of calculating it directly, we observe that we’re trying to find the slope
on a semi-circle. As such it might be interesting to use polar coordinates via
ϕ : (θ, r) → (r cos θ, r sin θ). We know that the pre-image of {(x,

√
1− x2), −1 ≤

x ≤ 1} under ϕ is precisely {(θ, 1), 0 ≤ θ ≤ π} so r(θ) = 1, drdθ = 0 for 0 ≤ θ ≤ π.
Hence,

dy

dx
=

dy(r,θ)
dθ

dx(r,θ)
dθ

=
∂y
∂r

dr
dθ + ∂y

∂θ
dθ
dθ

∂x
∂r

dr
dθ + ∂x

∂θ
dθ
dθ

=
0 + r cos θ

0− r sin θ
= −x

y
=

−x√
1− x2

which aligns with our expectations.

Example 1.2 (Rotations). Suppose we’re given graph of y = f(x) and we want to
rotate the graph by θ radians anticlockwise to get the graph ŷ = f(x̂) and find its
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derivative. Suppose that ŷ is well-defined, intuitively we should get dŷ
dx̂ |ϕ((c,f(c))) =

tan(arctan( dydx |(c,f(c))) + θ) ∀c. We can verify this by the following. Using the
rotation map ϕ : (x, y) → (x cos θ − y sin θ, x sin θ + y cos θ), we would get

dŷ

dx̂

∣∣∣∣
ϕ((c,f(c)))

=
d
dx |x=cŷ(x, y(x))
d
dx |x=cx̂(x, y(x))

=

∂ŷ
∂x + dy

dx
∂ŷ
∂y

∂x̂
∂x + dy

dx
∂x̂
∂y

∣∣∣∣
x=c

=
sin θ + dy

dx |x=c cos θ

cos θ − dy
dx |x=c sin θ

Thus we can check that

tan
(
arctan

(
dy

dx

∣∣∣∣
x=c

)
+ θ

)
=

dy
dx |x=c + tan θ

1− tan θ dy
dx |x=c

=
cos θ dy

dx |x=c + sin θ

cos θ − dy
dx |x=c sin θ

We could’ve deduced the expression directly by using the fact that sums of cosine
/ sine functions can be expressed as a single cosine / sine function.

2. Ordinary Differential Equations

Applying suitable transformations could greatly simplify differential equations
we encounter. Let’s start with analyzing elementary change of coordinate methods
for differential equations to get used to the afforementioned framework. This section
and the next follows from Chapter 1 of Hydon [Hyd00].

Example 2.1 (Linear combinations of x, y). Consider the differential equation of
form

dy

dx
= F (ax+ by + c)

for constants a, b, c. Then consider the transfomration ϕ : (x, y) → (x, ax+ by+ c).
We observe that

dŷ

dx̂
=

d

dx
(ax+ by + c)

= a+ b
dy

dx
= a+ bF (ŷ)

which is seperable. Finally ŷ(x̂)|x̂=x = ax+ by(x) + c so y(x) = 1
b (ŷ(x)− ax− c)

Example 2.2. To solve dy
dx = x+ y(x) + 1, we have dŷ

dx̂ = 1+ ŷ which has solution
ŷ(x̂) = Cex̂ − 1 for some constant C. So y(x) = Cex − x− 2.

Example 2.3. Differential equations of form dy
dx = F ( yx )
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Inspired by the previous example, we may choose the transformation ϕ : (x, y) →
(x, yx ) which would give us

dŷ

dx̂
=

d

dx
ŷ(x, y(x))

=
−y
x2

+ F

(
y

x

)
1

x

=
1

x̂

(
− ŷ + F (ŷ)

)
which is seperable.
Notice that changing x̂ would not affect d

dx ŷ(x, y(x)). As such we may try to
construct a suitable x̂ to eliminate the 1

x̂ term. Let ϕ : (x, y) → (x̂, ŷ) = (log x, yx ).
Then,

dŷ

dx̂
=

d
dx ŷ(x, y(x))
d
dx x̂(x, y(x))

=

∂ŷ
∂x + dy

dx
∂ŷ
∂y

∂x̂
∂x + dy

dx
∂x̂
∂y

=
− y

x2 + F ( yx )
1
x

1
x + F ( yx ) · 0

= −y
x
+ F

(
y

x

)
= −ŷ + F (ŷ)

So ŷ(x̂)|x̂=log x = y(x)
x hence y(x) = xŷ(log x)

Example 2.4 (Integrating factors). Consider the differential equation of form
dy

dx
+ P (x)y = Q(x)

Consider the transformation ϕ : (x, y) → (x, e
∫
P (x)dxy). We observe that

dŷ

dx̂
=
dŷ

dx

= P (x)e
∫
P (x)dxy +

dy

dx
e
∫
P (x)dx

= Q(x)ŷ

which is seperable and easier to solve. Finally ŷ(x̂)|x̂=x = e
∫
P (x)dxy(x) so y(x) =

ŷ(x)

e
∫

P (x)dx

Example 2.5 (Cauchy-Euler). Consider the differential equation of form

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
· · ·+ a0y = 0

Consider the transformation ϕ : (x, y) → (log x, y). We observe that

dŷ

dx̂
=

d
dx ŷ(x, y(x))
d
dx x̂(x, y(x))

=

∂ŷ
∂x + dy

dx
∂ŷ
∂y

∂x̂
∂x + dy

dx
∂x̂
∂y

=
0 + dy

dx
1
x + 0

= x
dy

dx
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and

d2ŷ

dx̂2
=

∂
∂x (

dŷ
dx̂ ) +

dy
dx

∂
∂y (

dŷ
dx̂ )

∂x̂
∂x + dy

dx
∂x̂
∂y

=
∂
∂x (x

dy
dx ) +

dy
dx · 0

1
x + 0

= x
dy

dx
+ x2

d2y

dx2

We can see that for all i
di+1ŷ

dx̂i+1
= x

d

dx

(
diŷ

dx̂i

)
So 

ŷ

dŷ
dx̂

d2ŷ
dx̂2

. . .

dnŷ
dx̂n


=



1 0 0 . . . 0

0 1 0 . . . 0

0 1 1 . . . 0

. . . . . . . . . . . .

0 ∗ ∗ . . . 1





y

x dy
dx

x2 d2y
dx2

. . .

xn dny
dxn


The matrix is lower triangular with determinant 1. So it’s invertible and hence we
can find unique coefficients b0, . . . , bn such that the differential equation becomes

bn
dnŷ

dx̂n
+ bn−1

dn−1ŷ

dx̂n−1
· · ·+ b0ŷ = 0

which is easier to solve.

We could summarise the examples by the following.

Type (x̂, ŷ)
dy
dx + P (x)y = Q(x) (x, e

∫
P (x)dxy)

dy
dx = F (ax+ by + c) (x, ax+ by + c)
dy
dx = F (y/x) (log x, yx )
Cauchy-Euler (log x, y)

3. Lie Symmetries of First Order ODEs

We shall consider differential equations of form
dy

dx
= w(x, y)

throughout the entire section. We are interested in symmetries ϕ : (x, y) → (x̂, ŷ)
that are diffeormorphisms and keep the set of solution curves invariant. I.e. if
y = f(x) is a solution, then (x̂(x, f(x)), ŷ(x, f(x))) as a curve in (x̂, ŷ) plane written
in parametric form is a solution to

dŷ

dx̂
= w(x̂, ŷ)



6 TOBY LAM

This is very different from section 1 where our modus operandi was to make
dŷ
dx̂ into a different and simpler expression to w(x̂, ŷ). Although change of coordi-
nates would re-appear in the discussion of canonical coordinates [Section 3.4], these
coordinates are derived from continuous symmetries.

3.1. The One-paramter Lie Group. We are particularly interested in symme-
tries that form a group. This motivates the following.

Definition 3.1 (One-paramter Lie group, [Hyd00] p. 4). Suppose an object occu-
pying a subset of RN has an infinite set of symmetries ϕϵ : xs → x̂s(x1, . . . , xN ; ϵ)
where ϵ is a real paramater, and that the following conditions are satisfied.

(L1) ϕ0 is the trivial symmetry / the identity
(L2) ϕϵ is a symmetry for every ϵ in some neighbourhood of zero
(L3) ϕδ ◦ ϕϵ = ϕδ+ϵ for δ, ϵ sufficiently close to zero
(L4) Each x̂s may be represented as a Taylor series in ϵ

Example 3.2. ϕϵ : (x, y) → (x, y + ϵ) forms a one-paramter Lie group (check!),
and is a set of symmetries for the differential equation

dy

dx
= w(x)

This is because given y = f(x) s.t. dy
dx = w(x), we have (x̂(x, f(x)), ŷ(x, f(x))) =

(x, f(x) + ϵ) so dŷ
dx̂ = w(x̂)

Note the general solution to the equation is
∫
w(x)dx + c for some constant c.

Geometrically, the symmetries raises and lowers the solution curves on the (x, y)
plane vertically.

Example 3.3. ϕϵ : (x, y) → (eϵx, eϵy) forms a one-paramter Lie group, and is a
set of symmetries for the differential equation

dy

dx
= −x

y

This is because given y = f(x) s.t. dy
dx = −x

y , we have (x̂(x, f(x)), ŷ(x, f(x))) =

(eϵx, eϵf(x)) so dŷ
dx̂ = dŷ

dx · (dx̂dx )
−1 = −x

y = x̂
ŷ

Note that the general solution to the equation is y(x) = ±
√
c2 − x2 ∀c ∈ R,

circles of radius c centered on the origin. Geometrically, the symmetries map circles
cenetered on the origin to circles centered on the origin.

Example 3.4. ϕϵ : (x, y) → (x cos ϵ− y sin ϵ, x sin ϵ+ y cos ϵ) forms a one-paramter
Lie group, and is a set of symmetries for the differential equation of example 3.3.

Geometrically, the symmetries rotate circles centered on the origin.

3.2. Tangent Vector Field. ([Hyd00] p. 22)
It turns out that there is a local one-to-one correspondence between one-paramter

Lie group and its tangent vector field. The explanation of which is beyond the scope
of this article. This prompts us to place focus solely on the tangent vector field
of Lie symmetries we encounter. This greatly eases computations as we would see
later on. However, having a global picture of the action of the Lie group is still
immensely helpful at gaining geometric intuition.

Let’s introduce some notation, given a one paramter Lie group, ϕϵ : (x, y) →
(x̂, ŷ), we say that the tangent vector at (x, y) is the vector (ξ(x, y), η(x, y)) :=
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d
dϵ |ϵ=0(x̂(x, y), ŷ(x, y)). We may also use the notation ξ∂x + η∂y to represent the
tangent vector.

Example 3.5. The tangent vector of ϕϵ : (x, y) → (x, y + ϵ) at (x, y) is (0, 1) i.e.
∂y

Example 3.6. The tangent vector of ϕϵ : (x, y) → (eϵx, eϵy) at (x, y) is (x, y) i.e.
x∂x + y∂y

3.3. Recontructing Lie Groups from the Tangent Vector Field. Given an
infinitesimal generator X, we could do so using the formulae x̂ = eϵXx, ŷ = eϵXy
to deduce the Lie group structure [[Hyd00] p. 40]

Example 3.7. Given X = x∂y, we can calculate

Xx = x∂y(x) = 0

Xy = x∂y(y) = x

∴ X2y = 0

So

x̂ = eϵXx =

∞∑
k=0

1

k!
ϵkXk(x) = x

ŷ = eϵXy =

∞∑
k=0

1

k!
ϵkXk(y) = y + ϵx

Alternatively, we could solve ∂x̂
∂ϵ = ξ(x̂, ŷ), ∂ŷ∂ϵ = η(x̂, ŷ) subject to the initial

conditions x̂|ϵ=0 = x, ŷ|ϵ=0 = y to deduce the expressions for x̂, ŷ instead.

Example 3.8. As a more general example of constructing a Lie group from a Lie
algebra we have If X =

[
0 −1
1 0

]
then for real ϵ we have eϵX to be

∞∑
k=0

1

k!
ϵkXk

=

∞∑
k=0

{
ϵ4k

(4k)!

[
1 0

0 1

]
+

ϵ4k+1

(4k + 1)!

[
0 −1

1 0

]
+

ϵ4k+2

(4k + 2)!

[
−1 0

0 −1

]
+

ϵ4k+3

(4k + 3)!

[
0 1

−1 0

]}

=

[
cos ϵ − sin ϵ

sin ϵ cos ϵ

]
which forms the 2D rotation group, SO(2).

This is analogous to Euler’s identity of eiϵ = cos ϵ + i sin ϵ by considering the
isomorphism between the group of unit complex numbers under multiplication, U1,
and SO(2) by eiθ ↔

[
cos θ − sin θ
sin θ cos θ

]
The linearisation about the identity of the Lie group typically yields the Lie

algebra that generates the group. You could find a more thorough discussion on
Lie algebras and Lie groups in [Olv93].
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3.4. Canonical Coordinates. Given a one-paramter Lie group of symmetries ϕϵ
with a tangent vector field (ξ(x, y), η(x, y)) := d

dϵ |ϵ=0(x̂, ŷ), we want to find coordi-
nates (r(x, y), s(x, y)) such that (r̂, ŝ) = (r(x̂, ŷ), s(x̂, ŷ)) = (r, s+ ϵ). We also want
the change of coordinates to be invertible in some neighbourhood of (x, y) so we
have the Jacobian nonzero. In essence, we want to find some change of coordinates
map θ such that we have the following

(x, y) (x̂, ŷ)

(r, s) (r̂, ŝ) = (r, s+ ϵ)

θ θ

ϕϵ

θ◦ϕe◦θ−1

Example 3.9. The simplest example of canonical coordinates is that (x, y) are the
canonical coordinates to the symmetries of form ϕϵ : (x, y) → (x, y + ϵ)

Fitting with our theme of analyzing Lie symmetries by their assocaiated tangent
vector fields, our condition that (r̂, ŝ) = (r, s+ ϵ) is locally equivalent to that of

dr̂

dϵ

∣∣∣∣
ϵ=0

= 0,
dŝ

dϵ

∣∣∣∣
ϵ=0

= 1

Letting X = ξ∂x + η∂y and using the chain rule, the above is equivalent to
Xr = 0, Xs = 1

X is called the infinitesimal generator of the Lie symmetry.
To solve these equations, we could use the method of chararacteristics. For

example, the characteristics for the PDE Xr = 0 are the following
dx

dt
= ξ(x, y)

dy

dt
= η(x, y)

dr

dt
= 0

We can similarly write down the characteristics for Xs = 1 as well.
Intuitively, Xr = 0 is equivalent to (ξ, η) · ∇r = 0, i.e. r is constant along

streamlines along the vector field (ξ, η). Another way of thinking about it is that
we want to find a “first integral” to the differential equation dy

dx = ξ
η : a function

r(x, y) that is constant on the solution curves y(x).
Canonical coordinates are useful because they give us an differential equation

solvable by quadrature. If we could find such coordinates, then note that
ds

dr
=
sx + w(x, y)sy
rx + w(x, y)ry

= Ω(r, s)(3.1)

for some function Ω. However as the differential equation above is invariant under
symmetries of form ϕϵ : (r, s) → (r̂, ŝ) = (r, s+ϵ). From the symmetry condition we
obtain that Ω has no dependence on r. As such our resulting differential equation
is of form

ds

dr
= Ω(r)
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which is now reduced to quadrature.

Example 3.10. We want to rediscover the substituition used in example 2.1. We
could easily check ϕϵ : (x, y) → (x+ bϵ, y− aϵ) forms a symmetry to that equation.
To find the canonical coordinates for ϕϵ, we want to solve

dx

dt
= b

dy

dt
= −a

dr

dt
= 0

which gives a general solution (x, y, r) = (bt + A,−at + B,C) where A,B,C are
constants. By observation we could choose (r, s) = (ax+ by + c, x)

The calculation of ds
dr has been done on 2.1 and it has no dependence on s as

expected.

Example 3.11 ([Hyd00] p. 25). We want to rediscover the substituition used in
example 2.3. We could easily check ϕϵ : (x, y) → (eϵx, eϵy) forms a symmetry to
that equation. To find the canonical coordinates for ϕϵ, we want to solve

dx

dt
= x

dy

dt
= y

dr

dt
= 0

which gives us a general solution (x, y, r) = (Aet, Bet, C) where A,B,C are con-
stants. We would want to express r as a nontrivial function of x and y. By
observation we could choose r = y/x = B/A for x ̸= 0

For s, we would get the general solution (x, y, s) = (Aet, Bet, t+C) where A,B,C
are constants. As such we can choose s = ln |x|.

These canonical coordinates fail on the line x = 0. Near x = 0 excpet on the
line y = 0 we could use the canonical coordinates (r, s) = (xy , ln |y|) instead.

No canonical coordinates exist at the point (0, 0). This is because ξ(0, 0) =
η(0, 0) = 0 and so it’s impossible for Xs = 1 to have any solution. Points (x, y)
where ξ(x, y) = η(x, y) = 0 are called invariant points and it’s impossible to define
canonical coordinates on them.

The calculation of ds
dr has been done in example 2.3 and it has no dependence on

s as expected.

4. Lie Symmetries of Higher Order ODEs

The theory above can be readily generalised to higher dimensional ODEs. Given
a diffeomorphism Γ : (x, y) → (x̂, ŷ), it maps smooth planar curves to other smooth
planar curves. In particular its action induces an action on the derivatives y(k) :=
dky
dxk by

Γ : (x, y, y′, . . . , y(n)) → (x̂, ŷ, ŷ′, . . . , ŷ(n))

where
ŷ(k) :=

dkŷ

dx̂k
, k = 1, . . . , n
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This mapping is called the nth prolongation of Γ

Example 4.1. Throughout section 1 we have been interested in the 1st prolon-
gation of various diffeomorphisms, mainly because the 1st prolongation gives us
sufficient information to understand how it acts on a 1st order ordinary differential
equations.

For example, γ : (x, y) → (x, ax+by+c) featured in 2.1 has the first prolongation
γ : (x, y, y′) → (x, ax+ by + c, a+ by′)

and second prolongation
γ : (x, y, y′, y′′) → (x, ax+ by + c, a+ by′, by′′)

We calculate ŷ(k) recursively as follows

ŷ(k) =
d
dx ŷ

(k−1)(x, y, y′, . . . )
d
dx x̂(x, y, y

′, . . . )
=
Dxŷ

(k−1)

Dxx̂

where Dx is the total derivative with respect to x:
(4.1) Dx = ∂x + y′∂y + y′′∂y′ + . . .

For simplicity, we shall only consider ODEs of form
(4.2) y(n) = w(x, y, y′, . . . , y(n−1))

and as such the symmetry condition would be
(4.3) ŷ(n) = w(x̂, ŷ, . . . , ŷ(n−1))

when equation 4.2 holds.

4.1. Linearised Symmetry Condition for first order ODEs. ([Hyd00] p. 30)
Let’s start with the one-dimensional case. Consider the differential equation

y′ = w(x, y)
Recall that by definition all lie symmetries are of form

x̂ = x+ ϵξ(x, y) +O(ϵ2)

ŷ = y + ϵη(x, y) +O(ϵ2)

From this we obtain[
x̂x ŷx
x̂y ŷy

]
=

[
1 + ϵξx +O(ϵ2) ϵηx +O(ϵ2)
ϵηy +O(ϵ2) 1 + ϵηy +O(ϵ2)

]
Substituting it to the symmetry condition

w(x̂, ŷ) =
dŷ

dx̂
=
ŷx + w(x, y)ŷy
x̂x + w(x, y)x̂y

Expanding each side as a Taylor series about ϵ = 0, assuming convergence and
using 1

1−x = 1− x+ x2 + . . . for |x| ≤ 1 we would get

w + ϵ(ξwx + ηwy) +O(ϵ2) = w + ϵ[ηx + wηy − (ξxw + ξyw
2)] +O(ϵ2)(4.4)

= w + ϵ(Dxη − wDxξ) +O(ϵ2)(4.5)
where w is a shorthand for w(x, y)
Equating the O(ϵ) terms we get the linearised symmetry condition

ξwx + ηwy = ηx + (ηy − ξx)w − ηyw
2

i.e. we want
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d

dϵ

∣∣∣∣
ϵ=0

w(x̂, ŷ) =
d

dϵ

∣∣∣∣
ϵ=0

dŷ

dx̂

Example 4.2. Consider the differential equation y′ = 0, the linearised symmetry
condition is ηx = 0.

4.2. Linearised Symmetry Condition for higher order ODEs. The calcu-
lation is similar for higher order ODEs. Considering the prolongation of the Lie
symmetries, they are going to be of form

x̂ = x+ ϵξ +O(ϵ2)

ŷ = y + ϵη +O(ϵ2)

ŷ(k) = y(k) + ϵη(k) +O(ϵ2), k ≥ 1

for some smooth functions η(k) (Superscript in η(k) is an index and does not
denote derivatives)

We can calculate η(k) as follows. For k = 1, we have

ŷ(1) =
Dxŷ

Dxx̂
=
y′ + ϵDxη +O(ϵ2)

1 + ϵDxξ +O(ϵ2)
= y′ + ϵ(Dxη − y′Dxξ) +O(ϵ2)

This is simply equation 4.5 and so

(4.6) η(1) = Dxη − y′Dxξ

Similarly

ŷ(k) =
Dxŷ

(k)

Dxx̂
=
y(k) + ϵDxη

(k−1) +O(ϵ2)

1 + ϵDxξ +O(ϵ2)
(4.7)

∴ η(k)(x, y, . . . , y(k)) = Dxη
(k−1) − y(k)Dxξ(4.8)

and the lineraised symmetry condition (deduced from 4.3) is going to be

(4.9) η(n) = ψwx + ηwy + η(1)wy′ + · · ·+ η(n−1)wy(n−1)

when 4.2 holds. The right hand side is the 1st degree term of the taylor expansion
of w with respect to ϵ.

Example 4.3. For a vector field of form ξ(x)∂x, the first prolongation has form

η(1) = −y′ dξ
dx

For example the vector field x∂x has the first prolongation be x∂x − y′∂y′ -

Example 4.4 ([Hyd00] p. 47).

η(2) = Dxη
(1) − y(1)Dxξ(4.10)

= Dx(ηx + (ηy − ξx)y
′ − ξyy

′2)− y′Dxξ [Eq 4.5]

= (∂x + y′∂y + y′′∂y′)(ηx + (ηy − ξx)y
′ − ξyy

′2) Def of Dx[Eq 4.1]

− y′(∂x + y′∂y)ξ

= ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3

+ [ηy − 2ξx − 3ξyy
′]y′′
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Example 4.5 ([Hyd00] p.47). Consider

(4.11) d2y

dx2
= 0

which is of form y′′ = w(x, y, y′) with w = 0. So the linearised symmetry condition
is

η(2) = 0

when y′′ = 0 Using equation 4.10 we have

ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3 = 0

As ξ and η are independent of y′, the linearised symmetry condition splits into
4 determining equations. Omitting steps, they lead to the following form for ξ and
η

ξ = c1 + c3x+ c5y + c7x
2 + c8xy

η = c2 + c4y + c6x+ c7xy + c8y
2

Therefore every symmetry generator X is a linear combination of X1, . . . , X8 as
follows.

Treating x as the time variable, we notice that the differential equation (Eq 4.11)
is Newton’s first law on a one dimensional point mass moving with zero net force.

This implies that some of the symmetries below can be interpeted as Galilean
transformations.

Symmetry Vector field (x̂, ŷ) ŷ(x̂) if y(x) = ax+ b Interptation
X1 ∂x (x+ ϵ, y) ax̂+ (b− ϵa) Time translation
X2 ∂y (x, y + ϵ) ax̂+ b+ ϵ Position translation
X3 x∂x (eϵx, y) e−ϵax̂+ b
X4 y∂y (x, eϵy) eϵax̂+ eϵb
X5 y∂x (x+ ϵy, y) a

1+ϵa
x̂+ b

1+ϵa

X6 x∂y (x, y + ϵx) (a+ ϵ)x+ b Galilean boost
X7 x2∂x + xy∂y ( x

1−ϵx
, y
1−ϵx

) (a+ ϵb)x̂+ b

X8 xy∂x + y2∂y ( x
1−ϵy

, y
1−ϵy

) a
1−ϵb

x̂+ b
1−ϵb

Table 1. Symmetries of d2y
dx2 = 0

Example 4.6 ([Hyd00] p. 54). The equation d3y
dx3 = 0 has a Lie symmetry group

of dimension 7.

Symmetry Vector field (x̂, ŷ) ŷ(x̂) if y(x) = ax2 + bx+ c

X1 ∂y (x, y + ϵ) ax̂2 + x̂+ c+ ϵ
X2 x∂y (x, y + ϵx) x̂2 + (b+ ϵ)x̂+ c
X3 x2∂y (x, y + ϵx2) (a+ ϵ)x̂2 + bx̂+ c
X4 ∂x (x+ ϵ, y) a(x̂− ϵ)2 + b(x̂− ϵ) + c
X5 y∂y (x, eϵy) eϵ(ax̂2 + bx̂+ c)
X6 x∂x (eϵx, y) ae−2ϵx̂2 + be−ϵx+ c
X7 x2∂x + 2xy∂y ( x

1−ϵx
, y
(1−ϵx)2

) (a+ ϵb+ ϵ2c)x̂2 + (b+ 2ϵc)x̂+ c

Table 2. Symmetries of d3y
dx3 = 0
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The general pattern of the Lie group of symmetries of dny
dxn = 0 for n ≥ 3 are a n+4

dimmensional group generated by ∂y, x∂y . . . , xn−1∂y, ∂x, x∂x, x
2∂x + (n− 1)xy∂y.

[[Hyd00] p. 54] For n = 2 (as in the previous example) the above “pattern” predicts
there to be 6 symmetries instead of the 8 we observe. However we can generate the
other two symmetries by swapping x and y, in the sense that ϕ : (x, y) → (y, x) is
a discrete symmetry of the differential equation dny

dxn = 0 for positive integers n if
and only if n = 2.

In fact, Lie provided a geometric proof that a nth order ordinary differential
equation can have at most n+ 4 point symmetries. [Lie93]

4.3. Lie Algebra of Point Symmetry Generators. This subsection directly
follow from section 5.2 from Hydon [[Hyd00] p. 79] / standard texts on Lie algebras.
We breifly introduce rigorous definitions of Lie Algebra / Lie bracket to highlight
how that theory fits into symmetries of differential equations.

Suppose we have a differential equation of form 4.2. Let L be the set of all
infinitesimal generators of the one-paramter Lie groups of point symmetries of that
differential equation. It’s clear that ξ is a vector space. The dimension, R, of
the vector space is the number of arbitrary constants that appear in the general
solution of the linearised symmetry condition. [Direct quote, [Hyd00] p. 50]

It turns out that the order of the ODE places restrictions upon R. For second-
order ODEs, R is 0, 1, 2, 3 or 8. Moreover, R is 8 if and only if the ODE either is
linear, or is linearizable by a point transformation. [Direct quote, [Hyd00] p. 51]

Example 4.7. We’ve seen in example 4.5 that the symmetry group of y′′ = 0, a
linear ODE, is 8 dimensional.

We’re interested in how these infitestimal generators interact with each other.
Suppose we have two infitestimal generators X1, X2 where

Xi = ξi(x, y)∂x + ηi(x, y)∂y, i = 1, 2

The product X1X2 would be a second order partial differntial operator
X1X2 = ξ1ξ2∂

2
x + (ξ1η2 + η1ξ2)∂x∂y + η1η2∂

2
y + (X1ξ2)∂x + (X1η2)∂y

Example 4.8. If X1 = ∂x and X2 = ∂y then
X1X2 = ∂x∂y = X2X1

Example 4.9. If X1 = ∂x and X2 = x∂x then
X1X2 = ∂x + x∂2x

X2X1 = x∂2x ̸= X1X2

Note that the second order terms of X1X2 are identical to X2X1. This motivates
the following definiton.

Definition 4.10. The commutator of X1 with X2 is defined to be
[X1, X2] = X1X2 −X2X1

We could see that the commutator is a first-order operator that describes the
failure of X1 and X2 to commute. Specifically,

[X1, X2] = (X1ξ2 −X2ξ1)∂x + (X1η2 −X2η1)∂y

We could show that the Lie bracket satisfy the following properties:
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• [·, ·] is bilinear
• [·, ·] is skew-symmetric: [X,Y ] = −[Y,X] for all X,Y ∈ L
• The Jacobi Identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ L
Interestingly, the commutator between two elements in L is also in L

Theorem 4.11 ([Hyd00] p. 83). L is closed under the commutator

Proof. Omitted. Involves the linearised symmetry condition and algebraic manip-
ulation □

As such commutator of any two generators in the basis is a linear combination
of the basis generators:

[Xi, Xj ] =

R∑
k=1

ckijXk

The constants ckij are called structure constants. If [Xi, Xj ] = 0, the generators
Xi, Xj are said to commute.

Example 4.12. Consider example 4.5, there are 8 generators and we could work
out the commutation relations as follows. The cell at row i and column j contains
[Xi, Xj ]

X1 X2 X3 X4 X5 X6 X7 X8

∂x X1 0 0 X1 0 0 X2 2X3 +X6 X5

∂y X2 0 0 X2 X1 0 X6 2X4 +X5

x∂x X3 0 0 0 X6 X7 0
y∂y X4 0 X5 0 0 X8

y∂x X5 0 X4 −X3 X8 0
x∂y X6 0 0 X7

x2∂x + xy∂y X7 0 0
xy∂x + y2∂y X8 0

Table 3. Commutation relations of infinitesimal generators of Lie
point symmetries of y′′ = 0

We could deduce the rest of the table using skew-symmetry of the commutator
and read off the structure constants.

5. Introduction to Calculus of Variations

As a large class of physical systems arise from variational principles, they are of
deep interest. Particularly, Noether showed that for “systems arising from a varia-
tional principle, every conservation law of the system comes from a corresponding
symmetry property” [[Olv93] p. 242]. This suggests that ideas about symmetries
developed in the previous sections would be of use. In this section, we would briefly
recap elementary concepts in calculus of variation and in the next consider some
basic variational systems.
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Theorem 5.1 (Euler-Lagrange equation for natural boundary condition). Let L [u]
be the functional

L [u] =

∫ b

a

L(x, u, u′)dx

for some smooth function L. Then the minimizer u(x) of L satisify

∂L

∂u
− d

dx

∂L

∂u′
= 0

and
∂

∂u′
L|x=a =

∂

∂u′
L|x=b = 0

Proof. The proof is ommitted, but in essence you consider some transformation
ϕ : (x, u) → (x, u+ ϵη) for some smooth function η … □

Remark. d
dx represents the total derivative with respect to x. We have previously

used Dx to denote this. (Refer to equation 4.1)
This idea is similar to finding critical points in a C2 function f : R → R, where

a necessary condition (but not necessary) for a local minimum at c ∈ R is f ′(c) =
0, f ′′(c) ≥ 0 and a sufficient (but not necessary) condition is f ′(c) = 0, f ′′(c) > 0.
[[GH04] p. 6]

We could have more complicated Lagrangians that depends on higher derivatives
(e.g. L(x, u, u′, u′′)), the corresponding Euler-Lagrange equation would expectedly
involve higher derivatives of u similar to how we constructed the symmetry conid-
tion for higher order ODEs [equation 4.7].

Example 5.2 (Calc of Var Lecture Notes). To find the shortest path between (a, b)
and (c, d) on the coordinate plane, we want to minimize

L [u] =

∫ c

a

L(x, u, u′)dx

over the space of differentiable functions u = f(x) where L(x, u, u′) :=
√
1 + u′2

subject to u(a) = b, u(c) = d
Since ∂L

∂u = 0, the Euler-Lagrange equation becomes

d

dx

∂L

∂u′
=

d

dx

u′√
1 + u′2

= 0 =

So u′ is constant and hence we have a straight line.

6. Variational Symmetries of ODEs

This section largely follows from Chatper 4 of [Olv93] and chapter 2 of [Sun14]
We start off with a toy example: kinematics in one dimension. We would have

r representing the position and t representing time.
Assuming we have a point particle under zero external force, we would have the

equation r′′ = 0 from Newton’s second law. Note we have already considered a
similar equation d2y

dx2 = 0 in example 4.5. Particularly this is the Euler-Lagrange
equation with Lagrangian L(t, r, r′) := 1

2m(r′)2.
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6.1. Homogeneity of Time and Energy Conservation. [[Sun14] p. 35]
If the Lagrangian has no explicit depedence on time, i.e. ∂L

∂t = 0, then we can
get a conserved quantity: the Hamiltonian H = L − r′ ∂L∂r′ . To see this, consider
the total derivative of the Lagrangian with respect to time

dL

dt
= 0 +

∂L

∂r
r′ +

∂L

∂r′
r′′ chain rule

dL

dt
=

[
∂L

∂r
− d

dt

∂L

∂r′
+
d

dt

∂L

∂r′

]
r′ +

∂L

∂r′
r′′

dL

dt
=

d

dt

(
∂L

∂r′

)
r′ +

∂L

∂r′
r′′ Euler-Lagrange equation 5.1

dL

dt
=

d

dt

(
r′
∂L

∂r′

)
product rule

∴ 0 =
d

dt

(
L− r′

∂L

∂r′

)
In particular with L = 1

2m(r′)2 we have L − r′ ∂L∂r′ = − 1
2m(r′)2, the kinetic

energy, consant.

Remark. We could’ve deduced the above by expressing the Lagrangian as L(r, dt
dr ,

d2t
dr2 )

and then using theorem 6.1
6.2. Homogeneity of Space and Momentum Conservation. [[Sun14] p. 35]

If the Lagrnangian has no explicit position dependence, i.e. we have ∂L
∂r = 0.

Then by the theorem below, we would have ∂L
∂r′ constant.

Theorem 6.1 (Special case). If ∂L
∂r = 0 then ∂L

∂r′ is constant on minimisers for the
functional L , i.e. d

dt
∂L
∂r′ = 0 on minimisers r(t)

Proof. Immendiate from the the Euler-Lagrange eqaution [Theorem 5.1] □
In partciular with L = 1

2m(r′)2 we have ∂L
∂r′ = mr′, the momentum, constant.

6.3. Variational Symmetries. What does this have to do with the symmetries
we have been considering? Similar to chapter 1, the first step is to understand how
transformations act on variational problems and deduce an appropiate symmetry
condition.

Suppose we have a diffeomorphism ϕ : (t, r) → (t̂, r̂) and we prolongate it to
ϕ : (t, r, r′) → (t̂, r̂, r̂′). We would want this diffeomorphism to preserve “the action
of the lagrangian”. This motivates the following.
Definition 6.2 ([Olv93] Def 4.10 p. 254 (Simplified)). Suppose ϕ is a diffeomor-
phism from (t, r) to (t̂, r̂). If for all intervals Ω ⊂ R∫

Ω̂

L(t̂, r̂, r̂′)dt̂ =

∫
Ω

L(t, r, r′)dt

where Ω̂ = ImϕΩ and that r̂ is a single valued function defined over Ω̂, then ϕ is a
variational symmetry of the functional L [r] =

∫
Ω
L(t, r, r′)dt

Theorem 6.3. Variational symmetries are closed under the commutator
Proof. Omitted □

This is similar to theorem 4.11
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Theorem 6.4 ([Olv93] Thm 4.12 p. 254 (Simplified) or [Hyd00] ). A one-parameter
Lie group is a variational symmetry group of the functional if and only if

pr(X)L+ LDtξ = 0

where (ξ(t, r), η(t, r)) := d
dϵ |ϵ=0(t̂, r̂), the tangent vector field; X := ξ∂t + η∂r,

the infinitesimal generator; pr(X) := ξ∂t + η∂r + η(2)∂rx , the first prolongation of
the infinitestimal generator (See 4.10)

Proof. Omitted □

Example 6.5. With the Lie group of symmetries of form ϕϵ : (t, r) → (t + ϵ, r),
we have (ξ, η) = (1, 0) and so X = ∂t and pr(X) = ∂t. Hence

pr(X)L+ LDtξ = ∂tL+ LDt(1)

= ∂tL

So time translation is a symmetry group if and only if the Lagrangian does not
depend on time explicitly.

Example 6.6. With the Lie group of symmetries of form ϕϵ : (t, r) → (t, r + ϵ),
we have (ξ, η) = (0, 1) and so X = ∂r and pr(X) = ∂r. Hence

pr(X)L+ LDtξ = ∂rL+ LDt(0)

= ∂rL

So time translation is a symmetry group if and only if the Lagrangian does not
depend on position explicitly.

Theorem 6.7 ([Olv93] Thm 4.14 p. 255 (Simplified)). If G is a variational sym-
metry group of the functional L [u] =

∫
Ω0
L(t, r, r′)dt, then G is a symmetry group

of the Euler-Lagrange equations Lr −DxLr′ = 0

Proof. Omitted □

Example 6.8. As time translation and position translation are symmetries of the
Lagrangian 1

2 (r
′)2, they are symmetries of the Euler-Lagrange equation r′′ = 0 as

well as shown in table 2. However symmetries of Euler-Lagrange equation do not
necessarily correspond to symmetries of the Lagrangian. (Consider X7, X8 in table
2 )

Theorem 6.9 (Noether’s theorem (Simplified) [Olv93] Thm 4.30 p. 274 ). If
X = ξ∂t+η∂r is an infinitesimal generator of variational symmetry of the functional
L [u] =

∫
Ω0
L(t, r, r′)dt , then

P = η
∂L

∂r′
+ ξ

(
L− r′

∂L

∂r′

)
is a conserved quantity

Proof. Omitted □

Example 6.10. (ξ, η) = (1, 0) corresponds to homogeneity of time and so ∂L
∂r′ is

conserved as in example 6.1
(ξ, η) = (0, 1) corresponds to homogenity of space and so L− r′ ∂L∂r′ is conserved

as in example 6.2
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6.4. Reduction of Order. We’ve seen in elementary dynamics that conservation
of energy 1

2mr
′2 + V (r) = E, constant gives us in principle the ability to solve t as

a function of x as
t = ±

∫
dr

( 2
m (E − V (r))1/2)

This could be understood as a variational symmetry of the Lagrangian L = 1
2mr

′2−
V (r) giving rise to a reduction of order in the Euler-Lagrange equation mr′′ =
−V ′(r).

Example 6.11 ([Olv93] Example 4.18 p. 257). If there’s homogeneity of time (as
in example 6.1), then we know the Hamiltonian E = L − r′ Lr′ is conserved. This
implicitly defines r′ = F (r,E) as a function of r and E. We can integrate and
recover the solution of the Euler-Lagrange equation∫

dr

F (r,E)
= t+ c

which is exactly what we have above when L = 1
2mr

′2 − V (r)
It is worth noting that it’s rather remarkable we have reduced the order of

the Euler-Lagrange equation r′′ = −V ′(r) by two. This is a general property of
variational symmetries compared to symmetries of differential equations which only
reduce the order by one. [[Olv93] p. 242]

Example 6.12 ([Olv93] Example 4.18 p. 257). If there’s homogenity of space
(as in example 6.2), then we know the momentum p = ∂L

∂r′ (t, r
′) is conserved. This

implicitly defines r′ = F (t, p) as a function of t and p. We can integrate and recover
the solution of the Euler-Lagrange equation

r =

∫
F (r, p)dt+ c

This strategy clearly doesn’t work if the potential V (r), but similar ideas might
work in higher dimensions (e.g. perservation of angular momentum).

7. Lie Symmetries of PDEs

As in section 1, we begin by looking at how coordinate transformations act on
PDEs. Transformation are very useful in understanding partial differential equa-
tions as well, as demonstrated by the following example.

Example 7.1 (Classification of second-order linear PDEs). In part A differential
equations, we’ve done the classification of second order semi-linear PDEs of form

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y, u, ux, uy)

through using some change of variables ϕ : (x, y) → (x̂, ŷ) with non vanishing
Jacobian. We deduced that the PDE is transformed into

A(x̂, ŷ)ux̂x̂ + 2B(x̂, ŷ)ux̂ŷ + C(x̂, ŷ)uŷŷ = F (x̂, ŷ, u, ux̂, uŷ)

with the following relation[
A B
B C

]
=

[
x̂x ŷx
ŷy x̂y

] [
a b
b c

] [
x̂x ŷy
ŷx x̂y

]
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so that taking determinants we obtain

(AC −B2) = (ac− b2)

(
∂(x̂, ŷ)

∂(x, y)

)2

leading to a classification of second-order linear PDEs by the sign of ac − b2 as
follows

• ac < b2 hyperbolic e.g. wave equation
• ac > b2 elliptic: e.g. Laplace equation
• ac = b2 parabolic: e.g. heat equation

that is invariant under transformations ϕ
7.1. Lie Symmetries. In this section, we shall describe the notation established
in [Olv93].

Suppose we are considering a system S of differential equations involving p
independent variables x = (x1, . . . , xp) and q dependent variables u = (u1, . . . , uq).
Let X = Rp, with coordinates x = (x1, . . . , xp), be the space representating the
independent variables, and let U = Rp, with coordinates u = (u1, . . . , uq), represent
the dependent variables. For simplicitly, we would consider only the case of q = 1
for the rest of this section.

Then a symmetry group of S would be a local group of transformations, G,
acting on some open subset M ⊂ X×U in such a way that “G transforms solutions
of S to other solutions of S ”. [Direct quote, [Olv93] p. 90]

Somewhat rigorously, we mean that whenever u = f(x) is a solution of S then
whenever g · f is defined for g ∈ G, u = g · f(x) is also a solution of the system.
[[Olv93], p. 93]

Similar to the case in ODEs, this necessitates consideration of how symmetries
in X × U act on the partial derivatives.

If f : X → R is a smooth function then there are
(
p+k−1

k

)
numbers needed to

represent all the different k-th order derivatives of the components of f at a point
x by a stars and bars argument. As such, there’s a total of

∑n
k=0

(
p+k−1

k

)
=

(
p+n
n

)
derivatives of order n or below.

Letting Uk be the Euclidean space consiting of k-th order partial derivatives. We
define U (n) to be U ×U1 × · · · ×Un to represent all derivatives of order n or below.
Example 7.2 ([Olv93], p. 95). Consider f : R2 → R. Then U1 isomorphic to R2

with coordinates (ux, uy). U2 isomrophic to R3 with coordinates (uxx, uxy, uyy).
Finally U (2) has coordinates u(2) = (u;ux, uy;uxx, uxy, uyy).

Similar to the case of ODEs, we now aim to understand the prolongation of
vector fields.
Definition 7.3 (Multi-index notation [Olv93] p. 95). Given J = (j1, . . . , jk), an
unordered k-tuple of integers, with entries 1 ≤ jk ≤ p indicating which derivatives
are being taken, we write

∂Jf(x) =
∂kf(x)

∂xj1∂xj2 . . . ∂xjk

The order of such a multi-index, which we dnote by #J = k, indicated how many
derivatives are being taken.
Example 7.4. Given a function f(x) = f(x1, x2, x3) and J = (1, 2, 3) we have
∂Jf(x) =

∂
∂x1

∂
∂x2

∂
∂x3

f(x). For J = (2, 1, 1, 1) we have ∂Jf(x) = ∂
∂x2

∂
∂x1

∂
∂x1

∂
∂x1

f(x)
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Theorem 7.5 (General Prolongation Formula (for 1-dimensional U) [Olv93] p.
110). Let

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+ ϕ

∂

∂u

be a vector field defined on an open subset M ⊂ X × U . The n-th prolongation of
v is the vector field

(7.1) pr(n)v = v +
∑
J

ϕJ(x, u(n))
∂

∂uJ

defined on the corresponding jet space M (n) ⊂ X × U (n), the second summation
being over all (unordered) multi-indices J = (j1, . . . jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n.
The coefficient functions ϕJ of pr(n)v are given by the following formula

(7.2) ϕJ(x, u(n)) = DJ

(
ϕ−

p∑
i=1

ξiui

)
+

p∑
i=1

ξiuJ,i

where DJ = Dj1Dj2 . . . Djk , ui = ∂u
∂xi , and uJ,i := ∂

∂xi
(∂Ju)

Proof. Omitted □

Remark. The term ϕ −
∑p

i=1 ξ
iui is called the characteristic and is of geometric

interest. Refer to [Hyd00] or [Olv93] for more details.

Example 7.6. Let X be one dimensional and have coordinate x. We shall show
that theorem 7.5 recovers the prolongation formulae for ODEs (equations 4.6 and
4.8).

When J = (1), from equation 7.2 we have

ϕ(1) = Dx

(
ϕ− ξ

du

dx

)
+ ξ

d

dx

du

dx

= Dxϕ− du

dx
Dxξ

which is equation 4.6 Let Jk denote the k-tuple with k 1s, from equation 7.2 we
have

(7.3) ϕJk = (Dx)
k

(
ϕ− ξ

du

dx

)
+ ξ

dk+1u

dxk+1

We can show by induction that ϕJk = Dxϕ
Jk−1 − dku

dxkDxξ which is equation 4.8.
We have already show the base case when J = (1). As such we consider

ϕJk+1 = (Dx)
k+1

(
ϕ− ξ

du

dx

)
+ ξ

dk+2u

dxk+2

= Dx

(
ϕJk − ξ

dk+1u

dxk+1

)
+ ξ

dk+2u

dxk+2
Equation 7.3

= Dxϕ
Jk − dk+1u

dxk+1
Dxϕ

which concludes the proof
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Example 7.7 ([Olv93] p. 114 (Simplified)). Let’s consider some simple examples
of vector fields on the Cartesian plane. Consider X = R2 and U = R.

Let
v = ξ(x, y)

∂

∂x
+ η(x, y)

∂

∂y
denote some vector field on X × U . Note that the vector fields we are considering
have no dependence on U . We can calculate the first prolongation

pr(1)v = v + ϕx
∂

∂ux
+ ϕy

∂

∂uy

as follows
ϕx = Dx(−ξux − ηuy) + ξuxx + ηuxy

= −ξxux − ηxuy(7.4)
and simiarly

ϕy = Dy(−ξux − ηuy) + ξuxy + ηuyy

= −ξyux − ηyuy(7.5)
As such we have

(7.6)
(
ϕx

ϕy

)
= −

(
ξx ηx
ξy ηy

)(
ux
uy

)
= − ∂(ξ, η)

∂(x, y)

T (
ux
uy

)
If v = x ∂

∂x + y ∂
∂y , representating scaling, we have

ϕx = −ux
ϕy = −uy

Geometrically this means that if we scale up the (x, y) plane then the partial
derivatives with respect to x and y are scaled down. Explicitly, we can see that
the corresponding Lie group has form ϕϵ : (x, y, u) → (x̂, ŷ, û) = (eϵx, eϵy, u) and
so ∂û

∂x̂ = e−ϵux = ux − uxϵ+O(ϵ2)

If v = −y ∂
∂x + x ∂

∂y , representating anticlockwise rotation, we have
ϕx = −uy
ϕy = −ux

Theorem 7.8 ([Olv93] Thm 2.31 on p. 104 ). Suppose ∆(x, u(n)) = 0 is differential
equation defined over M ⊂ X × U . Under sufficiently nice conditions, if G is a
local group of transformations acting on M and

prv[∆(x, u(n))] = 0

whenever ∆(x, u(n)) = 0 for every infinitesimal generator v of G, then G is a
symmetry group of the system.

This is analogous to the linearised symmetry condition in equation 4.9

Example 7.9. [Olv93, Example 2.41 on p. 117] The one-dimensional Heat Equa-
tion ut − uxx = 0

Let ∆(x, t, u(2) = ut − uxx). Let v = ξ(x, t, u) ∂
∂x + τ(x, t, u) ∂

∂t + ϕ(x, t, u) ∂
∂u .

We could find the second prolongation of v to be

pr2 v = v + ϕx
∂

∂ux
+ ϕt

∂

∂ut
+ ϕxx

∂

∂uxx
+ ϕxt

∂

∂uxt
+ ϕtt

∂

∂utt
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and the function ϕx and ϕtt according to equation 7.2. Finally to find vector fields
v that forms symmetries of the heat equation, we impose the condition ϕx−ϕtt = 0.
One could find the detailed calculations in [Olv93]. One would find that the Lie
algebra of infinitesimal symmetries of the heat equation is spanned by the seven
vector fields

Vector field (x̂, t̂, û) û(x̂, t̂) if u = f(x, t)

v1 = ∂x (x + ϵ, t, u) f(x̂ − ϵ, t̂)
v2 = ∂t (x, t + ϵ, u) f(x̂, t̂ − ϵ)
v3 = u∂u (x, t, eϵu) eϵf(x̂, t̂)

v4 = x∂x + 2t∂t (eϵx, e2ϵt, u) f(e−ϵx̂, e−2ϵ t̂)

v5 = 2t∂x − xu∂u (x + 2ϵt, t, u · exp(−ϵx − ϵ2t)) e−ϵx̂+ϵ2 t̂f(x̂ − 2ϵt̂, t̂)

v6 = 4tx∂x + 4t2∂t − (x2 + 2t)u∂u ( x
1−4ϵt

, t
1−4ϵt

, u
√

1 − 4ϵt exp( −ϵx2

1+4ϵt
)) 1√

1+4ϵt̂
exp( −ϵx̂2

1+4ϵt̂
)f( x̂

1+4ϵt̂
, t̂
1+4ϵt̂

)

vα = α(x, t)∂u (x, t, u + ϵα(x, t)) f(x̂, t̂) + ϵα(x̂, t̂)

Table 4. Symmetries of ut − uxx = 0

In the vector field vα, α(x, t) is any other solution to the heat equation. Com-
bined with v3, they reflect the linearity of the heat equation. v1 and v2 reflect the
time- and space-invariance of the equation. v4 reflects the scaling symmetry of the
heat equation: one could check that if u = f(x, t) is a solution to the heat equation
then

(∂t − ∂xx)(f(e
−ϵx, e−2ϵt))

= e−2ϵ(ft(e
ϵx, e−2ϵt)− fxx(e

ϵx, e−2ϵt))

= 0

so u = f(eϵ, e−2ϵt) is a solution as well.
v5 represents a kind of Galilean boost to a moving coordinate frame. Again one

could explicitly check that

(∂t − ∂xx)(e
−ϵx+ϵ2tf(x− 2ϵt, t))

= e−ϵx+ϵ2t(ft(x− 2ϵt, t)− fxx(x− 2ϵt, t))

v6 is similar to the vector field xy∂x+y2∂y in the symmetries of y′′ = 0 (Table 2).
The vector field is of particular interest as it acts on the constant solution u(x, t) = c

for any constant c to form fundamental solutions û(x̂, t̂) = c√
1+4ϵt̂

exp −ϵx̂2

1+4ϵt .

Example 7.10. [Olv93, Example 2.42 on p. 123 (Simplified)] The one-dimensional
Wave equation utt − uxx = 0

Following a similar calculation to the last example, we deduce that the Lie al-
gbera of infinitestimal symmetries of the wave equation is spanned by the following
vector fields

Vector field (x̂, t̂, û) û(x̂, t̂) if u = f(x, t)

v1 = ∂x (x + ϵ, t, u) f(x̂ − ϵ, t̂)
v2 = ∂t (x, t + ϵ, u) f(x̂, t̂ − ϵ)
rxt = t∂x + x∂t (x cosh ϵ + t sinh ϵ, x sinh ϵ + t cosh ϵ, u) Omitted
d = x∂x + t∂t (eϵx, eϵt, u) f(e−ϵx̂, e−ϵ t̂)

ix = (x2 + t2)∂x + 2xt∂t − xu∂u Omitted Omitted
it = 2xt∂x + (x2 + t2)∂t − tu∂u Omitted Omitted
v3 = u∂u (x, t, eϵu) eϵf(x, t)
vα = α(x, y, t)∂u (x, t, u + ϵα(x, t)) f(x̂, t̂) + ϵα(x̂, t̂)

Table 5. Symmetries of the wave equation
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To properly understand the hyperbolic rotation rxt and the inversions ix, it would
involve knowledge in hyperbolic geometry / Minkowski space / Lorentz group which
is beyond the scope of this article.

Example 7.11 ([Gün19], Example 2.5 on p. 12). The two-dimensional Laplace
Equation uxx + uyy = 0

We would show that it is invariant under the symmetry group generated by the
vector field v = ξ(x, y)∂x + η(x, y)∂y where ξ and η satisify the Cauchy-Riemann
equations ξx = ηy, ξy = −ηy. This is expected from results established in complex
analysis.

In essence we need to show that ϕxx + ϕyy = 0. By equation 7.2 we have
ϕxx = DxDx(−ξux − ηuy) + ξuxxx + ηuyxx

= Dx(−ξxux − ηxuy − ξuxx − ηuyx) + ξuxxx + ηuyxx

= −ξxxux − ηxxuy − 2ξxuxx − 2ηxuxy

Similarly ϕyy = −ηyyuy − ξyyux − 2ηyuyy − 2ξyuxy. So the infinitesimal criterion
(Thm 7.8)

ϕxx + ϕyy = −2ξx(uxx + uyy) = 0

is satisified on the solution surface.
One could refer to [Gün19] for a more comprehensive discussion on the symme-

tries of the Laplace equation.

Further Directions

Extensions. Symmetries of ODEs could be used to derive first integrals. Solutions
invariant under symmetries are also of interest. [Hyd00]

Theorem 7.5 and 7.8 readily generalises to higher dimesnions. Variational sym-
metries of PDEs could also be studied. [Olv93]

Other directions. Seperation of Variables techniques used in solving differential
equations could be studied using Lie group theory [Mil84].

Recently, symmetries of differential equations have also been used to create model
selection criterion for biological properties [OBC20][BP22].

Supplementary Notes

The preceding is an expository article / summary written for a summer project
undertaken over the summer of 2023 under the supervision of Jason D. Lotay.
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