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We investigate the sequence of patterns generated by a reaction–diffusion system on
a growing domain. We derive a general evolution equation to incorporate domain
growth in reaction–diffusion models and consider the case of slow and isotropic
domain growth in one spatial dimension. We use a self-similarity argument to
predict a frequency-doubling sequence of patterns for exponential domain growth
and we find numerically that frequency-doubling is realized for a finite range of
exponential growth rate. We consider pattern formation under different forms for
the growth and show that in one dimension domain growth may be a mechanism
for increased robustness of pattern formation.
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1. INTRODUCTION

The reaction–diffusion mechanism is one of the simplest and most elegant pat-
tern formation models.Turing (1952) first proposed the mechanism in the con-
text of biological morphogenesis, showing that reactions between two diffusible
chemicals (morphogens) could give rise to spatially heterogeneous concentrations
through an instability driven by diffusion. He further suggested that morphogen
concentration patterns formed in this manner might be the source of spatial orga-
nization in the embryo; developmental fate subsequently being cued by cellular
mechanisms in response to thresholds in morphogen concentration. In this, as in
most pattern formation applications of reaction–diffusion systems, it is supposed
that the diffusion and reaction take place on a timescale that is much faster than
the mechanism interpreting the spatial information. The establishment and the in-
terpretation of the spatial pattern then decouple allowing pattern formation to be
studied independently and for this reason many theoretical studies have considered
only the existence and stability of patterned steady state solutions.

It has been suggested (Oster and Murray, 1989) that other lateral inhibition mod-
els for global pattern formation, in which the entire domain is patterned simulta-
neously, have equivalent underlying mathematical structure and differ significantly
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only in their biological interpretation. Accordingly, one might usefully study the
behaviour of the equations underlying such models out of the context of the biologi-
cal motivation for any particular model. In this paper we use reaction–diffusion the-
ory as a paradigm within which to study the qualitative effects of domain growth on
pattern formation. We suppose that the domain is growing on a timescale commen-
surate with pattern generation such that it may not be decoupled from the reaction–
diffusion mechanism. We consider the generation of a sequence of patterns and
discuss the dynamics and transient behaviour responsible for the sequence. We
find that domain growth imposes a constraint on the system which restricts the set
of accessible patterns, increasing the robustness of pattern generation with respect
to the initial conditions. The improvement in robustness of pattern selection is the
key feature of the model that we present, which has clear consequences for the
applications of global pattern formation models.

1.1. Pattern selection and robustness.Reaction–diffusion models may admit
multiple heterogeneous solutions for a given parameter set, with pattern selection
sensitive to initial conditions (Arcuri and Murray, 1986), spatial scale and geom-
etry. Precise control of the initial conditions and equation parameters is required
to ensure the selection of a specific pattern. This is a generic feature of global
pattern generators. Applications of reaction–diffusion models in various contexts
have been criticised for a lack of robustness (Bard and Lauder, 1974; Bunow et
al., 1980). Indeed, some authors have concluded that global pattern formation
mechanisms alone cannot be the source of reliable spatial pattern under normal
biological variation. In a model for segmentation, where the major focus is on the
reliable generation of stripes,Lacalli et al. (1988) introduced a spatial gradient in
one of the model parameters along the axis of stripe formation in order to obtain
a large number of stripes (for example 8) reliably.Murray (1982) has compared
pattern formation under various kinetic systems and has ranked models in terms
of the relative sizes of parameter space regions for pattern formation (the so-called
Turing space). In this paper we are concerned with pattern sensitivity to the size
of the domain. The reliable establishment of pattern is found to be particularly
difficult for larger solution domains (which admit higher pattern modes) and for
systems in two and three spatial dimensions, where sensitivity to initial conditions
and geometry becomes increasingly pronounced.

We note that this sensitivity is a positive asset to some models incorporating a
reaction–diffusion mechanism, for example in models of animal coat markings
(Murray, 1981), where different members of the same species display patterns
which are characterized by a similar wavelength but which in detail show great
variety between animals. This is also a feature of similar models for ocular domi-
nance columns (Swindale, 1980) and finger prints (Bentil and Murray, 1992) where
some amount of variability in pattern is desirable.
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1.2. Growth. Previously, several authors have incorporated domain growth into
models of pattern formation, usually by introducing or modifying terms in anad
hocmanner.Arcuri and Murray (1986) have proposed a caricature model in which
a nondimensional parameter containing the domain length is assigned an explicit
time dependence. The results of numerical simulations reported in their paper
show a tendency for the omission of modes in the sequences of patterns generated
by the model, and under certain (unclear) circumstances a tendency to frequency-
doubling was also noted. Here we develop a similar model from first principles,
and find that the frequency-doubling sequence is a robust and pervasive solution
behaviour.

Kulesaet al. (1996) have incorporated exponential domain growth into a model
for the spatio-temporal sequence of initiation of tooth primordia in theAlligator
mississippiensis. In the model domain growth plays a central role in establish-
ing the order in which tooth precursors appear. Recently, stemming from work
by Kondo and Asai (1995), various authors have considered the effect of growth in
numerical simulations of reaction–diffusion models for the skin patterns on species
of fish during their development from juvenile to adult forms (Vareaet al., 1997;
Painteret al., 1999). Here the pattern change is commensurate with growth and
shape change, and many different pattern behaviours are observed in response to
the growing domain before the final domain geometry is achieved. This is a partic-
ularly exciting experimental system in which pattern and shape change are easily
observed and quantified over time, and lends strong circumstantial evidence that
a global reaction–diffusion-type mechanism may be responsible for the evolving
patterns. In a paper considering models for reliable segmentationSaunders and Ho
(1995) propose hierarchical division of a domain by setting up a sequence of inter-
nal boundaries. The authors consider pattern formation in one spatial dimension,
dismissing the reaction–diffusion mechanism because of the lack of scale invari-
ance on the fixed domain and also by the apparent failure of the mechanism to
generate a reliable pattern sequence with domain growth, based on the results of
Arcuri and Murray. They report that the inclusion of growth contributes another
source of instability, that such a mechanism cannot produce a reliable 16 segment
pattern, and conclude that they would not expect any mechanism that acts over the
whole domain to be capable of robust pattern formation at higher modes (p. 547).
The results that we present here suggest, at least in one-dimension, that growth may
in fact stabilize the frequency-doubling sequence and subsequently that it may be
a mechanism for robust pattern formation.

In the following section we briefly describe standard reaction–diffusion theory
on the fixed domain, highlighting those results which are pertinent to the present
study. In Section3 we derive evolution equations for reaction–diffusion on a gener-
alized growing domain and describe a model for slow and isotropic growth, which
will be the subject of the remainder of this paper. In Section4 we describe the
frequency-doubling sequence and use a notion of self-similarity to predict growth
functions under which this pattern sequence is realized. We provide numerical evi-
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dence in support of our analysis and examine pattern generation under other growth
functions. Finally we discuss our results with reference to the topics raised in this
introduction.

2. REACTION –DIFFUSION THEORY

First we define a reaction–diffusion equation describing the interaction ofn chem-
ical species, denoted by the concentration vectorc = (c1, c2, . . . , cn), on a domain
� in RN . We consider below the general case for a rectangular domain of di-
mensionN ≤ 3, although we will concentrate on the one-dimensional problem
for much of the remainder of this paper. Ordering the chemicals with decreasing
diffusivity and transforming spatial coordinates to the unit interval we have the
nondimensional evolution equation

∂c

∂t
=

1

γ
D∇2c+ R(c), x ∈ [0,1]N (1)

describing the spatio-temporal distribution of chemicals with initial conditions
c(x,0). Here∇2 is the N-dimensional Laplacian andD = diag{1,d2, . . . ,dn}

is the diagonal matrix of diffusivities with no cross-diffusion. The diffusivities are
given relative to the largest,D1, such thatdi = Di /D1 ≤ 1 andγ , the dimension-
lessscaling parameter, is given byγ = ωL2/D1. The timescaleω is characteristic
of the reaction kinetics vectorR, andL is a length scale usually taken to be the
(initial) domain length for problems in one spatial dimension. The parameterγ ,
scaling the diffusion terms, determines the relative strengths of interaction of the
reaction and diffusion terms. Solutions are influenced by the domain size through
γ . To close the problem we impose boundary conditions on the solution. A natural
choice is to assume that the boundaries do not influence the interior of the domain
and impose zero flux (Neumann) conditions. We will comment on this choice later
with reference to the role of boundary conditions in pattern formation.

2.1. Diffusion-driven instability. In his paper of 1952 Turing showed that such
a reaction–diffusion system with two chemicals,n = 2, may generate spontaneous,
symmetry-breaking spatial pattern. This fundamental idea has since been explored
and developed in numerous texts. One of the novel features of the mechanism
is that the length scale of the pattern is inherent to the mechanism, rather than
imposed by the size of the solution domain as is the case for other pattern formation
models. Recently interest has been revived by the first experimental realisation of
stationary patterns in a chemical reaction [seeCastetset al. (1990); De Kepperet
al. (1991) andMaini et al. (1997) for a recent review].

Generally, two-component schemes capable of pattern formation include self-
activation with short-range signalling and self-inhibition with longer range sig-
nalling. In chemical terms such systems comprise either a short-range self-activator
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which activates and is reciprocally inhibited by a long-range self-inhibitor (pureki-
netics), or a self-activator that depletes the self-inhibitor (substrate) which in turn
feeds production of the activator (crosskinetics). The necessary conditions for
bifurcation from a homogeneous spatial distribution to a patterned state can be de-
termined from the diffusivities of the chemicals and the kinetic parameters in the
linearized model [Dillon et al. (1994), for example]. Ford = D2/D1 ≤ 1, linear
analysis determines critical parameter valuesdc andγc such that we required < dc

andγ > γc for diffusion-driven instability, along with conditions on the linear part
of the kinetics. The condition onγ determines a minimum domain length: we
require that the domain admit at least one half-cycle of the intrinsic pattern wave-
length. The analysis predicts that the homogeneous steady state is destabilized by
sinusoidal modes, with amplitude growing exponentially, and that an increasing
number of modes are able to destabilize the homogeneous state with increasing
γ . Away from the bifurcation point, weakly nonlinear analysis can be used to in-
vestigate the modification of the pattern in the nonlinear regime. We will refer to
different patterns by the appropriate linear mode number,m. The Turing bifurca-
tion has pitchfork structure and so a pattern based on modem may take either of
two polarities,± cosmπx. Activator and inhibitor patterns are in phase for a pure
kinetic system while for cross systems the spatial oscillations are in antiphase. The
polarity adopted by the solution in general depends on the initial conditions, as
does selection of the solution branch and hence pattern mode. The increasing mul-
tiplicity of solution branches for increasingγ implies increasing sensitivity to the
initial conditions for increasing domain length.

2.2. Boundary and initial conditions: sensitivity of pattern selection.General
boundary conditions are written as

n · ∇c = H(c∗ − c), x ∈ ∂� (2)

wherec∗ is a fixed reference concentration vector.H is the nondimensional mass
transfer matrix which, excluding cross-species dependency, is given byH = diag
{h1, h2, . . . , hn}. Whenhi = h for all i we have scalar boundary conditions, of
which the special cases of zero flux (Neumann) and homogeneous Dirichlet con-
ditions are given byh = 0 and∞, respectively. More general combinations of
Dirichlet and Neumann conditions in the different species are known as nonscalar
(mixed) conditions. Homogeneous conditions are those for whichc∗ = cs, where
R(cs) = 0 defines the kinetic steady state for which a spatially homogeneous
steady state solution exists and is stable below a critical domain size.

Arcuri and Murray (1986) have studied numerically the influence of initial condi-
tions on the pattern generation of two-species reaction–diffusion equations in one
spatial dimension as a function of the imposed boundary conditions. The sensitivity
of the pattern selection to the initial data on the domain was found to decrease with
increasing inhomogeneity of the boundary conditions, i.e., as|c∗ − cs

| increases.
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Figure 1. Relative frequencies of steady state solution modes against mode
numberm for numerical simulation of a reaction–diffusion equation (1)
with Schnakenberg kinetics (24) for three different values ofγ . Each sim-
ulation took different random initial conditions with zero flux boundary
conditions. Dashed, solid and dotted lines correspond toγ = 190, 215
and 240 for which the fastest growing linear mode ism = 15, 16 and 17,
respectively.

Dillon et al. (1994) have studied the steady state solutions of reaction–diffusion
systems under nonscalar boundary conditions using numerical bifurcation tech-
niques. The multiplicity of stable pattern solutions characteristic of the scalar case
and the sensitivity to initial data can be shown to be reduced under such conditions.
Using the domain length as the bifurcation parameter, the authors showed that the
bifurcation diagram is simplified, signifying a reduction in sensitivity of pattern
selection to the domain length. Also the constraint on the ratio of diffusivities for
diffusion-driven instability is somewhat relaxed.

It is apparent from these studies that zero flux boundary conditions impose the
weakest constraint on pattern formation and lead to the greatest difficulty in achiev-
ing reliable pattern selection from initial conditions. We will assume these bound-
ary conditions, the worst case scenario, for our investigation of patterning during
growth of the domain. To illustrate the lack of reliable pattern selection we show
in Fig. 1 the relative frequencies of various steady state pattern modes developing
from different sets of random initial conditions on a domain of fixed lengthL, for
various values ofL. The three domain lengths chosen correspond to values ofL
for which the linear stability analysis predicts three sequential modes to be fastest
growing in the linear regime. Similar studies at different domain length show in-
creasing variance of the distribution of mode selected with increasing fixed domain
length.

2.3. Steady state patterns in one dimension.In this section we construct new
solutions for the steady state equations from low-mode solutions on a fixed domain.
The method that we employ here illustrates the self-similarity property which we
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will exploit later to give insight into the growing domain problem (see Section4).
We consider solutions to the steady state problem

0=
1

γ
D

d2c

dx2
+ R(c), x ∈ [0,1] (3)

with zero flux boundary conditions

dc

dx
= 0, x ∈ {0,1}. (4)

Let us suppose that atγ = γ1 > γc the solution consists of the fundamental mode
m = 1, where the linearized equations have solution with heterogeneity cosπx.
We can construct new solutions by scaling, translating and reflecting this pattern.
To obtain a new pattern,q2(x), of mode 2 and of the same polarity we use the tent
map transformation

p2(x) =

{
2x 0≤ x < 1

2
2− 2x 1

2 ≤ x ≤ 1
(5)

such that

q2(x; γ1) ≡ c(p2(x); γ1), (6)

which satisfies the equation

0=
1

4γ1
D

d2q2

dx2
+ R(q2). (7)

The transformationp2(x) ensures that the zero flux conditions are satisfied at the
boundaries of the unit interval, and soq2(x; γ ) is a solution of thesameequation
asc(x; γ1) whenγ = 4γ1. The transformation has discontinuous derivative at the
pointx = 1

2, however,q2(x) has zero gradient here by construction and therefore is
twice continuously differentiable. Under the transformationp2(x) we have chosen
to maintain the parity of the original pattern mode. Patterns with the opposite
polarity are similarly constructed by the complementary transformation

p̄2(x) =

{
1− 2x 0≤ x < 1

2
2x − 1 1

2 ≤ x ≤ 1.
(8)

It is straightforward to show that a general transformationpm(x) can be defined in
a similar manner to generate a pattern of modem on the interval[0,1] and to find
the corresponding equation. In generalqm(x; γ ) ≡ c(pm(x); γ ) satisfies the same
equation asc(x; γ1) whenγ = m2γ1.
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3. REACTION AND DIFFUSION ON GROWING DOMAINS

In this section we derive the evolution equations describing the interaction of
n chemical species reacting in and diffusing through a growing domain�t . The
conservation equation in integral form is given by

d

dt

∫
�t

c(x, t)dx =
∫
�t

[−∇ · j + R(c)] dx, (9)

wherej is the flux. We use the Reynolds transport theorem to evaluate the left-hand
side:

d

dt

∫
�t

c(x, t)dx =
∫
�t

[
∂c

∂t
+∇ · uc

]
dx (10)

whereu(x, t) is the flow and, nondimensionalizing, we recover the evolution equa-
tion

∂c

∂t
+∇ · (uc) =

D1

ωL2
D∇2c+ R(c). (11)

The growing domain,�t , introduces an advection term,u · ∇c, corresponding
to elemental volumes moving with the flow due to local growth and a dilution
term, c∇ · u, due to local volume change. While the flow might be determined
by specifying the local rate of volumetric growth, perhaps determined by some
other tissue process, we chose to define a growth function,0, directly using the
Lagrangian description

x = 0(X, t), x ∈ �t (12)

whereX is an initial position marker. A restriction on0 is that0(X,0) = X. The
inverse at timet is given by3 where

X = 3(x, t), X ∈ �0 (13)

where�0 is initial domain. The local flow is then fully determined, and is given by

u(x, t) =
∂x
∂t
=
∂0

∂t
(14)

where the partial derivatives are evaluated at constantX. We have taken no ac-
count of mechanical properties of the tissue, only that it is growing due to local
volumetric increase.
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3.1. Slow isotropic growth in one spatial dimension.This formulation allows
the incorporation of any spatio-temporal growth behaviour in the tissue, which
may be determined by some underlying pattern or controlled dynamically by the
chemical concentrations themselves. This proposition,reactant-controlled growth,
is currently under investigation (Crampinet al., 1999). In the present paper we will
restrict our discussion to the simple case of one spatial dimension, and consider
isotropic growth given by

0(X, t) = Xr(t), r (0) = 1. (15)

Then the flow is determined by

u(x, t) = Xṙ = x
ṙ

r
(16)

after which (11) becomes

∂c

∂t
+

ṙ

r

[
x
∂c

∂x
+ c

]
=

D1

ωL2
D
∂2c

∂x2
+ R(c). (17)

A natural choice is to transform to the unit interval:

(x, t)→
(
x̄, t̄

)
=

(
x

L(t)
, t

)
, (18)

where domain lengthL(t) = L0r (t). We note in particular that

∂c

∂ t̄
=
∂c

∂t
+ x

ṙ

r

∂c

∂x
(19)

and so the transformation eliminates the advection term, reflecting the isotropic
transport through the domain (r is independent of position). On dropping the over-
bars we recover

∂c

∂t
=

1

ω(L(t))2
D
∂2c

∂x2
+ R(c)− c

ṙ

r
. (20)

We define the time-dependent scaling parameter

γ (t) ≡
ωL2

0

D1
r 2(t) = γ0r

2(t) (21)

for initial domain lengthL0.
For slow growthṙ is small, and in particularcṙ /r is much smaller than linear

terms in R and so we neglect the dilution term to simplify the following analy-
sis. We note that the analysis below can be carried throughmutatis mutandisand
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the results are unaffected if the term is included. We obtain the nonautonomous
reaction–diffusion system

∂c

∂t
=

1

γ
D
∂2c

∂x2
+ R(c), x ∈ [0,1] (22)

dγ

dt
= h(t) (23)

where the second equation definesh(t), and we have zero flux boundary conditions
for c and initial conditionsc(x,0) andγ (0) = γ0. These equations generate a
sequence of patterns in time. For slow growth, writing dγ /dt ∼ ε � 1, we can
identify two dynamic regimes:

• If ∂c/∂t � (1/ε) then introducing a slow timescale,τ = εt , reduces the
evolution to a quasi-steady state problem (the solution profile is slowly mod-
ulated asγ varies).
• However, when∂c/∂t ∼ O(1/ε) the quasi-stationarity is lost, corresponding

to fast transitions between quasi-steady patterns.

We illustrate this with a concrete example forc = (c1, c2), using the two-component
Schnakenberg kinetic scheme (Schnakenberg, 1979) (wherec2 is the activator):

R=

(
b− c1c2

2

a− c2+ c1c2
2

)
. (24)

Adding the equations forc1 andc2 and integrating over the domain gives

φ(t) ≡
d

dt

∫
�

(c1+ c2)dx = (a+ b)−
∫
�

c2dx (25)

where in the quasi-steady stateφ(t) ≈ 0. The time seriesφ(t) for one particular
growth function and parameter set is shown in Fig.3.

Heuristically we may describe the process of generation of a pattern sequence
in the model, under the two timescales above, as follows. The initial bifurcation
from the homogeneous steady state is through a diffusion-driven instability at a
critical point γ = γc which may be derived from linear stability theory. Linear
growth of the destabilizing mode and subsequent saturation to a large amplitude
pattern ensues. The pattern then evolves in two dynamical regimes. The ampli-
tude of the pattern is gently modulated in the quasi-steady state asγ changes with
time. A pattern persists until at some point the solution undergoes a transition to
a new quasi-steady pattern; undergoing a fast dynamic reorganization (activator
peak splitting and separation for Schnakenberg kinetics). Subsequently a pattern
of higher spatial frequency (forγ increasing) is established which in turn persists,
with slow amplitude modulation, before the solution undergoes further transitions.
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4. THE FREQUENCY-DOUBLING SEQUENCE AND SELF -SIMILARITY

Frequency-doubling corresponds to a sequence in which the spatial frequency
of the pattern regularly doubles, and no other pattern modes enter the sequence.
In dimensional coordinates on the growing domain this corresponds to a regular
doubling of the pattern mode. Self-similarity of pattern modes may be used to
predict necessary conditions under which this sequence is expected in our model.
As γ (t) is a monotonically increasing function we can eliminatet in favour ofγ
to give

h(γ )
∂c

∂γ
=

1

γ
D
∂2c

∂x2
+ R(c). (26)

Let us assume that atγ = γ ∗ the solution has spatial profilec(x, γ ∗). At any point
in the sequence, in particular atγ = γ ∗, a pattern of twice the spatial frequency
may be constructed by applying the tent map, given in equation (5). We define
q2(x, γ ) such that

q2(x, γ
′) ≡ c(p2(x), γ

′) (27)

which satisfies the evolution equation

h(γ ′)
∂q2

∂γ ′
=

1

4γ ′
D
∂2q2

∂x2
+ R(q2). (28)

Returning to the original equation,c(x,4γ ′) satisfies

1

4
h(4γ ′)

∂c

∂γ ′
=

1

4γ ′
D
∂2c

∂x2
+ R(c). (29)

Now c(x,4γ ′) andq2(x, γ ′) satisfy the same equation if

h(4γ ′) = 4h(γ ′). (30)

Recalling thath(γ ) = dγ /dt , this requires the time dependence ofγ , and hence
the domain growth, to be exponential:

r (t) = exp(ρt), γ (t) ∝ exp(2ρt). (31)

Furthermore, if atγ = γ ∗ we find that in fact

q2(x, γ
∗) = c(x,4γ ∗) ∀x ∈ [0,1], (32)

thematching condition, then the profiles are equivalent and, assuming uniqueness
of solutions to the evolution equation for given initial and boundary conditions,
they will continue to coincide for all time such thatγ > γ ∗. We have made no



1104 E. J. Crampinet al.

assumptions aboutγ ∗ or the spatial profile atγ ∗; this observation holds in both
quasi-steady and fast (transition) dynamical regimes.

We have shown that under exponential growthq2(x, γ ) = c(p2(x), γ ) and
c(x,4γ ) satisfy the same evolution equation. Below we investigate the conse-
quences for frequency-doubling. From the spatial profilec(x, γ ∗) we can con-
struct q2(x, γ ∗) = c(p2(x), γ ∗) which by definition has twice the spatial fre-
quency. Let us suppose that for given initial conditionsc(x, γ ) evolves such that
for γ ∈ [γ ∗,4γ ∗] the solution is initially modem and subsequently undergoes a
transition to mode 2m, such that the match (32) is satisfied. Then the uniqueness of
solutions of the evolution equation requires thatq2 andc(x,4γ ) remain the same
for γ > γ ∗. But by constructionq2 has twice spatial frequency ofc(x, γ ) and so,
in the intervalγ ∈ [4γ ∗,16γ ∗], the solutionc(x, γ ) must consist of the sequence
2m and transition to 4m, and so on.

In this way the pattern sequence forγ > 4γ ∗ may be reduced to the behaviour
on γ ∈ [γ ∗,4γ ∗]. We now consider this initial interval. In particular,if c(x, γ ∗)
consists of a pattern of modem= 1 and we satisfy the matching condition to mode
m = 2 at γ = 4γ ∗ thenour observations suggest that frequency-doubling will
naturally ensue in a self-similar cascade. Thus we need only consider the initial
stages of the sequence to determine whether frequency-doubling is realized; all
subsequent behaviour is equivalent. Furthermore, this analysis predicts that such
a sequence generated under exponential growth will undergo frequency-doubling
every timeγ → 4γ , corresponding to the dimensional domain doubling in length.

Of course we should not require an exact matching (32) and consequently we
require some stability properties of the evolution equation. In particular we require
that a solutionc(x, γ ) perturbed at some point subsequent to the establishment of
a large amplitude pattern remains in the vicinity of the unperturbed solution so that
if c(x,4γ ) andq2(x, γ ) are close atγ = γ ∗ then they remain close during the
interval γ ∈ [γ ∗,4γ ∗]. We have performed numerical simulations of the evolu-
tion equation and have comparedc(x,4γ ) andq2(x, γ ) numerically, as described
below (and see Figs4 and5), and conclude that this stability property is demon-
strated by the system, at least in some range of the rate-determining parameterρ.
If the stability criterion is met then once some pattern is selected by the initial con-
ditions the sequence is fully determined by the dynamics of the evolution equation
and the initial conditions play no further part in determining the composition of
the sequence. In this sense the patterns contained in the sequence are generated
robustly.

5. NUMERICAL RESULTS FOR EXPONENTIAL DOMAIN GROWTH

We have computed numerical solutions of equation (22) with Schnakenberg ki-
netics (24), zero flux boundary conditions and exponential growth function (31) us-
ing the method of lines for spatial discretisation and Gear’s method for integration
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Figure 2. The frequency-doubling sequence. Space–time evolution of
activator concentration profilec2(x, t) for Schnakenberg kinetics on the
exponentially growing domain withρ = 0.001. Light and dark shading
represent high and low concentrations respectively. Pattern transitions are
by activator peak splitting. The inhibitor profile is in spatial antiphase (the
kinetics are of cross type).

in time, as implemented in the NAG numerical routine D03PCF. The kinetic pa-
rameters here and in all other simulations with Schnakenberg kinetics area = 0.1,
b = 0.9 and we take the ratio of diffusivitiesd = 0.01, unless described otherwise.
The initial conditions in each case are random fluctuations about the kinetic steady
state concentrations, with a uniform distribution and maximum deviation of 0.5%.
In all simulations we have at least 10 spatial points per wavelength of pattern. The
accuracy in the time integration is 1.0× 10−6. Figure2 shows a typical solution
for the activator species on a growing domain.

Figure3 shows the evolution of the maximum amplitudeη(t) for each species
(activator and inhibitor) given by

ηi (t) = max
x∈[0,1]

(ci (x, t)), i = 1,2 (33)

andφ(t), defined in equation (25), showing periodic behaviour. The pattern changes
each time the domain length doubles corresponding to period1t = (ln 2)/ρ, where
1t ≈ 693 for the parameters in the simulation. The evolution ofφ(t) illustrates the
two dynamic regimes, remaining close to zero except during the transition between
quasi-steady patterns.



1106 E. J. Crampinet al.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ax

im
um

 a
m

pl
itu

de

(a)

0

0

–5

5

10

1

0

2

3

4

5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

φ

(b)

Figure 3. Evolution of (a) maximum pattern amplitude for activator
η2(t) (solid line) and inhibitorη1(t) (dotted line) and (b)φ(t) for equa-
tion (22) with Schnakenberg kinetics and exponential domain growth with
ρ = 0.001.

We have computedq2(x, γ ) for a solutionc(x, γ ) in order to investigate the
matching condition (32) during frequency-doubling. We have implemented a rou-
tine which compares the solution at timet (γ ) with the profile generated by the ac-
tion of the tent mapp2(x) on the solution at timet (γ /4). To do this we use linear
interpolation to approximatec(x, γ /4), before applying the tent map to compute
q2(x, γ /4) = c(p2(x), γ /4). In Fig. 4 we show how the maximum deviation over
space for the activator depends on the time-step size (which is greater than the devi-
ation for the inhibitor). The maximum occurs during the transition between pattern
modes. The time-step is simply the time interval between data records and hence
the interval over which we interpolate; it does not reflect the accuracy in time inte-
gration. The figure shows that the deviation tends to zero with the step-size. This
suggests that we do have|c(x, γ ) − q2(x, γ /4)| → 0 during the transition, and
hence the required matching condition. The transition between modesm = 2 and
m = 4 is illustrated in Fig.5(a)–(d). Herec(x, γ ) andq2(x, γ /4) are plotted on
the same axes and cannot be distinguished.
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the transition between patterns as a function of the interpolation step size
(see text for details). For comparison purposes the activator maximum
amplitudeη2 ≈ 3 during the transition. On closer inspection the data are
seen to oscillate. This is an artefact due to the sampling frequency and the
sharpness of the transition.

5.1. Dependence on growth rate-determining parameterρρρ. The frequency-doubling
sequence is realized over several orders of magnitude ofρ, the growth rate-controlling
parameter. Here we examine the pattern sequence under exponential growth at
the extremes of the range of validity ofρ. Our ability to numerically monitor
frequency-doubling into higher modes is severely limited by the mesh capacity that
we can obtain computationally. Currently sequences are examined for up to nine
frequency-doubling events. We have found that frequency-doubling behaviour un-
der exponential growth with Schnakenberg kinetics is observed over four orders of
magnitude inρ for d = 0.01; approximately 10−6 < ρ < 10−2. The self-similarity
argument suggests that for exponential growth the sequence either persists indef-
initely or it fails, according to whether the matching condition is achieved, al-
though it gives no insight as to how the failure will occur. Numerically we find
that there is a discrete change in behaviour whenρ is decreased through a lower
critical value. Forρ below this point,ρc, the pattern sequence does not undergo
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frequency-doubling and different sequences may be obtained for different sets of
random initial conditions. Figure5(i)–(l) illustrate the manner in which this break
down occurs during a transition. Here the constraint imposed by the nonautonomy
is not sufficient to generate the frequency-doubling sequence. At very small values
of ρ correspondingly small time-steps are required numerically to investigate the
solution behaviour during the transitions between patterns. Raisingd is found also
to raiseρc, and in the figure we have takend = 0.06 to allow a reasonable time
step to be used.

Whenρ is large (asρ → 1) the sequence suffers a gradual break down. Examina-
tion of the criterion for the self-similar cascade shows that there is no longer match-
ing for largeρ. The peak is not stationary before the transition between modes and
subsequently the peak splitting is asymmetrical, as illustrated in Fig.5(e)–(h). The
tent map construction is by definition symmetrical, and here we certainly cannot
find a point to satisfy the matching condition (32). In this example the asymmetry
arises during the separation of peaks subsequent to peak splitting and the solu-
tion undergoes the next transition before reaching a quasi-steady state. The depar-
ture from the characteristic alternation between slow and fast dynamical regimes is
demonstrated in the behaviour ofφ(t), defined in Section3.1, as shown in Fig.6
for three different values ofρ. The onset of the asymmetry is gradual and although
the solution no longer enters a quasi-stationary state, the number of turning points
on the domain continues to double periodically for some further range ofρ. When
ρ becomes very large,ρ ∼ 1, the solution is purely transient with no patterns
recognizable as quasi-stationary modes.

5.2. Role of the kinetic function. The analysis presented above does not de-
pend critically on the nonlinear part of the kinetic functionR. Provided that the
linearized kinetics permit diffusion-driven instability and the initial matching of
solution and construction occurs, then we infer that in general the nonlinearities in
the kinetics do not affect the robustness of the sequence. Simulations of the var-
ious kinetic models proposed in the literature have produced frequency-doubling
sequences with activator peak splitting or insertion. In Fig.7 we show two such
sequences, with peak splitting in the Schnakenberg scheme (24) and peak insertion
for the model proposed byGierer and Meinhardt (1972)

R=

(
ν1c2

2
− µ1c1

ν2c2
2/c1− µ2c2+ δ2

)
(34)

where we takeν1 = µ1 = 0.02 andν2 = µ2 = 0.01. In this scheme the kinetics
preclude frequency-doubling whenδ2 is identically zero by preventing either form
of reorganization of the pattern, also shown in Fig.7. The standard frequency-
doubling sequence is recovered for allδ2 6= 0.

It is also possible to generate a sequence in which the pattern undergoes split-
ting and insertion of new peaks simultaneously, which will be reported elsewhere.
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Figure 5. The peak splitting transition between modesm = 2 and
4 for equation (22) with Schnakenberg kinetics and exponential growth
with three different values ofρ, the rate-determining parameter, where
(a)–(d)ρ = 0.001, (e)–(h)ρ = 0.02 whered = 0.01 and (i)–(l)ρ =
0.00001< ρc with d = 0.06 (see text for details). The dotted trace shows
the (symmetrical) tent map acting on the solution atγ /4 [and cannot be
distinguished in (a)–(d)].

This behaviour is generic to purely cubic autocatalysis and is structurally unstable
to small quadratic terms, the addition of which recovers the frequency-doubling
sequence.

6. OTHER GROWTH FUNCTIONS

Exponential isotropic growth models a population of cells undergoing cell divi-
sion at a fixed rate which is independent of spatial or temporal coordinate. While
this is a reasonable model of the initial stages of an unconfined growth it is not
realistic for many applications. We can use the same analysis to investigate pat-
tern formation under other growth functions. In previous studies various authors
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Figure 6. Evolution ofφ(t) for exponential growth with (a)ρ = 0.0005,
(b) ρ = 0.005 and (c)ρ = 0.05 showing the departure from two charac-
teristic dynamic regimes.

have considered linear growth. Although this may not have a strong biological
motivation, studying this growth function gives further insight into the mechanism
of pattern sequence formation. We will also consider the biologically plausible
scenario of logistic time dependence, where the final domain size is limited.

6.1. Linear domain growth. For linear growth we haver (t) = 1+ ρt giving

γ (t) = γ0(1+ ρt)2, h(γ ) =
dγ

dt
= 2ρ
√
γ0γ . (35)

where for convenience we will takeγ0 = 1. As before we consider the evolution
of a pattern over some interval[γ, 4γ ] such that on eliminatingt the governing
equation forc(x,4γ ′; ρ) is

ρ
√
γ ′
∂c

∂γ ′
=

1

4γ ′
D
∂2c

∂x2
+ R(c). (36)

Again we consider the frequency-doubled construction, while this time allowing
for a change inρ to find the equivalent equation. Nowq2(x, γ ′; ρ ′) = c(p2(x),
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γ ′; ρ ′) satisfies

2ρ ′
√
γ ′
∂q2

∂γ ′
=

1

4γ ′
D
∂2q2

∂x2
+ R(q2) (37)

so thatq2(x, γ ; ρ/2) andc(x,4γ ; ρ) satisfy the same equation.
The implication of this result is that prolonged frequency-doubling behaviour is

not a natural consequence of this growth function. However, as before, if there
exists a pointγ = γ ∗ such that

q2(x, γ
∗
; ρ/2) = c(x,4γ ∗; ρ), (38)

then they coincide for allγ > γ ∗. This implies that if a sequence generated with
linear growth rateρ undergoesM frequency-doubling events before this sequence
breaks up, then a sequence generated at growth rate 2ρ must completeM + 1
such events. Numerical evidence confirming this prediction is presented in Fig.8.
Although the analysis does not give any information about the sequence after the
break down of frequency-doubling, numerical solutions suggest that the subsequent
behaviour is not robust, and the sequence may be different for each set of initial
conditions.

6.2. Comparisons with exponential domain growth.The quasi-steady regime
requires that the timescale for pattern formation be sufficiently faster than that for
domain growth. We can predict the point of break down of the frequency-doubling
sequence under linear growth conditions from knowledge of the lower limit in
the rate-determining parameter,ρc, for the sequence under exponential growth.
Comparison of growth rates then suggests that frequency-doubling will occur for
linear growth when

hlin(ρ) ≥ hexp(ρc) (39)

wherehexp = 2ργ andhlin = 2ρ
√
γ γ0. Then we can derive a condition onγ for

the break down of the sequence, as illustrated in Fig.9, namely

γ ≈ γ0

(
ρ

ρc

)2

, (40)

as indicated by the vertical dashed line in the figure.
Numerical simulations have confirmed for linear growth that the point of break

down inγ varies approximately with the square ofρ. From equation (40) we see
that higher pattern modes may be admitted prior to the break down of the sequence
only if ρ is sufficiently larger thanρc. Thus point of break down observed in a
sequence that initially undergoes frequency-doubling, as given by the intersection
in the figure, corresponds to timet∗ such that

t∗ =
1

ρc
−

1

ρ
≈

1

ρc
(41)
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Figure 8. Linear domain growth. Space–time evolution of activator
concentration profilec2(x, t) with Schnakenberg kinetics for (a)ρ =
5.0×10−6, (b)ρ = 1.0×10−5, (c)ρ = 2.0×10−5 and (d)ρ = 4.0×10−5

showing 2, 3, 4 and 5 frequency-doubling transitions respectively before
the sequence breaks down. Transitions appear discontinuous because they
occur over a time interval much smaller than the total interval shown in
the figures. Other simulations have shown that the remaining pattern se-
quence is nonrobust as to which pattern modes it contains and to when the
transitions occur. Time is in units of 106.
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Figure 9. Rate of change ofγ for exponential (straight line) and linear
(curved line) growth functions. The intersection between the linear growth
curve and the line for exponential growth at the (lower) critical rate param-
eterρc is marked with a vertical dashed line. The dotted line represents
exponential growth forρ > ρc for which frequency-doubling is observed.

which, forρc ≈ 10−6, is in agreement with the simulations shown in Fig.8. In all
casest∗ falls between the times for the final successful frequency-doubling transi-
tion and the subsequent transition which fails to double the spatial frequency.

Analogously to the exponential case, break down of in robustness occurs for
ρ → 1 through the introduction of an asymmetry during transitions between low
modes, as the timescales for pattern formation and domain growth coincide.

6.3. Logistic domain growth. If the sensitivity of the tissue to the patterning
mechanism is confined to a phase of exponential growth, then the previous results
are sufficient to predict the patterning behaviour. However, if pattern is organized
during the phase over which the domain growth slows and saturates to achieve
some final domain size then we wish to see how this affects pattern formation,
and in particular the robustness of the sequence and final pattern that is obtained.
Therefore we consider a logistic growth function:

r (t) =
exp(ρt)

1+ 1
ζ
(exp(ρt)− 1)

(42)

such that dr/dt = ρr (1− r/ζ ), whereζ is the ratio of final to initial length.
The logistic growth initially looks exponential, but slows to asymptotically ap-

proach the final domain length. If we are in the range for which exponential and
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Figure 10. Logistic domain growth. Space–time evolution of activa-
tor concentration profilec2(x, t) with Schnakenberg kinetics for logistic
growth withρ = 0.01 andζ = 26.0. Final robustly generated pattern is
modem= 16.

linear growth functions give frequency-doubling then we might expect, for a given
ρ and for mostζ , that one constituent mode of the frequency-doubling sequence
will persist as the domain tends asymptotically to its final length. However, ifζ

is such that the sequence begins to undergo reorganization during the asymptotic
approach to final domain size, then nonrobust pattern selection may occur. We will
seek to ascertain the relative size of the interval inζ which gives such nonrobust
behaviour.

In Fig. 10 we show a numerical simulation for logistic domain growth in which
mode 16 persists at the final domain size. We have chosen the rate parameterρ

such that the transitions between patterns are seen to be smooth. If, for given
ρ, a particular modem of the frequency-doubling sequence persists to the final
domain length for the intervalζ ∈

[
ζmin

m (ρ), ζmax
m (ρ)

]
, then the existence of a

window of nonrobust behaviour implies thatζmin
2m > ζmax

m . Figure11 illustrates
that the window of nonrobust behaviour exists but is relatively very small. The
probability of observing nonrobust final pattern will depend on the relative sizes of
Rm = ζmax

m − ζmin
m andNm,2m = ζmin

2m − ζ
max
m , intervals of robust and nonrobust

pattern selection respectively, which will depend onm andρ. Numerically we can
estimateζmax andζmin for different modes and calculate estimates forNm,2m and
Rm, and we find that the intervals of nonrobust pattern selectionN are over two
orders of magnitude smaller than the intervals,R, for which a robust final pattern
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from the frequency-doubling sequence is achieved.

7. DISCUSSION

In this paper we have considered a model of reaction and diffusion on a slowly
and isotropically growing domain which can generate a frequency-doubling se-
quence of patterns. This sequence is not sensitive to the conditions specified on the
initial domain and patterns of fast spatial frequency may be reliably generated. We
have predicted with a self-similarity argument that the sequence arises naturally for
exponential growth and we have shown numerically that within a range of the expo-
nential growth rate the sequence may continue indefinitely. Under a linear growth
function the sequence is found to break down after some number of frequency-
doubling events, and a relation between the point of break down and the growth rate
is established with the self-similarity argument. For logistic growth one element of
the sequence is selected with high reliability, and will persist as the domain tends
asymptotically to its maximum size. We have neglected a small contribution to the
kinetics, which for exponential growth is a time-independent decay term for each
species. It is straightforward to show that the self-similarity analysis is unchanged
if the term is included, and we have confirmed numerically that the inclusion of
this term makes only small quantitative changes to the solution behaviour.

In the examples presented in this paper we have taken the initial domain length
to be below the critical scale for diffusion-driven instability,γ0 < γc. The pattern
mode observed aftern frequency-doubling events is 2n. However, other sequences
may be generated for initial domain sizesγ0 > γc such that the first mode to grow
is m0 > 1, giving rise to the sequencem0 × 2n. If parameters are such that form0

there is no multiplicity of solutions, then a frequency-doubling sequence based on
this mode may also be generated by the mechanism we have described.
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We have shown that for the reaction–diffusion model the nonlinearities in the ki-
netics determine the mechanism of transformation between modes but the frequen-
cy-doubling sequence itself is a generic behaviour. We have found a singular be-
haviour in the Gierer–Meinhardt model where, in the absence of a constant acti-
vator production term, the pattern reorganization is prevented. We also report that
a class of kinetic schemes with purely cubic nonlinearity undergo reorganization
by simultaneous peak splitting and insertion, generating a sequence of frequency-
tripling. It is straightforward to show that this behaviour is consistent with the self-
similarity analysis we have presented, where now a matching condition is sought
with the solution under the spatial transformationp̄3(x) (see Section2.3) and as
the domain triples in length. It is interesting to note that frequency-doubling and
tripling have the same dependence on the nonlinear terms as spot and stripe pattern
formation in two spatial dimensions (Ermentrout, 1991).

The pattern sequences capture a degree of insensitivity to domain length, with
each pattern element in the sequence persisting as the domain doubles in length.
This semi-scale invariance is particularly significant in that it allowsregulation, a
property of many biological systems, whereby a specific number of pattern ele-
ments is laid down despite significant variation in the domain size and without the
need to finely tune parameter values. Various authors have considered the problem
of scale invariance in reaction–diffusion systems (Othmer and Pate, 1980; Hund-
ing and Sørensen, 1988) and have concluded that some form of feedback from
the domain size into the kinetic parameters is necessary, requiring close parame-
ter tolerances. The semi-scale invariance in the present system arises as a natural
consequence of the sequence formation mechanism.

7.1. Robust pattern generation.In the context of biological pattern formation,
and for reliable pattern formation in noisy environments in general, it is essen-
tial that the pattern sequence is not be destroyed by external fluctuations. The
frequency-doubling sequence appears to be insensitive to external spatial perturba-
tions imposed as the solution evolves. Simulations in which random perturbations
are superimposed at each time-step produce the same sequence.† The transitions
between patterns in a sequence are distinct from the initial bifurcation from the ho-
mogeneous steady state and associated pattern selection; they are not noise induced
and the transient (nonquasi-steady) behaviour appears to be determined entirely by
the shape of the evolving solution profile.

We have found that a reaction–diffusion mechanism in one spatial dimension
may reliably generate an eight-peak pattern (or 16, or 32. . .). This is contrary to
the results ofSaunders and Ho (1995) which are based on the numerical analyses of
a model byArcuri and Murray (1986). In the latter paper the authors do not derive a

†Integration of a fully stochastic equation is required to fully illustrate this point. We predict that
the frequency-doubling sequence on the exponential domain will be insensitive to noise and that the
linear domain sequence will be insensitive until the sequence breaks down, with subsequent pattern
modes being dependent on the noise and initial conditions.
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model from first principles but introduce time dependence to the scaling parameter
γ , which they also use to rescale the time variable:t = ωτ/γ for dimensional
time τ . This transformation distorts the relationship between the timescales for
pattern growth and domain growth, and consequently their model fails to produce
the robust sequences we have found‡. In the present paper we have considered only
patterning in one spatial dimension, however, the equations derived earlier describe
reaction and diffusion with arbitrary domain growth and in higher dimensions. The
extension of the current work into two dimensions is in progress. Preliminary
results are encouraging (Painteret al., 1999), in particular that a rectangular domain
with preferential growth parallel to the longer axis can sustain frequency-doubling
of stripes.

7.2. A universal behaviour?. In general, robustness is difficult to obtain for global
patterning mechanisms which act simultaneously across a fixed domain. Sequen-
tial patterning, such as in the mechanism proposed here on the growing domain, is
more reliable. A large family of models of biological pattern formation are based
on lateral inhibition and, as discussed byOster and Murray (1989), have the same
underlying mathematical explanation for pattern generation. Whether these other
models exhibit qualitatively similar behaviour in response to growth is the subject
of current investigation.Murray (1993) andGoodwinet al. (1993) have discussed
other scenarios in which the pattern selection problem may be overcome. If pat-
terning is initiated from one sub-region of a domain, then a global pattern may
form behind a moving front, generally increasing reliability for the selection of the
pattern wavelength. Also it has been shown that if several mechanisms are coupled
together in hierarchical systems such that the steady state solution of one mech-
anism becomes the initial condition, or locally determines parameters for another
mechanism, then robustness with respect to initial data may be achieved. This
scenario is not unlike the mechanism operating for the growing domain.
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