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This paper considers the comparison of experimental spatial and temporal data of mitotic
rates measured during corneal epithelial wound healing (CEWH) of a rat model with the
predictions of a computer modelling framework. We begin by briefly showing that previous
models, used in the study of corneal epithelial wound healing speeds, are inadequate for the
study of cell kinetics. We proceed to formulate a new modelling framework more suited to
such a study. This framework is simulated in its simplest form, and the results from this
motivate a new realisation of the modelling framework, including a caricature of age
structuring. Finally, a model with a simple representation of juxtacrine signalling is
considered. The final model captures many, though not all, of the trends of the experimental
data. This paper thus lays a foundation for the modelling of the cell kinetics of corneal
epithelial wound healing, and yields valuable insight regarding the important mechanisms a
model should consider in order to reproduce the observed experimental trends.
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1. Introduction

Evolutionary pressures have spurred the devel-
opment of many complex wound healing
mechanisms in higher organisms. Unique among
such mechanisms is the highly specialised healing
of the cornea. The overwhelming need to
maintain visual function requires the absence of
angiogenesis in corneal wound healing. Such
considerations imply that corneal wound healing

is of medical importance and, in many ways,
relatively simple compared with other wound
healing mechanisms. This is reflected by a
substantial literature which increasingly includes
quantitative data, especially in the specific aspect
of corneal epithelial repair, which is the focus of
this paper. For this subfield, there is also the
promise of remarkably detailed observational
insight into cell kinetics and cell dynamics, and
perhaps large amounts of multidimensional
quantitative data too, due to the recent
development of confocal microscopy techniques
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for the in vivo corneal epithelium (Masters,
1995). Consequently mathematical and compu-
tational modelling, though currently in its
infancy in this particular area, may reasonably
be expected to play an ever increasing role in the
coordination and development of a quantitative
understanding of the corneal epithelium and its
complex wound healing response.

In this paper the modelling of the corneal
epithelium and its repair is considered within a
simplified picture. Pathological possibilities such
as angiogenesis and conjunctival invasion of the
cornea are discounted, as are innervation, the
immunological system and many other intrinsic
biological features. One thus initially considers a
system of epithelial cells in various states of
differentiation on a basal lamina. The tissue
dynamics are controlled by numerous types of
cell–cell and cell–substrate interactions. These
interactions, together with the cell proliferation
and differentiation rates and extracellular matrix
component synthesis rates are critically depen-
dent on several different growth factors. There
are many possible sources of these growth
factors, including cell excretions, tear fluid, and

in a wounded cornea, cell debris and possibly
exogenous application.

Further complications arise from the structure
of the cornea whose unwounded state is a
dynamic equilibrium. Cells are continually shed
from the corneal surface, and continually
replaced by proliferation within the corneal
epithelium. The stem cells, which represent the
ultimate progenitor source of the corneal mass,
are localised at the edge of the cornea, in a region
referred to as the limbus. The stem cell
population is, in non-pathological scenarios, self
sustaining and also produces, via asymmetric cell
division, transient amplifying cells (Tseng, 1989).
These cells have a relatively short cell cycle time
and can undergo numerous rounds of cell
division. There is a continual flux of transient
amplifying cells onto the peripheral areas of the
cornea, where they migrate radially, undergo cell
division, and differentiate to form post-mitotic
cells (typically the wing and surface cells of the
cornea). This results in an implicit spatial
heterogeneity of the unwounded cornea, coupled
to the age structure of the corneal epithelial cells,
which can be a complicating factor in modelling

F. 1. A schematic diagram showing the correlation between the stages of cell differentiation and spatial position. The
stem cells (black) are located in the basal layers of the limbus. The transient amplifying cells tend to be localised in the
basal layers. The quiescent cells, namely the post-mitotic wing cells and the terminally differentiated surface cells, occur
in the non-basal layers. Movement between the cell compartments is also indicated, via the horizontal arrows, while
(symmetric) cell divisions are indicated by the looped ‘‘feedback’’ arrows. The diagram is based on Figs 7.5 and 8.2 of Bron
et al. (1997) and Fig. 1 of Kruse (1994).
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studies, as depicted schematically in Fig. 1,
which is reprinted at the end of the paper. This
heterogeneity and age structure affects the
wound healing response, as the proliferative
resources are concentrated in the limbal and
peripheral corneal regions.

Even the above simplified picture is too
complex to be modelled; the modelling tech-
niques are not currently powerful enough, and
not enough is known about the corneal
epithelium to attempt to incorporate such
detail. Focusing on specifics within this picture
has nonetheless been fruitful (reviewed in
Gaffney et al., 1997). Simple mathematical and
computational models of corneal epithelial
wound healing (CEWH), developed by Dale,
Sherratt and Maini (1994a, b), have been
successful in predicting wound healing speeds.
This model involved a single cell type and a
single chemical stimulus, and considered how
they would interact, leading to a phenomenolog-
ical model of two coupled nonlinear partial
differential equations. Investigating the wound
fronts of this system, and its travelling wave
analogue, led to predictions of wound healing
speeds that agreed closely with experimental
observations for biologically reasonable par-
ameters.

The intention in this paper is to build on
such foundations to investigate the modelling
of cell kinetics in CEWH. It is particularly
motivated by the publication of quantitative
spatial and temporal experimental cell kinetic
data (Sandvig & Haaskjold, 1993; Sandvig
et al., 1994) during CEWH of the rat model.
Thus our overall aim is to investigate whether
focusing on aspects of the above picture of
CEWH can yield a modelling framework capable
of capturing the trends of this published cell
kinetic data.

In the next section below, the experimental cell
kinetic data is briefly summarised. In the
following section the Dale–Sherratt–Maini
model mentioned above is used in an attempt to
simulate the experimental cell kinetic data. This
model however proves to be inadequate, but the
form of this inadequacy clearly motivates the
generalisations considered in this paper. Such
considerations are used to construct a new
modelling framework for CEWH, more capable

of capturing the experimental data. We proceed
to develop a simple realisation of the framework
which is followed by a presentation of the
modelling results. These indicate that the
introduction of extra mechanisms in the
model, including age structure effects, would be
crucial for capturing the trends of the published
data.

This motivates the development of two further
realisations of the modelling framework, both of
which incorporate a caricature of the effects of
age structure. The predictions of these models
are presented and discussed. The fact that many,
though not all, of the trends in the experimental
data are reproduced by the final model
developed in this paper represents a substantial
advance in the modelling of the cell kinetics of
CEWH. This final model also indicates the type
of mechanisms that may be needed to ensure
agreement of modelling and experiment, which is
crucial if future experimentation could yield data
that could support a more sophisticated mod-
elling effort, including details such as age
structured dynamics.

2. Preliminaries

2.1.  

The modelling of this paper is motivated by
the experimental measurement of mitotic rates
for various times and at numerous positions for
the repair of rat corneal epithelial wounds, as
measured by Sandvig et al. (1993, 1994). Here we
consider the results of three experiments; the first
was presented in Sandvig & Haaskjold (1993),
while the remaining two were presented in
Sandvig et al. (1994). The key observable to be
compared with the model predictions is the
measured mitotic rate. A summary of how this
was measured is as follows. Four hours prior to
sacrifice, rats were injected with a metaphase
arrest agent (Colchicine) which arrested the cell
cycle of any cell entering mitotic metaphase up
to the point of sacrifice. The percentage of cells
arrested in the mitotic metaphase after sacrifice,
as determined by direct counting, was denoted to
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F. 2. Experimental plots of mitotic rates at various times following wounding of the rat corneal epithelium. The
horizontal axes of the above graphs are scaled in terms of a typical rat corneal radius, which is approximately 0.4 cm; each
horizontal axis is also marked with a thick line, representing the initial wound size for the data given. In (a) the plots are
a control (– – –) and the mitotic rate at 28 hours after wounding (w); (b) and (c) gives the mitotic rates at 24 (w), 48 (×)
and 96 (+) hr after wounding, plus control mitotic rates (– – –). See text for full discussion. Replotted from Sandvig &
Haaskjold (1993) and Sandvig et al. (1994).

be the mitotic rate and plotted across the cornea
for various times. The experimental researchers
took care to prevent discrepancies between
individual measurements due to circadian vari-
ation.

A summary of the quantitative experimental
results has been reproduced for completeness in
Fig. 2; the figures are labelled (a), (b) and (c) to
enable future comparisons. Figure 2(a) rep-
resents the mitotic rate at 28 hours after
wounding for an initial wound in the shape of a
ring on the cornea, and also gives unwounded,
control data. The paper by Sandvig & Haaskjold
(1993) should be consulted for more experimen-
tal details concerning these measurements.

Figure 2(b) gives the mitotic rates at 24, 48 and
96 hr after wounding, plus control mitotic rates,
for a large circular initial wound. Figure 2(c)
gives the mitotic rates at the same three times
after wounding, plus control data, for a medium
sized circular initial wound. More experimental
details concerning Fig. 2(b) and 2(c) can be
found in Sandvig et al. (1994).

2.2.  :   



We define the mitotic rate in a manner that
corresponds to making the above experimental
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measurements on the modelling data. It takes the
form

mitotic rate
for region R . time t

=

100%

gR

dA' Total Cell Density (A', t)
G
G

G

F

f
G
G

G

J

j

×gR

dA' g
t

t−4 hr

dt'M(A',t') (1)

where dA' is a measure of area (2-D), or
length (1-D), and MdAdt is the number of cell
divisions occurring in the time interval [t,t+ dt]
and in the region of space associated with dA. R

is the region over which the experimental
measurements took place, i.e. the spatial region
in which, for a given plot on the above
experimental graphs, one counted the number of
cells stopped in mitotic metaphase. For the
experimental results above there are 16 such
regions, centred on the marks on the horizontal
axes of the above graphs, which correspond to
each measurement made.

One may consider predictions of the above
mitotic rate made by the previous model of Dale,
Sherratt and Maini (1994a, b), hereby referred to
as the DSM model. This study was mainly based
in cartesian coordinates* and was one-dimen-
sional. We briefly recap the form of this model.
Using m(x,t) to denote the cell density with
c(x,t) the concentration of chemical stimulus,
the DSM model on a finite domain is the
following set of coupled nonlinear partial
differential equations

1m
1t

=
1
1x 0(a+ āc)

1m
1x1

+(r+ r̄c)(m− lm2)− km

1c
1t

=Dc
12c
1x2 + f(m)− h(m)c− dc,

on a finite domain, with zero flux boundary
conditions. The parameters, a, ā, r, r̄, l, k, Dc

and d are constant, and x denotes the cartesian
spatial coordinate measuring distance along the
basal lamina. The kinetics of both m and c are
both of the form ‘‘Production–Loss’’. The
function f(m) represents a cell dependent source
of stimulus, while −h(m)c models the cell
internalisation of stimulus. Further details
concerning parameters, parameter estimation,
motivations and the most appropriate functional
forms of f(m) and h(c) may be found in the
original papers (Dale et al., 1994b; Gaffney et
al., 1997). As x is a cartesian spatial coordinate,
(1) reduces for the DSM model to

mitotic rate (x,t)=

100%

g
xhigh(x)

xlow(x)

dx' Total Cell Density (x',t)
G
G

G

F

f
G
G

G

J

j

×g
xhigh(x)

xlow(x)

dx' g
t

t−4 hr

dt'M(x',t')

xlow(x)=max(xmin, x−D)

xhigh(x)=min(xmax,x+D) (2)

F. 3. Predictions from the DSM model for the mitotic
rate across the cornea 24 hours after wounding. The plot is
for half a cornea, with the corneal centre at x=0 and the
limbal edge at x=1. Note the dramatic rise of predicted
mitotic rate into the centre of the cornea, in contrast to the
trends of the experimental data in Fig. 2.

*As the geometry of eyeball curvature did not greatly
affect the predictions of the model (Dale et al., 1994b;
Gaffney et al., 1997).
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where xmin, xmax denote the upper and lower limits
of the one-dimensional spatial domain, and D is
chosen so that, away from the boundaries,
(x−D, x+D) corresponds to (1/16)th of the
cornea. Hence D=(1/32)× (xmax − xmin), and the
averaging occurs over the same scale as in the
experimental observations, where measurements
were taken in 16 regions of the cornea.

The above mitosis function (2) for the DSM
model for 24 hours after a small central slit
wound yields the results shown in Fig. 3
(parameters as in the first model studied in Dale
et al., 1994b).

Figure 3 is typical of all the mitotic rate
predictions of the DSM model, for any
parameter regime tested. Thus we see that the
previous modelling framework predicts that the
mitosis function increases rapidly into the
corneal centre, which is clearly inconsistent with
the experimental data.

The DSM model fails to capture the basis
trend of the experimentally measured mitotic
rates in Fig. 2, which always decrease into the
wound. This naturally leads to the question of
whether the trends exhibited by the experimental
data may be captured by the use of more
detailed, but still relatively simple, modelling.
Investigating such a possibility is the overall aim
of this paper. Firstly, one must consider why the
DSM model fails in its predictions. Its main
fault, for cell kinetic predictions, is that its
formulation does not distinguish between prolif-
erative cells and quiescent cells. Hence, all cells
have the same proliferative ability, including
those at the wound edge, and those at the centre
of a recently covered wound bed. This leads to
the erroneous predictions shown in Fig. 3,
especially in regions where the cell density is
small, such as a freshly covered wound bed, due
to a low value of the denominator term in eqn
(2). The fundamental difference that pervades the
work presented in this paper is the introduction
of two cell compartments: proliferative cells and
quiescent cells. The proliferative cells constitute
cells capable of undergoing a further round of
mitosis, such as transient amplifying cells in the
corneal epithelium. The quiescent cells are
post-mitotic and thus represent the surface and
(most of) the wing cell layers of the corneal
epithelium.

By considering a model framework with two
such compartments one may have sufficient
structure to avoid the problems associated with
the mitotic rate predictions of the DSM model.
There is little or no proliferation at the wound
edge (Crosson et al., 1986) during all stages of
the wound healing, and so one may consider how
such a situation arises in a two cell compartment
model framework. One might speculate that the
proliferative cells are present at the wound edge,
but their proliferative capabilities are sup-
pressed. However, this would be impossible to
reconcile with the notion, based on experiment
(Dunn & Ireland, 1984; Barrandon & Green,
1987), that the wound bed acts as a source of
stimulus, such as growth factors, which stimulate
mitosis as well as migration. Consequently, one
is led to consider mechanisms whereby the
proliferative cells are poorly represented at the
wound edge.

There are two straightforward possibilities:
heterogeneity of the proliferative cell distribution
and differential migration rates of the prolifera-
tive and quiescent compartments. Heterogeneity
of the proliferative cell distribution is commonly
observed (Ebato et al., 1987, 1988; Tseng, 1989).
To motivate the possibility of differential
migration rates, we need to consider cell
movement mechanisms. Although a number of
details of such mechanisms are currently
unknown, it is generally agreed that movement
will increase the hydrostatic pressures within the
cell (Bray, 1992). However, increased hydrostatic
pressure would inhibit spindle formation in
mitosis (Wolfe, 1995), thus suppressing prolifer-
ation. Consequently, one may consistently
speculate that the intercellular conditions re-
quired for cell movement and proliferation are
not compatible, which would result in differen-
tial migration rates for the proliferative and
quiescent cell compartments.

The first model, denoted Model I below,
incorporates simply differential migration rates,
and we find this inadequate in predicting the
observed cell kinetics. We are thus led to a
second model, denoted Model II below, where
we additionally consider the spatial heterogen-
eity of the corneal epithelium, motivated from
the observation that stem cells, the ultimate
progenitors of the corneal mass, are localised in
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the limbus (Tseng, 1989). We find that even
these two mechanisms combined are not
capable of reproducing some of the
important trends exhibited by the experimental
data. The manner in which these two models
fail to reproduce the experimental data motivates
the inclusion of a representation of juxtacrine
signal in the third and final model of this paper,
denoted Model III below. This model yields
substantially better agreement between the
mitotic rate predictions and the experimental
data.

3. Modelling Framework

The modelling framework presented here
encompasses the basic assumptions concerning
the generic high level features of all models
considered in this paper. As commented
above, this represents a generalisation of the
DSM model which includes distinct proliferative
and quiescent cell compartments. Detailed
assumptions have to be made in order to
implement the model, which differ between
given realisations of the general model frame-
work; three of these are developed in
later sections. The constituents of the model
are:

, two generic epithelial cell types, together
with a single stimulus, representing the net effects
of growth factors and other possible stimuli.

As discussed above, one cell type is
considered to be a proliferative (P) cell type,
with the other a quiescent (Q) cell type. The
modelling of two distinct cell types is the key
structure that is radically different from the
previous modelling of CEWH. This enables
modelling of both the heterogeneity of the
proliferative cell compartment and the possi-
bility that proliferative cells and quiescent cells
migrate at different rates. The model obviously
must simulate how its constituents migrate
during CEWH.

, The chemical stimulus is assumed to spread
rapidly across the cornea via a constant rate of

transport, which will be modelled by a diffusion
process.

, Both cell types are assumed to migrate as
though they were diffusing substances. Cell
migration is much slower than chemical stimulus
transport, with the P cells migrating at a
significantly slower rate than the Q cells. The cell
migration rates increase significantly with in-
creasing concentrations of the chemical
stimulus.

The model also requires rules governing how
the various constituents interact with each other,
and how they are ‘‘created and/or destroyed’’
during CEWH. The general assumptions behind
the rules in all the models considered are as
follows:

, the proliferative (P) cells can undergo
mitosis, which is enhanced by increases in the
chemical stimulus;

, the P cells can also differentiate into
quiescent (Q) cells. The differentiation is
also enhanced by increases in the chemical
stimulus;

, at small P cell densities the mitosis
dominates, whereas at large P cell densities the
differentiation dominates;

, cell desquamation, i.e. cell loss via the
shedding of surface cells into the tear film, is
represented by an exponential decay of Q cells
with a half-life consistent with the estimates of
the rate of corneal epithelial cell shedding. It
should be noted that such estimates do vary
significantly between different experimental
groups (see Appendix A.3);

, a source of P cells at the limbus is included
in the model to represent the stem cell
production of transient amplifying cells in this
region. This source is modelled as dependent on
the chemical concentration;

, the chemical stimulus is assumed to decay
exponentially, with a half-life the order of the
half life of epidermal growth factor;

, the cells are assumed to internalise the
chemical-receptor complex formed on the cell
surface, which acts effectively as a cell-dependent
chemical stimulus degradation process;

, additional sources of the chemical stimulus
are often assumed to be present, as detailed
below.
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3.1.      



A qualitative summary of the above discussion
is given by

where the terms ‘‘Chemically stimulated P cell
differentiation’’ and ‘‘Newly differentiated cells’’
are taken to be equal in the above.

3.2.    

The form of the equations representing the
above ideas is as follows. First of all, we list
independent and dependent variables

P: proliferative cell density
Q: quiescent cell density
c: stimulus concentration
t: time
r: cylindrical polar coordinate; corneal centre at
r=0, outer limbal edge at r=R.

The equations, in their most general form, are

1P
1t

=9·(D2(c)9P)+M(c,P; stem; t,r)P

−F(c,P; stem; t,r)
P2

P'
+ w(c)H(r)

1Q
1t

=9·(D1(c)9Q)−sQ+F(c,P; t,r)
P2

P'

1c
1t

=Dstim92c+A+L(c,P+Q)− dc (3)

where H(r)=Heaviside(rlmbl − r); rlmbl =Posi-
tion of inner edge of limbus, and 9 represents the
appropriate vector calculus operator in terms of
r. Throughout this paper, we use cylindrical

polar coordinates. One might instead choose to
represent the vector calculus operators in terms
of the angles of spherical, or even ellipsoidal,
polar coordinates to better reflect eyeball
curvature in the model. However, the discussion
in Appendix B indicates that this will not change
the results significantly.

The constant A represents a constant tear film
source of chemical stimulus as used and
motivated in the DSM model (Dale et al.,
1994a, b). The functions D2(c) and D1(c) control
the diffusion of the proliferative and the
quiescent cells, and hence from the above
discussion one has D1(c)qD2(c). The term
w(c)H(r) represents a source of proliferative cells
at the limbal edge of the cornea, thus portraying
the role of the stem cells.

The function M(c,P; stem; t,r) P represents
mitosis in any given model realisation, while
F(c,P; stem; t,r)(P2/P') represents the differen-
tiation of proliferative cells into quiescent cells.
It is convenient not to absorb the parameter P'
into the function F(c, P; stem; t,r); for Model I
P' has a natural interpretation of being, to a very
good approximation, the equilibrium prolifera-
tive cell density in the cornea centre*, as
motivated below. In the simple model initially
presented the functions M(c,P; stem; t,r) P and
F (c,P; stem; t,r) are taken to depend on c and
P. In the most general case, however, these

Rate of change = Chemically stimulated + Chemically stimulated − Chemically stimulated
of P cell density P cell diffusion P cell mitosis P cell differentiation

+ Chemically stimulated
limbal source
P cell production

Rate of change = Chemically stimulated − Q Cell + Newly differentiated
of Q cell density Q cell diffusion desquamation cells

Rate of change = chemical diffusion + Production − Decay
of chemical conc via tear film

Removal by
P and Q cells

*This interpretation for P' will change slightly, though in
a clear manner, for the later models.
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functions might be complex, and could plausibly
be argued to explicitly involve the stem cell
activity, i.e. the value of w(c)H(r) or even the
history of the stem cell activity. Hence the
argument ‘‘stem’’ for M and F in the framework
equations above. We return to this below where
we discuss a possible, though admittedly crude,
caricature of such complex dependence. The
accompanying boundary and initial conditions
for the above equations are

1P
1r

=
1Q
1r

=
1c
1r

=0 at r=0 and r=R (4)

P(r,t=0)=6 0
Peqm(r)

r$Initial Wound
r(Initial Wound

Q(r,t=0)=6 0
Qeqm(r)

r$Initial Wound
r(Initial Wound

c(r,t=0)=6 0
ceqm(r)

r$Initial Wound
r(Initial Wound

(5)

where Peqm, Qeqm, and ceqm are the steady-state
solutions of (3) for the above boundary
conditions. The zero flux boundary conditions at
r=0 are required for the Laplacians to be well
defined there. The zero flux boundary conditions
for the cell densities at the limbal edge are so that
the model does not incorporate effects due to
‘‘transdifferentiation at the limbus’’, which have
been virtually ruled out experimentally (Tseng,
1989).

For the chemical concentration, the zero flux
boundary condition at the limbal edge is justified
by the fact we have already included a simple
caricature of the tear fluid source of chemical, via
the term A above. Including an extra source at
the edge of the limbus would essentially
represent a double counting of chemical sources.
As we are using axisymmetric cylindrical polars,
the equation for the mitosis function (1) reduces
to

mitotic rate (r,t)=

6 100%
frhigh(r)
rlow(r) dr' r' Total Cell Density (r',t)7

×g
rhigh(r)

rlow(r)

dr' r' g
t

t−4 hr

dt'M(r',t')

rlow(r)=max (0,r−D)

rhigh(r)=min(R,r+D), (6)

where r is the radial coordinate and R
corresponds to the limbal edge of the cornea.
The parameter D is chosen so that, away from
the boundaries of the domain, (r−D, r+D)
corresponds to (1/16)th of the radial length scale
of the cornea, and so D=(1/32)R. In terms of
the model framework, the mitosis function is
thus given by setting

Total Cell Density0 (P+Q)

M0M(c,P; stem; t',r)P(r,t')

in eqn (6).

4. A Simple Model Realisation: Model I

The simplest realisation of the above frame-
work is now developed. The details required to
implement this model are as follows:

, the diffusion rate of the P cells is
proportional to that of the Q cells, and both
are taken to be of the simple form

D2(c)= kD1(c)= k(a+ ācn) with 0Q kQ 1

(7)

where a, ā are constants and n is a constant
which is used to represent the nature of the
response in the cells’ activities to the presence of
stimulus;

, the rate of mitosis M(c,P; stem; t,r) and the
rate of differentiation F(c,P; stem; t,r) are
assumed to be autonomous and homogeneous,
with no stem cell dependence.

We use the simplifying assumption that
M(c,P; stem; t,r) and F(c,P; stem; t,r) have the
same type of dependence on the chemical
stimulus, which would be consistent with the
idea that the chemical stimulus decreases the cell
cycle time and has also been used in previous
models (Dale et al., 1994a, b). Specifically we
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take the function describing mitosis and differen-
tiation to be

M(c,P; stem; t,r)=M(c,P)= (r+ r̄cn),

F(c,P; stem; t,r)=F(c,P)= (r+ r̄cn). (8)

Implicit in these expressions is the assumption
that one does not reach the stage where the effect
of the chemical saturates, as would happen in
reality for extremely large levels of stimulus. At
equilibrium, the proliferative cell mitosis and
differentiation at the limbus takes the form

1
T 0P−

P2

P'1 (9)

where T is defined to be the doubling time of
proliferative cells at the limbus. Consideration of
(8) and (9) yields

(r+ r̄ (ceqm (rlmbl))n)=1/T, (10)

which simplifies the form of the non-dimension-
alised equations.

We also briefly consider the equation for P
given in (3) under equilibrium conditions.
Noting, a posteriori, that the equilibrium
proliferative cell density is approximately con-
stant in the central cornea [see Fig. 4(a) below],
we see that these equations yield

P =r=0 0P'
M(c,P; stem; t,r=0)
F(c,P; stem; t,r=0)

=P'
M(c,P)
F(c,P) b r=0

=P', (11)

and hence the natural interpretation of P' as the
equilibrium proliferative cell density for the
central cornea in Model I.

, The source term of proliferative cells is
assumed to be

w(c)= x+ x̄cn (12)

The model also requires a description of the
processes which directly effect the production
and degradation of the chemical stimulus. In
addition to the natural decay, with a half-life
determined by experimental data, and the
constant source of chemical, represented by A,
we need to represent the cellular internalisation
and degradation of chemical stimulus. This takes
the form of the term used and motivated in Dale
et al. (1994a, b), i.e.

B(P+Q) represents the effect of a wound bed
source term. As discussed in Dale et al.
(1994a, b), this term is motivated by experimen-
tal considerations (Dunn & Ireland, 1984;
Barrandon & Green, 1987); it is zero when the
cell density is at, or near, equilibrium values, and
is high at low cell densities with a simple linear
interpolation between such regimes. Substituting
eqns (7)–(13) into eqns (3), together with the
initial and boundary conditions (4,5), yields
Model I.

4.1. -  

The non-dimensionalisation used for all
models in this paper is described in detail in
Appendix A, where the non-dimensionalised
equations are given for Model I. The parameters
for Model I and the other models are also given
in this Appendix. Model simulation with the cells
responding linearly to the stimulus does not
appear promising as the upregulation of the
mitotic response is then not sufficient to promite

L(c,P+Q)=B(P+Q)−
mc(P+Q)

cx+ c
(13)

B(P+Q)=

0

c

c

0.4 00.8−
(P+Q)

(Peqm +Qeqm)=r=01

P+Qq 0.8(Peqm +Qeqm)=r=0

P+QQ 0.4(Peqm +Qeqm)=r=0

Otherwise
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F. 4. The upper plot, (a), is the Model I equilibrium prediction for P, Q, and total cell densities for the unwounded
cornea, with the P cell prediction being of least magnitude; (b) is a plot of the mitotic rates for an initial ring wound, as
indicated by the thick line on the horizontal axis. The times shown are 12, 24, 28, 48, and 96 hr with time evolution indicated
by the arrow. The lowest mitotic rate plot is the unwounded mitotic rate; (c) is the model prediction for the total cell density
for the same initial wound, with plots every 6 hr, up until 96 hr. The analogues of the mitotic rate and cell density graphs
for central large and central medium initial wounds are presented in (d)–(g). The type of initial wound is labelled on the
mitotic rate graphs, as above, with mitotic plots at 12, 24, 28, 48 and 96 hr and cell density plots every 6 hr. Again, the
unwounded mitotic rate is also plotted on the mitotic rate graphs and arrows indicate time evolution. The arrow indicates
increasing time.
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proliferation to the levels observed in the
experimental data of Fig. 2. Hence the constant
n, which determines the cells’ sensitivity to the
stimulus, is taken to be two. This is a common
trend in the models of this paper, and n is taken
to be two for all the models presented. Indeed,
it is well known that the response of cells to
stimulus can often be nonlinear (Alberts et al.,
1994).

It turns out that for Model I one has to take
the parameters governing the stem cell pro-
duction, namely x and x̄, to be unreasonably high
in order to match experimental observation. This
is because the stem cells drive the heterogeneity
of this model. In turn, this entails that a high
value for the stem cell production term is
required to match the fact that there are
approximately (10–12) cell layers in the limbus
but only (5–6) cell layers in the central cornea
(Dua et al., 1994). This requires the ratio of the
cell densities between the limbus and the cornea
to be between about 1.6 and 2.4. Throughout
this paper we only consider parameter regimes
which satisfy this condition, as it is a powerful,
and well verified, constraint on any possible
modelling. A stringent internal consistency
condition that also must be satisfied is that the
chemical and total cell densities at the corneal
centre are unity, due to the choice of non-dimen-
sionalisation.

The high stem cell levels in Model I also tend
to drive other model parameters, such as
desquamation rates, out of biologically reason-
able bounds. Thus the first fault of Model I is
that we are immediately driven to a non-biologi-
cal parameter regime in order to match a
concrete experimental observation. The par-
ameter values used for Model I are therefore
determined firstly by the requirement that the
constraints discussed above are satisfied. The
remaining parameters are chosen for consist-
ency, to as great an extent as possible, within
experimental bounds, which are discussed in the
Appendix, and with the experimental data of
Section 2.1. In fact, Model I robustly fails to
reproduce the trends in this data. However,
much insight can also be gained from observing

in detail the ways in which the model is clearly
inadequate. This can be seen from the typical
trends exhibited by the results in Fig. 3, which
are robust to parameter variation.

4.2.     

4.2.1. Comparison with experimental data

Figure 4 illustrates results from Model I, for
parameters given in Appendix A.2. One can
compare these predictions of the mitosis function
with the experimental results in Fig. 2. The most
striking aspect of the mitotic graphs predicted by
Model I for the initial ring wound is the
over-prediction, by orders of magnitude, of the
mitotic levels in the central corneal epithelium
for a ring-shaped initial wound. This can be seen
by comparing the experimental data in Fig. 2(a)
with the analogous graph from simulation results
shown in Fig. 4(b). The model predictions for the
mitotic rates following a large sized circular
initial wound, Fig. 4(d), also do not capture the
experimental data’s trends at the limbus, as
displayed in Fig. 2(b). The mitotic rates
predicted after a medium sized circular initial
wound, Fig. 4(f), are broadly similar to the
experimental data, displayed in Fig. 2(c).

Note that the model prediction of the
unwounded, equilibrium, mitotic rate in Fig. 4(b,
d, f) is approximately constant, which is
consistent with the control data presented in Fig.
2. Looking at the graphs for the predictions of
the total cell densities, Fig. 4(c, e, g), we see that
the model predicts a hyperplasic response* in the
peripheral cornea in response to wounding,
which is not observed in situ. This appears to be
a common trend and occurs for all the model
predictions in this paper, indicating that one is
dealing with a complex system and thus cannot
hope to capture all features of it with this level
of modelling.

Another common trend throughout this paper
for the total cell density plots is the lack of a well
defined wound edge. This is due to the fact that
the kinetics for Q are not of ‘‘reaction’’ form,
namely they are linear in Q rather than a
nonlinear function of Q possessing node-saddle
orbits in the phase plane, such as the function
Q(1−Q) characteristic of Fisher kinetics. This
entails that the sharp transitions characteristic of

*i.e. a response corresponding to cell densities above that
of the unwounded cornea.
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reaction diffusion equations with Fisher kinetics
do not occur. While this is a fault of the
modelling, it could be easily rectified for a more
sophisticated modelling effort, by use of a
moving boundary formalism, which is well suited
to CEWH modelling (Gaffney et al., 1998). It
was decided not to implement such a scheme at
this preliminary stage as the sharpness of the
wound front is not responsible for the dis-
crepancy between the predicted and measured
mitotic rates in the ring wound.

4.2.2. Model I conclusions

The fact that mitotic rates for the initial
annulus wound are severely overestimated is one
of two failures of this simple model. This is not
surprising; the combination of the wound bed
source term together with, in the model, the
presence of proliferative cells in the corneal
centre makes this inevitable. The other, related,
failing is that Model I relies on the observed
heterogeneity of cell density in the cornea being
induced solely by the presence of a limbal stem
cell ring which leads to non-biological parameter
regimes, as discussed in Section 4.1, above.
However, the manner of these failings strongly
indicate how the modelling should proceed.

The critical factor not captured by Model I is
that central corneal cells are far less capable of
undergoing proliferation than limbal cells, as has
been confirmed by in vitro observations, where
the proliferative abilities of cultures of these
tissues differ (Danjo et al., 1987; Ebato et al.,
1987)*. This common explanation for the
heterogeneity in proliferative ability is an age
structure of the proliferative cells, whereby the
central cells are older and less capable of
proliferation. Modelling age structure in detail,
which would require rewriting the model for an
age distribution P(x,t, age) (Hoppensteadt,
1975) is inappropriate given the sparsity of data
available at the present time. However, the
results from Model I clearly indicate that a
caricature of age structure must be included.

Model I can also be criticised in that if one
were to model a low stem cell environment, i.e.
with x and x̄ small or zero, it is still capable of
supporting a non-trivial steady state of prolifer-
ative cells, yet in situ stem cells are well known
to be critical to corneal stability. We thus
proceed to develop Model II with the following
aims in mind. We seek to produce a caricature
model that does not support a non-trivial steady
state of proliferative cells in the absence of stem
cells, which corresponds to setting x and x̄ to
zero in the model. We also want to investigate
whether simple caricature modelling of age
structure can improve the fit between model
predictions and experimental data trends. We
seek to gain insight into the likelihood of success
of more detailed age structured modelling of the
cell kinetics of CEWH should data become
available to motivate such an approach. Further,
we require a model that does not force
biologically unreasonable parameters in order to
reproduce experimental observations.

5. Model II: A Caricature of Age Structure

This model differs from Model I, in that it
contains a representation of age structure
heterogeneity for the proliferative cells. It
assumes that the ability of a given P cell to
undergo mitosis varies, from high values near the
limbus to low values near the corneal centre. One
might also expect that a higher limbal stem cell
source activity (over a sufficiently long period of
time) will lead to a decrease of the average age
of the P cells, and hence increased average rates
of mitosis. Thus the mitotic rate in Model II is
assumed to decrease as one moves away from the
limbus towards the wound centre. It is also
assumed to increase with increasing limbal
source activity, but to saturate at high limbal
source activity.

We change the mitosis function M, previously
given by eqn (8), to the form

M(c,P; stem; t,r)=

0a+(1− a)
r2

R21 L(stem)(r+ r̄cn). (14)

We have normalised the term (a+(1− a)
r2/R2) to be unity at r=R, as required for

*Note that these, and all other, references express such
proliferative differences in terms of S-phase labelling indices,
which cannot yield useful modelling information concerning
cell doubling time, without additional data on the other
phases of the cell cycle, especially the G-phases.
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eqn (10) to still hold, which implies that the
interpretation of T within Model II is the same
as that for Model I. The term (a+(1− a)r2/R2)
crudely represents an age variation in the mitotic
ability of the proliferative cells, via a spatial
variation, on the premise that the younger
proliferative cells tend to be situated in the
limbal and peripheral cornea, since their source
is the stem cells in the limbus. We tentatively take
a quadratic variation as S-phase labelling data
indicates (Ebato et al., 1987, 1988) that mitotic
ability varies with r nonlinearly with a power
greater than one, though as mentioned above it
is not possible to make a direct link between
S-phase labelling data and doubling times
without G-phase data. The parameter a controls
the level of heterogeneity, and the value used is
given and discussed in Appendices A.2 and A.3.

The term L(stem) is crude; it is meant to
represent the variation of the proliferative ability
with variation in the limbal source. For example,
a decrease in the source activity will lead to an
increase in the mean age of the proliferative cells,
which, due to their capability to undergo a finite
number of rounds of mitosis (Tseng, 1989), are
thus less capable, on average, of undergoing
mitosis. From this interpretation, we expect
L(stem) to tend to zero as the stem cell activity
tends to zero, and consequently the model does
not support a non-trivial steady state in the
absence of stem cells (i.e. in the case where x, x

are set to zero). We also expect L(stem) to be
unity at equilibrium stem cell activity, and to
increase and saturate if stem cell activity should
increase higher than unwounded levels. We use
the form

L(stem)0 q01−01−
1
q1

w(c(R,t)/whlth(ceqm(R))

1 (15)

where R is constant, referring to the edge of the
limbus, and q is the saturation level. The term
whlth(ceqm(R)) is the equilibrium activity (for a
healthy eye, with x, x̄ fixed at levels associated
with that of a healthy eye*). Here w(c(R,t)) is a
crude representation of the stem cell activity at
time t. Note that at equilibrium L is unity as

required. If there were no age structuring effects
at all, q would be unity, in which case L would
also be unity, as necessary for L to have no effect
on the cell kinetics. Also, we note that in the
absence of stem cells, we have L(stem) is zero,
and thus no non-trivial stable state exists in the
absence of stem cells for this model.

The above mitosis function (14), on the
inclusion of (15), does not include a coupling
between the spatial structure of the system and
the history of the stem cell activity resulting in
the omission of ‘‘time delay’’ effects. Hence, eqn
(15) represents a crude caricature of the
dependence of the changes of the proliferative
ability with changes in the stem cell activity of
the corneal epithelium. Systematic inclusion of
such effects could only be possible within a
detailed age structured model which, as men-
tioned, is inappropriate for the level of data
available.

With this change in place, namely replacing (8)
with (14), one can proceed with the non-dimen-
sionalisation in exactly the way as Model I. This
yields Model II.

Note that the interpretation of P' differs only
slightly from Model I. We have, making the a
posteriori observation that from the equilibrium
proliferative cell density is approximately con-
stant at r=0 [see Fig. 5(a)], we have,
analogously to Model I, that eqn (3), under
equilibrium conditions, yields

P =r=0 0P'
M(c,P; stem; t,r=0)
F(c,P; stem; t,r=0)

= aP', (16)

using the fact that L(stem) is unity under
equilibrium conditions. The only difference in the
interpretation of P' from Model I is that now aP'
yields the equilibrium central corneal profilera-
tive cell density. Note that this interpretation of
aP' also holds for Model III; we will discuss the
further changes yielding Model III in Section 6.

5.1.  

In contrast to Model I, it is encouraging to
note that it is possible to take parameters for
Model II which result in predictions that satisfy
the constraints of Section 4.1 and which are
consistent with order of magnitude estimates
based on experiment. This is detailed in
Appendices A.2 and A.3. However, Model II

*Which are also the values of x, x̄ used in Models II and
III.
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also robustly fails to reproduce the trends of the
experimental data in Fig. 2, as illustrated in
Fig. 4. Again, the manner of this failure indicates
how the modelling may be improved. The
parameters used have been chosen to be
consistent with the constraints of Section 4.1,
and to satisfy the experimental bounds of the
Appendix. By far the most important of any
remaining freedom in the parameters is the
limited freedom in the choice of a. This has been
chosen to make the manner in which Model II
robustly fails in the prediction of the trends
exhibited by the data in Section 2.1 in all
paramter regimes, as explicit as possible, as will

be seen in the discussion below. As no new
insight is obtained from examining the cell
density plots of Model II we concentrate on the
mitotic rate predictions of Model II.

5.2.   

Figure 5 illustrates results from Model II, for
parameters given in Appendix A.2. The first
difference induced by the changes to the model
can be seen by comparing the equilibrium plots
of Models I and II, Figs 4(a) and 5(a),
respectively. As expected for Model II, the P cell
density decreases significantly into the corneal
centre and is, on average, lower than for

F. 5. The plot on the upper left above, (a), is the model II equilibrium prediction for P, Q, and total cell densities for
the unwounded cornea. (Again, the P cell prediction is the one of least magnitude in the plot); (b) is a plot of the mitotic
rates for an initial ring wound, as indicated by the thick line on the horizontal axis. The times shown are 12, 24, 28, 48
and 96 hr, where the time evolution is indicated by the arrow. The lowest mitotic rate on this graph is the unwounded mitotic
rate; (c) given the model prediction for the mitotic rates for a medium central wound, while (d) gives the model prediction
for the mitotic rates for a large central wound. The times shown are again 12, 24, 28, 48 and 96 hr with an arrow indicating
time evolution. The unwounded mitotic rate is also plotted on (b, c, d). Arrow indicates increasing time.
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Model I. By comparing Figs 4(b) and 5(b) we see
that for a ring wound, Model II predicts a
somewhat lower peak at the centre of the wound
than Model I. It is still, however, an overpredic-
tion, being of the same magnitude as the peak in
the corneal periphery, in contrast to the data of
Fig. 2(a). For a large central initial wound, the
limbal edge peak observed in the experimental
data, Fig. 2(b), is still not captured by the model,
by inspection of Fig. 5(d). In Fig. 5(c) we see that
the Model II prediction for the mitotic rates after
a medium sized initial wound still just, has a
peak near the edge of the initial wound, but this
is beginning to be dominated by a peak at the
limbal edge, which arises due to the large number
of P cells present at the edge compared with the
edge of the initial wound. This limbal edge peak
is not observed in the experimental data,
Fig. 2(c). Further, the model predictions of the
mitotic rates for medium and large central
wounds in Fig. 5(c) and (d) indicate a sharp drop
to zero mitosis as one approaches the corneal
epithelial centre, which is not observed in the
experimental data, Fig. 2(b), (c). The model
predictions of the unwounded, equilibrium,
mitotic rate only tenuously agree with the
controls presented by the experimental results.

5.3.   

In summary, Model II is a significant
improvement on Model I. It satisfies the internal
consistency conditions of Section 4.1 for
biologically reasonable parameters. It also has
reduced the extent of the greatest deviation of
Model I from the observed experimental data,
namely the mitotic rates in the central region of
a ring wound. However, it still is not satisfactory
in its ability to capture the trends of the
experimental data of Fig. 2.

The results presented above illustrate the
manner in which Model II is unsatisfactory.
Recall that variations of a in eqn (14) control the
affects of age structure in Model II. Such
variations can significantly change the results
and reduce the overprediction in the central
corneal mitotic rate for a ring wound, but at the
expense of eliminating the peak of the mitotic
rates for a medium sized wound. One may
deduce from the results above that there is not
a ‘‘window’’ in the possible values of a for which

the central mitotic rates for the ring wound are
not overpredicted and for which the peak of the
mitotic rates for medium sized wounds is not
eliminated. This clearly indicates that the crude
age structuring as developed in Model II is not
sufficient to produce a model within the simple
framework presented which does not contradict
the trends illustrated in the experimental data.

Consequently, one is led to consider some
additional mechanism to produce a model more
capable of reproducing the trends observed by
the experimental studies. It is important to note
that any mechanism which affects the prolifera-
tive ability of the cells across the corneal
epithelium in a uniform manner is unlikely to
produce better results than we have seen for
Model II, as it will probably suppress the central
peak of the ring wound only at the expense of the
presence of a mitotic peak in the medium wound.
Consequently, the results from Model II
encourage us to consider a mechanism which
exhibits some form of ‘‘threshold’’ behaviour.
This is addressed in our final model in which a
biologically plausible extra mechanism is hy-
pothesised. This is shown to produce results with
trends that match the experimental ones, except
for a discrepancy in the limbal region of the large
central corneal wound.

6. Model III

As we have seen, even heterogeneity induced
by a caricature age structuring is not sufficient to
stop Model II from substantially overpredicting
mitosis in the corneal centre for a ring wound.

We wish to keep to the aims stated at the end
of Section 4.2.2 and, in addition, consider a
biologically plausible extension to the model that
uses the insight gained from Model II. We thus
proceed to amend the existing model by
assuming that cell mitosis and differentiation is
controlled not only by a diffusible regulator, but
also by a nearest-neighbour (juxtacrine) mechan-
ism. This would correspond to signalling via one
of the many growth factors that exist primarily
in a membrane bound form [see Masssagué &
Pandiella (1990) for review of juxtacrine
signalling]. There is no question that there are
many different chemical stimuli involved in
corneal epithelial wound healing (Jain & Azar,
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1994; Gipson & Inatomi, 1995). To our
knowledge, there is no direct evidence for
juxtacrine signal within the corneal epithelium,
but its existence is highly plausible, and such a
mechanism is known to play a role in wound
healing of the epidermis (Stascheck et al., 1992;
Schultz et al., 1987). Note that such a mechanism
exhibits the threshold behaviour that is suggested
from the results of Model II.

To be specific, we suppose that the diffusible
signal primes the cells, with subsequent jux-
tacrine activation required to actually upregulate
cell division, according to the presence of the
chemical source. Implicit in our previous
modelling, and previous models (Dale et al.,
1994a, b), was the fact that the chemical stimulus
affected the mitosis and differentiation functions
in the same manner, which would be consistent
with the idea that the chemical stimulus
decreases the cell cycle time. We keep this
implicit assumption, and thus consider the
differentiation function, F, would be affected in
a similar manner to the mitosis function M. This
effectively leads to a threshold of P cell
stimulation, with a cutoff in chemically stimu-
lated proliferation at the stage when the P cells
become so scarce that they are no longer
connected to each other on the basal layer.

Thus for Model III, we redefine the mitosis
and differentiation functions, M and F to be

We have introduced the function G(P), which
controls the effects of the juxtacrine mechanism.
For PqP1, there is no effect as G(P)=1. Note
that as there are approximately five cell layers in

the central corneal epithelium (Forrester et al.,
1996) a single cell layer corresponds to

P0 0.2(Peqm +Qeqm)= r=0, (18)

so this mechanism starts taking effect when less
than one in three of the basal cells is a
proliferative cell. The threshold level, P0,
corresponds to about one in five of the basal cells
being proliferative; further details are discussed
in Appendix A.3. For PQP0, the chemical
stimulus does not affect the cells. The sine
function provides a convenient, monotonic and
smooth interpolation for G(P) between zero and
unity when P0 QPQP1.

6.1. 

The parameters used are given in Appendix
A.2. We note that again it is possible to choose
parameters for Model III which result in
predictions that satisfy the constraints of Section
4.1 and which are also biologically reasonable, as
detailed in Appendix A.3. The freedom left in the
parameters after such consideration, as outlined
in the Appendix, has been fixed by attempting to
reproduce the trends of the experimental data in
Fig. 2. Further details on parameters are given in
Appendix A.3. Specifically, not that it is
biologically reasonable parameter sets that yield
the greatest similarity to the experimental
observations. As an aside we note that,

concerning robustness, the trends of the model
predictions do not appear to be sensitive to small
variations in the parameters within the con-
straints of Section 4.1.

M(c,P; stem; t,r)=0a+(1− a)
r2

R21L(stem)(r* + r̄*G(P)cn) (17)

F(c,P; stem; t,r)= (r* + r̄*G(P)cn)

G(P)=g
G

G

F

f

0.0

1.0

0.5 ( (1+ sin(p(2P−P1 −P0)/(2 ( (P1 −P0)))

PEP0

PeP1

P0 QPQP1

where

P0 =0.040(Peqm +Qeqm) \ r=0 P1 =0.067(Peqm +Qeqm) \ r=0.
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F. 6. The upper plot, (a), is the Model III equilibrium prediction for P, Q, and total cell densities for the unwounded
cornea, with the P cell prediction being of least magnitude; (b) is a plot of the mitotic rates for an initial ring wound, as
indicated by the thick line on the horizontal axis. The times shown are 12, 24, 28, 48, and 96 hr, where the time evolution
is indicated by the arrow. The unwounded mitotic rate is also plotted, being the line nearest unity at r=1; (c) is the model
prediction for the total cell density for the same initial wound, with plots every 6 hr, up until 96 hr. The analogues of the
itotic rate and cell density graphs for central large and central medium initial wounds are given in (d, e) and (f, g),
respectively. The type of initial wound is labelled on the mitotic rate graphs, as above, with mitotic plots at 12, 24, 28,
48 and 96 hr and cell density plots every 6 hr. Again the unwounded mitotic rate is also plotted on the mitotic rate graphs
and arrows indicate increasing time.
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Thus substituting (17) into eqns (3), with the
above parameters yields the dimensionalised
model, which is non-dimensionalised as in
Appendix A.

6.2.   

Figure 6 illustrates the results from Model III,
for parameters given in Appendix A.2; one can
see that Model III is a substantial improvement
on the earlier models. Its predictions given in
Fig. 6(b) exhibit a general trend for the mitotic
rates of the initial ring/annulus wound which is
much closer to the trend exhibited in the
experimental data in Fig. 2, without loss of the
central peak in the medium wound mitotic rate
prediction, depicted in Fig. 6(d). Hence, the
predictions of Model III are broadly consistent
with the predictions of the experimental data,
except that there is an additional trough in the
Model III mitotic rates in the limbal region of
the cornea for the large central wound, Fig. 6(f),
and a very small peak in the limbal region for a
medium central wound, Fig. 6(d).

It should be noted from Fig. 6(b, d, f) that the
unwounded, equilibrium, mitosis solutions,
agree only tenuously with the experimental data,
as with Model II; and that Model III suffers
some problems common to all the models in the
paper, concerning the prediction of hyperplasia,
and the sharpness of wound fronts, as discussed
in Section 4.2. The persistence of the latter prob-
lem concerning wound sharpness is understood
to be an unavoidable consequence of the present
modelling framework, as discussed in Section
4.2; the persistence of the former problem,
concerning hyperplasia prediction, suggests that
this too could also be an unavoidable conse-
quence of the present modelling framework.

7. Conclusions

The initial motivating factor for the modelling
investigation above is the development of a
modelling framework capable of capturing cell
kinetic data, such as that presented by Sandvig
et al. (1993, 1994). This has required substantial
extensions and improvements on previous
modelling efforts. A key point is that modelling
corneal epithelial wound healing (CEWH) using
spatially homogeneous kinetics is an over-sim-

plification, as this cannot capture effects due to
the stem cells present in the limbal ring acting as
a source of proliferative cells. This source must
be represented in any realistic modelling
framework as it is of critical importance in
CEWH.

Another key point is that the previous
modelling efforts fail to capture a basic
common trend of the data presented, namely
that the model prediction of mitotic rates always
decrease into the wound. This is because
previous models do not distinguish between
proliferative cells and quiescent cells in their
formulation. Hence, all cells have the same
proliferative ability, including those at the
wound edge, and those at the centre of a freshly
covered wound bed, leading to erroneous
predictions as seen in Fig. 3.

The modelling framework presented above
includes a proliferative and quiescent compart-
ment, with the proliferative cells migrating at
slower rates than the quiescent cells. This basic
idea prevents model predictions of mitosis
monotonically increasing as one moves into the
central regions of the cornea. The results of such
a modelling framework have been presented
above. While the modelling framework realis-
ations do not capture every trend of the
experimental data for all given initial wound
geometries, Model III captures many, by
consideration of a juxtacrine mechanism. This
represents a very substantial improvement in the
field of modelling CEWH. One need only look at
Fig. 3 to see the extent of this improvement. The
fact that simple modelling can reproduce many
of the trends of such a complicated system is, in
itself, a substantial success.

This work also sets a foundation of under-
standing for further modelling investigation of
the cell kinetics of CEWH. In particular it
emphasises the importance of the coupling
between spatial heterogeneity and age
structure in the modelling of the corneal
epithelium. It demonstrates that even
caricatures of this complex process are not
adequate to capture the trends exhibited by
the experimental data. A simple juxtacrine
mechanism is presented which yields results
that mostly demonstrate peaks and troughs
in mitotic activity in line with what one may
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expect from the experimental data, though
there are additional caveats, as discussed above.
Thus, we firstly see that further modelling work
would require the inclusion of age structuring, but
lack of experimental data prevents such an
investigation at the present time. However, it
should be noted that there is the promise of a great
deal of new experimental insight and quantitative
data from the application of confocal microscopy
to the investigation of the cell kinetics and cell
dynamics of corneal epithelial wound healing
(Masters, 1995). Consequently one may be able to
attempt such modelling in the foreseeable future,
and the insights and results acquired in this paper
would be extremely valuable.

In summary, the modelling predicts that the
existence of proliferative and quiescent cell
populations, age structuring of the populations
and the existence of a juxtacrine signalling
mechanism are all crucial to the observed pattern
of corneal epithelial mitosis following wounding
in the cornea.
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Ḿ, J. & P, A. (1990). Membrane-anchored
growth factors. Ann. Rev. Biochem. 62, 515–541.

M, B. (1995). Scanning slit confocal microscopy of
the in vivo cornea. Opt. Engng 34, 684.

O, Y., M, M., K, Y., M, T.,
W, H., K, S., M, R., O, K.
& Y, C. (1989). Presence of epidermal growth



    35

factor in human tears. Invest. Ophthalmol. Vis. Sci. 30,
1879.

R, H. & W, G. (1996). The cell shedding rate of the
corneal epithelium—a comparison of collection methods.
Curr. Eye Res. 15, 1054–1059.

S, K. U. & H, E. (1993). The proliferative
response during regeneration of a ring-shaped defect in the
corneal epithelium. Acta Ophthalmol. 71, 39.

S, K. U., H, E., B, R., R, S. B.
& K, K. (1994). Cell kinetics of conjunctival and
corneal epithelium during regeneration of different sized
corneal epithelial defects. Acta Ophthalmol. 72, 43.

S, G. S., W, M., M, R., B, G.,
L, J., T, D. R. & T, D. J. (1987).
Epithelial wound healing enhanced by transforming
growth factor alpha and vaccinia growth factor. Science
235, 350–352.

S, A. & C, W. (1989). Kinetics of Corneal
epithelial maintenance and graft loss. Invest. Ophthalmol.
Vis. Sci. 30, 1962.

S, C. M., N, L. B. & L, L. E. (1992).
Quantitative determination of EGF-R during epidermal
wound healing. J. Invest. Dermatol. 99, 645–649.

T, L., M, B. & B, D. (1997). Meeting Abstract:
Coordination of mitosis and differentiation in the corneal
epithelium. Invest. Ophthalmol. Vis. Sci. 38, 2281.

T, S. (1989). Concept and application of limbal stem
cells. Eye 3, 141.

V S, E., E, T. & A, R. (1963). Determi-
nants of rate and kinetics of cell division of scalp hair. J.
Invest. Dermatol. 41, 269–273.

W,S. (1995). Introduction to Cell and Molecular Biology,
p. 706. California: Wadsworth Publishing Company.

W, N. & A, M. (1984). The Biology of Epithelial
Cell Populations, Vol. 1. Oxford Science Publications.

Z, J., B, G. & Y, M. (1992).
Characterisation of a potential stem cell marker. Invest.
Ophthalmol. Vis. Sci. 33, 143.

APPENDIX A

Non-dimensionalisation & Parameters

In this Appendix non-dimensionalisation and
parameters are discussed in detail. Firstly, we
introduce the non-dimensionalisation scheme
used in the modelling, and illustrate the
non-dimensionalisation of Model I. The non-di-
mensionalisation of Models II and III proceed in
an analogous manner. Parameter values for this
non-dimensionalisation are presented, followed
by a discussion of the experimental constraints
on these parameters.

.1. -

We non-dimensionalise length scales with
respect to the characteristic radius of the cornea,
R. Time-scales are non-dimensionalised using a
scale T, which is defined to be such that the

average doubling time of proliferative cells at the
limbus in the unwounded cornea is given by
ln(2)T, which leads to some simplification of the
non-dimensionalised model. The non-dimen-
sionalisation used is explicitly:

r : r* =
r
R

t : t* =
t
T

P : P* =
P

(Peqm +Qeqm)=r=0

r : r* =Tr c : c* =
c

ceqm(r=0)

Q : Q* =
Q

(Peqm +Qeqm)=r=0

a : a* =
Ta
R2 r̄ : r̄* = (ceqm=r=0)nT*r̄

ā : ā* =
(ceqm=r=0)nTa

R2

s : s* =
s

T
Dstim : Dstim( =

TDstim

R2

A : A* =
TA

ceqm=r=0

cx:cx=
cx

ceqm=r=0
d : d* =Td

m* : m=
m*T(Peqm +Qeqm)=r=0

ceqm=r=0

rlmbl
* =

rlmbl

R

B(P+Q) : B*(P* +Q*)=

TB((P* +Q*)(Peqm +Qeqm)=r=0), (A.1)

Also, x*, x̄*, P'* are formed from a non-dimen-
sionalisation analogous to that which yields a*,
ā*, P*, respectively, while k and n, being
dimensionless constants, are unaffected.

Thus to non-dimensionalise Model I, for
example, combine eqns (3), (5), (7)–(13), and
(A.1) to yield

1P*

1t*
= k9*((a* + ā*cn

*)9P*)+M*(c*,P*; t*,r*)P*

− F*(c*,P*; t*,r*)
P2

*

P'*
+ (x* + x̄*cn

*)H(r*)
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1Q*

1t*
=9*((a* + ā*cn

*)9Q*)− s*Q* +F*(c*,P*; t*,r*)

1c*

1t*
=Dstim*92

*c* +A* +B*(P* +Q*)

−
m*c*(P* +Q*)

cx* + c*
− dc* (A.2)

H(r*)=Heaviside(rlmbl
* − r*) (A.3)

with the function B* given by

B*(P* +Q*)

=g
G

G

F

f

0

c*
(0.8− (P* +Q*))

0.4

c*

P* +Q* q 0.8

0.4QP* +Q* Q 0.8

P* +Q* Q 0.4

The functions M, F are given by

M*(c*,P*; t*,r*)= (r* + r̄*cn
*)

with M*(1,P*; t*,1)=1

F*(c*,P*; t*,r*)= (r* + r̄*cn
*)

with F*(1,P*; t*,1)=1

where the constraints at (c*,r*)= (1,1) arise from
eqn (10) and are reflected in the parameter values
given in the following section. These are
accompanied by zero flux boundary conditions
and initial conditions, which are the non-dimen-
sionalised analogues of (5).

We proceed to list parameter values, some of
which will depend on the form of the above
non-dimensionalisation. It is important to note
that differences in the non-dimensionalisation
between this model and the DSM model entail
that some parameter values inherited from
the DSM model will take different numerical
values.

.2.    



Typically in biological systems precise par-
ameter estimation is difficult or impossible,
though one can often deduce the order of
magnitude of various parameters from exper-
imental data. A summary of such constraints is

given in the section below. The motivation for the
choice of parameters for each of the models is
given in Sections 4.1, 5.1 and 6.1 for Models I, II,
and III, respectively.

R is based on the data and measurements of
Sandvig et al. (1994). rlmbl has been taken from
Sharma & Coles (1989). The value of ceqm

represents the equilibrium concentration of the
chemical stimulus, which is taken to be of the
order of the equilibrium, unwounded, concen-
tration of EGF. This can be estimated via a
study of reflex tears, which has been performed
by Ohashi et al. (1989) who determined a value
of about 7×10−10 M, as used in Dale et al.
(1994a, b). To the authors’ knowledge, there is
no detailed data for the cell cycle time of corneal
transient amplifying cells. Experimental
measurements of cell cycle times for varieties of
epidermal transient amplifying cells range from
18–24 hr (Van Scott et al., 1963; Cotsareux,
1990). We consider these to be bounds for the P
cell cycle time, though the lower estimate of the
cell cycle time yields values of mitosis in the
model closer to that observed in the experimental
data. Consequently, a value close to the lower
bound is used in the models. The central cell
density is estimated from the fact that a typical
corneal epithelial cell length is about 10−5 m
(Klyce & Beuerman, 1988; Dale et al., 1994a,
b). From non-dimensionalisation we have r* +
r̄* =1.

One may produce a simple order of magnitude
for the diffusion rate of cells in the unwounded
cornea, which is (approximately) a* + ā*, as
follows. Buck (1985) has measured the average
equilibrium radial velocity of epithelial cells in the
rabbit cornea to be

Vav =17 mm day−1 0 20 mm day−1 (A.4)

The total flux of cells in the model is given, for
equilibrium conditions, by

(a+ ā(ceqm(r))n)01Q
1r

+ k
1P
1r1

0 (a+ ā)01Q
1r

+ k
1P
1r1. (A.5)
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T .1 Parameters
Parameter Meaning Model I Model II Model III

R Radius of rat cornea 0.4 cm 0.4 cm 0.4 cm
rlmbl Normalised limbus 0.86 R* 0.86 R* 0.86 R*

ln(2)T Average P cell 1 day 1 day 1 day
cycle time

(Peqm +Qeqm)=r=0 Central cell density 1015 cells m−3 1015 cells m−3 1015 cells m−3

ceqm Average concentration of EGF 7×10−10 M 7×10−10 M 7×10−10 M
i.e. concentration of

typical stimulus
k Ratio of diffusion 0.15 0.15 0.55

coefficient of P and Q cell
a* Coefficient for Q cell 0.007 0.006 0.0030

diffusion
a* Coefficient for stimulus 0.007 0.006 0.0055

Q cell diffusion
diffusion

r* Coefficient for P cell mitosis 0.05 0.05 0.25
& differentiation

r* Coefficient for stimulus 0.95 0.95 0.75
dependent P cell mitosis

& differentiation
P'* With a* & s* below, 0.20 0.18 0.08

controls levels
of P cells

x* = xhealthy eye
* Coefficient for stem cell 0.0 0.0010 0.0010

production of P cells
x* = xhealthy eye

* Coefficient for stimulus 0.2 0.0040 0.0040
dependent stem cell
production of P cells

s* Desquamation rate 0.20 0.050 0.037
of Q cells

Dstim* Stimulus diffusion 200 120 65
A* Strength of tear m/4+ d m/4+ d m/4+ d

stimulus source
m* Strength of stimulus 1.2 ( 104 4.8 ( 103 4.8 ( 103

internalisation by cells
cx* Cf. cell-chemical 3.0 3.0 3.0

internalisation by cells
d (ln2)/(half-life 0.7 hr−1 1.5 hr−1 0.9 hr−1

of EGF (i.e. typical d* =25 d* =11 d* =19
stimulus))

c* 0B*(0) Wound bed 1.7 A 1.0 A 1.0 A
source term =5.1×103 =1.2×103 =1.2×103

n=Controls cell’s 2 2 2
sensitivity to stimulus
a Controls P — 0.22 0.4
q Controls P cell — 1.6 1.6
P04P15 Controls P cell — — (1/3) 4(1/5)5×0.2×

juxtacrine mechanism (Peqm +Qeqm)=r=0

Defining V as the local radial velocity, we require
the convective flux V(P+Q) to be of the same
order of magnitude as the flux of cells in the
model, which yields

(a+ ā) 01Q
1r

+ k
1P
1r10V(P+Q). (A.6)

Integrating over the radial variable, on use of the
integral mean value theorem, yields

(a+ ā)[(Q(R)−Q(0))+ k(P(R)−P(0))]

=R(Q(z)+P(z))Vav
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for some z$[0,R]. The variation in the P cells is
much smaller than that of the Q cells, and is also
multiplied by kQ 1, and thus can be ignored at
this level of approximation. Hence, on non-di-
mensionalisation, we have

(a* + ā*)0
(Q*(z*)+P*(z*))
[Q(1)−Q(0)]

T
R

Vav (A.7)

for some z*$[0,1]. Now (Q*(z*)+P*(z*))/
[Q(1)−Q(0)] is an order one quantity, as

P*(z*)�Q*(0)EQ*(z*)EQ*(1)0 2Q*(0) (A.8)

by the constraints of Section 4.1, and by the fact
one would expect far fewer proliferative cells than
quiescent cells, as the former tend to be localised
in the basal layers. Thus we have, finally, the very
simple relation

(a* + ā*)0
T
R

Vav =0.007 (A.9)

which gives the order of magnitude required for
consistency with Buck’s experiment (Buck, 1985).
(This corresponds to a non-dimensionalised
diffusion coefficient of 10−8 cm2 s−1).

Data on stem cells is scarce due to the fact there
is not, at present, a marker for corneal epithelial
stem cells [though there are some potential
markers (Zieske et al., 1992)]. However, it is
known that the epithelial stem cell has a cell cycle
time of greater than 14 days (Kruse, 1994), and it
is commonly perceived that they exist only in the
basal layer of the limbus (Tseng, 1989). This yields
an upper bound for x* + x̄* as follows. On a
time-scale greater than 14 days, the stem cells,
which at most represent the basal layer of the
limbus (i.e. a non-dimensionalised cell density of
E0.1) produce one priliferative cell each. Hence,
to be consistent with the above, one would require

x* + x̄* Q
1
14

×0.1=7×10−3. (A.10)

There is a wide range of data on desquamation
rates ranging from about 10–100 cells per cornea
per minute (Rei & Wilson, 1996), which
corresponds to non-dimensionalised values be-
tween 0.008 and 0.08 [though the lower values
are considered more appropriate in Rei &
Wilson (1996)]. Also note that, for a given value
of a*, s* and P'* are heavily constrained by the
requirements of Section 4.1.

The value of Dstim may be estimated from
theoretical considerations to be about
10−6 cm2 s−1 (Berg & Van Hippel, 1985), which
yields non-dimensionalised estimates of order
one. However, it is likely that any chemical
stimulus may be transported by many means
other than simply tear fluid diffusion within the
cornea. Such mechanisms could include, for
example, convection in the tear fluid flows and
mixing due to blinking. Hence much larger values
for Dstim may realistically be used in the models
above, and indeed are.

The value of A* is taken to be m*/4+ d* for
consistency [as in Dale et al. (1994a, b)], so that
the non-dimensionalised central corneal stimulus
has the value of 1.0. The estimation of m* is
performed in Dale et al. (1994a, b), where for the
non-dimensionalisation of this paper, one finds
that m* 0 2.8×103. The parameter cx* is esti-
mated as in Dale et al. (1994a, b), and is found
to be roughly 3.0. In the papers Dale et al.
(1994a, b), it is speculated that c* 0B*(0)0A*,
though one may take c* to be significantly larger
without contradiction of any experimental data,
though this is not required for the models in this
paper.

The half-life of a typical chemical stimulus
yields an estimate for d. As the in vivo half-life
of EGF is of the order of 1 h (Chan et al., 1991),
this indicates that one should expect that
d0 1 hr−1 which is true of the parameter values
used.

The parameters P1 and P0 are chosen in
accordance with their interpretation of jux-
tacrine mechanism controls. P1 is chosen to be
(1/3)×0.2× (Peqm +Qeqm)=r=0. Recall from Sec-
tion 6 that this is one-third the cell density of a
single cell layer, as (Peqm +Qeqm)=r=0 refers to the
equilibrium cell density at the corneal centre,
which is five cell layers thick. We take this for P1

as for a hexagonal pattern of cells [i.e. a typical
arrangement of epithelial cells (Wright & Alison,
1984) it is a straightforward exercise to label one
in three cells with no labelled cells touching. For
such a hexagonal pattern of cells, consider the
following. Each cell communicates with six
neighbours, two of which are in a ‘‘forward’’
direction (with respect to some line in the plane
of the epithelium, for example the edge of a
wound bed), two are in a ‘‘backward’’ direction
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and two are in ‘‘side directions’’. Heuristically, a
critical point where juxtacrine signalling be-
comes impaired is when the expectation for the
number of neighbouring cells in the ‘‘side’’ or
‘‘forward’’ directions drops below unity.
Naively, this occurs at the point when one in four
cells of a single cell layer is proliferative, as a cell
has four neighbours which are either ‘‘forward’’
or ‘‘side’’. We take P0 to be below this naive
critical point, and it corresponds to only one in
five cells being proliferative.

The value of a* − ā* is constrained to within an
order of magnitude by requiring that the model
wound healing does not occur on too slow or too
fast a time-scale. The parameter a* cannot be
estimated from kinetic data, which is normally
expressed in terms of S-phase data. Conse-
quently it is chosen in the manner outlined at the
start of this section. Similarly for the parameters
k, n, q*, r* − r̄*, and x* − x̄*.

APPENDIX B

A Note on the Effect of Geometry on the
Modelling of the Mitotic Rate

It should be noted that considering a Taylor
series expansion of the spatial dependence for the
integrand in (1) yields a function of the form

mitotic rate (r,t)=

00 100%
Total Cell Density (r,t)1

×g
t

t−4 hr

dt'M(r,t')1 01+O(e)1 (B.1)

For most 1-D coordinate systems e takes the form
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where a,bEO(1). For cartesians, a=1, b=0,
with r the spatial coordinate, whereas for
axisymmetric cylindrical polars a=1, b=0.5,
with r the radial coordinate and for axisymmetric
spherical polars a=1, b=0.5 with r the
meridional angle.

For all the results presented in this paper, it has
been numerically confirmed that ignoring terms
of O(e) for a cylindrical polar formulation results
in a relative error normally less than 0.5%, and
always less than 03% (results not shown). Such
small errors are due to the factor of (1/(3× (32)2))
in the expression for e above. Consequently, one
may reasonably speculate that geometrical
factors do not appear to be important for the
1-D modelling of cell kinetics based on (1),
though this can only be easily demonstrated
by a posteriori observation, due to the potential
ability of the terms in eqn (B.2) to blow up at
small M or small cell densities. The above
observation is consistent with the numerical
observation that geometry is not an important
factor in the CEWH modelling of wound
healing speeds (Dale et al., 1994b; Gaffney et al.,
1997).

Also, it is useful to note that working with
the approximation obtained by assuming e=0
in eqn (B.1), rather than the exact expression (1)
which yields eqn (6) for the coordinate
system used in this paper, leads to a substantial
speed-up of the computer simulations, for a
relatively small error. Hence preliminary studies
are often best performed using such an
approximation.
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For most 1-D coordinate systems e takes the form
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where a,bEO(1). For cartesians, a=1, b=0,
with r the spatial coordinate, whereas for
axisymmetric cylindrical polars a=1, b=0.5,
with r the radial coordinate and for axisymmetric

spherical polars a=1, b=0.5 with r the
meridional angle.

For all the results presented in this paper, it has
been numerically confirmed that ignoring terms
of O(e) for a cylindrical polar formulation results
in a relative error normally less than 0.5%, and
always less than 03% (results not shown). Such
small errors are due to the factor of (1/(3× (32)2))
in the expression for e above. Consequently, one
may reasonably speculate that geometrical
factors do not appear to be important for the 1-D
modelling of cell kinetics based on (1), though this
can only be easily demonstrated by a posteriori
observation, due to the potential ability of the
terms in eqn (B.2) to blow up at small M or small
cell densities. The above observation is consistent
with the numerical observation that geometry is
not an important factor in the CEWH modelling
of wound healing speeds (Dale et al., 1994b;
Gaffney et al., 1997).

Also, it is useful to note that working with the
approximation obtained by assuming e=0 in eqn
(B.1), rather than the exact expression (1) which
yields eqn (6) for the coordinate system used in
this paper, leads to a substantial speed-up of the
computer simulations, for a relatively small error.
Hence preliminary studies are often best
performed using such an approximation.
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