
Z theom BioL (1989) 137, 271-279 

Splitting of Cell Clusters and Bifurcation of Bryozoan Branches 
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We present a cell mechanical model that exhibits the pattern-forming behaviour of 
a cluster of cells at the growing tips of bryozoan branches. The crucial event in the 
production of the overall branching pattern is the splitting of the cluster into two 
clusters, rather than the formation of the cluster from a uniform distribution. In 
simulations, the uniform cell distribution initially evolved, as indicated by a linear 
analysis, either to a spatially patterned state, or to a temporally oscillating state. 
We suggest that the same processes responsible for the formation and behaviour of 
the cell cluster may also be responsible for tip branching. 

1. Introduction 

Branching structures such as trees, corals and bryozoans are created by iteration of 
two separate processes: the growth of  branches and the splitting of one branch into 
two. The characteristic and often striking differences in branching structure among 
taxa result from differences in the timing and location of  the splitting events. Those 
differences can be modelled phenomenologically by constructing rules for growth 
and branching, and then describing their resulting patterns (for example,  Bell, 1976; 
Fisher & Honda,  1979; Gardiner  & Taylor, 1982; McK.inney & Raup, 1982; Niklas, 
1982; cf. Waller & Steingraeber, 1985; Bell, 1986; Goldwasser,  1988). Such models,  
however, do not answer, or even pose, questions about the actual processes that 
underlie and determine the rules. Other models, such as those of  reaction diffusion 
systems (for example,  Lacalli & Harrison, 1987; Harrison & Kolar, 1988), depend 
on as yet undiscovered morphogens to establish the branching patterns. In this 
paper  we present a mechanical model,  based on cellular processes known to be 
involved in both branch growth and splitting in arborescent bryozoans,  and show 
that it exhibits both growth and splitting. 

Many models of  cellular mechanics (for example,  Oster et al., 1983; Murray & 
Oster, 1984a, b) investigate the initial formation of  pattern as deviations from initially 
uniform conditions; in such cases a linear stability analysis about  the uniform steady 
states provides a reasonably good prediction of the ultimate spatially heterogeneous 
pattern formed. For bryozoan growth, however, the pattern-forming event is the 
splitting of  one cluster of  cells into two (Schneider, 1963; Schneider & Kaissling, 
1964); and a stability analysis of  a non-uniform distribution is rarely possible or 
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feasible.  Here  we have used  s imula t ions  of  cell movemen t s  to inves t iga te  the events  
af ter  the c luster  o f  cells is formed.  These  s imula t ions  d i sp l ay  not  only  the fo rma t ion  
o f  the init ial  pa t t e rn  p red ic t ed  by the model ,  but  also the subsequen t  sp l i t t ing  o f  
one c luster  into two. 

2. Branching in Bryozoans 

G r o w t h  in b ryozoans  is dis tal ,  with new units  (zoo ids )  a d d e d  to the end o f  
b ranches  regard less  o f  whe ther  sp l i t t ing  occurs  (see Fig. 1). In one o f  the  few s tudies  
o f  the growing  t ips o f  b ryozoans ,  Schne ide r  (1963) r epo r t ed  a g roup  o f  cells in 
Bugula with s t r ik ing behav iou r :  

"While there is limited random movement of the individual cells, the degree of cell 
co-ordination is remarkable. All these cells are somehow oriented to the centre of the 
cell plate, which is rhythmically expanding or contracting, or even twisting." 

He conc ludes ,  " H o w  this l ocomot ive  act ivi ty  and  c o - o r d i n a t i o n  is b rough t  abou t  
is qui te  u n k n o w n . "  Our  mode l  speci f ica l ly  addresses  these  ques t ions .  

We focus on the b e h a v i o u r  o f  these  cells because  o f t h e i r  effect on both  the g rowth  
and sp l i t t ing  o f  the b ranches  (Schne ider ,  1963; Kaiss l ing ,  1963; Lu taud ,  1961, 
Tavene r -Smi th  & Wil l iams ,  1972). The  cells lie on the  inner ,  d o m e d  sur face  o f  a 
g rowing  tip,  where  they secrete  the  cuticle as the b ranch  grows (Tavene r -Smi th  & 
Wil l iams ,  1972). The  new cut icle  is inser ted  d i rec t ly  into the exis t ing cuticle ,  as 
i l lus t ra ted  in Fig. 2. O l d e r  cut icle  at the pe r iphe ry  o f  the  d o m e  be c ome s  calcif ied 

FIG. 1. Diagram of an arborescent bryozoan colony, such as Bugula sp., showing the cells at the 
growing tips. The cluster of cells on the rightmost branch has split, and that branch is beginning to form 
two daughter branches. For simplicity the branches are depicted as continua rather than as divided into 
discrete zooids (which occurs only proximally from the tip). 
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FIG. 2. Diagrammatic cross section through the cuticle at the tip of a bryozoan branch, laid flat. The 
cells sit on the inside surface of the tip and secrete cuticle. The new cuticle is inserted directly into the 
existing cuticle, which spreads out, carrying with it the cells and adhesive sites. 

and, after being pushed outward and becoming part of  the cylinder of  the branch, 
falls behind the forward-growing tip. The direction of  branch elongation depends 
on the location of the cells within the tip. Splitting of the cluster into two coincides 
with the splitting of one branch into two daughter branches (Schneider, 1963). 

A few other details are known about these cells. They do not themselves reproduce; 
new cells are recruited proximally from within the branch (Schneider, 1963, Tavener- 
Smith & Williams, 1972). The motion of individual cells is rapid on the time scale 
of  branch growth (personal observation). 

We take the splitting of the cluster of  cells to be the initial event in branching, 
and do not attempt to model the subsequent alterations in the shape of the dome 
(Fig. 1) or the establishment of  the two independent daughter  branches. 

3. Model for Cell Patterning at Tips of Bryozoan Branches 

For mathematical  simplicity, we construct a model on a one-dimensional domain 
to focus on the behaviour of  the clusters of cells rather than on the more complex 
dome-like structure of  the branch tips. We use r(x, t) for the density of  the matrix, 
or cuticle; a(x,  t) for the density of  adhesive sites; and n(x, t) for the density of  
the cells at each point x at time t. The cells and the matrix are both observable, 
while the adhesive sites are postulated. We introduce the adhesive sites because 
some attractive entity is necessary for the production of patterns. In itself, convection 
by the spreading matrix can only tend to break up patterns as it carries cells out of  
the domain. 

Our model is based essentially on two processes: the spreading of the matrix with 
the convection of cells and adhesive sites with it, and the secretion of matrix and 
adhesive sites by the cells. The cells thus follow a gradient in adhesive s i t es - -of  
their own crea t ion- -as  they are carried by the matrix. This scheme is illustrated in 
Fig. 2. The movement  of  cells up such a gradient, known as haptotaxis, is a general 
and widely observed phenomenon in cell behaviour (see, for example,  Harris, 1983). 

The model equations are: 

~n - Ar + c(rr~)x 
rt = ( la)  

secretion calcification convection 
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bn - Ixa + c(ar,:),~ 
a, = ( lb)  

secretion decay convection 

n , =  dnxx - h (nax)x  + c(nr , ) . ,  
(lc) 

diffusion haptotaxis convection 

where subscripts denote partial differentiation. The parameter  c represents the rate 
at which the matrix spreads out as new matrix is inserted, and, in the similar terms 
in the second and third equations, the rate at which the adhesive sites and cells are 
carded with it. The rate of  secretion of  matrix per cell is ~'; the loss of  matrix by 
calcification is h per unit of  matrix. Similarly, in eqn ( lb) ,  b represents the rate of  
secretion of adhesive sites per cell, and the decay of adhesive sites occurs at the 
rate Ix. In eqn (lc),  d is the diffusion constant and h is the rate at which cells move 
up a gradient in adhesive sites. Because the cells are motile, unlike the matrix and 
adhesive sites, we include a diffusion term only for the cells. There is no term for 
cell recruitment because these cells are non-mitotic (Schneider, 1963; Tavener-Smith 
& Williams, 1972). We have chosen linear secretion and calcification or decay terms 
for their simplicity; it is not necessary to invoke more complicated behaviour  to 
produce the patterns observed. 

4. Linear Analysis for Pattern Initiation 

We denote the mean cell density throughout the domain by N,  the original length 
of the domain by Lo, and its current length by L. We make the following non- 
dimensional substitutions: 

n* = n / N ,  a* = a h / ( i x L o ) ,  

t* = t~LU t, 2, ~, = L ~ /  L o ,  

b* = b h N / I X 2 L  2, 

r* = rc / ( ixL2) ,  x*  = x~ L, 

cN~/ ( IX-Lo) ,  A* = A/p., 

d* = d / ( i x L o ) .  

(2) 

The resulting non-dimensional  system becomes, on dropping the asterisks for nota- 
tional convenience, 

rt = y ( ~ n -  Ar) +(rr~)x (3a) 

a, = 3,(bn - a)  + (arx)x (3b) 

n, = dnxx - (nax)x + (nrx)x.  (3c) 

I f  n is constant over the domain,  then the non-dimensionalization eqn (2) implies 
that n = 1. The uniform steady states for (r, a, n) are (0, 0, 0) and (~'/A, b, 1); the 
latter is the biologically relevant one. We linearize about this steady state and look 
for solutions of  the form: 

1 
a - b  | o c e x p  [o-t+ ik.x], 

/ 

n - l ]  
where k is the wave number  of  the perturbation (which is inversely proportional  to 
the wavelength of  the perturbation),  and or the rate of  growth of  perturbation with 
wave number  k. When Re (tr) is positive the perturbation grows; when Re (o-) is 
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negative it decreases. Substitution of  this form into the linear equations gives the 
following dispersion relation between k and o-: 

0-3+ [(d + ~/A)k2+ y(A + 1)]trz + [d¢k4/A + k2y(~'/A + dA + st+ d - b) + y2A ]o- 

+ [k*3~(d/X + b - b/X ) + k232(dX + ~ - bX)] = 0 (4) 

In the spatially uniform situation, when k = 0, the dispersion relation reduces to 

o-3+ y(X + 1)o'2+ y2Ao" =0 ,  

which has the solution o- = 0 with the other two roots being negative. Because no 
roots are positive, the system is stable to spatially homogeneous solutions. When 
k ~ 0, the cubic eqn (4) has either three real roots for o- or one real root and two 

~- ( a i  

I I I * 

I I 
i 

I . . /  I 

(b) 

t I * 

FIG. 3. (a) A typical dispersion relation. Parameter values: d = I0, b = 200, a =20 ,  y = 12, ~'= 10. For 
low values of  k the real root ( ) is both positive and greater than the real part of  the complex 
roots. For larger k, the real part of  the complex roots ( . . . .  ) is greater than the real root but  still 
negative; these disturbances do not grow. (b) A dispersion relation in which a complex eigenvalue has 
a real part positive and greater than the real eigenvalue of  that wave number.  The complex part suggests  
temporal wave-like oscillations. 
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complex conjugate roots. The behaviour  of  a disturbance with wave number  k 
depends on the sign of the real part of  that root of  eqn (4) (real or imaginary) 
whose real part is greatest. When that greatest real part is positive, the disturbance 
grows. For some values of  the parameters,  the root with greatest real part is real 
and positive for a range of k, suggesting that the initially uniform cell distribution 
will evolve to a spatially heterogeneous one. Figure 3(a) shows a dispersion relation 
in such a case. For some values of  the parameters,  however, some values of  k give 
complex roots cr whose real part is both positive and greater than the real root for 
that k. In such cases, the complex root determines not only whether that mode 
grows but also that its behaviour is oscillatory (cf. Murray, in press). Figure 3(b) 
shows a dispersion relation in which there is a range of  k for which cr is complex 
and has a positive real part which is greater than the positive real root. 

Although we can identify the fastest-growing wave number,  kin, linear growth is 
indicated with other wave numbers. From eqn (4) it can be shown that all modes with 

0 < k < [(ba - da - ~ ) l ( d l a  + b - b l a  )]3,/s r 

exhibit exponential growth. It is not possible to adjust the parameters,  as is typical 
in linear theory of most pattern formation models (Murray, in press), to isolate one 
wave number  for growth while all others decay. The dispersion relation tr = or(k) 
passes through the origin for all values of  the parameters:  this tethering to the origin 
is a direct consequence of the lack of mitosis (Schneider, 1963; Tavener-Smith & 
Williams, 1972) among the tip cells. Here, whenever pattern can form, there is a 
range of  many growing wave numbers;  the analysis can only single out the wave 
number  that initially grows fastest. In this case the boundary  conditions may play 
a crucial role in determining which pattern develops. Although linear theory provides 
a predictive guide, numerical simulations are required to produce the spatial patterns 
that are solutions of  the full non-linear system. 

5. Numerical Simulations for Spatial Patterns 

For the simulations we used a simple upwind s c h e m e - - a  type of Galerkin method 
(Mitchell & Griltiths 1980)--that we found to be stable for a wide range of parameter  
values. Considerable care is required in setting the boundary  conditions to reflect 
the developmental  process. Although zero-flux conditions were appropriate  for the 
cells, which remain within the domain of the tip, the matrix continually spreads 
out of  the domain,  carrying adhesive sites with it; it was both biologically and 
mathematically necessary for the flux of  matrix and adhesive sites to be non-zero. 

Starting with small random perturbations about the non-trivial steady state, the 
simulations produced the patterns predicted by the linear analysis: either one cell 
cluster, when km = r  r, or two clusters when k,,, =2rr.  Although such results are 
common in studies of  pattern formation,  they are less informative here. The sig- 
nificant occurrence here is not the initial formation of a c luster--which exists for 
most o f  the duration of  a b ranch - -bu t  the splitting of  that cluster into two clusters 
that subsequently diverge as the daughter  branches grow out. Changes in a pattern 
after its initial growth from uniform conditions can be due only to non-linearities 
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FIG. 4. Simulation showing the formation, from initial conditions (a), of  two clusters of  cells (b), 
their merging (c), and their subsequent splitting (d). 

in the model; here, the non-linear convective matrix term alters the stability of the 
cluster of  cells, making splitting possible. 

The interesting and important feature of the model is that it produced splitting 
of a f o r m e d  cluster of cells. Unexpectedly, splitting occurred not only when k,, = 27r 
(two clusters form initially), but also when k,, = 7r (one cluster forms initially). Thus 
a single set of  parameter values can produce a single cluster arising from random 
perturbations about uniform initial conditions and  its subsequent splitting into two 
clusters. 

The presence of growing modes with complex eigenvalues indicates the possibility 
of oscillations or travelling waves. Indeed, in some simulations, two initial clusters 
merged into a single cluster and then split into two again (Fig. 4). The model and 
simulations can thus capture much that is known about the movements of these cells. 

6. Discussion 

Most models of  pattern formation are concerned with the production of pattern 
from initially uniform conditions. This model exhibits such capabilities as well as 
the more complex emergence of  new patterns from an already patterned state. 
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Our model suggests that the mechanism involved in the splitting of bryozoan 
branches is the same as that involved in normal branch elongation: branching is 
thus a natural extension of growth. Importantly,  splitting may occur without change 
in parameter  values. 

Many of  the patterns produced were transients rather than steady state solutions. 
Branching occurs whenever the cluster splits, even if the distribution is not a steady 
state; the splitting is marked by daughter branches at that point. The transient 
behaviour of  the cells thus affects the subsequent form of a bryozoan colony, and 
the colony preserves a history of  their behaviour. 

Oscillatory and wave behaviour have also been observed in the cells at the tips 
of  the encrusting bryozoan Membranipora membranacea (Lutaud, 1961). Although 
the cells are fixed on the inner surface of the cuticle, waves of  cell movement  sweep 
across them from one side of  the tip to the other. In this case splitting is associated 
with the breaking up of one wave into two waves. 

The co-ordination of  movements  of  the cells, remarked upon by Schneider (1963), 
is produced in this model by each cell acting only according to its local conditions; 
there is no need for long-range transmission of information or a single source of 
information to guide their movements.  

Most of  the components  of  our model are well documented in the literature. We 
postulate the existence of adhesive sites to provide an aggregating force that counters 
the convective effects othe spreading matrix. The decay of  the adhesive sites also 
seems plausible and is necessary for pattern formation. A chemo-attractant with 
similar behaviour would of course produce similar patterns. 

The rate of  convection may actually depend on the number  of  cells between each 
point and the centre of  the domain,  rather than on the gradient in matrix density. 
However, we do not pursue this refinement at this stage. Nor  does our model address 
the subsequent events, triggered by the splitting of the cell cluster, that are responsible 
for the establishment and geometry of the two independent  daughter  branches. 

It is well known that widening the domain affects the formation of pattern (see, 
for example,  Murray, 1981, in press). In encrusting bryozoans the width of the tip 
affects the probabili ty of  branching (Banta & Holden, 1974), and a gradual widening 
of branches from one bifurcation to the next has been seen in some Bugula (personal 
observation). Such changes can be reflected in our model by increasing % which is 
a measure of  scale [see eqn (2)], as a branch grows. 

Although the cells at the branch tips do not divide, their number  is not constant: 
recruitment from proximal regions of  the branch balances the halving that occurs 
during branching. Our non-dimensionalized variables ~ and b increase linearly with 
N, the mean density of  cells; and the dispersion relation and fastest growing 
wavenumber  km change with them. The magnitude and even the direction of  the 
change in km depends on the particular values of  the other parameters.  In the model 
here we have kept N constant because the recruitment of  cells is slow relative to 
the time scale of  their motions. In further studies we intend to investigate the patterns 
formed as N increases during branch growth. It would also be interesting to consider 
a more realistic dome-shaped tip. The present model, however, seems to capture 
the principal elements of  tip branching. 
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