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For many years Turing systems have been proposed to account for spatial and
spatiotemporal pattern formation in chemistry and biology. We extend the study
of Turing systems to investigate the rˆole of boundary conditions, domain shape,
non-linearities, and coupling of such systems. We show that such modifications
lead to a wide variety of patterns that bear a striking resemblance to pigmentation
patterns in fish, particularly those involving stripes, spots and transitions between
them. Using the Turing system as a metaphor for activator–inhibitor models we
conclude that such a mechanism, with the aforementioned modifications, may play
a rôle in fish patterning.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

One of the crucial areas of research in developmental biology concerns the for-
mation of spatial pattern in the early embryo. From a single cell with limited spatial
structure, emerges the vast range of patterns that we see in nature, such as skeletal
patterns, hair, teeth, feathers and coat markings. Although genes play a vital rˆole
in embryological development, a study of genetics alone is not sufficient to under-
stand the generation and subsequent interpretation of the complex spatiotemporal
signaling cues that occur in early development. These arise as the result of the com-
plex interaction of many physical and chemical processes. The outcome of such
non-linear interactions is best understood through mathematical modeling, and the
rôle of modeling in many areas of developmental biology is to help understand how
biologically plausible processes interact.

One of the most widely studied models for spatial pattern formation is that pro-
posed by Turing (1952). He showed that a system of two reacting and diffusing
chemicals could give rise to spatial pattern in chemical concentrations from initial
near-homogeneity. This phenomenon, termed diffusion-driven instability, has now
been shown to occur in chemistry. Experimental results illustrate the formation of
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striped and spotted patterns, as well as more complicated patterns. Many of these
patterns can be exhibited by Turing models and there is now a vast amount of theo-
retical and experimental literature in this area [see Mainiet al.(1997), for a review].
Reaction–diffusion theory has been used in biological pattern formation by assum-
ing that the non-uniform chemical concentrations arising from diffusion-driven
instability act as a pre-pattern to which cells respond and differentiate accordingly.

An alternative mechanism for spatial patterning is the mechanochemical approach
[see Murray (1993), for a comprehensive review]. This assumes that pattern arises
due to the physical interaction of cells with their external environment, leading to
cell aggregations which then differentiate accordingly.

Both these models have been extensively studied and it has been shown that they
can exhibit many patterns that are observed in nature. In particular, the effects
of domain size and non-linearities on the selection and stability of solutions has
been analysed. Specifically, it has been shown that the absence of quadratic non-
linearities in the reaction kinetics favors stripes, but the presence of quadratic terms
favors spots (Ermentrout, 1991; Nagorcka and Mooney, 1992).

Many developmental phenomena, for example, the formation of skin organs, arise
as the result of tissue interaction. In such cases, one must consider the coupling of
pattern generator models. For example, Nagorckaet al. (1987) developed an in-
teraction model that coupled a mechanochemical system with a reaction–diffusion
system. This model was analysed by Shaw and Murray (1990) and shown to ex-
hibit, in one dimension, complex spatial patterns of superimposed different wave-
lengths. Both these papers presented a limited, preliminary study of patterns on
two-dimensional rectangular domains. Cruywagenet al. (1992; 1997) and Murray
et al. (1994) have extensively analysed the coupled mechanochemical model for
tissue interaction proposed by Cruywagen and Murray (1992). They have shown
that each sub-model is unable to generate patterns, but the coupling of the models
leads to the development of patterns. They showed that in two dimensions, complex
propagating patterns could arise, the form of which depended crucially on initial
conditions.

More recently, Painteret al. (1999) have considered the weak coupling of a
chemotactic cell aggregation model with a reaction–diffusion system and shown
that the resultant model can exhibit complex spatial patterns, such as stripes of
different widths, that are observed biologically but cannot be generated by a single
reaction–diffusion system. H¨ofer and Maini (1997) have shown how the coupling
of a chemotactic mechanism with an excitable reaction–diffusion system can lead
to cell aggregation via cell streaming, as observed in the slime mouldDictyostelium
discoideum.

Much of the detailed investigation of the results of coupling pattern generators has
been carried out in one dimension, or has been done in two dimensions for simple
forms of coupling on rectangular domains with zero flux boundary conditions. In
the present paper, we aim to extend this study by considering the results of coupling,
in a number of ways, for two reaction–diffusion systems. We chose this particular
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system because it is simpler than the mechanochemical model, yet the patterns
generated by both reaction–diffusion and mechanochemical models have thus far
been shown to be similar.

In Section 2 we consider first a single, generic, reaction–diffusion model on a
two-dimensional domain and verify previous results on the effects of the form of
the non-linearity on the selection of pattern. The model kinetics that we consider
are not derived from a chemical reaction, rather they incorporate the key elements
(linear and non-linear) that have been shown to be crucial in pattern selection in
models which do have a firmer biological or chemical basis. The simplicity of our
model kinetics makes transparent the effects and interaction of these terms, and
our results apply to more realistic models. In Section 3 we study the effects of
confining the domains to certain shapes and the possible existence of sources or
sinks of chemicals at the boundaries. In Section 4 we consider the coupling of two
reaction–diffusion models and investigate the effects of different types of coupling.
In Section 5 we show that the complex patterns generated by our models bear a
striking similarity to pigmentation patterns observed on a number of fish species.

2. THE MODEL

Our main objective is to investigate the patterns formed in confined two-dimen-
sional finite domains by Turing mechanisms. Turing systems have the form

∂U

∂t
= Du∇2U + f (U,V) (1)

∂V

∂t
= Dv∇2V + g(U,V).

These equations describe the evolution of the concentrations,U (x̄, t),V(x̄, t) at
spatial positionx̄ and timet , of two chemicals due to diffusion, with constant
diffusion coefficientsDu, Dv, respectively, and reaction, modeled by the (typically
non-linear) functions,f andg. The review by Mainiet al. (1997) considers the
commonly used reaction kinetics and presents their motivation.

The above equations are solved on some bounded domain� ⊂ Rn with boundary
conditions which may be of Neumann, Dirichlet, Robin or periodic type. The
concentrations of the chemicals are specified att = 0,∀x̄ ∈ �.

A spatially-uniform steady state of the above system is the state(Uc,Vc) such that
f (Uc,Vc) = g(Uc,Vc) = 0 and such thatU = Uc,V = Vc satisfies the boundary
conditions. Turing showed that under certain conditions on the parameter values,
such a steady state could be linearly stable in the absence of diffusion but unstable
in the presence of diffusion — this is the now well-known phenomenon ofdiffusion-
driven instability. For example, on a rectangular two-dimensional domain with zero
flux boundary conditions, the following conditions must be satisfied for diffusion-
driven instability:
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(I)
∂ f

∂U
+ ∂g

∂V
< 0;

(II)
∂ f

∂U

∂g

∂V
− ∂ f

∂V

∂g

∂U
> 0;

(III) DU
∂g

∂V
+ DV

∂ f

∂U
> 0;

(IV) DU
∂g

∂V
+ DV

∂ f

∂U
> 2

√
DU DV

(
∂ f

∂U

∂g

∂V
− ∂ f

∂V

∂g

∂U

)
;

where the partial derivatives off and g are evaluated at(Uc,Vc). As a further
condition, the uniform steady state can only go unstable to modes that have positive
growth rate and satisfy the boundary conditions — the so-calledadmissible modes.

On two-dimensional domains, there can be a number of different admissible
modes with the same wavenumber. In such a degenerate case, the question naturally
arises of which mode will dominate in the full non-linear system. The papers by
Ermentrout (1991), and Nagorcka and Mooney (1992) show that the form of the
non-linearity [whether it is quadratic or cubic when expanded about(Uc,Vc)] is the
crucial factor in pattern selection.

As our starting point, we propose a simple set of reaction–diffusion equations
which encompasses all the above features. The basic equations are obtained from
equation (1) in the following way. We first observe that, in general, there is a
stationary uniform solution (Uc,Vc), given by the zeros off and g. We then
expand the functions around this point in a Taylor series, neglecting terms of order
higher than cubic. The specific form we consider is:

∂u

∂t
= Dδ∇2u+ αu(1− r1v

2)+ v(1− r2u) (2)

∂v

∂t
= δ∇2v + βv

(
1+ αr1

β
uv

)
+ u(γ + r2v),

whereu = U − Uc andv = V − Vc, so the uniform stationary solution of equa-
tion (2) is the point (0,0). The special arrangement of the coefficients is dictated by
the conservation relation between chemicals. The quantityδ is the ratio between
diffusion coefficients of the two chemicals, and must not be equal to unity in order
to satisfy conditions I–IV. There are two interaction parameters,r1 andr2, corre-
sponding to a cubic and a quadratic term, respectively. It is widely known that a
cubicinteraction favorsstripesand that aquadraticone producesspotpatterns. The
wavelengths present in the patterns depend on the values of the coefficients, which
select the modes to which the uniform steady state is linearly unstable.
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2.1. Linear analysis. In the absence of diffusion, equation (2) shows another
stationary uniform solution at

v = −(α + γ )
1+ β u.

To keep the investigation as simple as possible, we enforce(0,0) to be the
only spatially-uniform steady state by settingα = −γ . In the absence of diffu-
sion, standard linear analysis predicts exponentially growing solutions of the form
(u, v) = (u0 exp(λt), v0 exp(λt)), with

λ = 1

2

[
(α + β)±

√
(α + β)2− 4(αβ − γ )

]
.

We require the uniform solution to be linearly stable, therefore Re(λ)must be less
than zero. This will hold for eitherα ≥ 0 andβ ≤ −α, or for α ≤ 0 andβ ≤ −1
(cf. conditions I and II above).

In the presence of diffusion, the spatial variation of the functionsu andv is of the
form exp(i k̄ · x̄), and the dispersion relation of the linearized equations is given by
the solutions of

λ2− Bλ+ C = 0,

whereB = k2δ(1+ D) andC = (α − δDk2)(β − δk2) + α, k2 = k̄ · k̄. The
solutions ofC = 0 are the bounds, ink space, of a region with positiveλ. These
bounds need to be real positive, which implies the conditionα − 2

√
αD > βD.

On a confined spatial domain,k is discrete (corresponding to admissible modes),
and the quantityδ = 2 gives the scale of the size of the domain. Therefore, we
now have as free parameters,D, α andβ and the values of these determine which
modes evolve. We are specifically interested in studying the formation of stripes
and spots, so we choose these parameters in such a way that very few admissible
modes have positive growth rates in a grid of sizeL × L, and that at least one
of the form k̄ = 2π(n/L ,0) (corresponding to stripes) and another of the form
k̄ = 2π(m/L ,m/L) (corresponding to spots) are present. Due to the complicated
algebraic form ofB and C it is very difficult to choose parameters that isolate
specific modes of the aforementioned form, so in the following, when we talk about
a givenk̄, we will be referring to the monomode that corresponds to the maximum
value ofλ.

In Fig. 1 we show the real part of two pairs of eigenvalues corresponding to
two different sets of parameters as a function of the wave vector. The parameters
were chosen to enhance modes of the formk̄ = 2π(4/60,0) (k = 0.42) and
k̄ = 2π(8/60,0) (k = 0.84), respectively.

2.2. Numerical calculations. We first consider equation (2) on a square domain
and solve it on a grid with 100× 100 sites by a simple Euler method with a time
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Figure 1. Eigenvalues of the linearized characteristic matrix of equation (2). The admissible

modes in a finite lattice have discrete wave numbersk = 2π
√
(n/Lx)2+ (m/L y)2, where

Lx andL y are the number of pixels in thex andy directions, respectively. The parameter
valuesD = 0.516, α = 0.899, andβ = −0.91, were used to enhance the modek =
2π(4/60) = 0.42 (continuous line) in a grid of 30×30 withδ = 2, while valuesD = 0.122,
α = 0.398, andβ = −0.4 enhance the modek = 2π(8/60) = 0.84 (dashed line).

step of1t = 0.05, and by discretizing the Laplacian in the grid with lattice sites
denoted by(i, j ). The form is

∇2u|(i, j ) = 1

b2


[ar (i, j )u(i + 1, j )− u(i, j )]+
[al (i, j )u(i − 1, j )− u(i, j )]+
[au(i, j )u(i, j + 1)− u(i, j )]+
[ad(i, j )u(i, j − 1)− u(i, j )]

 ,
whereb is the lattice constant and the matrix elements ofar , al , au andad are unity
except at the boundary where they are set equal to zero when the lattice site has no
right(r ), left(l ), up(u) or down(d) neighbor, respectively. This ensures zero flux of
reactants in or out of the boundary, and it is equivalent to settingn̂ · ∇u = 0 at the
boundary with normal vector̂n.

The stable patterns obtained can either be spots or stripes, depending on the values
of r1 andr2. It is seen that the quadratic termr2 favors spots while the cubic term
r1 produces stripes. In Fig. 2 we show some examples of these simple cases.

Our extensive numerical simulations suggest that, in general, spots are more
robust and that the amplitude differences are larger than those for stripes, that is,
spots are more pronounced. The stripes are only formed for very small values ofr2,
and can be oriented in any direction, depending on the initial conditions. In these
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 2. Patterns obtained with equation (2): (a) parametersr1 = 3.5 andr2 = 0, other
parameters chosen so that modek = 0.42 is selected in the linear regime; (b) same as (a)
but with parameters chosen to enhance modek = 0.84; (c) and (d) are the same as (a) and
(b), respectively, except that the starting random seed is different; (e) and (f) correspond to
the same modes as before but the non-linear parameters arer1 = 0.02 andr2 = 0.2.
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Figure 3. Patterns obtained with equation (2) forr1 = 3.5 andr2 = 0.2. The other
parameters are as in the first column of Fig. 2. The figure shows snaps of the patterns taken
at increasing times. Observe that the transient patterns present stripes and spots, but the
converged patterns only present spots arranged in a perfectly hexagonal lattice.

calculations, we started with random values having a flat distribution and different
seeds.

In Fig. 3 we show a competition between stripes and spots when both non-linear
parameters are different from zero. The pattern takes a long time to settle down, start-
ing with stripes and spots and ending with a perfect hexagonal lattice of spots only.

3. BOUNDARY AND SHAPE EFFECTS

It is known that patterns produced by simple Turing systems can be sensitive to
domain shape (Bunowet al., 1981) and, therefore, it is important to investigate the
robustness of the above patterns to changes in geometry. Our aim is to investigate
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(a) (b) (c)

Figure 4. Patterns obtained with parameter valuesD = 0.182,α = 0.5, β = −0.578 and
r1 = 0.5, with a sourceh = 0.005 ofu at the top and the bottom boundaries. The parameter
r2 has values: (a) 0.47; (b) 0.35; and (c) 0.29. Observe the increasing tendency to form
stripes asr2 decreases.

the above system as a possible mechanism for pigmentation patterning in fish, so we
first investigate how the pattern changes due to changes in the shape of the domain.
Specifically, we consider a simple approximation to a fish shape, consisting of three
parabolic edges and one straight edge. We find that there is no detectable difference
with the patterns already shown.

Next, we consider the rˆole of boundary conditions, as it is known that these can
have a pronounced effect on the pattern exhibited by simple Turing systems (Dillon
et al., 1994; Vareaet al., 1997). In this case, we find that the existence of a source
of chemical at the borders dramatically changes the patterns.

As a first example, in Fig. 4 we show the effect of introducing a constant source
termh in theu in equation (2), at the upper and lower boundaries of a rectangular
domain. The three patterns correspond to increasing values ofr2, starting with a
value that gives a spot pattern in the absence of the source terms. Observe that the
source produces a pattern with stripes of modulating width. Due to the fact that
asr2 increases, the spots become more robust, the influence of the source becomes
more localized at the vicinity of the boundaries, and the spots reappear in the center.

We now consider the influence of domain shape on these patterns. In Fig. 5
we show the patterns obtained on a ‘fish-like’ domain for parameters in the stripe
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(a)

(b)

(c)

Figure 5. Patterns obtained on a ‘fish-like’ domain and with a sinkh = −0.005 ofu at the
top curved surface: (a) Parameters as in Fig. 2(a); (b) parameters corresponding to Fig. 2(e);
(c) parameters taken from Fig. 3.

regime, when a source term in added either in the horizontal or the vertical borders.
Observe that the stripes align along the source edges. These patterns are very similar
to the ones published in Vareaet al. (1997), but the model is different. Hence, one
can conclude that the important factor here is the presence of the source, and not
the peculiarities of the model used.

When the source (or sink) value is very high, the stripes with different orientation
emanating from the upper and lower borders collide and a sharp region of transition
is observed. The change in spot patterns is similar to that illustrated in Fig. 4.
However, when one chooses a regime in which spots and stripes compete, as in
Fig. 3, two things happen: first, one stabilizes stripes in the region near the source;
second, the pattern with stripes and spots becomes stable. This is shown in the
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bottom panel of Fig. 5. A similar pattern has been obtained by modulatingr2 with
a step function.

4. INTERACTING SYSTEMS

In this section we investigate interacting Turing systems. Specifically, we consider
a second Turing system in chemicals(u′, v′) that modulates the kinetic terms in the
(u, v) system to give the model:

∂u

∂t
= Dδ∇2u+ αu(1− r1v

2)+ v(1− r2u)+ q1u
′ + q2u

′v + q3u
′v2

∂v

∂t
= δ∇2v + βv

(
1+ αr1

β
uv

)
+ u(γ + r2v)− q2v

′u− q3v
2u′

∂u′

∂t
= D′δ′∇2u′ + α′u′(1− r1v

′2)+ v′(1− r2u
′) (3)

∂v′

∂t
= δ′∇2v′ + β ′v′

(
1+ α

′r1

β ′
u′v′

)
+ u′(γ ′ + r2v

′).

This allows us to investigate the changes in pattern properties that occur due to
the interaction between the two systems. It also enables us to choose two identical
systems, each in a different patterning regime, so that we can study, for example,
the interaction of patterns with different, or even incommensurate wavelengths;
competition between spots and stripes; and to see if new patterns can be obtained,
for example, fringes of various widths, spots of varying diameter, etc.

The linear analysis is not affected byq2 or q3, but whenq1 is present, the eigen-
values of the linearized systemare the sameas those shown in Fig. 1. However, the
eigenvectors are mixed up by the coupling, in the sense that they contain non-zero
components of both primed and unprimed variables. The mode of small wave vector
is not greatly affected, but the one with longerk, or small wavelength is increas-
ingly mixed asq1 gets larger, up to the point that forq1 ≈ 0.5 theu′ component
dominates.

The numerical calculations using this system were all made with parameter values
such that the(u, v) system pumps the modek = 0.42 and the(u′, v′) system pumps
the modek = 0.84. All the calculations converged to the numerical error of the
program (≈ 10−7).

In Fig. 6 we show results for linear, quadratic and cubic positive interactions. The
solution to the non-interacting systems corresponding to these parameters are the
ones shown in Fig. 3. Observe thatq1 andq3 alone do not change the spot pattern,
but produce defects in the hexagonal lattices, due to the interaction of different
wavelengths. The quadratic interaction produces a more striking effect, the spot
pattern is now superimposed on a labyrinth pattern of stripes. This type of pattern
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is completely new, and more complex than the former ones. It should be noted that
some patterns of the form illustrated in Fig. 6 can be exhibited by a single Turing
system [see, for example, Ouyang and Swinney (1991); Dulfiet and Boissonade
(1992)].

In our calculations it is always seen that the(u′, v′) sub-system converges more
rapidly than the(u, v) sub-system. Therefore, the quadratic interaction acts effec-
tively as a modulation ofr2 in the domain, just as if the first system is reacting on
top of a modulated substrate. Figure 7 shows the same calculation but with negative
interaction parameters.

As in the case of a single Turing system, we investigated the effect of domain
shape on the patterns exhibited by the interacting system by using the same domains
as in Fig. 5. The results show that in all cases there was no appreciable change in the
patterns. However, when a small source term is added at the top curved boundary,
as in Fig. 5, the patterns align themselves to that boundary, and ordered patterns
appear. This is shown in Fig. 8 for positive values of the interaction parameters,
and in Fig. 9 for negative values.

A linear interaction (q1 non-zero) has very little effect on the pattern, and the
spots corresponding to the primed system dominate, and align very close to the
sink boundary. However, this case presents the interesting feature that it converges
very slowly. On the time scale of embryological development, the transients could
become important.

Quadratic interaction (q2 non-zero) is more efficient in aligning the stripe patterns;
positive values tend to enhance the stripes, negative values make the spots more
apparent. By far the most interesting patterns are obtained with a cubic interaction
and a strong sink. Positive values ofq3 produce a mixed pattern of aligned stripes
and spots, and these are complex, resembling ‘halo-like’ structures. Negative values
of q3 result in the effects of the sink being felt at a greater distance, resulting in a
more pronounced stripy pattern.

5. APPLICATIONS AND DISCUSSION

The first application of Turing systems to pigmentation patterns was by Murray
(1981). He showed that the patterns exhibited by a system of coupled reaction–
diffusion equations with zero flux boundary conditions were similar to those ob-
served on many mammalian coats. He considered the steady-state problem on
different sizes of domain and investigated how the solutions varied with scale. For
most coat markings, growth simply results in a qualitative change in pattern. How-
ever, in certain fish species, dramatic quantitative changes in patterns can occur
as the result of growth. This was first modeled by Kondo and Asai (1995), who
showed that Turing patterns evolving on a growing domain gave rise to a spatiotem-
poral sequence of patterns that was consistent with those observed on certain fish
species.
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u u′

(a)

(c)

(e)
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(d)

(f)

Figure 6. Patterns obtained with the coupled system equation (3). The parameter sets foru
andu′ are those in Fig. 2(a) and (b), respectively. The top row has only linear coupling (q1
non-zero), the middle row has only quadratic coupling (q2 non-zero), and the bottom row
has only cubic coupling (q3 non-zero). In all cases, the non-zero value of the coupling is
taken to be 0.55. Observe that theu pattern is completely destroyed with linear coupling
and is identical tou′. Quadratic coupling favors a labyrinth pattern, while cubic coupling
produces only spots.



496 R. A. Barrioet al.

u u′

Figure 7. Same as Fig. 6, but with negative couplingsqi = −0.55. Observe that now
the linear term produces the negative image ofu′ in u. The other couplings produce a
superposition of stripes and spots in theu pattern. The quadratic coupling now favors
spots, and the cubic coupling produces ordered spots.

The above studies considered the boundary as an impermeable barrier to the chem-
ical morphogens. Nijhout (1990) considered the effect of boundary and internal
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u u′

Figure 8. Simulations of the interacting system on a ‘fish’ shaped domain with parameter
values as in Fig. 6, and with a sink termh for u at the top boundary. For linear coupling
h = −0.05, for quadratic couplingh = −0.005 and for cubic couplingh = −0.1. Observe
that the linear coupling is very insensitive to the sink, while the quadratic coupling forms
oriented stripes parallel to the sink. Cubic coupling produces aligned stripes near the sink,
but complex spots far away from the sink boundary.

source terms with respect to the application of reaction–diffusion theory to butter-
fly wing patterns. More recently, Vareaet al. (1997) have considered the effect of
boundary source terms and geometry on the patterns exhibited by reaction–diffusion
systems on growing domains.

In this paper, we have extended this study to consider in more detail the rˆole of
boundary source/sink terms and also to investigate the patterns exhibited by in-
teracting reaction–diffusion systems. We have shown that these can give rise to
a number of patterns that cannot be exhibited by the standard Turing model. For
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u u′

Figure 9. As in Fig. 8, but with negative couplingsqi = −0.55. Observe that now the linear
term produces the negative image ofu′ in u. The other couplings produce a superposition
of aligned stripes parallel to the sink boundary in theu pattern. The quadratic coupling
now favors spots, and the cubic coupling produces a combined pattern of stripes and spots.

example, in some of the simulations, we incorporated spatially-varying parameters
into the model and investigated the spatial patterns exhibited by the resulting Turing
system. The natural question then arises as to how the spatial pattern in parameters
was set up. This can be thought of as the output of a second Turing system with
a very short characteristic diffusion time, so that a quasi-steady-state assumption
can be used. In Fig. 10, a reaction–diffusion system with spatially-modulated pa-
rameters produces rows of spots interspersed with stripes. This extends the ideas
of Benson (1994), and the patterns are similar to those observed on the thirteen-lined
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Pomacanthus maculatus

Figure 10. Pattern obtained with equation (2) for parameter valuesr1 = 1.5 and
r2 = cosπy/10, D = 0.182, α = 0.5, andβ = −0.578, which enhance modes
k̄ = 2π(5/L ,5/L) and 2π(7/L ,0). This kind of parameter modulation produces an
alternate pattern of stripes and spots which cannot be produced by a standard Turing mech-
anism. Note that this pattern resembles the pigmentation on the fishPomacanthus maculatus
[reproduced from Frank (1973)].

ground squirrel (Bard, 1981; Cochoet al., 1987). These patterns are also similar to
those observed onPomacanthus maculatus. In Fig. 10 we show a pattern obtained
with a sinusoidal modulation ofr2.

We have shown that boundary source/sink terms can also play a crucial rˆole in
pattern selection. For example, the striped pattern breaking into spots in Fig. 5
closely resembles that observed on the fishSiganus vermiculatus(Fig. 11).

A pattern very similar to the one shown in the second row of Fig. 6 is actually
found, with two different wavelengths, in theHypostomus plecostomus, as exhibited
in Fig. 12, and the one found in the first row of Fig. 5 is actually found in the
Zebrasoma desjardinii(Fig. 13).
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Siganus vermiculatus

Figure 11. The skin pattern of theSiganus vermiculatus[reproduced from Frank (1973)],
showing the transition from stripes to spots that can be simulated with the calculations
shown in Fig. 5 when a source is present at one of the boundaries.

An example of a transient pattern is shown in Fig. 14, obtained with a small
q1 coupling, which converges very slowly, and compared with the hexagons with
missing central spots found in the skin of theCoria formosaparrot fish.

A very important aspect of pattern generation is the robustness of pattern. This
depends on a number of things, including the boundary conditions and the non-
linear terms. Our results show that in the case where spots compete with stripes,
spotted patterns are very robust and appear to arise as long as the coefficient of
the quadratic term is non-zero (Fig. 3 illustrates this). A source-type bound-
ary condition can robustly select stripes near to the boundary in the case when
there is stripe–spot competition (Figs 4 and 8). For the case where stripes are the
only pattern, the boundary sources can influence their orientation (illustrated by
Fig. 13).
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Hypostomus plecostomus

(a) (b)

Figure 12. The skin pattern of theHypostomus plecostomuscan be modeled with the set of
quadratically coupled Turing equations (see Fig. 6).

6. CONCLUSIONS

In this paper, we have carried out a detailed numerical investigation of a generic
Turing system and have examined the effects of boundary conditions, domain shape,
and coupling of Turing systems. We have shown that these modified models can
generate patterns not exhibited by the standard Turing model, and have compared
them with the pigmentation patterns observed on fish. For example, coupled Turing
systems with very different diffusion times can exhibit stripes interspersed with
spots (Fig. 10) due to the modulation of the non-linear terms which are crucial in
determining whether the pattern evolves to stripes or to spots. Also, the coupled
system can exhibit hexagonal arrays of spots with the central spot missing (Fig. 14).
We are unaware of such patterns arising from a single Turing system. Coupled
Turing systems are able to produce modulated stripes [Figs 6(c) and 7]. Furthermore,
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Zebrasoma desjardinii

Figure 13. Complex patterns of stripes and spots can be obtained with our model with
sources, and are found in real fish, as the complicated encounter of two sets of stripes with
different orientation in the skin of the surgeon fishZebrasoma desjardinii. The comparison
is made with the theoretical pattern of Fig. 5.

if the parametrically enhanced wavelengths are incommensurate, one can obtain
non-periodic patterns.

Presently, there is no firm biological evidence that pigmentation patterning in
fish arises due to a chemical pre-pattern. It has been suggested [see Twitty and
Niu (1954) and references therein] that pigmentation patterns may arise due to cell
movement in response to diffusible factors secreted by cells. This type of pattern
formation mechanism is presently under investigation (Painteret al., 1999). The
results of our present paper show that a comparatively simple model can produce
a suprisingly diverse range of complex patterns. Our model simulations show that
boundary source terms, domain size, and domain shape can play crucial roles in
pattern selection. These ideas could be tested experimentally by placing barri-
ers near the hypothesized sources to determine if different patterns evolve. Do-
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Coris formosa

Figure 14. Transient pattern obtained after 20 000 iterations, using the same parameters
as in Fig. 11, except thatr1 = 3.5 andr2 = 0.47. Only linear couplingq1 = −0.2 is
present. This pattern converges very slowly and the transient pattern is very complicated
and disordered. This pattern presents hexagons with missing centers as the ones found on
the skin of the fishCoria formosa[reproduced from Frank (1973)].

main size and shape could be altered by varying feeding. Although we explic-
itly studied a reaction–diffusion model, we believe that our results will hold for
any short-range activation, long-range inhibition model. We conclude that such a
mechanism may play a rˆole in pigmentation patterning in fish. We are currently
investigating more fully the regions in parameter space where different patterns
occurrs.
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