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Abstract

After introducing a couple of complex geometric preliminaries, the Hull-Strominger
system and its associated Anomaly flow are introduced and specifically applied to the
case of a complex torus and an Iwasawa manifold. In both cases, the existence of station-
ary points are investigated. Stationary points in the Anomaly flow represent solutions
to the Hull-Strominger system. In the case of an Iwasawa manifold, the stability of a
certain stationary point is further examined.
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1 Introduction
The Hull-Strominger system [Hul86a; Str86] is of considerable interest both in physics,
where it is the equations for supersymmetric compactifications of the heterotic string to a
4-dimensional spacetime, and in mathematics, where it is a non-Kähler generalization of a
Calabi-Yau metric coupled to a Hermitian-Einstein connection.

Its formulation goes as follows. Suppose a compact complex threefold 𝑀 together with
a nowhere vanishing holomorphic (3,0)-form Ω. Consider a holomorphic vector bun-
dle 𝐸 → 𝑀 with 𝑐1(𝐸) = 0. Let 𝑔 be a Hermitian metric on the holomorphic tangent
bundle 𝑇1,0(𝑀) and denote by 𝜔 its associated fundamental 2-form. Most often, we im-
plicitly identify a fundamental 2-form with its associated Hermitian metric. In addition,
consider a Hermitian fiber metric 𝐻 on 𝐸 and write 𝑅 ∈ Ω2 (

End
(
𝑇1,0(𝑀)

) )
respectively

𝐹 ∈ Ω2 (End(𝐸)) for the curvatures of the Chern connections of 𝑔 respectively 𝐻. Suppose
further a slope parameter 𝛼′ ∈ R. Then, the Hull-Strominger system is the following system
of coupled partial differential equations for the metrics 𝜔 and 𝐻:

i𝜕𝜕𝜔− 𝛼
′

4 (Tr(𝑅∧𝑅) −Tr(𝐹 ∧𝐹)) = 0, (1.1)

d
(
∥Ω∥𝜔𝜔2) = 0, (1.2)
𝐹 ∧𝜔2 = 0, (1.3)

where the norm of Ω with respect to 𝜔 is defined by

∥Ω∥2
𝜔 := iΩ∧Ω

𝜔3 . (1.4)

A generalization of the Hull-Strominger system to higher dimensions is discussed in [CHZ19].
If 𝜔 was fixed, the third equation (1.3) is the well-known Hermitian-Yang-Mills equa-

tion [Don87; UY86]. From the point of view of non-Kähler geometry and nonlinear par-
tial differential equations, the novelty in the Hull-Strominger system lies in the first equa-
tion (1.1) and second equation (1.2). Equation (1.1) is called the anomaly cancellation equation
or Bianchi identity and it appears in the Green-Schwarz cancellation mechanism in string
theory. Observe that the Bianchi identity is quadratic in the curvature tensor. Equation (1.2)
is called the conformally balanced condition which can be viewed as an analog of the Kähler
condition for Ricci-flat metrics in this non-Kähler setting.

Many solutions to the Hull-Strominger system have been found both in the physics
[Bec+06; CI10; DRS99] and in the mathematics literature [AG12; Fei16; FY15].

Due to the absence of an analog for the 𝜕𝜕-lemma, it is generally hard to produce an
ansatz such that the conformally balanced condition is satisfied. This difficulty motivated the
authors in [PPZ18b] to instead consider the so-called Anomaly flow of (𝜔(𝑡), 𝐻 (𝑡)) defined
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by

𝜕𝑡
(
∥Ω∥𝜔𝜔2) = i𝜕𝜕𝜔− 𝛼

′

4 (Tr(𝑅∧𝑅) −Tr(𝐹 ∧𝐹)) (1.5)

𝐻−1𝜕𝑡𝐻 = Λ𝜔𝐹, (1.6)
𝜔(0) = 𝜔0, (1.7)
𝐻 (0) = 𝐻0. (1.8)

where the Hodge operator Λ𝜔 on (1,1)-forms 𝜓 is defined by

Λ𝜔𝜓 := 𝜔
2 ∧𝜓
𝜔3 . (1.9)

The flow starts with some initial metric 𝐻 (0) = 𝐻0 on 𝐸 and some initial metric 𝜔(0) = 𝜔0
on 𝑇1,0(𝑀) that is conformally balanced, i.e.

d
(
∥Ω∥𝜔0𝜔

2
0
)
= 0. (1.10)

In equations (1.5) and (1.6), 𝑅 = 𝑅(𝑡) and 𝐹 = 𝐹 (𝑡) denote the curvatures of the Chern
connections of 𝜔(𝑡) and 𝐻 (𝑡) on 𝑀 and 𝐸 respectively.

We will see that equation (1.10) will imply that 𝜔(𝑡) is conformally balanced for all times
𝑡. This implies that the conformally balanced condition does not need to be added to the
flow equations. It is sufficient to determine whether the Anomaly flow exists for all times
and whether it converges.

We start the exposition with section 2 in which we introduce the necessary complex geo-
metric tools to introduce the Hull-Strominger system together with its associated Anomaly
flow. The main literature for this section is from the books [Lee24; Huy05]. Notably, we
introduce complex differential forms in section 2.5, connections in section 2.7 and the no-
tion of curvature in section 2.8. We end section 2 with section 2.11 which is a computational
preparation for section 3.

Section 3 is on the Hull-Strominger system and its associated anomaly flow. We first
provide general observations in section 3.1 and then discuss the first application on a complex
torus in section 3.2. The main result of section 3.2 is theorem 3.2.1 in which the Anomaly
flow is solved. The main strategy is to provide a specific flow ansatz which translates into
a soluble initial value problem. In particular, theorem 3.2.1 shows the non-existence of
stationary points in the Anomaly flow.

In section 3.3 we repeat the analysis on an Iwasawa manifold. Theorem 3.3.3 shows that
the Anomaly flow does not converge if 𝛼′ ≠ 8. However, if the slope parameter is 𝛼′ = 8,
theorem 3.3.4 demonstrates that only for a special type of initial metric on the Iwasawa
manifold, a stationary point exists. In every other case, within the flow ansatz, the geometry
on the holomorphic vector bundle 𝐿⊕ 𝐿∗ collapses either to 𝐿 or to 𝐿∗. Finally, section 3.3.6
discusses the degree to which the stationary point from theorem 3.3.4 is unstable.
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2 Complex Geometric Preliminaries
In this section, we introduce the complex geometric tools that will allow us to understand
the Hull-Strominger system together with its associated Anomaly flow. We will consider
the Anomaly flows in two different setups in sections 3.2 and 3.3.

The main literature for this section is from [Lee24; Huy05]. We develop the necessary
complex geometry in an almost self-contained way and whenever proofs are omitted, ex-
act literature references are provided. Einstein summation convention is implicitly implied
whenever repeated indices appear in individual terms.

2.1 Complex Manifolds
We start with the definition of a complex manifold. A topological manifold is a second count-
able Hausdorff topological space with the property that every point has a neighborhood
homeomorphic to an open subset of R𝑛 for some fixed 𝑛 ∈ N called the dimension of the
manifold. For a topological manifold 𝑀 of dimension 𝑛, a coordinate chart for 𝑀 is a pair
(𝑈,𝜙), where 𝑈 is an open subset of 𝑀 and 𝜙 is a homeomorphism 𝜙 : 𝑈→ 𝜙(𝑈) ⊆ R𝑛. An
atlas for 𝑀 is a collection of charts whose domains cover 𝑀 . Given two charts (𝑈,𝜙) and
(𝑉,𝜓) with overlapping domains, their transition functions are composite maps

𝜓 ◦𝜙−1 : 𝜙(𝑈 ∩𝑉) → 𝜓(𝑈 ∩𝑉), (2.1)
𝜙 ◦𝜓−1 : 𝜓(𝑈 ∩𝑉) → 𝜙(𝑈 ∩𝑉). (2.2)

Two charts are said to be smoothly compatible if their domains are disjoint or their transition
functions are smooth as maps between open subsets of R𝑛. A smooth atlas for 𝑀 is an atlas
with the property that any two charts in the atlas are smoothly compatible with each other.
Finally, a smooth structure for 𝑀 is a smooth atlas that is maximal, meaning that it is not
properly contained in any larger smooth atlas. Saying that an atlas A is a maximal smooth
atlas just means that every chart that is smoothly compatible with every chart in A is already
in A. Smooth manifolds are topological manifolds endowed with a smooth structure.

We choose the following standard identification between R2𝑛 and C𝑛:(
𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛

)
↔

(
𝑥1 + i𝑦1, . . . , 𝑥𝑛 + i𝑦𝑛

)
. (2.3)

Now suppose that 𝑀 is a 2𝑛-dimensional topological manifold. If (𝑈,𝜙) and (𝑉,𝜓) are two
coordinate charts for 𝑀 , we say they are holomorphically compatible if 𝑈 ∩𝑉 = ∅ or both
transition functions 𝜙 ◦𝜓−1 and 𝜓 ◦ 𝜙−1 are holomorphic under our standard identification
of 𝜙(𝑈∩𝑉) and 𝜓(𝑈∩𝑉) as open subsets of C𝑛. A holomorphic atlas for 𝑀 is an atlas with the
property that any two charts in the atlas are holomorphically compatible with each other,
and a holomorphic structure for 𝑀 is a maximal holomorphic atlas. An 𝑛-dimensional complex
manifold (or holomorphic manifold) is a topological manifold of dimension 2𝑛 endowed with
a given holomorphic structure. Any one of the charts in the maximal holomorphic atlas is
called a holomorphic coordinate chart, and the complex-valued coordinate functions

(
𝑧1, . . . , 𝑧𝑛

)
are called holomorphic coordinates, where 𝑧 𝑗 := 𝑥 𝑗 + i𝑦 𝑗 and 𝑧 𝑗 := 𝑥 𝑗 − i𝑦 𝑗 .
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Remark 2.1.1. Because holomorphic functions are smooth, a holomorphic atlas is also a
smooth atlas and thus determines a unique smooth structure on 𝑀 . Therefore, every com-
plex manifold is also a smooth manifold in a canonical way. On the other hand, a given
even-dimensional smooth manifold may have many different holomorphic structures that
induce the given smooth structure, or it may have none at all. E.g., 𝑆4 carries no holomor-
phic structure.

We finish this subsection with the definition of holomorphic maps between complex man-
ifolds.

Definition 2.1.2. If 𝑀 and 𝑁 are complex manifolds, a map 𝑓 : 𝑀→ 𝑁 is called holomor-
phic if for all 𝑝 ∈ 𝑀 there exist holomorphic charts (𝑈,𝜙) for 𝑀 and (𝑉,𝜓) for 𝑁 with 𝑝 ∈𝑈,
𝑓 (𝑝) ∈ 𝑉 and 𝑓 (𝑈) ⊆ 𝑉 such that the coordinate representation of 𝑓 , 𝜓 ◦ 𝑓 ◦ 𝜙−1 : 𝜙(𝑈) →
𝜓(𝑉), is a holomorphic map. If 𝑓 bijective and holomorphic with holomorphic inverse 𝑓 −1,
𝑓 is called a biholomorphism.

2.2 Complex Vector Bundles
We now introduce the notion of a complex vector bundle.

Definition 2.2.1. For a topological space 𝑀 , a complex vector bundle of rank k over M
is a topological space 𝐸 together with a continuous subjective map 𝜋 : 𝐸→𝑀 such that each
fiber 𝐸𝑝 := 𝜋−1(𝑝) has the structure of a 𝑘-dimensional complex vector space. Furthermore,
each 𝑝 ∈ 𝑀 has a neighborhood 𝑈 over which there exists a local trivialization, that is a
homeomorphism 𝜙 : 𝜋−1(𝑈) →𝑈×C𝑘 that restricts to a complex linear isomorphism 𝐸𝑞 →
{𝑞} ×C𝑘 for all 𝑞 ∈𝑈. To summarize, the diagram

𝜋−1(𝑈) 𝑈 ×C𝑘

𝑈
𝜋 |

𝜋−1 (𝑈)

𝜙

�

𝜋1 (2.4)

shall commute, where 𝜋1 : 𝑈 ×C𝑘 →𝑈 is the projection map onto the first factor.
If 𝑀 and 𝐸 are smooth manifolds, 𝜋 is a smooth map, and local trivializations can be

chosen to be diffeomorphisms, we call it a smooth complex vector bundle. Moreover, if
𝑀 and 𝐸 are complex manifolds, 𝜋 is holomorphic, and the local trivializations can be chosen
to be biholomorphisms, we speak of a holomorphic vector bundle. A local trivialization
over all of 𝑀 is called a global trivialization and if such a trivialization exists, the bundle
is said to be a trivial bundle. A real or complex vector bundle of rank 1 is called a line
bundle.

If we have two vector bundles 𝜋 : 𝐸 → 𝑀 and 𝜋′ : 𝐸′ → 𝑀 and a map 𝐹 : 𝐸 → 𝐸′ such
that 𝜋′ ◦𝐹 = 𝜋 and such that 𝐹 |𝐸𝑝

: 𝐸𝑝 → 𝐸′
𝑝 is a complex linear map, 𝐹 is called a bundle

homomorphism. If 𝐹 is also a homomorphism, 𝐹 is called a bundle isomorphism and 𝐸
and 𝐸′ are called isomorphic, denoted 𝐸 � 𝐸′.

A fiberwise direct sum of vector spaces can be defined.
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Definition 2.2.2. Suppose two holomorphic vector bundles 𝐸 → 𝑀 and 𝐸′ → 𝑀 of rank
𝑘 and 𝑘′, respectively, over the same base manifold 𝑀 . Then their Whitney sum 𝐸 ⊕ 𝐸′ is
the holomorphic vector bundle of rank 𝑘 + 𝑘′ whose fiber at each 𝑝 ∈ 𝑀 is the direct sum
𝐸𝑝 ⊕ 𝐸′

𝑝.

Definition 2.2.3. Suppose 𝜋 : 𝐸 → 𝑀 is a smooth vector bundle and 𝑈 ⊆ 𝑀 is an open
subset. A local section of E over U is a continuous map 𝜎 : 𝑈 → 𝐸 such that 𝜋 ◦𝜎 = Id𝑈 .
The map 𝜎 is called a global section of E if 𝑈 = 𝑀 . We denote the space of smooth global
sections of 𝐸 by Γ(𝐸). For a holomorphic vector bundle 𝐸 → 𝑀 , a local or global section is
called a holomorphic section if it is holomorphic as a map between complex manifolds.

Given a 𝑘-tupel of local sections (𝜎1, . . . ,𝜎𝑘 ) over an open set 𝑈 ⊆ 𝑀 whose values at
each 𝑝 ∈𝑈 form a basis for the fiber 𝐸𝑝, the 𝑘-tupel is called a local frame for E.

The existence of smooth sections is quite straightforward.

Remark 2.2.4. Every smooth vector bundle has a smooth zero section 𝜉, for which 𝜉 (𝑝) is
the zero element of 𝐸𝑝 for all 𝑝 ∈ 𝑀 .

The following definition is important for later considerations.

Definition 2.2.5. Suppose 𝑀 is a smooth manifold and 𝐸 → 𝑀 is a smooth complex vec-
tor bundle of rank 𝑚. A Hermitian fiber metric 𝐻 on 𝐸 is a choice of a Hermitian inner
product 𝐻𝑝 on each fiber 𝐸𝑝 that is smoothly varying in the sense that for all smooth section
𝜎 and 𝜏 of 𝐸 over an open subset 𝑈 ⊆ 𝑀 , 𝑈 ∋ 𝑝 ↦→ 𝐻𝑝 (𝜎(𝑝), 𝜏(𝑝)) ∈ C is a smooth func-
tion. A smooth complex vector bundle endowed with a Hermitian fiber metric is called a
Hermitian vector bundle.

With a partition of unity argument, one can prove that any smooth complex vector
bundle admits a Hermitian fiber metric [Huy05, Proposition 4.14]. One can define a natural
Hermitian fiber metric on the dual of a given Hermitian vector bundle.

Theorem 2.2.6 ([Lee24, p. 218]). Let 𝐸 → 𝑀 be a smooth complex vector bundle endowed
with a Hermitian fiber metric 𝐻 .

1) The metric 𝐻 determines a smooth conjugate-linear bundle isomorphism 𝐻 : 𝐸 → 𝐸∗ by
𝐻 (𝜎) (𝜏) := ⟨𝜏,𝜎⟩𝐻 .

2) ⟨𝜙,𝜓⟩𝐻∗ := ⟨𝐻−1(𝜓), 𝐻−1(𝜙)⟩𝐻 defines a Hermitian fiber metric 𝐻∗ on 𝐸∗, called the dual
metric

2.3 Complex Vector Fields
Consider a complex manifold 𝑀 and local holomorphic coordinates (𝑧1, . . . , 𝑧𝑛) on an open
subset 𝑈 ⊆ 𝑀 . Denote the coordinate map by 𝜙 : 𝑈 → C𝑛 which can also be thought of
a smooth coordinate map 𝑈 → R2𝑛 with smooth coordinate functions (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛)
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where 𝑧 𝑗 = 𝑥 𝑗 + i𝑦 𝑗 . These coordinates yield smooth coordinate vector fields
(
𝜕
𝜕𝑥1 ,

𝜕
𝜕𝑦1 , . . . ,

𝜕
𝜕𝑥𝑛
, 𝜕
𝜕𝑦𝑛

)
, which act on a smooth function 𝑓 : 𝑈→ C by

𝜕

𝜕𝑥 𝑗

����
𝑝

𝑓 := 𝜕 𝑓 ◦𝜙
−1

𝜕𝑥 𝑗
and

𝜕

𝜕𝑦 𝑗

����
𝑝

𝑓 := 𝜕 𝑓 ◦𝜙
−1

𝜕𝑦 𝑗
, (2.5)

where the derivatives on the right-hand sides are ordinary partial derivatives on R2𝑛.
We define a smooth local complex frame

{
𝜕𝑗 , 𝜕𝑗

}
for the complexfied tangent bundle

𝑇C𝑀 by

𝜕𝑗 := 𝜕

𝜕𝑧 𝑗
:= 1

2

(
𝜕

𝜕𝑥 𝑗
− i 𝜕
𝜕𝑦 𝑗

)
and 𝜕𝑗 := 𝜕

𝜕𝑧 𝑗
:= 1

2

(
𝜕

𝜕𝑥 𝑗
+ i 𝜕
𝜕𝑦 𝑗

)
, (2.6)

where 𝜕
𝜕𝑥 𝑗

and 𝜕
𝜕𝑦 𝑗

are the smooth vector fields on𝑈 ⊆ 𝑀 . The vector fields in equation (2.6)
are called complex coordinate vector fields, and the corresponding local frame is called a complex
coordinate frame.

We call a section of 𝑇C𝑀 a complex vector field and it can be written locally as a linear
combination of coordinate vector fields with complex-valued coefficient functions, or as
a sum of a real vector field plus i times another real vector field. A complex vector field
𝑍 = 𝑋 + i𝑌 acts on a smooth real-valued function 𝑓 by

𝑍 𝑓 := 𝑋 𝑓 + i𝑌 𝑓 , (2.7)

and on complex-valued functions 𝑓 = 𝑢 + i𝑣 by the same formula, where

𝑋 𝑓 := 𝑋𝑢 + i𝑋𝑣 and 𝑌 𝑓 := 𝑌𝑢 + i𝑌𝑣. (2.8)

The Lie bracket operation can be extended to pairs of smooth complex vector fields by
complex bilinearity.

[𝑋1 + i𝑌1, 𝑋2 + i𝑌2] := [𝑋1, 𝑋2] − [𝑌1,𝑌2] + i ( [𝑋1,𝑌2] + [𝑌1, 𝑋2]) . (2.9)

The formula [ 𝑓 𝑉, 𝑔𝑊] = 𝑓 𝑔[𝑉,𝑊] + 𝑓 (𝑉𝑔)𝑊 −𝑔(𝑊 𝑓 )𝑉 also holds when the vector fields 𝑉
and 𝑊 and the functions 𝑓 and 𝑔 are complex.

Similarly, a section of the complexified cotangent bundle 𝑇∗
C𝑀 is called a complex 1-form

or a complex covector field, and can be written locally as a linear combination of coordinate
1-forms with complex coefficients, or as a sum of real 1-forms plus i times another real
1-form.

2.4 Complex Structures
The tangent bundle 𝑇C𝑛 has the canonical complex structure 𝐽C𝑛 : 𝑇C𝑛 → 𝑇C𝑛 defined by

𝐽C𝑛

𝜕

𝜕𝑥 𝑗
:= 𝜕

𝜕𝑦 𝑗
and 𝐽C𝑛

𝜕

𝜕𝑦 𝑗
:= − 𝜕

𝜕𝑥 𝑗
. (2.10)
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The corresponding complexified tangent bundle 𝑇CC𝑛 splits as 𝑇CC𝑛 = 𝑇1,0(C𝑛) ⊕𝑇0,1(C𝑛)
where 𝑇1,0(C𝑛) is spanned by 𝜕1, . . . , 𝜕𝑛 and 𝑇0,1(C𝑛) is spanned by 𝜕1, . . . , 𝜕𝑛.

Proposition 2.4.1. On every complex manifold𝑀 , there is a canonical complex structure 𝐽𝑀 : 𝑇𝑀→
𝑇𝑀 .

Proof. Let 𝑝 ∈ 𝑀 and consider holomorphic coordinate chart (𝑈,𝜙) on a neighborhood of
𝑝, and define 𝐽𝑀 : 𝑇𝑀 |𝑈 → 𝑇𝑀 |𝑈 by

𝐽𝑀 := 𝐷𝜙−1 ◦ 𝐽C𝑛 ◦𝐷𝜙. (2.11)

It remains to prove the independence of the definition of 𝐽𝑀 on the holomorphic coor-
dinate chart. Whenever two holomorphic charts (𝑈,𝜙) and (𝑉,𝜓) overlap, the transition
function 𝜓◦𝜙−1 is a holomorphic map between subsets of C𝑛 so that 𝐷 (𝜓◦𝜙−1) = 𝐷𝜓◦𝐷𝜙−1

commutes with 𝐽C𝑛 [Lee24, Lemma 1.54]. Finally, we find

𝐷𝜓−1 ◦ 𝐽C𝑛 ◦𝐷𝜓 = 𝐷𝜓−1 ◦ 𝐽C𝑛 ◦ (𝐷𝜓 ◦𝐷𝜙−1) ◦𝐷𝜓 (2.12)
= 𝐷𝜓−1 ◦ (𝐷𝜓 ◦𝐷𝜙−1) ◦ 𝐽C𝑛 ◦𝐷𝜓 = 𝐷𝜙−1 ◦ 𝐽C𝑛 ◦𝐷𝜙. (2.13)

The fact that 𝐽2
𝑀
= −Id follows immediately from 𝐽2

C𝑛 = −Id. □

On a complex manifold 𝑀 , there are subbundles 𝑇1,0(𝑀),𝑇0,1(𝑀) ⊆ 𝑇C𝑀 whose fibers
at each point are the i-eigenspace and (−i)-eigenspaces of the complexification of 𝐽𝑀 , re-
spectively. We then have the Whitney sum decomposition 𝑇C𝑀 =𝑇1,0(𝑀) ⊕𝑇0,1(𝑀). Con-
sidering local holomorphic coordinates 𝑧 𝑗 = 𝑥 𝑗 + i𝑦 𝑗 , the complex vector fields {𝜕𝑗 } form a
local frame for 𝑇1,0(𝑀). Similarly, the vector fields {𝜕𝑗 } form a local frame for 𝑇0,1(𝑀).
Since the two subbundles 𝑇1,0(𝑀) and 𝑇0,1(𝑀) are spanned locally by smooth vector fields,
they are both smooth.

2.5 Complex Differential Forms
Let 𝑀 be a complex manifold and denote the bundle of complex 𝑘-forms by

∧𝑘
C𝑀 which

is the complexification of
∧𝑘 𝑀 . Every smooth section of

∧𝑘
C𝑀 can be written uniquely as

a sum 𝛼+ i𝛽, where 𝛼 and 𝛽 are smooth real 𝑘-forms, and
∧𝑘

C𝑀 has a natural conjugation
operator given by 𝛼+ i𝛽 = 𝛼− i𝛽. We call a complex differential form 𝜔 real if 𝜔 = 𝜔.

In the domain of any local holomorphic coordinates (𝑧1, . . . , 𝑧𝑛), the 1-forms (d𝑧1, . . . ,
d𝑧𝑛,d𝑧1, . . . ,d𝑧𝑛) constitute a local frame for the complexified cotangent bundle and there-
fore {

d𝑧 𝑗1 ∧ · · · ∧d𝑧 𝑗𝑝 ∧d𝑧𝑙1 ∧ · · · ∧d𝑧𝑙𝑞 | 𝑝 + 𝑞 = 𝑘, 𝑗1 < · · · < 𝑗𝑝 and 𝑙1 < · · · < 𝑙𝑞
}

(2.14)

delivers a smooth local frame for
∧𝑘

C𝑀 .
Suppose 𝑝+𝑞 = 𝑘 . We call a complex 𝑘-form of type (𝑝, 𝑞) or a (𝑝, 𝑞)-form if in every local

holomorphic coordinate chart (𝑧1, . . . , 𝑧𝑛), the complex 𝑘-form can be expressed as a sum
of terms whose summands have exactly 𝑝 of the d𝑧 𝑗 factors and 𝑞 of the d𝑧𝑙 factors. Denote
by

∧𝑝,𝑞𝑀 ⊆ ∧𝑘
C𝑀 the subset of (𝑝, 𝑞)-forms. It is locally spanned by smooth sections of∧𝑘

C𝑀 and is thus a smooth subbundle of
∧𝑘

C𝑀 .
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Any complex 𝑘-form is a sum of various types (𝑝, 𝑞) so that 𝑝 + 𝑞 = 𝑘 and because

∧𝑝,𝑞
𝑀 ∩

∧𝑝′,𝑞′

𝑀 =

{∧𝑝,𝑞𝑀 if 𝑝′ = 𝑝 and 𝑞′ = 𝑞,
0 otherwise,

(2.15)

there is the Whitney sum decomposition∧𝑘

C
𝑀 =

⊕
𝑝+𝑞=𝑘

∧𝑝,𝑞
𝑀. (2.16)

For each (𝑝, 𝑞) there exists a coordinate independent projection operator 𝜋𝑝,𝑞 :
∧𝑘

C𝑀 →∧𝑝,𝑞𝑀 . We denote Ω𝑘 (𝑀) := Γ

(∧𝑘
C𝑀

)
and Ω𝑝,𝑞 (𝑀) := Γ (∧𝑝,𝑞𝑀).

We can now define for 𝑝, 𝑞 ∈ {0, . . . , 𝑛} the Dolbeault operator 𝜕 : Ω𝑝,𝑞 (𝑀) →Ω𝑝,𝑞+1(𝑀)
by 𝜕 := 𝜋𝑝,𝑞+1 ◦d and its conjugate 𝜕 : Ω𝑝,𝑞 (𝑀) → Ω𝑝+1,𝑞 (𝑀) by 𝜕 := 𝜋𝑝+1,𝑞 ◦d. More gen-
erally, the operators 𝜕 and 𝜕 are extended onto Ω𝑘 (𝑀) by decomposing complex 𝑘-forms
into types of type (𝑝, 𝑞) with 𝑝 + 𝑞 = 𝑘 and applying 𝜕 and 𝜕 on each term separately.

Considering holomorphic coordinates

𝛼 := 𝛼 𝑗1,..., 𝑗𝑝 ,𝑙1,...,𝑙𝑞d𝑧 𝑗1 ∧ · · · ∧d𝑧 𝑗𝑝 ∧d𝑧𝑙1 ∧ · · · ∧d𝑧𝑙𝑞 , (2.17)

the Dolbeault operators act as

𝜕𝛼 =

(
𝜕𝑟𝛼 𝑗1,..., 𝑗𝑝 ,𝑙1,...,𝑙𝑞

)
d𝑧𝑟 ∧d𝑧 𝑗1 ∧ · · · ∧d𝑧 𝑗𝑝 ∧d𝑧𝑙1 ∧ · · · ∧d𝑧𝑙𝑞 , (2.18)

𝜕𝛼 =

(
𝜕𝑟𝛼 𝑗1,..., 𝑗𝑝 ,𝑙1,...,𝑙𝑞

)
d𝑧𝑟 ∧d𝑧 𝑗1 ∧ · · · ∧d𝑧 𝑗𝑝 ∧d𝑧𝑙1 ∧ · · · ∧d𝑧𝑙𝑞 . (2.19)

The following proposition is a direct implication of equation (2.18).

Proposition 2.5.1. Suppose 𝑀 is a complex manifold and 𝑓 is a smooth function on 𝑀 . Then 𝑓

is holomorphic if and only if 𝜕 𝑓 = 0.

Here are some useful properties of Dolbeault operators.

Proposition 2.5.2. Let 𝑀 be a complex manifold and 𝛼 a complex differential form on 𝑀 . Then
the following identities hold:

1) d = 𝜕 + 𝜕,

2) 𝜕𝛼 = 𝜕𝛼,

3) 𝜕𝜕 = 0 = 𝜕𝜕,

4) 𝜕𝜕 + 𝜕𝜕 = 0.

Proof. We decompose 𝛼 into types and apply the Dolbeault operators to each type separately.
In this way, we can assume 𝛼 to be of some type (𝑝, 𝑞) to begin with. Point 1) is essentially
a local calculation in local holomorphic coordinates. Using, equations (2.18) and (2.19),
one immediately finds d = 𝜕 + 𝜕. Point 2) also follows from the coordinate equations (2.18)
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and (2.19) since essentially d𝑧 𝑗 and d𝑧 𝑗 are conjugates of each other. For the last two points,
3) and 4), we make the following observation by using point 1):

𝜕𝜕𝛼+
(
𝜕𝜕 + 𝜕𝜕

)
𝛼+ 𝜕𝜕𝛼 =

(
𝜕 + 𝜕

)2
𝛼 = d2𝛼 = 0. (2.20)

Now, 𝜕𝜕𝛼 ∈ Ω𝑝+2,𝑞 (𝑀),
(
𝜕𝜕 + 𝜕𝜕

)
𝛼 ∈ Ω𝑝+1,𝑞+1(𝑀) and 𝜕𝜕𝛼 ∈ Ω𝑝,𝑞+2(𝑀) and these spaces

intersect pairwise only in the trivial form implying that indeed 𝜕𝜕𝛼 = 0= 𝜕𝜕𝛼 and
(
𝜕𝜕 + 𝜕𝜕

)
𝛼 =

0. □

Definition 2.5.3. A Hermitian metric on a complex manifold 𝑀 is a Riemannian metric
𝑔 for which the complex structure is an orthogonal map. A complex manifold endowed with
a Hermitian metric is called a Hermitian manifold. On a Hermitian manifold (𝑀,𝑔), the
2-form 𝜔 := 𝑔(𝐽·, ·) is called the fundamental 2-form of the Hermitian metric.

To determine the coordinate expression of the fundamental 2-form𝜔, we write𝜔 =𝜔
𝑗 𝑘

d𝑧 𝑗∧
d𝑧𝑘 with the coefficient functions 𝜔

𝑗 𝑘
being determined as

𝜔
𝑗 𝑘
= 𝜔

(
𝜕𝑗 , 𝜕𝑘

)
= 𝑔

(
𝐽𝜕𝑗 , 𝜕𝑘

)
= i𝑔

(
𝜕𝑗 , 𝜕𝑘

)
= i𝑔

𝑗 𝑘
, (2.21)

where 𝐽 is the complex structure and we defined the matrix 𝑔
𝑗 𝑘

:= 𝑔
(
𝜕𝑗 , 𝜕𝑘

)
. We denote by(

𝑔𝑘 𝑗
)

the inverse of the matrix
(
𝑔
𝑗 𝑘

)
.

2.6 Wedge Product of Endomorphism Valued Forms
Consider a smooth manifold 𝑀 and a smooth complex vector bundle 𝐸 → 𝑀 . For each
𝑞 ∈ N0, we define the bundle of 𝐸-valued 𝑞-forms as

∧𝑞

C𝑀 ⊗ 𝐸 and denote Ω𝑞 (𝑀,𝐸) :=
Γ

(∧𝑞

C𝑀 ⊗ 𝐸
)

and Ω0(𝑀,𝐸) = Γ(𝐸). Similarly, we call
∧𝑞

C𝑀 ⊗End(𝐸) the bundle of endo-

morphism valued 𝑞-forms and denote Ω𝑞 (𝑀,End(𝐸)) := Γ

(∧𝑞

C𝑀 ⊗End(𝐸)
)
.

Especially important are wedge products with endomorphism-valued forms. For 𝐴⊗𝛼 ∈
Ω𝑞 (𝑀,End(𝐸)), 𝐵⊗ 𝛽 ∈ Ω𝑞′ (𝑀,End(𝐸)), and 𝜎 ⊗ 𝛾 ∈ Ω𝑞′′ (𝑀,𝐸), we define

(𝐴⊗𝛼) ∧ (𝐵⊗ 𝛽) := (𝐴 ◦𝐵) ⊗ (𝛼∧ 𝛽) ∈ Ω𝑞+𝑞′ (𝑀,End(E)) (2.22)
(𝐴⊗𝛼) ∧ (𝛾 ⊗𝜎) := (𝐴𝜎) ⊗𝛼∧𝛾 ∈ Ω𝑞+𝑞′′ (𝑀,𝐸) (2.23)

and extend bilinearly.
To see how to compute these locally, let (𝑠 𝑗 ) be a local frame for 𝐸 and (𝜖 𝑘 ) the dual

frame for 𝐸∗. Because of the canonical isomorphism End(𝐸) � 𝐸 ⊗ 𝐸∗, each section 𝜔 ∈
Ω𝑞 (𝑀,End(𝐸)) can be expressed locally in the form

𝜔 = 𝑠 𝑗 ⊗ 𝜖 𝑘 ⊗𝜔 𝑗

𝑘
(2.24)

for a uniquely determined matrix 𝜔 𝑗

𝑘
of ordinary 𝑞-forms. The tensor product 𝑠 𝑗 ⊗ 𝜖 𝑘 rep-
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resents the endomorphism of 𝐸 whose action on a basis element 𝑠𝑖 is

(𝑠 𝑗 ⊗ 𝜖 𝑘 ) (𝑠𝑖) = 𝛿𝑘𝑖 𝑠 𝑗 , (2.25)

so the wedge product defined above satisfies

𝜔∧𝜂 = (𝑠 𝑗 ⊗ 𝜖 𝑘 ⊗𝜔 𝑗

𝑘
) ∧ (𝑠𝑙 ⊗ 𝜖𝑚 ⊗ 𝜂𝑙𝑚) (2.26)

= (𝛿𝑘𝑙 𝑠 𝑗 ⊗ 𝜖
𝑚) ⊗ (𝜔 𝑗

𝑘
∧𝜂𝑙𝑚) (2.27)

= (𝑠 𝑗 ⊗ 𝜖𝑚) ⊗ (𝜔 𝑗

𝑘
∧𝜂𝑘𝑚). (2.28)

In other words, the matrix of forms representing 𝜔∧ 𝜂 is the matrix product of the ones
representing 𝜔 and 𝜂, with individual entries combined via the wedge product. (In an
expression like 𝜔 𝑗

𝑘
, we always interpret the upper index as a row number and the lower

index as a column number.)

2.7 Connections
It is important to introduce the notion of connections before delving into the definition of
curvature.

Definition 2.7.1. Let 𝐸 be a smooth complex vector bundle of rank 𝑚 on a smooth man-
ifold 𝑀 . A connection on 𝐸 is a map

∇ : Γ(𝑇𝑀) ×Γ(𝐸) → Γ(𝐸), (2.29)
(𝑋,𝜎) ↦→ ∇𝑋𝜎 (2.30)

that is 𝐶∞(𝑀)-linear in 𝑋 , C-linear in 𝜎 and satisfies the Leibniz rule

∇( 𝑓 𝜎) = 𝑓∇𝜎 +d 𝑓 ⊗𝜎 (2.31)

for all complex-valued functions 𝑓 . The expression ∇𝑋𝜎 is called the covariant derivative
of 𝝈 in the direction of X.

Remark 2.7.2. The value of ∇𝑋𝜎 at a 𝑝 ∈ 𝑀 depends only on 𝑋 (𝑝) and the value 𝜎 in an
arbitrary small neighborhood of 𝑝. Consequently, any connection ∇ on 𝐸 determines a
connection, still denoted by ∇, on the restriction of 𝐸 to any open subset of 𝑀 .

For any smooth section 𝜎, the section ∇𝜎 ∈ Γ(𝑇∗𝑀 ⊗𝐸) of the bundle 𝑇∗𝑀 ⊗𝐸 is called
the total covariant derivative. The bundle 𝑇∗𝑀 ⊗ 𝐸 is canonically isomorphic to Hom(𝑇𝑀,𝐸)
and the section is defined by (∇𝜎) (𝑋) := ∇𝑋𝜎.

We can extend connections by complex linearity to accept complex vector fields. If ∇ is
a connection on 𝐸 and 𝑍 := 𝑋 + i𝑌 is a smooth complex vector field on 𝑀 , we set

∇𝑍𝜎 := ∇𝑋𝜎 + i∇𝑌𝜎. (2.32)

This operation is 𝐶∞(𝑀,C)-linear in 𝑍 , and it allows us to regard the total covariant deriva-
tive ∇𝜎 as a section of 𝑇∗

C𝑀 ⊗ 𝐸 � Hom(𝑇C𝑀,𝐸).
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2.7.1 Connection Forms

It is sufficient to work locally to understand the action of a given connection. To do so, we
suppose a smooth local frame (𝑠1, . . . , 𝑠𝑚) for 𝐸 and an open subset 𝑈 ⊆ 𝑀 . For each vector
field 𝑋 on 𝑈 there exist smooth functions 𝜃𝑘

𝑗
(𝑋) such that

∇𝑋 𝑠 𝑗 = 𝜃𝑘𝑗 (𝑋)𝑠𝑘 (2.33)

for all 𝑗 ∈ {1, . . . ,𝑚}. Using the Leibniz rule, we observe that equation (2.33) determines
the covariant derivative of arbitrary sections. Due to the C∞(𝑀)-linearity of ∇ in 𝑋 ,

(
𝜃𝑘
𝑗

)
defines a matrix of complex 1-forms, called connection 1-forms with respect to this frame.
Connection 1-forms are smooth because they act on all smooth vector fields 𝑋 as

𝜖 𝑘 (∇𝑋 𝑠 𝑗 ) = 𝜃𝑙𝑗 (𝑋) 𝜖 𝑘 (𝑠𝑙)︸︷︷︸
=𝛿𝑘

𝑙

= 𝜃𝑘𝑗 (𝑋) (2.34)

where
(
𝜖 𝑗

)
is the frame for 𝐸∗ dual to

(
𝑠 𝑗

)
.

In terms of a smooth local frame and associated connection 1-forms, we can write

∇𝑠 𝑗 = 𝜃𝑘𝑗 ⊗ 𝑠𝑘 , (2.35)

∇
(
𝜎 𝑗 𝑠 𝑗

)
= d𝜎 𝑗 ⊗ 𝑠 𝑗 +𝜎 𝑗𝜃𝑘𝑗 ⊗ 𝑠𝑘 . (2.36)

Conversely, given an arbitrary matrix of smooth complex 1-forms 𝜃𝑘
𝑗

on the domain𝑈 of a
smooth local frame for 𝐸 , the formula

∇𝑋
(
𝜎 𝑗 𝑠 𝑗

)
=

(
𝑋𝜎 𝑗

)
𝑠 𝑗 +𝜎 𝑗𝜃𝑘𝑗 (𝑋)𝑠𝑘 (2.37)

determines a connection on 𝐸 over 𝑈.
If we have another local frame ( 𝑠̃𝑘 ), then where they overlap, we can write

𝑠̃𝑘 = 𝜏
𝑗

𝑘
𝑠 𝑗 , (2.38)

for a GL(𝑚,C)-valued transition function 𝜏 :=
(
𝜏
𝑗

𝑘

)
. We derive the transformation law of

the connection 1-forms by

𝜃
𝑝

𝑘
⊗ 𝑠̃𝑝 = ∇𝑠̃𝑘 = ∇

(
𝜏
𝑗

𝑘
𝑠 𝑗

)
= d𝜏 𝑗

𝑘
⊗ 𝑠 𝑗 + 𝜏 𝑗𝑘 𝜃

𝑙
𝑗 ⊗ 𝑠𝑙 (2.39)

=

( (
𝜏−1) 𝑝

𝑗
d𝜏 𝑗

𝑘
+

(
𝜏−1) 𝑝

𝑙
𝜃𝑙𝑗𝜏

𝑗

𝑘

)
⊗ 𝑠̃𝑝, (2.40)

where we have used 𝑠 𝑗 =
(
𝜏−1) 𝑙

𝑗
𝑠̃𝑙 , and thus

𝜃
𝑝

𝑘
=

(
𝜏−1) 𝑝

𝑗
d𝜏 𝑗

𝑘
+

(
𝜏−1) 𝑝

𝑙
𝜃𝑙𝑗𝜏

𝑗

𝑘
(2.41)

or in matrix notation
𝜃 = 𝜏−1d𝜏 + 𝜏−1𝜃𝜏. (2.42)
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The matrices d𝜏 and 𝜃 are matrices of complex 1-forms and the order of matrix multiplica-
tion is, as usual, important.

Example 2.7.3. Given 𝐸→𝑀 and 𝐸′→𝑀 are holomorphic vector bundles of ranks 𝑘 and
𝑘′ respectively and holomorphic local frames (𝑠1, . . . , 𝑠𝑘 ) for 𝐸 and (𝑠′1, . . . , 𝑠′𝑘 ′) for 𝐸′, we
get a local frame (𝑠1, . . . , 𝑠𝑘 , 𝑠′1, . . . , 𝑠′𝑘 ′) for 𝐸 ⊕ 𝐸′. If 𝜏 and 𝜏′ are transition functions for
overlapping local frames for 𝐸 and 𝐸′, respectively, then the transition function for 𝐸 ⊕ 𝐸′

is the GL(𝑘 + 𝑘′,C)-valued matrix function
(
𝜏 0
0 𝜏′

)
, which is holomorphic. Thus, by the

chart lemma [Lee24, Lemma 3.4], 𝐸 ⊕ 𝐸′ is a holomorphic vector bundle of rank 𝑘 + 𝑘′.

Metric compatibility of a connection is just half the story of being a Chern connection
(which we will introduce later).

Definition 2.7.4. Suppose 𝐸 is endowed with a Hermitian fiber metric ⟨·, ·⟩. A connection
∇ on 𝐸 is compatible with the metric, or a metric connection if the following indetify
holds

𝑋 ⟨𝜎,𝜏⟩ = ⟨∇𝑋𝜎,𝜏⟩ + ⟨𝜎,∇𝑋𝜏⟩ . (2.43)

Applying compatibility with the metric to complex vector fields 𝑍 yields

∇𝑍 ⟨𝜎,𝜏⟩ = ⟨∇𝑍𝜎,𝜏⟩ + ⟨𝜎,∇𝑍𝜏⟩ (2.44)

because of the conjugate linearity of the Hermitian inner product in the second argument.
Compatibility of a connection with a Hermitian fiber metric has consequences for the

corresponding connection 1-forms.

Proposition 2.7.5. Suppose 𝐸 → 𝑀 is a smooth complex vector bundle with Hermitian fiber
metric and ∇ is a metric connection on 𝐸 . The matrix of connection 1-forms with respect to any local
orthonormal frame is skew-Hermitian:

𝜃𝑘𝑗 = −𝜃 𝑗𝑘 . (2.45)

Proof. Let (𝑠 𝑗 ) be a local orthonormal frame for 𝐸 , and let 𝜃𝑘
𝑗

be the corresponding connec-
tion 1-forms. For every local complex vector field 𝑍 , compatibility with the metric implies

𝜃𝑘𝑗 (𝑍) + 𝜃
𝑗

𝑘 (𝑍) = 𝜃𝑙𝑗 (𝑍)⟨𝑠𝑙 , 𝑠𝑘⟩ + 𝜃𝑙𝑘 (𝑍)⟨𝑠 𝑗 , 𝑠𝑙⟩ = ⟨∇𝑍 𝑠 𝑗 , 𝑠𝑘⟩ + ⟨𝑠 𝑗 ,∇𝑍 𝑠𝑘⟩ = 𝑍 (⟨𝑠 𝑗 , 𝑠𝑘⟩︸  ︷︷  ︸
=𝛿 𝑗𝑘

) = 0.

(2.46)
□
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2.7.2 Compatibility with the Holomorphic Structure

An important technical theorem is the following

Theorem 2.7.6 (The 𝜕-Poincaré Lemma, [Lee24, Theorem 4.13]). Suppose 𝑞 ≥ 1 and
𝜔 is a smooth (𝑝, 𝑞)-form on a complex manifold 𝑀 that satisfies 𝜕𝜔 = 0. Then locally, i.e., in a
neighborhood of each point, there exists a smooth (𝑝, 𝑞−1)-form 𝜂 such that 𝜕𝜂 = 𝜔.

For each pair of nonnegative integers 𝑝, 𝑞, one defines the bundle of 𝐸-valued (𝑝, 𝑞)-
forms as the tensor product bundle

∧𝑝,𝑞𝑀 ⊗ 𝐸 , and Ω𝑝,𝑞 (𝑀,𝐸) := Γ (∧𝑝,𝑞𝑀 ⊗ 𝐸).

Proposition 2.7.7. Suppose 𝑀 is a complex manifold and 𝐸→𝑀 is a holomorphic vector bundle.
There are operators 𝜕𝐸 : Ω𝑝,𝑞 (𝑀,𝐸) →Ω𝑝,𝑞+1(𝑀,𝐸) satisfying the following properties.

1. For 𝜎 ∈ Ω0,0(𝑀,𝐸) = Γ(𝐸), 𝜕𝐸𝜎 = 0 ↔ 𝜎 is a holomorphic section.

2. For all 𝛼 ∈ Ω𝑝,𝑞 (𝑀) and 𝛽 ∈ Ω𝑝′,𝑞′ (𝑀,𝐸) one has

𝜕𝐸 (𝛼∧ 𝛽) = 𝛼∧ 𝛽+ (−1)𝑝+𝑞𝛼∧
(
𝜕𝐸 𝛽

)
. (2.47)

3. For all 𝛾 ∈ Ω𝑝,𝑞 (𝑀,𝐸∗) and 𝛽 ∈ Ω𝑝′,𝑞′ (𝑀,𝐸) one has

𝜕 (𝛾∧ 𝛽) = 𝜕𝐸∗𝛾∧ 𝛽+ (−1)𝑝+𝑞𝛾∧ 𝜕𝐸 𝛽. (2.48)

4. 𝜕𝐸 ◦ 𝜕𝐸 = 0.

5. If 𝛼 ∈ Ω𝑝,𝑞 (𝑀,𝐸) satisfies 𝜕𝐸𝛼 = 0 then in a neighborhood of each point there exists 𝛽 ∈
Ω𝑝,𝑞−1(𝑀,𝐸) such that 𝜕𝐸 𝛽 = 𝛼.

Proof. Suppose𝜎 ∈Ω𝑝,𝑞 (𝑀,𝐸). In any open subset𝑈 ⊆ 𝑀 over which there is a holomorphic
local frame

(
𝑠 𝑗

)
for 𝐸 , we can write 𝜎 |𝑈 = 𝜎 𝑗 ⊗ 𝑠 𝑗 with scalar-valued forms 𝜎 𝑗 . We define

𝜕𝐸𝜎 by setting
𝜕𝐸𝜎

���
𝑈

:=
(
𝜕𝜎 𝑗

)
⊗ 𝑠 𝑗 . (2.49)

We need to check whether this definition is independent of the choice of a holomorphic
local frame. If ( 𝑠̃𝑘 ) is another holomorphic frame, then, where the domains overlap, we can
write

𝑠̃𝑘 = 𝜏
𝑗

𝑘
𝑠 𝑗 (2.50)

for some holomorphic functions 𝜏 𝑗
𝑘
. Then 𝜎̃𝑘𝜏 𝑗

𝑘
𝑠 𝑗 = 𝜎̃

𝑘 𝑠̃𝑘 = 𝜎 = 𝜎 𝑗 𝑠 𝑗 yielding 𝜏 𝑗
𝑘
𝜎̃𝑘 = 𝜎 𝑗 .

Because 𝜕𝜏 𝑗
𝑘
= 0 (due to holomorphicity), we have

(𝜕𝜎 𝑗 ) ⊗ 𝑠 𝑗 = 𝜕 (𝜏 𝑗𝑘 𝜎̃
𝑘 ) ⊗ 𝑠 𝑗 = (𝜕𝜎̃𝑘 ) ⊗ (𝜏 𝑗

𝑘
𝑠 𝑗 ) = (𝜕𝜎̃𝑘 ) ⊗ 𝑠̃𝑘 . (2.51)

This proves that 𝜕𝐸 is well-defined.

1. Suppose 𝜎 ∈ Γ(𝐸). In terms of any local holomorphic frame
(
𝑠 𝑗

)
, we can write 𝜎 =

𝑓 𝑗 𝑠 𝑗 for some complex-valued functions 𝑓 𝑗 . If 𝜎 is holomorphic, then each 𝑓 𝑗 is
holomorphic and equation (2.49) shows that 𝜕𝐸𝜎 = 0.
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Conversely, if 0 = 𝜕𝐸𝜎 = (𝜕 𝑓 𝑗 ) ⊗ 𝑠 𝑗 and since the sections 𝑠 𝑗 are linearly independent
at each point, this shows that

𝜕 𝑓 𝑗 = 0 (2.52)

for each 𝑗 and thus 𝜎 is holomorphic by proposition 2.5.1.

2. We write locally 𝛽 = 𝛽 𝑗 ⊗ 𝑠 𝑗 and compute

𝜕𝐸 (𝛼∧ 𝛽) = 𝜕𝐸 ((𝛼∧ 𝛽 𝑗 ) ⊗ 𝑠 𝑗 ) = 𝜕 (𝛼∧ 𝛽 𝑗 ) ⊗ 𝑠 𝑗 (2.53)

= (𝜕𝛼∧ 𝛽 𝑗 + (−1)𝑝+𝑞𝛼∧ 𝜕𝛽 𝑗 ) ⊗ 𝑠 𝑗 = (𝜕𝛼∧ 𝛽 𝑗 ) ⊗ 𝑠 𝑗 + (−1)𝑝+𝑞 (𝛼∧ 𝜕𝛽 𝑗 ) ⊗ 𝑠 𝑗
(2.54)

= 𝜕𝛼∧ 𝛽+ (−1)𝑝+𝑞𝛼∧ 𝜕𝐸 𝛽. (2.55)

3. Write 𝛽 ∈ Ω𝑝′,𝑞′ (𝑀,𝐸) locally as 𝛽 = 𝛽 𝑗 ⊗ 𝑠 𝑗 and write 𝛾 = 𝛾𝑘 ⊗ 𝜖 𝑘 , where
(
𝜖 𝑘

)
denotes

the local holomorphic frame for 𝐸∗ dual to
(
𝑠 𝑗

)
, so that

𝛾∧ 𝛽 =
(
𝛾𝑘 ⊗ 𝜖 𝑘

)
∧

(
𝛽 𝑗 ⊗ 𝑠 𝑗

)
= 𝜖 𝑘

(
𝑠 𝑗

) (
𝛾𝑘 ∧ 𝛽 𝑗

)
= 𝛾 𝑗 ∧ 𝛽 𝑗 . (2.56)

We compute

𝜕𝐸∗𝛾∧ 𝛽+ (−1)𝑝+𝑞𝛾∧ 𝜕𝐸 𝛽 =
(
𝜕𝛾𝑘 ⊗ 𝜖 𝑘

)
∧

(
𝛽 𝑗 ⊗ 𝑠 𝑗

)
+ (−1)𝑝+𝑞

(
𝛾𝑘 ⊗ 𝜖 𝑘

)
∧

(
𝜕𝛽 𝑗 ⊗ 𝑠 𝑗

)
(2.57)

= 𝜕𝛾 𝑗 ∧ 𝛽 𝑗 + (−1)𝑝+𝑞𝛾 𝑗 ∧ 𝜕𝛽 𝑗 = 𝜕 (𝛾 𝑗 ∧ 𝛽 𝑗 ) = 𝜕 (𝛾∧ 𝛽).
(2.58)

4. Let 𝜎 ∈ Ω𝑝,𝑞 (𝑀,𝐸) and suppose
(
𝑠 𝑗

)
is a holomorphic local frame for 𝐸 on 𝑈 ⊆ 𝑀 .

Writing 𝜎 = 𝜎 𝑗 ⊗ 𝑠 𝑗 , we conclude with equation (2.49) that

𝜕𝐸

(
𝜕𝐸𝜎

)
= 𝜕𝐸

((
𝜕𝜎 𝑗

)
⊗ 𝑠 𝑗

)
=

(
𝜕𝜕𝜎 𝑗

)
⊗ 𝑠 𝑗 = 0 (2.59)

5. Suppose 𝛼 ∈ Ω𝑝,𝑞 (𝑀,𝐸) satisfies 𝜕𝐸𝛼 = 0. In terms of a holomorphic local frame,
we can write 𝛼 = 𝛼 𝑗 ⊗ 𝑠 𝑗 for some scalar-valued (𝑝, 𝑞)-forms 𝛼 𝑗 satisfying 0 = 𝜕𝐸𝛼 =

(𝜕𝛼 𝑗 ) ⊗ 𝑠 𝑗 . The pointwise linear independence of the 𝑠 𝑗 ’s implies 𝜕𝛼 𝑗 = 0 for all 𝑗 and
the 𝜕-Poincaré lemma (see theorem 2.7.6) yields (𝑝, 𝑞−1)-forms 𝛽 𝑗 in a neighborhood
of each point such that 𝜕𝛽 𝑗 = 𝛼 𝑗 and thus

𝜕𝐸
(
𝛽 𝑗 ⊗ 𝑠 𝑗

)
= 𝜕𝛽 𝑗 ⊗ 𝑠 𝑗 = 𝛼 𝑗 ⊗ 𝑠 𝑗 = 𝛼. (2.60)

□

Suppose 𝑀 is a complex manifold and 𝐸 → 𝑀 is a holomorphic vector bundle. Using
the decomposition 𝑇∗

C𝑀 =
∧1

C𝑀 =
∧1,0𝑀 ⊕∧0,1𝑀 , we can decompose a connection ∇ on

𝐸 as ∇ = ∇(1,0) + ∇(0,1) , where ∇(1,0)𝜎 ∈ Γ

(∧1,0𝑀 ⊗ 𝐸
)

and ∇(0,1)𝜎 ∈ Γ

(∧0,1𝑀 ⊗ 𝐸
)

for
𝜎 ∈ Γ(𝐸).

14



Definition 2.7.8. A connection ∇ on a holomorphic vector bundle 𝐸 → 𝑀 is compatible
with the holomorphic structure if ∇(0,1) = 𝜕𝐸 .

There are a few equivalent definitions of being compatible with a holomorphic structure.

Proposition 2.7.9 (Compatibility with the Holomorphic Structure). Let 𝐸 → 𝑀 be a
holomorphic vector bundle and ∇ a connection on 𝐸 . The following statements are equivalent.

1) The connection ∇ is compatible with the holomorphic structure, i.e. ∇(0,1) = 𝜕𝐸 .

2) Whenever 𝜎 is a holomorphic local section of 𝐸 and 𝑍 is a smooth local section of 𝑇 (0,1) (𝑀),
we have ∇

𝑍
𝜎 = 0.

3) For each holomorphic local frame
(
𝑠 𝑗

)
, we have ∇𝑠 𝑗 = 𝜃𝑘𝑗 ⊗ 𝑠𝑘 where the 1-forms 𝜃𝑘

𝑗
are all

of type (1,0).

Proof. Take any open set over which there is a holomorphic local frame
(
𝑠 𝑗

)
. Let 𝜃𝑘

𝑗
be the

connection 1-forms with respect to this frame. Taking the projection of both sides of

∇
(
𝜎 𝑗 𝑠 𝑗

)
= d𝜎 𝑗 ⊗ 𝑠 𝑗 +𝜎 𝑗𝜃𝑘𝑗 𝑠𝑘 (2.61)

onto
∧0,1𝑀 ⊗ 𝐸 , we have

∇(0,1) (𝜎 𝑗 𝑠 𝑗
)
= 𝜕𝜎 𝑗 ⊗ 𝑠 𝑗 +𝜎 𝑗

(
𝜃𝑘𝑗

) (0,1)
⊗ 𝑠𝑘 . (2.62)

On the other hand, 𝜕𝐸
���
𝑈
= 𝜕𝜎 𝑗 ⊗ 𝑠 𝑗 locally, showing that 𝜕𝐸

(
𝜎 𝑗 𝑠 𝑗

)
= 𝜕𝜎 𝑗 ⊗ 𝑠 𝑗 and this

implies

∇(0,1) (𝜎 𝑗 𝑠 𝑗
)
= 𝜕𝐸

(
𝜎 𝑗 𝑠 𝑗

)
+𝜎 𝑗

(
𝜃𝑘𝑗

) (0,1)
⊗ 𝑠𝑘 . (2.63)

The equivalence 1)⇔3) is immediately given by the observation that ∇(0,1) = 𝜕𝐸 if and only

if
(
𝜃𝑘
𝑗

) (0,1)
= 0.

To prove 3)⇒2), we take a holomorphic local section 𝜎 of 𝐸 and a smooth local section 𝑍
of𝑇0,1(𝑀). Decomposing 𝜎 =𝜎 𝑗 𝑠 𝑗 with holomorphic component functions 𝜎 𝑗 , we observe

∇
𝑍
𝜎 = 𝑍 (𝜎 𝑗 )𝑠 𝑗 + 𝜃𝑘𝑗 (𝑍)𝑠𝑘 = 0 (2.64)

because 𝑍
(
𝜎 𝑗

)
= 0 and 𝜃𝑘

𝑗
(𝑍) = 0. The former is because 𝜎 𝑗 are holomorphic and the latter

since 𝜃𝑘
𝑗

are of type (1,0) by assumption.
The reverse implication 2)⇒3) is demonstrated by taking any local section 𝑍 of 𝑇0,1(𝑀)

and calculating

𝜃𝑘𝑗 (𝑍)𝑠𝑘 = ∇
𝑍
𝑠 𝑗

2)
= 0 (2.65)

to conclude that 𝜃𝑘
𝑗

vanishes on 𝑇0,1(𝑀) and is thus of type (1,0). □

2.7.3 Chern Connection

We now prove the existence and uniqueness on Hermitian holomorphic vector bundles.
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Theorem 2.7.10 (Chern Connection Theorem). On every Hermitian holomorphic vector
bundle, there exists a unique connection, called the Chern connection, that is compatible with the
metric and the holomorphic structure.

Proof. To prove uniqueness, suppose ∇ is a Chern connection on 𝐸 → 𝑀 and let
(
𝑠 𝑗

)
be a

holomorphic local frame for 𝐸 over an open subset 𝑈 ⊆ 𝑀 . We write

∇𝑠 𝑗 = 𝜃𝑘𝑗 ⊗ 𝑠𝑘 (2.66)

and note that the connection 1-forms 𝜃𝑘
𝑗

are all of type (1,0) according to proposition 2.7.9.
Writing 𝐻 𝑗 𝑘 := ⟨𝑠 𝑗 , 𝑠𝑘⟩ and using compatibility with the metric implies for every local

section 𝑍 of 𝑇1,0(𝑀)

𝑍 (𝐻 𝑗 𝑘 ) =
〈
∇𝑍 𝑠 𝑗 , 𝑠𝑘

〉
+
〈
𝑠 𝑗 ,∇𝑍 𝑠𝑘

〉
= 𝜃𝑙𝑗 (𝑍)𝐻𝑙𝑘 , (2.67)

where we have used ∇𝑍 𝑠 𝑗 = 𝜃𝑙𝑗 (𝑍)𝑠𝑙 and ∇
𝑍
𝑠𝑘 = 0 (the latter results from proposition 2.7.9).

We can use the positive definiteness of the matrix
(
𝐻 𝑗 𝑘

)
to invert it and denote the inverse

by (𝐻 𝑗 𝑘 ). We multiply equation (2.67) by 𝐻𝑘𝑚 and obtain 𝜃𝑚
𝑗
(𝑍) = 𝐻𝑘𝑚𝑍 (𝐻 𝑗 𝑘 ). Since this

holds for every section 𝑍 of 𝑇1,0(𝑀), we get

𝜃𝑚𝑗 = 𝐻
𝑘𝑚𝜕𝐻 𝑗 𝑘 . (2.68)

This proves that ∇ is uniquely determined by the Hermitian fiber metric 𝐻.
To prove existence, we use equation (2.68) as the definition of the connection 1-forms

of ∇ in terms of each holomorphic local frame. These forms are of type (1,0) by defini-
tion and thus the resulting connection ∇ is compatible with the holomorphic structure (see
proposition 2.7.9). We start from the middle of equation (2.67), receive the right-hand side
in which we insert equation (2.68) and thus obtain the left-hand side of equation (2.67) so
that this finally proves the compatibility with the metric. □

In a natural way, we can also define the notion of a dual connection.

Theorem 2.7.11 ([Lee24, p. 219]). Let 𝐸 → 𝑀 be a smooth complex vector bundle, and let ∇
be a connection on 𝐸 . Define a map ∇∗ : Γ (𝑇C𝑀) ×Γ(𝐸∗) → Γ(𝐸∗) by

(
∇∗
𝑋
𝜙
)
(𝜎) := 𝑋 (𝜙(𝜎)) −

𝜙 (∇𝑋𝜎) for all 𝑋 ∈ Γ (𝑇C𝑀), 𝜙 ∈ Γ(𝐸∗) and 𝜎 ∈ Γ(𝐸).

1) ∇∗ is a connection on 𝐸∗, called the dual connection.

2) Suppose 𝐸 is endowed with a Hermitian fiber metric 𝐻 , and let 𝐻∗ be the dual metric on 𝐸∗.
Then if ∇ is a metric connection then

∇∗
𝑋

(
𝐻 (𝜎)

)
= 𝐻

(
∇
𝑋
𝜎
)

(2.69)

and ∇∗ is also a metric connection.

3) If 𝐸 is a holomorphic Hermitian vector bundle and ∇ is its Chern connection, then ∇∗ is the
Chern connection of 𝐸∗.
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2.8 Curvature
Having set up the notion of a connection on a vector bundle, we now provide the following

Definition 2.8.1. Suppose 𝑀→ 𝐸 is a smooth complex vector bundle and ∇ is a connection
on 𝐸 . Define the curvature of ∇ as the map 𝐹 : Γ (𝑇C𝑀) ×Γ (𝑇C𝑀) ×Γ(𝐸) → Γ(𝐸) by

𝐹 (𝑋,𝑌 )𝜎 := ∇𝑋∇𝑌𝜎−∇𝑌∇𝑋𝜎−∇[𝑋,𝑌 ]𝜎. (2.70)

A connection ∇ is called flat if 𝐹 = 0.

One can prove quite quickly that 𝐹 is 𝐶∞(𝑀,C)-linear in all of its three arguments
and antisymmetric in its first two arguments. Furthermore, 𝐸 ⊗ 𝐸∗ � 𝐸∗ ⊗ 𝐸 is canonically
isomorphic to End(𝐸) so that finally 𝐹 ∈ Ω2(𝑀,End(𝐸)).

For connections ∇1 on 𝐸 and ∇2 on 𝐸′, there is a natural connection ∇ on 𝐸 ⊕ 𝐸′ such
that ∇(𝑠1 ⊕ 𝑠2) = ∇1(𝑠1) ⊕ ∇2(𝑠2), where 𝑠1 is a section of 𝐸 and 𝑠2 a section of 𝐸′. In this
case, 𝐹∇ = 𝐹∇1 ⊕ 𝐹∇2 .

In the study of the Hull-Strominger system on a complex torus or an Iwasawa manifold,
we will work with line bundles which is why we need

Proposition 2.8.2 ([Lee24, Proposition 7.20]). Let 𝐿→𝑀 be a Hermitian holomorphic line
bundle and let 𝐹𝐿 be the curvature of its Chern connection. When 𝐿∗ is endowed with the dual
connection, the curvature of its Chern connection is given by 𝐹𝐿∗ = −𝐹𝐿 .

2.8.1 Curvature Forms

Now take a smooth local frame (𝑠 𝑗 ) for 𝐸 and let 𝜃𝑘
𝑗

be the matrix of connection 1-forms.
The curvature 𝐹 is completely determined by its action on each basis section 𝑠 𝑗 for arbitrary
𝑋,𝑌 ∈ Γ(𝑇C𝑀). We calculate

𝐹 (𝑋,𝑌 )𝑠 𝑗 = ∇𝑋
(
𝜃𝑘𝑗 (𝑋)𝑠𝑘

)
−∇𝑌

(
𝜃𝑘𝑗 (𝑋)𝑠𝑘

)
− 𝜃𝑘𝑗 ( [𝑋,𝑌 ])𝑠𝑘 =

(
d𝜃𝑙𝑗 + 𝜃𝑙𝑘 ∧ 𝜃

𝑘
𝑗

)
(𝑋,𝑌 )𝑠𝑙 (2.71)

where in the second equality sign, we used the invariant formula

d𝛼(𝑋,𝑌 ) = 𝑋 (𝛼(𝑌 )) −𝑌 (𝛼(𝑋)) −𝛼( [𝑋,𝑌 ]) (2.72)

for a 1-form 𝛼. Thus, with respect to this frame, we define the curvature 2-forms 𝐹 𝑙
𝑗

of ∇ by

𝐹 𝑙𝑗 := d𝜃𝑙𝑗 + 𝜃𝑙𝑘 ∧ 𝜃
𝑘
𝑗 . (2.73)

Thus, 𝐹 is represented locally by the matrix of 2-forms
(
𝐹 𝑙
𝑗

)
. Interpreting 𝜃𝑙

𝑗
and 𝐹 𝑙

𝑗
as the lo-

cal expressions for End(𝐸)-valued forms, we can use the wedge product of endomorphism-
valued forms defined by equation (2.28) to write

𝐹 = d𝜃 + 𝜃∧ 𝜃. (2.74)

Some remarks are in order about equation (2.74): Since 𝜃 is a matrix composed of 1-
forms, 𝜃∧ 𝜃 is in general not trivial. Moreover, 𝜃 is an endomorphism-valued form only in
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the domain of a specified frame. However, 𝐹 is a globally defined End(𝐸)-valued 2-form.
The fact that 𝜃 is not a local matrix representation for a globally defined End(𝐸)-valued
1-form is reflected by the transformation equation (2.42). If it were, the transformation law
of 𝜃 under a change of frames would have been simply 𝜃 = 𝜏−1d𝜏.

We prove now that all curvature forms of a Chern connection are of type (1,1).

Proposition 2.8.3. Suppose 𝑀 is a complex manifold and 𝐸 → 𝑀 is a Hermitian holomorphic
vector bundle. With the Chern connection on 𝐸 , we have 𝐹 ∈ Ω1,1(𝑀,End(𝐸)).

Proof. In terms of a holomorphic local frame (𝑠 𝑗 ), we can write

𝐹𝑚𝑗 = 𝜕𝜃𝑚𝑗 + 𝜕𝜃𝑚𝑗 + 𝜃𝑚𝑘 ∧ 𝜃
𝑘
𝑗 (2.75)

having used d = 𝜕 + 𝜕 (see proposition 2.5.2). According to proposition 2.7.9, 𝜃𝑚
𝑗

is of type
(1,0) so that the first term 𝜕𝜃 in equation (2.75) is of type (1,1) and the remaining two
terms are of type (2,0). So it remains to prove that the remaining two terms add up to zero.
Inserting equation (2.68) into the last two terms of equation (2.75) yields

𝜕𝜃𝑚𝑗 + 𝜃𝑚𝑘 ∧ 𝜃
𝑘
𝑗 = 𝜕𝐻

𝑘𝑚 ∧ 𝜕𝐻 𝑗 𝑘 +𝐻𝑝𝑚𝐻𝑞𝑘𝜕𝐻𝑘 𝑝 ∧ 𝜕𝐻 𝑗𝑞 . (2.76)

Differentiating 𝐻𝑘 𝑝𝐻𝑝𝑙 = 𝛿
𝑘
𝑙

and multiplying the result by 𝐻𝑙𝑚 gives

𝜕𝐻𝑘𝑚 = −𝐻𝑙𝑚𝐻𝑘 𝑝𝜕𝐻𝑝𝑙 (2.77)

and substituting this into the right-hand side of equation (2.76) provides

𝜕𝜃𝑚𝑗 + 𝜃𝑚𝑘 ∧ 𝜃
𝑘
𝑗 = −𝐻𝑝𝑚𝐻𝑞𝑘𝜕𝐻𝑘 𝑝 ∧ 𝜕𝐻 𝑗𝑞 +𝐻𝑝𝑚𝐻𝑞𝑘𝜕𝐻𝑘 𝑝 ∧ 𝜕𝐻 𝑗𝑞 = 0 (2.78)

implying that 𝐹𝑚
𝑗
= 𝜕𝜃𝑚

𝑗
is indeed of type (1,1). □

The connection and curvature forms on a dual bundle can be given in terms of the
original vector bundle as described in

Theorem 2.8.4 ([Lee24, p. 219]). Let 𝐸 → 𝑀 be a smooth complex vector bundle, let ∇ be a
connection on 𝐸 , and ∇∗ the dual connection on 𝐸∗. Suppose (𝑠 𝑗 ) is a holomorphic local frame for 𝐸 ,
and 𝜃 𝑗

𝑘
and 𝐹 𝑗

𝑘
are its connection and curvature forms, respectively. Let

(
𝜖 𝑗

)
be the dual frame for 𝐸∗

defined by 𝜖 𝑗 (𝑠𝑘 ) := 𝛿 𝑗
𝑘
, and let 𝜃∗𝑘𝑗 and 𝐹∗𝑘

𝑗 be the connection and curvature forms for ∇∗ satisfying

∇∗
𝑋𝜖

𝑗 = 𝜃∗𝑘𝑗 (𝑋)𝜖 𝑘 and 𝐹∗(𝑋,𝑌 )𝜖 𝑗 = 𝐹∗𝑘
𝑗 (𝑋,𝑌 )𝜖 𝑘 .

(A summation over repeated indices is also implicitly implied here.)
(2.79)

Then
𝜃∗𝑘𝑗 = −𝜃 𝑗

𝑘
and 𝐹∗𝑘

𝑗 = −𝐹 𝑗
𝑘
. (2.80)

2.9 The First Real Chern Class
Suppose a connection∇ on a smooth complex vector bundle 𝐸→𝑀 . Since 𝐹 ∈Ω2(𝑀,End(𝐸))
and the trace of an endomorphism is independent of the choice of a basis, we can define the
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first Chern form of ∇ by

𝑐1(∇) := i
2𝜋Tr(𝐹) (2.81)

which is a global scalar 2-form.

Theorem 2.9.1. For any connection on a smooth complex vector bundle, the first Chern form is
closed, and its de Rham cohomology class is independent of the choice of connection.

Proof. Let 𝐸 → 𝑀 be a smooth complex vector bundle and ∇ a connection on 𝐸 . In terms
of a smooth local frame, we have

𝑐1(∇) =
i

2𝜋𝐹
𝑗

𝑗
=

i
2𝜋d𝜃 𝑗

𝑗
, (2.82)

where we have used that 𝜃 𝑗
𝑙
∧ 𝜃𝑙

𝑗
= 0. With equation (2.82), we therefore see that 𝑐1(∇) is

locally exact and thus closed.
Now suppose ∇̃ is another connection on 𝐸 . We define the difference tensor𝐷 : Γ(𝑇C𝑀)×

Γ(𝐸) by 𝐷 (𝑋)𝜎 := ∇̃𝑋𝜎−∇𝑋𝜎. One can see by direct computation that 𝐷 is 𝐶∞(𝑀)-linear
in both arguments which makes it a section of Ω1(𝑀,End(𝐸)). This implies that its trace is
a globally defined scalar 1-form and

𝑐1(∇̃) − 𝑐1(∇) =
i

2𝜋 (Tr(d𝜃) −Tr(d𝜃)) = i
2𝜋Tr(d𝐷) = i

2𝜋dTr(𝐷). (2.83)

That is, 𝑐1(∇̃) and 𝑐1(∇) differ by an exact form and thus represent the same de Rham
cohomology class. □

The Chern form becomes real when we deal with metric connections, in particular
when we work with Chern connections, as demonstrated in

Proposition 2.9.2. Suppose 𝐸 → 𝑀 is a smooth complex vector bundle with a Hermitian fiber
metric. If ∇ is a metric connection on 𝐸 , then 𝑐1(∇) is a real 2-form.

Proof. Let ∇ be a metric connection on 𝐸 . In a neighborhood of each point, we may choose
an orthonormal local frame (𝑠 𝑗 ) and denote by 𝜃𝑘

𝑗
the corresponding connection 1-forms.

Proposition 2.7.5 shows that
𝜃𝑘𝑗 + 𝜃

𝑗

𝑘 = 0 (2.84)

Taking 𝑘 = 𝑗 and summing over 𝑗 yields that the 1-form 𝜃
𝑗

𝑗
is purely imaginary and so is

𝐹
𝑗

𝑗
= d𝜃 𝑗

𝑗
. This implies that

𝑐1(∇) =
i

2𝜋𝐹
𝑗

𝑗
(2.85)

is indeed real. □

Let 𝐸 → 𝑀 be a smooth complex vector bundle. We can always choose a Hermitian
fiber metric on 𝐸 and a connection ∇ compatible with it, so that 𝑐1(∇) is represented by
a real 2-form. Thus, the cohomology class determined by 𝑐1(∇) lies in 𝐻2

dR (𝑀;R) where
𝐻2

dR (𝑀;R) is considered as the subspace of 𝐻2
dR (𝑀;C) consisting of cohomology classes

that are invariant under conjugation.
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We define the first Chern class of E , denoted by 𝑐1(𝐸) ∈𝐻2
dR (𝑀;R), to be the cohomology

class of 𝑐1(∇), where ∇ is any connection on 𝐸 .

2.10 Chern Connection and Curvature on 𝐿 ⊕ 𝐿∗

Let 𝐿→ 𝑀 be a Hermitian holomorphic line bundle and ∇ its Chern connection. Given a
local holomorphic frame 𝑠 for 𝐿 (i.e., 𝑠 ≠ 0 holomorphic local section) over an open𝑈 ⊆ 𝑀 ,
let 𝜃 be the corresponding connection 1-form. The fiber metric is completely determined
in 𝑈 by the strictly positive function

ℎ := |𝑠 |2 = ⟨𝑠, 𝑠⟩. (2.86)

It implies
𝜃 = ℎ−1𝜕ℎ = 𝜕 (log(ℎ)). (2.87)

Its curvature is the globally defined 2-form 𝐹𝐿 whose expression in terms of each holomor-
phic local frame 𝑠 is 𝐹𝐿 = d𝜃 = 𝜕𝜕 (log(ℎ)) = 𝜕𝜕

(
log

(
|𝑠 |2

))
. Thus, the Chern form for this

connection has the local expression

𝑐1(∇) =
i

2𝜋 𝜕𝜕 (log(ℎ)) = i
2𝜋 𝜕𝜕

(
log

(
|𝑠 |2

))
. (2.88)

On the Whitney sum 𝐿 ⊕ 𝐿∗ the curvature 𝐹𝐿⊕𝐿∗ becomes

𝐹𝐿⊕𝐿∗ =

(
𝐹𝐿 0
0 −𝐹𝐿

)
(2.89)

because 𝐹𝐿∗ = −𝐹𝐿 . The dual connection ∇∗ on 𝐿∗ is automatically the Chern connection
(see theorem 2.7.11).

Remark 2.10.1. Equation (2.89) implies directly 𝑐1(𝐿 ⊕ 𝐿∗) = 0 which is one of the neces-
sary conditions in the formulation of the Hull-Strominger system if we use 𝐿 ⊕ 𝐿∗ as the
holomorphic vector bundle over a complex threefold 𝑀 .

2.11 Computational Preparation
Given a holomorphic vector bundle 𝐸 → 𝑀 and a connection ∇ on 𝐸 , we can locally de-
compose the corresponding curvature as

𝐹 = 𝐹

(
𝜕𝑖, 𝜕𝑗

)
⊗ d𝑧𝑖 ∧d𝑧 𝑗 + 1

2𝐹
(
𝜕𝑖, 𝜕𝑗

)
⊗ d𝑧𝑖 ∧d𝑧 𝑗 + 1

2𝐹
(
𝜕𝑖, 𝜕𝑗

)
⊗ d𝑧𝑖 ∧d𝑧 𝑗 (2.90)

with
(
𝑧𝑖
)

being local holomorphic coordinates on 𝑀 . Further assuming ∇ to be the Chern
connection on 𝐸 , proposition 2.8.3 tells us that they must be of type (1,1) which implies
𝐹

(
𝜕𝑖, 𝜕𝑗

)
= 0 = 𝐹

(
𝜕𝑖, 𝜕𝑗

)
for all 𝑖 and 𝑗 , reducing equation (2.90) to

𝐹 = 𝐹

(
𝜕𝑖, 𝜕𝑗

)
⊗ d𝑧𝑖 ∧d𝑧 𝑗 . (2.91)
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Taking the wedge of the curvature 𝐹 with itself amounts to

𝐹 ∧𝐹 = 𝐹

(
𝜕𝑖, 𝜕𝑗

)
𝐹

(
𝜕𝑘 , 𝜕𝑙

)
⊗ d𝑧𝑖 ∧d𝑧 𝑗 ∧d𝑧𝑘 ∧d𝑧𝑙 . (2.92)

Going back to the definition of curvature, namely 𝐹 ∈ Ω2(𝑀,End(𝐸)), a straightforward
observation is that we can think of 𝐹 as being a matrix composed of 2-forms, or more
precisely of (1,1)-forms since we are working with a Chern connection. This provides the
computationally feasible observation that

(𝐹 ∧𝐹)𝑖𝑗 = 𝐹𝑖𝑘 ∧𝐹
𝑘
𝑗 (2.93)

Therefore, 𝐹 ∧𝐹 is computed by standard matrix multiplication, but instead of using ordi-
nary multiplication of complex numbers, we take the wedge of 2-forms and do the standard
summation as is part of ordinary matrix multiplication.

We thus receive

Tr(𝐹 ∧𝐹) = Tr
(
𝐹

(
𝜕𝑖, 𝜕𝑗

)
𝐹

(
𝜕𝑘 , 𝜕𝑙

) )
d𝑧𝑖 ∧d𝑧 𝑗 ∧d𝑧𝑘 ∧d𝑧𝑙 = 𝐹𝑖𝑗 ∧𝐹

𝑗

𝑖
. (2.94)
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3 The Hull-Strominger System
The Hull-Strominger system is a system of coupled partial differential equations and origi-
nates from supergravity [Hul86b; Str86] and it first appeared in the mathematics literature
in [LY05]. There is a conjectural relation between the Hull-Strominger system and confor-
mal field theory which arises in a certain physical limit in compactifications of the heterotic
string theory.

Yau proposed to study this system of partial differential equations as a natural general-
ization of the Calabi problem for non-Kählerian complex manifolds [Yau05] and due to its
relation to Reid’s fantasy on the moduli space of projective Calabi-Yau threefolds [Rei87].

Solutions to the Hull-Strominger system are found by polystable holomorphic vector
bundles and Kähler Ricci flat metrics when the dimension of the complex base manifold is 1
or 2 [Gar16]. In the case of a three-dimensional complex base manifold, arguing on the ex-
istence and uniqueness for the Hull-Strominger system is still an open problem. Under mild
assumptions, the existence of solutions to the Hull-Strominger system has been conjectured
by Yau [Yau10].

3.1 General Observations
Assuming (𝑀,𝜔) to be a compact Kähler threefold with 𝑐1(𝑀) = 0 and taking 𝐸 := 𝑇1,0(𝑀)
and 𝐻 = 𝑔, the anomaly condition is automatically satisfied. Furthermore, when 𝛼′ = 0,
the Bianchi identity (1.1) is reduced to the Type IIB equation with no source [Pho23].
The main obstruction in proving the existence of solutions to the system of equations (i.e.
when assuming dimC(𝑀) = 3), is the Bianchi identity in equation (1.1) that couples the
fundamental 2-form 𝜔 of the conformally balanced Hermitian metric 𝑔 on the complex
manifold 𝑀 with the curvatures of the Chern connections of 𝑔 and 𝐻 respectively.

If 𝜔 were time independent, the flow in 𝐻 is the well-known Donaldson heat flow.
Thus, the Anomaly flow has the interesting peculiarity that 𝜔 flows as well and couples to
the Donaldson heat flow. Using Hamilton’s version of the Nash-Moser implicit function
theorem, the short-time existence for the Anomaly flow is proven in [PPZ18b].

An interesting way of finding solutions to the Hull-Strominger system in equations (1.1)
to (1.3) is to search for stationary points of the Anomaly flow formulated in equations (1.5)
to (1.8). The reason for its name is that the stationary points of the Anomaly flow obviously
satisfy the Green-Schwarz anomaly cancellation equation (1.1). Given 𝜔0 in equation (1.7)
being the fundamental 2-form of an initial Hermitian metric on 𝑇1,0(𝑀) and 𝐻0 in equa-
tion (1.8) an initial Hermitian fiber metric for 𝐸 , we study the Anomaly flow of the pair
of time-dependent metrics (𝜔(𝑡), 𝐻 (𝑡)) satisfying equations (1.5) and (1.6) simultaneously.
The initial metric 𝜔0 shall satisfy the conformally balanced condition (1.2) and it is indeed
possible to construct conformally balanced metrics [TW16].

Using d𝜕𝜕𝜔 = d2𝜕𝜔 = 0 and the fact that Tr(𝑅∧𝑅) and Tr(𝐹∧𝐹) are closed representa-
tives of the Chern classes 𝑐2

(
𝑇1,0(𝑀)

)
and 𝑐2(𝐸) of the bundles 𝑇1,0(𝑀) and 𝐸 respectively

[PPZ18b], we find with equation (1.5),

𝜕𝑡d
(
∥Ω∥𝜔𝜔2) = d𝜕𝑡

(
∥Ω∥𝜔𝜔2) = 0. (3.1)
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That is, 𝜔(𝑡) satisfies the conformally balanced condition for all times 𝑡 since𝜔0 does and this
implies that the conformally balanced condition does not need to be added to the flow equa-
tions in order to ensure that its stationary points are indeed solutions to the Hull-Strominger
system. Actually, to find solutions to the Hull-Strominger system, it is sufficient to deter-
mine whether the Anomaly flow exists for all times and whether it converges.

The solution to the Hull-Strominger system Fu and Yau constructed on a 𝑇2-fibration
over a 𝐾3 surface [FY08; FY07] can be recast into flowing metrics that satisfy the Anomaly
flow and the associated stationary point recaptures the solution found by Fu and Yau [PPZ18a].

For future reference, we denote 𝜔 = i𝑔
𝑗 𝑘

d𝑧 𝑗 ∧ d𝑧𝑘 for the local decomposition of the
fundamental 2-form on 𝑀 , and then

𝜔3 = −i𝑔
𝑗 𝑘
𝑔𝑙𝑚𝑔𝑝𝑞d𝑧 𝑗 ∧d𝑧𝑘 ∧d𝑧𝑙 ∧d𝑧𝑚 ∧d𝑧𝑝 ∧d𝑧𝑞 (3.2)

= i𝑔𝜎1𝜎′
1
𝑔𝜎2𝜎′

2
𝑔𝜎3𝜎′

3
d𝑧𝜎1 ∧d𝑧𝜎2 ∧d𝑧𝜎3 ∧d𝑧𝜎′

1 ∧d𝑧𝜎′
2 ∧d𝑧𝜎′

3 (3.3)

= isign(𝜎)sign(𝜎′)𝑔𝜎1𝜎′
1
𝑔𝜎2𝜎′

2
𝑔𝜎3𝜎′

3
d𝑧1 ∧d𝑧2 ∧d𝑧3 ∧d𝑧1 ∧d𝑧2 ∧d𝑧3 (3.4)

= i3!det(𝑔)d𝑧1 ∧d𝑧2 ∧d𝑧3 ∧d𝑧1 ∧d𝑧2 ∧d𝑧3. (3.5)

In the notation, we understand 𝜎 = (𝜎1,𝜎2,𝜎3) and 𝜎′ =
(
𝜎′

1,𝜎
′
2,𝜎

′
3
)

as individual ele-
ments of the symmetric group S3 over which a summation is implied.

Working locally with Ω = 𝑓 d𝑧1 ∧d𝑧2 ∧d𝑧3 for some nowhere vanishing function 𝑓 , we
find by combining equation (1.4) with equation (3.5),

∥Ω∥2
𝜔 =

| 𝑓 |2

6det(𝑔) . (3.6)

3.2 On a Complex Torus
Suppose a complex vector space 𝑉 with dimC(𝑉) = 𝑛, considered as an abelian complex Lie
group. A lattice in𝑉 is a discrete additive subgroup Λ ⊆𝑉 generated by 2𝑛 vectors 𝑣1, . . . , 𝑣2𝑛
that are linearly independent over R. In [Lee24, Corollary 1.17] it is shown that 𝑉/Λ is an
𝑛-dimensional complex Lie group, called a complex torus. When 𝑛 = 0, it is just a single
point. When 𝑛 > 0, the real linear isomorphism 𝐴 : R2𝑛 → 𝑉 given by 𝐴(𝑥1, . . . , 𝑥2𝑛) = 𝑥 𝑗𝑣 𝑗
descends to a diffeomorphism from R2𝑛/Z2𝑛 to 𝑉/Λ. Since R2𝑛/Z2𝑛 is diffeomorphic to the
2𝑛-torus 𝑆1 × · · · × 𝑆1, so is 𝑉/Λ. Thus, complex tori defined by different lattices are all
diffeomorphic to each other. They are typically not biholomorphic.

3.2.1 Anomaly Flow Ansatz on a Complex Torus

Here, we consider a complex torus 𝑀 := C3/Λ with Λ being some lattice in C3. For the
torus 𝑀 , we make the Anomaly flow ansatz

𝐻 (𝑡) :=
(
𝑎(𝑡)ℎ0 0

0 𝑎(𝑡)−1ℎ−1
0

)
and 𝜔(𝑡) := 𝑏(𝑡)𝜔0 (3.7)

with

𝜔0 := i𝑔
𝑗 𝑘
(0)d𝑧 𝑗 ∧d𝑧𝑘 and 𝐻0 :=

(
ℎ0 0
0 ℎ−1

0

)
, (3.8)
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where𝜔0 is the fundamental 2-form of some initial metric on𝑀 that is conformally balanced
and ℎ0 is the initial metric on the line bundle 𝐿. Thus, 𝐻0 := 𝐻 (0) constitutes the initial
metric on 𝐿 ⊕ 𝐿∗. We further need 𝑎(0) = 1 = 𝑏(0). The time-dependent functions 𝑎 and 𝑏
must necessarily be positive for all times to ensure we are dealing with Hermitian metrics
for all 𝑡 ≥ 0. With the definition of the first Chern class and equation (2.89), we of course
have 𝑐1(𝐿 ⊕ 𝐿∗) = 0 automatically.

3.2.2 Necessary Conditions on Curvature Form on 𝐿

We assume the curvature on 𝐿 ⊕ 𝐿∗ to be coming from the Chern connection of 𝐻 and
having the form

𝐹 (𝑡) :=
(
𝑓 (𝑡)𝜔(𝑡) 0

0 − 𝑓 (𝑡)𝜔(𝑡)

)
(3.9)

for some function 𝑓 that solely depends on the flow parameter 𝑡 ≥ 0. The assumption
necessitates(

𝑓 (𝑡)𝜔(𝑡) 0
0 − 𝑓 (𝑡)𝜔(𝑡)

)
= 𝐹 (𝑡) = 𝜕

(
𝜕𝐻 (𝑡) ·𝐻 (𝑡)−1) = (

𝜕 (ℎ−1
0 𝜕ℎ0) 0
0 −𝜕 (ℎ−1

0 𝜕ℎ0)

)
(3.10)

which implies 𝑓 = 𝑏−1 such that 𝐹 (𝑡) = 𝐹 (0) is actually time independent, and 𝜔0 =

𝜕 (ℎ−1
0 𝜕ℎ0), i.e., the assumption necessitates this particular interrelation between the initial

metrics. This interrelation is achieved by, for example, assuming the connection 1-form on
𝐿 to be −i𝑔

𝑗 𝑘
𝑧𝑘d𝑧 𝑗 .

3.2.3 Solving the ODEs Associated to the Anomaly Flow

We first define the nowhere vanishing holomorphic (3,0)-form Ω = 𝑓 d𝑧1,∧d𝑧2 ∧d𝑧3 such
that

�� 𝑓 �� is constant and

∥Ω∥𝜔(𝑡) =
𝜆√︁

det(𝑔(𝑡))
= 𝜆𝑏(𝑡)−3/2 (3.11)

for some 𝜆 > 0. For simplicity and to obtain equation (3.11), we implicitly assume the metric
𝜔 to be diagonal.

The conformally balanced condition

d
(
∥Ω∥𝜔(𝑡)𝜔(𝑡)2

)
= 0 (3.12)

is of course satisfied for all times 𝑡 since we assume 𝜔 to be position independent.
The Anomaly flow equations translate to a system of coupled ordinary differential equa-

tions in the functions 𝑎 and 𝑏 which is soluble.
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Theorem 3.2.1. The PDEs of the Anomaly flow are solved by

𝜔(𝑡) =
(
𝛼′

2𝜆𝑡 +1
)2
𝜔0 and (3.13)

𝐻 (𝑡) =
©­­­«
exp

(
2𝜆
𝛼′

(
1− 1

𝛼′
2𝜆 𝑡+1

))
ℎ0 0

0 exp
(
−2𝜆
𝛼′

(
1− 1

𝛼′
2𝜆 𝑡+1

))
ℎ−1

0

ª®®®¬ . (3.14)

Proof. We have

𝜕𝑡 log(𝑎(𝑡))
(
1 0
0 −1

)
= 𝐻 (𝑡)−1𝜕𝑡𝐻 (𝑡) = 𝜔(𝑡)

2 ∧𝐹 (𝑡)
𝜔(𝑡)3 =

1
𝑏(𝑡)

(
1 0
0 −1

)
(3.15)

and

𝜆

2𝑏
′(𝑡)𝑏(𝑡)−1/2𝜔2

0 = 𝜕𝑡 (∥Ω∥𝜔(𝑡)𝜔(𝑡)2) = i𝜕 𝜕𝜔(𝑡)︸︷︷︸
=0

−𝛼
′

4 (Tr( 𝑅(𝑡)︸︷︷︸
=0

∧𝑅(𝑡))−Tr(𝐹 (𝑡) ∧𝐹 (𝑡))︸              ︷︷              ︸
=2𝜔2

0

) = 𝛼
′

2 𝜔
2
0

(3.16)
We thus obtain the following coupled initial value problem.{

𝑏′(𝑡) = 𝛼′

𝜆
𝑏(𝑡)1/2 with 𝑏(0) = 1,

𝜕𝑡 log(𝑎(𝑡)) = 𝑏(𝑡)−1 with 𝑎(0) = 1.
(3.17)

The first equation in equation (3.17) implies

𝑏(𝑡) =
(
𝛼′

2𝜆𝑡 +1
)2

(3.18)

and inserting equation (3.18) into the second equation of equation (3.17) delivers

𝑎(𝑡) = exp
(
2𝜆
𝛼′

(
1− 1

𝛼′
2𝜆 𝑡 +1

))
. (3.19)

Inserting equations (3.18) and (3.19) into the ansatz in equation (3.7), provides equa-
tions (3.13) and (3.14). □

Theorem 3.2.1 implies that the infinite-time behaviour of 𝑡 ↦→𝜔(𝑡) is divergent although
we find for 𝑡 ↦→ 𝐻 (𝑡),

𝐻∞ := lim
𝑡→∞

𝐻 (𝑡) =


(
𝑒2𝜆/𝛼′ℎ0 0

0 𝑒−2𝜆/𝛼′ℎ−1
0

)
provided 𝛼′ > 0,

divergent with blow up time 𝑇 := − 𝛼′

2𝜆 provided 𝛼′ < 0
(3.20)
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That is, although the flow has no fixed point, and thus, there is no solution to the Hull-
Strominger system in this torus case, 𝐻 converges only in the physical case 𝛼′ > 0.

3.3 On an Iwasawa Manifold
Inspired by [Láz+25, Section 4.2], we consider the subgroup 𝐻 ≤ GL(3,C) consisting of
matrices of the form ©­­«

1 𝑧1 𝑧3

0 1 𝑧2

0 0 1

ª®®¬ (3.21)

for 𝑧1, 𝑧2, 𝑧3 ∈ C. It is a complex Lie group that is biholomorphic to C3 with multiplication
given by

(𝑧1, 𝑧2, 𝑧3) · (𝑤1,𝑤2,𝑤3) := (𝑧1 +𝑤1, 𝑧2 +𝑤2, 𝑧3 +𝑤3 + 𝑧1𝑤2). (3.22)

We consider the standard Iwasawa manifold which is the left coset space 𝑀 := 𝐻/Γ, where
Γ ≤ 𝐻 is the discrete subgroup consisting of matrices in which 𝑧1, 𝑧2, 𝑧3 are Gaussian integers,
i.e., complex numbers of the form 𝑚 + i𝑛 for 𝑚,𝑛 ∈ Z. The Iwasawa manifold is a complex
manifold [Lee24, Corollary 1.17] with dimC(𝑀) = 3. The subgroup Γ is cocompact, that
is, 𝑀 is compact. The variables 𝑧𝑖 define complex coordinates on 𝐻 and hence a complex
structure 𝐽 on 𝑀 .

3.3.1 A Left-Invariant Basis and Anomaly Flow Ansatz

We define a global (left-invariant) basis for Ω1,0(𝑀) by 𝛼1 := d𝑧1, 𝛼2 := d𝑧2 and 𝛼3 := −d𝑧3 +
𝑧1d𝑧2 which satisfy d𝛼1 = 0 = d𝛼2 and d𝛼3 = 𝛼1∧𝛼2. We also define the nowhere vanishing
holomorphic (3,0)-form Ω := 𝛼1 ∧𝛼2 ∧𝛼3 = −d𝑧1 ∧d𝑧2 ∧d𝑧3.

Now, consider the Anomaly flow ansatz

𝜔(𝑡) := i
2

3∑︁
𝑖=1
𝑏𝑖 (𝑡)𝛼𝑖 ∧𝛼𝑖

=
i
2

(
𝑏1(𝑡)d𝑧1 ∧d𝑧1 +

(
𝑏2(𝑡) + 𝑏3(𝑡)

��𝑧1��2) d𝑧2 ∧d𝑧2 + 𝑏3(𝑡)d𝑧3 ∧d𝑧3

−𝑏3(𝑡)𝑧1d𝑧3 ∧d𝑧2 − 𝑏3(𝑡)𝑧1d𝑧2 ∧d𝑧3
) (3.23)

such that (
𝑔𝑖 𝑗 (𝑡)

)
=

©­­­«
𝑏1 (𝑡)

2 0 0

0 𝑏2 (𝑡)+𝑏3 (𝑡) |𝑧1 |2
2 − 𝑏3 (𝑡)

2 𝑧1

0 − 𝑏3 (𝑡)
2 𝑧1 𝑏3 (𝑡)

2

ª®®®¬ (3.24)

with 𝑐1 := 𝑏1(0) > 0, 𝑐2 := 𝑏2(0) > 0, 𝑏3(0) = 1 and 𝑏𝑖 > 0 being positive flow parameter-
dependent functions and 𝜔0 := 𝜔(0) is the initial metric that is assumed to be conformally
balanced. In particular,

det
(
𝑔𝑖 𝑗 (𝑡)

)
= 𝑏1(𝑡)𝑏2(𝑡)𝑏3(𝑡)/8. (3.25)
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As in the torus case in section 3.2,

∥Ω∥𝜔(𝑡) =
𝜆√︁

𝑏1(𝑡)𝑏2(𝑡)𝑏3(𝑡)
(3.26)

for some 𝜆 > 0.
Analogous to section 3.2, we make the Anomaly flow ansatz

𝐻 (𝑡) :=
(
𝑎(𝑡)ℎ0 0

0 𝑎(𝑡)−1ℎ−1
0

)
(3.27)

with 𝑎 > 0, 𝑎(0) = 1 and ℎ0 being the initial Hermitian fiber metric on the line bundle 𝐿
and thus 𝐻 the Hermitian fiber metric on 𝐿 ⊕ 𝐿∗.

3.3.2 Curvature of Iwasawa Manifold and Conformally Balanced Condition

Lemma 3.3.1. The time-dependent Chern connection of the metric in equation (3.23) is flat.

Proof. The associated matrix of connection 1-forms is computed rather quickly via

𝜃 = 𝜕𝑔 · 𝑔−1 =
©­­«
0 0 0
0 0 −𝛼1
0 0 0

ª®®¬ (3.28)

so that the connection is flat since 𝑅 = 𝜕𝜃 = 0. □

It is a general fact that 𝜔(𝑡) is conformally balanced for all times 𝑡 since 𝜔0 is [PPZ18b].
However, it is a straightforward calculation to prove the conformally balanced condition
for 𝜔(𝑡) for all 𝑡 by hand:

Lemma 3.3.2. The metric 𝜔(𝑡) is conformally balanced for all 𝑡 ≥ 0.

Proof. Squaring the fundamental 2-form delivers

𝜔(𝑡)2 = −1
2 (𝑏1(𝑡)𝑏2(𝑡)𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2 + 𝑏2(𝑡)𝑏3(𝑡)𝛼2 ∧𝛼2 ∧𝛼3 ∧𝛼3

+𝑏3(𝑡)𝑏1(𝑡)𝛼3 ∧𝛼3 ∧𝛼1 ∧𝛼1).
(3.29)

The conformally balanced condition is satisfied for all times since

d
(
∥Ω∥𝜔(𝑡)𝜔(𝑡)2

)
= −1

2 ∥Ω∥𝜔(𝑡)𝑏3(𝑡)𝑏1(𝑡) (𝜕 + 𝜕)
(��𝑧1��2d𝑧2 ∧d𝑧2 ∧d𝑧1 ∧d𝑧1

−𝑧1d𝑧2 ∧d𝑧3 ∧d𝑧1 ∧d𝑧1 − 𝑧1d𝑧3 ∧d𝑧2 ∧d𝑧1 ∧d𝑧1
)
= 0.

(3.30)
□
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3.3.3 Necessary Condition on Curvature Form on 𝐿

We define a Chern connection on the rank-2 holomorphic vector bundle 𝐿 ⊕ 𝐿∗ → 𝑀 , so
that it has the curvature

𝜕
(
𝜕𝐻 (𝑡) ·𝐻 (𝑡)−1) = 𝐹 (𝑡) = i

4 (𝛼1 ∧𝛼1 −𝛼2 ∧𝛼2)
(
1 0
0 −1

)
. (3.31)

This implies that a necessary requirement for the initial Hermitian fiber metrics is

𝜕
(
ℎ−1

0 𝜕ℎ0
)
=

i
4 (𝛼1 ∧𝛼1 −𝛼2 ∧𝛼2) (3.32)

and this is how we choose the initial metric. This is for instance guaranteed by taking
the connection 1-form on 𝐿 as i

4

(
𝑧2𝛼2 − 𝑧1𝛼1

)
.

3.3.4 Solving the Anomaly Flow Equations

We now use the ansatz in equations (3.23) and (3.27) to solve the Anomaly flow partial
differential equation in equations (1.5) to (1.8):

Theorem 3.3.3. The Anomaly flow is solved by

𝜔(𝑡) = i
2

(√︂
𝑐1
𝑐2

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 + 𝑐1

)
𝛼1∧𝛼1 +

i
2

(√︂
𝑐2
𝑐1

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 + 𝑐2

)
𝛼2∧𝛼2 +

i
2𝛼3 ∧𝛼3, (3.33)

and

𝐻 (𝑡) =
©­­­«
ℎ0

(
1√
𝑐1𝑐2

(
1
𝜆
− 𝛼′

8𝜆

)
𝑡 +1

) 3/2
1
𝜆
− 𝛼′

8𝜆

(√︃
𝑐1
𝑐2
+
√︃

𝑐2
𝑐1

)
0

0 ℎ−1
0

(
1√
𝑐1𝑐2

(
1
𝜆
− 𝛼′

8𝜆

)
𝑡 +1

)− 3/2
1
𝜆
− 𝛼′

8𝜆

(√︃
𝑐1
𝑐2
+
√︃

𝑐2
𝑐1

)ª®®®¬ ,
(3.34)

whereas the formula for 𝐻 holds only in the case 𝛼′ ≠ 8 and 𝑐1 ≠ 𝑐2.

Proof. We have

Tr(𝐹 ∧𝐹) = 1
4𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2. (3.35)

Furthermore,

𝜕𝜕𝜔 = 𝜕𝜕

(
i
2
��𝑧1��2𝑏3(𝑡)d𝑧2 ∧d𝑧2

)
=

i
2𝑏3(𝑡)𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2. (3.36)

The anomaly flow now delivers
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−𝜆2

(
𝜕𝑡

√︄
𝑏1(𝑡)𝑏2(𝑡)
𝑏3(𝑡)

𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2 + 𝜕𝑡

√︄
𝑏2(𝑡)𝑏3(𝑡)
𝑏1(𝑡)

𝛼2 ∧𝛼2 ∧𝛼3 ∧𝛼3

+𝜕𝑡

√︄
𝑏3(𝑡)𝑏1(𝑡)
𝑏2(𝑡)

𝛼3 ∧𝛼3 ∧𝛼1 ∧𝛼1

)
= 𝜕𝑡

(
∥Ω∥𝜔(𝑡)𝜔(𝑡)2

)
= i𝜕𝜕𝜔(𝑡) − 𝛼

′

4 (Tr(𝑅(𝑡) ∧𝑅(𝑡)) −Tr(𝐹 (𝑡) ∧𝐹 (𝑡)))

=

(
𝛼′

16 − 𝑏3(𝑡)
2

)
𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2

(3.37)

and using

𝜔(𝑡)3 = −3
4i𝑏1(𝑡)𝑏2(𝑡)𝑏3(𝑡)𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2 ∧𝛼3 ∧𝛼3, (3.38)

we find

𝜕𝑡 log(𝑎(𝑡))
(
1 0
0 −1

)
= 𝐻 (𝑡)−1𝜕𝑡𝐻 (𝑡) = 𝜔(𝑡)

2 ∧𝐹 (𝑡)
𝜔(𝑡)3 =

3
2

(
1

𝑏1(𝑡)
− 1
𝑏2(𝑡)

) (
1 0
0 −1

)
. (3.39)

The first Anomaly flow equation (3.37) gives the initial value problem

𝜕𝑡

√︃
𝑏1 (𝑡)𝑏2 (𝑡)
𝑏3 (𝑡) =

𝑏3 (𝑡)
𝜆

− 𝛼′

8𝜆 ,

𝜕𝑡

√︃
𝑏2 (𝑡)𝑏3 (𝑡)
𝑏1 (𝑡) = 0,

𝜕𝑡

√︃
𝑏3 (𝑡)𝑏1 (𝑡)
𝑏2 (𝑡) = 0,

𝑏1(0) = 𝑐1,

𝑏2(0) = 𝑐2,

𝑏3(0) = 1,

(3.40)

and the second Anomaly flow equation (3.39) provides
𝜕𝑡 log(𝑎(𝑡)) = 3

2

(
1

𝑏1 (𝑡) −
1

𝑏2 (𝑡)

)
,

𝑎(0) = 1.
(3.41)

The second and third equations in equation (3.40) are easily soluble:√︄
𝑏2(𝑡)𝑏3(𝑡)
𝑏1(𝑡)

=

√︂
𝑐2
𝑐1

and

√︄
𝑏3(𝑡)𝑏1(𝑡)
𝑏2(𝑡)

=

√︂
𝑐1
𝑐2
. (3.42)

Multiplying these two equations with each other gives 𝑏3 ≡ 1. Inserting this into the inte-
grated third line of equation (3.40) results in 𝑏2 =

𝑐2
𝑐1
𝑏1 and together with the first line in
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equation (3.40) provides

𝑏1(𝑡) =
√︂
𝑐1
𝑐2

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 + 𝑐1 and 𝑏2(𝑡) =

√︂
𝑐2
𝑐1

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 + 𝑐2. (3.43)

Inserting 𝑏1, 𝑏2 and 𝑏3 into the ansatz in equation (3.23) for 𝜔, delivers equation (3.33).
We now integrate the differential equation (3.41) and find

log(𝑎(𝑡)) = 3/2
1
𝜆
− 𝛼′

8𝜆

(√︂
𝑐1
𝑐2

+
√︂
𝑐2
𝑐1

)
log

(
1

√
𝑐1𝑐2

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 +1

)
, (3.44)

so that

𝑎(𝑡) =
(

1
√
𝑐1𝑐2

(
1
𝜆
− 𝛼

′

8𝜆

)
𝑡 +1

) 3/2
1
𝜆
− 𝛼′

8𝜆

(√︃
𝑐1
𝑐2
+
√︃

𝑐2
𝑐1

)
. (3.45)

Inserting equation (3.45) into the ansatz for 𝐻 in equation (3.27) finishes the proof. □

Theorem 3.3.3 shows that the infinite-time behaviour of 𝜔 and 𝐻 is divergent if 𝛼′ ≠ 8. It
proves the non-existence of a stationary point and thus the non-existence of solutions to the
Hull-Strominger system in the case 𝛼′ ≠ 8.

It should be mentioned that equation (3.33) defines a Hermitian metric on 𝑇1,0(𝑀) as
long as 𝛼′ ≤ 8. If 𝛼′ > 8, there exists a finite time 𝑇 > 0 for which𝜔(𝑇) is not the fundamental
2-form of any Hermitian fiber metric on 𝑇1,0(𝑀).

3.3.5 The Special Slope Parameter 𝛼′ = 8

In the case 𝑐1 = 𝑐2, we get 𝑏1 = 𝑏2 and together with equation (3.39), we find

𝐻 (𝑡) = 𝐻 (0) for all times 𝑡 ≥ 0. (3.46)

However, also in this case, the infinite-time behavior of 𝜔 remains divergent if 𝛼′ ≠ 8.
Clearly, the initial value problem in equation (3.40) demonstrates that the case 𝛼′ = 8 is

special.

Theorem 3.3.4. Suppose 𝛼′ = 8.

1) If 𝑐1 = 𝑐2, a stationary point exists in the Anomaly flow and is given by (𝜔(0), 𝐻 (0)).

2) If 𝑐1 < 𝑐2, the geometry of 𝐿 ⊕ 𝐿∗ collapses to the line bundle 𝐿.

3) If 𝑐1 > 𝑐2, the geometry of 𝐿 ⊕ 𝐿∗ collapses to the dual bundle 𝐿∗.

Proof. Since 𝛼′ = 8, we obtain the constant solution 𝑏1 ≡ 𝑐1, 𝑏2 ≡ 𝑐2 and 𝑏3 ≡ 1 and thus

𝜔(𝑡) = 𝜔0 =
i
2 (𝑐1𝛼1 ∧𝛼1 + 𝑐2𝛼2 ∧𝛼2 +𝛼3 ∧𝛼3), (3.47)

𝐻 (𝑡) = ©­«ℎ0𝑒
3
2

(
1
𝑐1
− 1

𝑐2

)
𝑡 0

0 ℎ−1
0 𝑒

− 3
2

(
1
𝑐1
− 1

𝑐2

)
𝑡

ª®¬ . (3.48)
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by equations (3.40) and (3.41). Hence, the infinite time behavior of 𝜔 exists trivially. The
infinite time behaviour of 𝐻 exists only if 𝑐1 = 𝑐2, and in this case, also 𝐻 (𝑡) = 𝐻 (0) for all
times 𝑡 ≥ 0. We thus have

𝐻∞ := lim
𝑡→∞

𝐻 (𝑡) =



(
∞ 0
0 0

)
if 𝑐1 < 𝑐2,

𝐻 (0) if 𝑐1 = 𝑐2,(
0 0
0 ∞

)
if 𝑐1 > 𝑐2.

(3.49)

This shows that the geometry collapses to the line bundle 𝐿 if 𝑐1 < 𝑐2 or to its dual 𝐿∗ in
the case 𝑐1 > 𝑐2 at infinite times. Only at 𝑐1 = 𝑐2, the metric 𝐻 is the initial metric on the
Whitney sum 𝐿 ⊕ 𝐿∗. □

The existence of a solution to the Hull-Strominger system on the Iwasawa manifold was
proven in [Láz+25].

3.3.6 Stability Analysis for the Stationary Point

Rescaling the metric 𝐻 in equation (3.48) to

𝐻 (𝑡) =
(
ℎ0 0

0 ℎ−1
0 𝑒

−3
(

1
𝑐1
− 1

𝑐2

)
𝑡

)
(3.50)

and assuming 𝑐1 < 𝑐2 (in the case 𝑐1 > 𝑐2 we can rescale this𝐻 by multiplying equation (3.48)

with 𝑒
3
2

(
1
𝑐1
− 1

𝑐2

)
𝑡), we find

𝐻∞ = lim
𝑡→∞

𝐻 (𝑡) =
(
ℎ0 0
0 0

)
. (3.51)

This collapses the discussion to considering the line bundle 𝐿 over the Iwasawa manifold 𝑀 .
Together with the limiting metric 𝜔∞ := lim𝑡→∞𝜔(𝑡) = 𝜔(0) one might ask, whether this
pair (𝜔∞, 𝐻∞) poses a solution to the Hull-Strominger system.

After a small calculation, one sees rather quickly that the Bianchi identity (1.1) of the
Hull-Strominger system is not satisfied. Indeed, the associated curvature reads

𝐹∞ := i
4 (𝛼1 ∧𝛼1 −𝛼2 ∧𝛼2)

(
1 0
0 0

)
(3.52)

and thus
Tr(𝐹∞∧𝐹∞) =

1
8𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2. (3.53)

Also,

i𝜕𝜕𝜔∞ = −1
2𝜕𝜕 (𝛼3 ∧𝛼3) = −1

2𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2. (3.54)

Having 𝛼′ = 8, we find
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i𝜕𝜕𝜔∞− 𝛼
′

4 (Tr( 𝑅∞︸︷︷︸
=0

∧𝑅∞) −Tr(𝐹∞∧𝐹∞)) = −1
4𝛼1 ∧𝛼1 ∧𝛼2 ∧𝛼2 ≠ 0 (3.55)

and thus the Bianchi identity (1.1) is not satisfied. This renders the case 𝛼′ = 8 and 𝑐1 = 𝑐2,
for which a solution to the Hull-Strominger system exists, as highly unstable.
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4 Conclusion
We first developed the necessary complex geometric tools in a self-contained way to intro-
duce the Hull-Strominger system together with its associated Anomaly flow. We studied the
Anomaly flow on a torus and on an Iwasawa manifold separately. More concretely, we gave
specific individual flow ansatzes, translated the Anomaly flow into individual soluble cou-
pled initial value problems and proved the existence or non-existence of stationary points.
The existence of stationary points is equivalent to the existence of solutions to the Hull-
Strominger system on the particular setup under inspection. In this procedure, we gave
necessary conditions for the connection forms of the Chern connection on the Whitney
sum 𝐿 ⊕ 𝐿∗ to receive the curvature 𝐹 that we would like to work with (see equations (3.10)
and (3.31)).

It is clearly the case that the Anomaly flow we discussed on the torus does not have a
stationary point and thus the Hull-Strominger system does not exhibit a solution on the
torus. On the Iwasawa manifold, there were three cases we were able to differentiate which
are summarized in equation (3.49). Only when 𝛼′ = 8 and only in the case 𝑐1 = 𝑐2 we can
guarantee the existence of a stationary point in the Anomaly flow on the Iwasawa manifold.
This stationary point is actually given by the initial metrics (𝜔0, 𝐻0). All other values of
𝛼′ deliver divergent infinite time behaviours for the Hermitian fiber metric 𝐻 (𝑡) on 𝐿 ⊕
𝐿∗ (see equation (3.34)) and the fundamental 2-form 𝜔(𝑡) on the Iwasawa manifold (see
equation (3.33)).

The stationary point on the Iwasawa manifold, for 𝛼′ = 8 and 𝑐1 = 𝑐2, is identified to be
an unstable one in the following sense. Assuming 𝛼′ = 8 but 𝑐1 ≠ 𝑐2 does not only imply
the non-existence of solutions to the Hull-Strominger system. After rescaling 𝐻 (𝑡) as in
equation (3.50), its infinite time behaviour is convergent (see equation (3.51)) but the limit
does not qualify as a solution to the Hull-Strominger system.

In [FY08], Fu and Yau develop a solution to the Hull-Strominger system. They consider
a 𝑇2-bundle (𝑀,𝜔,Ω) over a complex surface (𝑆,𝜔𝑆,Ω𝑆) with a non-vanishing holomor-
phic 2-form Ω𝑆. The surface 𝑆 must be a finite quotient of a 𝐾3 surface, a complex torus or
a Kodaira surface due to the classification of complex surfaces by Enriques and Kodaira. Fu
and Yau rule out the existence of solutions to the Hull-Strominger system on 𝑇2-bundles
over Kodaira surfaces. They further argue that due to duality from M-theory, a supersym-
metric solution to the Hull-Strominger system is not expected when the base manifold is a
complex torus (Iwasawa manifold included). Thus, they prove the existence of a solution to
the Hull-Strominger system on 𝑇2-bundles over 𝐾3 surfaces.

Phong, Picard and Zhang [PPZ18a] take the Fu-Yau ansatz from [FY08; FY07] and
assume certain components to be time dependent. In this way, they can write down the
Anomaly flow and rediscover the Fu-Yau solution as a stationary point. More precisely,
they consider a Goldstein-Prokushkin fibration over a Calabi-Yau surface and consider a
stable vector bundle. After a mild cohomological assumption, they prove for given initial
data that the Anomaly flow exists for all times and converges to a solution of the Hull-
Strominger system.
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