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Abstract. We investigate a cell-haptotaxis model for the generation of spatial 
and spatio-temporal patterns in one dimension. We analyse the steady state 
problem for specific boundary conditions and show the existence of spatially 
hetero-geneous steady states. A linear analysis shows that stability is lost 
through a Hopf bifurcation. We carry out a nonlinear multi-time scale 
perturbation procedure to study the evolution of the resulting spatio-tempo- 
ral patterns. We also analyse the model in a parameter domain wherein it 
exhibits a singular dispersion relation. 
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1. Introduction 

Several models have been proposed to describe cell pattern formation in early 
embryonic development. A large number of these models are based on reaction 
diffusion systems involving chemicals which, in the appropriate parameter do- 
main, bifurcate from a homogeneous steady state and evolve into a hetero- 
geneous steady state (see, for example, [1-3]). This chemical pre-pattern is then 
interpreted by cells which differentiate accordingly to form a cell pattern [4]. 

Recently, an alternative approach to embryological pattern formation has 
been proposed by Murray, Oster and their co-workers [5, 6] based on the 
mechanochemical interaction of cells with their surrounding tissue. Linear analysis 
of such models suggests that they exhibit wide-ranging pattern formation 
capability [7]. Perelson et al. [8] confirmed this by numerically solving the 
nonlinear system in one dimension to get spatially heterogeneous and spatio- 
temporally oscillating patterns. Maini and Murray [9] carried out a nonlinear 
analysis for a simple version of the model to investigate spatial pattern formation. 
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In this paper we analyse a more complicated version of the model to 
determine possible spatial patterns and spatio-temporally oscillating solutions. In 
Sect. 2 we briefly motivate the model equations. In Sect. 3 we investigate the 
linear stability of the non-trivial steady state and show that it is unstable to 
perturbations in a certain range of wave numbers. In Sect. 4 we investigate the 
possible spatial patterns the model can exhibit. In Sect. 5 we consider periodic 
boundary conditions. Under these conditions the spatially uniform steady state 
loses stability through a Hopf bifurcation and we examine the evolution of such 
spatio-temporally oscillating solutions using the method of multi-time scale 
perturbation (see, for example, [10]). In Sect. 6, we investigate a singular 
dispersion relation that arises in a certain parameter domain for the model. We 
analyse the subsequent fast-focussing problem and show the possible existence of 
small amplitude spatial pattern. 

2. The model 

In 1983, Oster et al. [5] proposed a mechanical model for pattern formation 
based on mesenchymal cells moving through and deforming an extracellular 
matrix (ECM). In this section webriefly describe a simplified version of the full 
model and refer the reader to the original paper for full details. The model is 
based on the three field variables: 

n(_x, t) = density of mesenchymal cells at position x and time t, 

p(_x, t) --- density of ECM at position _x and time t, 

u(_x, t) = displacement at time t of a material point of ECM initially at _x. 

The model consists of three equations: 

Cell conservation. 

On 
- - ~ -  - - V ' J  
Ot 

where _J is a flux term. Several cell processes contribute to this term. We shall 
focus on three in particular, namely, diffusion, convection and haptotaxis. 

The diffusive flux is of Fickian type, 

J~D = - D Vn 

where D is the positive diffusion coefficient. 
The convective flux is due to cells riding passively on the ECM and may be 

modeled by 

0u 
J c ~ n  - -~  . 
- c3t 

Cells move by attaching their filopodia to specialized adhesive sites in the ECM 
and move up a gradient in adhesive site density. This process is called haptotaxis. 
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Assuming that adhesive site density is proportional to ECM density, the hapto- 
tactic flux may be modeled by 

-']H = an Vp, 

where a is the positive haptotactic coefficient. Thus the cell conservation equation 
is 

~t=DV~n-~V.(nVp)-V. n , (2.1) 

where we have assumed D and a to be constants for simplicity. 

Matrix conservation. Assuming that at the stage of pattern formation the cells 
have stopped secreting matrix the matrix equation is 

& + V .  p =0, (2.2) 

where we assume that matrix moves only by convection. 

Mechanical force balance. We are in the regime of low Reynolds number so 
viscoelastic forces dominate inertial terms and cell motion instantly ceases when 
the applied forces switch off. Therefore, the mechanical force balance equation is 

V �9 a_ +pF_=O, 
where _o- is the stress tensor and F the body force. Modeling the cell-matrix 
composite as a linear, isotropic, viscoelastic material, the stress tensor may be 
written as 

where 

O" ~ _O'matrix "-[- O'cell_matrix, 

c•e_ ~0 E 
-- matrix = + U2 + v*Oi  

viscous elastic 

O = V . u ,  the dilation, _e =�89 + Vur], the linear strain tensor (superscript T 
denotes the transpose), Pl and/~2 are the shear and bulk viscosities respectively, 
v the Poisson ratio, v* = 1/(1 -2v) ,  and I is the unit tensor. The stress exerted by 
the contractile forces of the cells on the matrix is assumed to be of the form 

O'cell.matrix = ,npl 
w h e r e ,  is the positive traction coefficient. Assuming that the cell-matrix com- 
posite is subject to a linear restoring force, F = -s_u, where s is a positive 
constant. Thus the mechanical balance equation is 

I 8 0 1 {  E } 1 V" # 1 ~ + / ~ 2 0 t  + ~ (g+v*Ol)+znpl =sup. (2.3) 

Equations (2.1), (2.2) and (2.3) are simplified versions of the model presented in 



510 P.K. Maini 

[5]. The system may be non-dimensionalized and, with appropriate non-dimen- 
sionalization (see Appendix A.I), the one-dimensional version of the model is 

t3n 0 (nC3U'~ OZn 0 ( ~ x )  
O t + ~ x x \  ~3t]=D-~x2--O~x n , (2.4a) 

a3u O2u ~x 
# ~ + ~x 2 + T (np)= sup, (2.4b) 

3 t+~xx  p~-~ =0 ,  (2.4c) 

where x is now the one-dimensional spatial coordinate and u(x, t) the displace- 
ment of a material point initially at x, # = #~ +/~2, and n = p = 1, # = 0 is the 
biologically relevant steady state. In this paper we shall restrict our attention to 
the one-dimensional case. 

We simplify the system further by linearising (2.4c) about the steady state 
and integrating, to give 

p ~ l - - -  

Substituting (2.5) into (2.4a, b) gives 

~u 
Ox" (2.5) 

On a { Ou\ OZn O I ~ t32u'~ 
O t + - ~ x ~ n ~ ) = D - ~ x 2 + ~ x ~ n - ~ x 2 ) ,  (2.6a) 

a3u a2u 0 - n yx 
# + Tx  ,, = su 1 au 

with the condition 

0u 
- -  < 1. (2.6c) 
Ox 

Note that the condition (2.6c) is forced by (2.5) since p cannot be negative. This 
assumption is consistent with the derivation of the model equations which was 
was based on a small strain approximation. The pair of equations (2.6a, b) is the 
version of  the model that we will study. We shall discuss boundary conditions in 
Section 4. 

3. Linear stability analysis 

The pair of Eqs. (2.6a, b) has the non-trivial steady state n = 1, u = 0. We wish 
to analyse the linear stability of  this uniform steady state to small spatial 
perturbations. For smooth initial data the solution to the linearised problem may 
be written as the integral of functions of the form e '~`+ikx over k, where a(k) is 
the temporal growth rate of the Fourier component of the initial perturbation 
which has wave number k. To analyse the temporal growth of  these Fourier 
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componen t s  (see, for  example,  [11]) we look for  solutions o f  the fo rm 

to the linearised system and we obta in  the dispersion relat ion 

l~k2a2(k 2) + b(k2)a(k 2) + c(k 2) = 0, 

where 

b(k 2) = #Dk 4 4- ( 1 - 2z)k 2 + s, 
(3.2) 

c(k 2) = {D - (D 4- ~)z}k 4 4- sDk 2. 

The steady state n = 1, u = 0 will be unstable  if  there exists a wave number  k 
such that  Rl(a(k2)) is greater  than  zero, that  is, the linearized system will extract  
the k wave nmrtber  f rom the Four ier  decompos i t ion  o f  the initial pe r tu rba t ion  
and  cause it to grow. I t  is easy to show that  if  D > (D + a)z then the un i form 
steady state loses stability as z increases beyond  a critical value, %, where 

1 zc > ~ and (2% - -  1 )  2 ---- 41~Ds. (3.3a) 

F r o m  (3.2) it can be seen tha t  the critical wave n u m b e r  that  goes unstable  is 

k~ 2 = 2% - 1 (3.3b) 
2/~D 

Note  that  I m  a(k~) # O, therefore stability is lost th rough a H o p f  bifurcat ion (see 
Fig. 1). 

4. Steady state analysis 

In Sect. 3 we showed that  the non-tr ivial  un i form steady state o f  the model  
system (2.6a, b) lost stability th rough  a H o p f  bifurcat ion and therefore we would 
expect the system to exhibit spa t io- tempora l  oscillations. However ,  if  we now 
consider solving the system on the finite domain  [0, 1] and impose  the bounda ry  
condit ions 

On t~2u 
#x u ~ O, (4.1) 

RIo' 

~_ k 2 

~ . ~  increasing 

Fig. 1. Solution to (3.2) for D > (D + ct)z, 
z > �89 As z increases past a critical value % 
(given by (3.3a)), the uniform steady state 
of (2.6a, b) loses stability through a Hopf 
bifurcation to disturbances of wave number 
k c (given by (3.3b)) 
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at x = 0 and x = 1, then travelling wave type solutions are not permissible and 
the only types of heterogeneous solutions we would expect are purely spatial pattern 
or a temporally 'sloshing' pattern that satisfies (4.1) at the boundary but has 
temporal variation in the interior of the domain. In this section we restrict our 
attention to purely spatial pattern. Then, instability will arise only if a disturbance 
with wave number that satisfies the boundary conditions (4.1) has a temporal 
growth that is purely real and positive. The system may then evolve into a spatially 
heterogeneous steady state. Clearly, from the form of the dispersion relation (3.2) 
such a situation is possible. The steady state problem for (2.6a, b) is 

d2n d (  d2u'~ 
D~x2 +a--~x n dx2]=O, (4.2a) 

dx---5+~-~x n-n--~x -su  1 dx] (4.2b) 

with boundary conditions (4.1) where, now, n = n(x) and u = u(x). We can integrate 
(4.2a) once and use (4.1) to get 

dn d2u 
O ~xx +~n~x2  = 0, 

which gives 

n = C exp, D dx]' (4.3) 

where C is such that ~ n dx = no, the total cell number. Substituting this expression 
for n into (4.2b) we have 

1 - ~ C e x p \  Ddx] l q D  ~-~x~J~x2+SU ~xx-1 =0 .  (4.4) 

Setting p = du/dx, (4.4) may be written as a pair of first order differential equations, 
namely, 

du 
dxx = P '  (4.5a) 

dp su(p - 1) 
- -  = . (4.5b) 
dx  1 - - z C e  -~p/~ 1 + - ~ - ~ p  

Figure 2 illustrates the phase plane for system (4.5). From this figure we can deduce 
the possible steady states. For example, the trajectory that starts at A, at x --0 
and comes back to A at x = 1 automatically satisfies the boundary conditions 
because 

d2u dp 
u =0 ,  d x 2 - d x - O  

and 

dn 0 
dxx-- D~x2 exp ~, Ddx] ' 
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U 

Fig. 2. Sketch of phase plane for (4.5). Note that the 
condition (2.6c) implies p < l 

and is therefore a possible steady state. It is sketched in Fig. 3. Clearly, if the 
trajectory is traversed m times we get m humps for the cell density n(x). These 
solutions are similar to those computed numerically in [8] for the time dependent 
problem for a more generalized system than the one we are studying here. 

5. Spatio-temporai oscillations 

If we do not impose boundary conditions (4.1) but instead impose periodic 
boundary conditions on [0, 1], then the linear analysis of Sect. 3 shows that the 
uniform steady state loses stability and may evolve to a travelling wave type 
solution. In this section we examine the time evolution of such a spatio-temporal 
oscillating instability using a multi-time scale perturbation procedure. 

From Sect. 3, the uniform steady state loses linear stability as the cell traction 
parameter T increases past a critical value zc given by (3.3a) to disturbances of 
wave number kc given by (3.3b). We shall assume that this disturbance satisfies 
the periodic boundary conditions. Clearly, we can choose/t  and D such that this 
is true. If  we let 

"C-~-~c-'[-E2(~, O<c , ,~ l  and 6 = + 1 ,  (5.1) 

• 

P 

I 
0 1 

Fig. 3. Steady state corresponding to the phase trajectory from A to A in Fig. 2. Note that if the 
trajectory went from A to A '  we would simply have a gradient solution for n, whereas if the trajectory 
A to A is traversed m times we get a solution for n(x) with m humps. These solutions are similar to 
those computed in [8] for the time evolution problem for a more complicated version of  the model 
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then the expression exp{at + ikc x} becomes 

exp{E2t + i(att + kcx)} where a, = +__/(D - (D + ~)%)k~ + sD (5.2) 

We shall examine only the case where at is the positive solution in (5.2), that is, 
we look only for wave type solutions travelling in one direction. This suggests the 
change of coordinates 

ffl 0"1 
T=e2,,  z = x + ~ t ,  O,~ezOr+~Oz,  Ox--*Oz, (5.3) 

where T is a slow time scale and z varies with x and t. With this change of 
coordinates, system (2.6a, b) becomes 

2On ~r, Onq 0 { ( On a, Ou'Q 02n O ( 0 2 u ~  
' f f -T+E~z Oz n , 2 ~ + E ~ z z ) ~ = D ~ z z + e ~ z  n o z 2 j  , (5.4a) 

0z 20r N - N  

0u 
= su - su ~ ,  (5.4b) 

where, now, n and u are functions of z, T, and E. We expand n and u in the form 

n(z, T, Q = 1 + enl (z, T) + s , T) + - . . ,  (5.5a) 

u(z, T, E) = eu I (zl, T) + EZu2(z, T) +"  " ' ,  (5.5b) 

and substitute into (5.4a, b) and equate coefficients of E. At order c, we may write 

nl(z, T) = al(T) exp(ikcz) + bl(T) exp(-ikcz), (5.6a) 

Ul (z, T) = Cl (T) exp(ik~z) + d~ (T) exp( - ik~z), (5.6b) 

where c~(T) and d~(T) depend on a~ (T) and bl(T). That is, we assume that the 
only mode that grows on the long time scale T is that with wave number k~ and 
that the solution is periodic in z, period 2n/k~. Secular terms appear at order E 3. 

If  we denote by ~(n ,  u) the linearised operator from (5.4a, b) and by g_ = g2 

the secular terms that appear at O(e3), then a solution exists if and only if the 
Fredholm alternative (see [12], for example) is satisfied, that is 

~0 2r~/kc 
(_n*, g~ = (n*~l q- u*g2) dz = O, (5.7) 

where the bar denotes the complex conjugate and n * =  is the solution of 
- -  U *  

~*(n*,  u*) = 0 where ~r is the adjoint operator to ~(n ,  u). Solving (5.7) gives, 
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after much tedious algebra, the evolution of al and b~ on the slow time scale as 

da--2 = 6Pal + Q [al [261, 
d T  

db----Al = rRbl  + S]bl [2hi 
d T  

(5.8a) 

(5.86) 

where P, Q, R, and S are algebraic expressions involving the parameters ~, D, ~c, 
/~ and s. 

A realistic biological solution must have n, the cell density, real; therefore 
from (5.6a), we must have bl (T) = al (T). This also makes dl (T) = cl (T) ensur- 
ing that u is real, too. With this substitution, R = 15 and S = Q in (5.8). If we 
multiply (5.8a) by t~l and (5.8b) by al and add the resulting equations we find the 
evolution equation for lal[2: 

a [2 d---T [al = 6( 2 R f  P) [a~ [ 2 + 2Rg'Q ]al [4 (5.9) 

where P and Q are given in Appendix A.2. 
We summarize the behaviour of (5.9) in Table 1. Thus in the appropriate 

parameter space, we have the small amplitude solution to order E, 

n(x, t, T )  = 1 + e2Rla l (T)  cos(kcx + o-it), (5.10a) 

u(x, t, T)  = E2Rlcl (T)  cos(kCx + o'it), (5.10b) 

where 

f D k  2 +  ia' ] , ~ ,  
Cl ( T)  = ~-- -~  - ;Z~-3 ? a, ( ~ ). 

A typical solution is sketched in Fig. 4. From Table 1 we see the possibility of 
a subcritical bifurcation. If  6 < 0 and RlQ > 0, then small disturbances die out 
but larger ones grow. This temporal growth is unbounded and our power series 
expansion (5.5) becomes invalid. 

Table 1. Summary of the solution to (5.9). Note that, for example, if 6 > 0, 
RlQ > 0, then a~(T) is unbounded. Thus, in this parameter regime our power series 
expansion (5.5) is invalid 

6 > 0  6 < 0  

RIQ > 0 [a I ] 2 ~ 0o if 2 RIP lal(O)l < ~ ,  

if al(O ) > / ~ ,  

/ RlP 
RIQ < 0 [a I [2 ~ ]  [2 

IRIQ [ [a, ~ 0 xl 

a I ]2 _. 0 

[a I [2 __~ oo 
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-L 

Fig. 4. Sketch of the first harmonic of the 
spatio-temporally oscillating solution (5.10) for cell 
density n where k c = 2n. This is similar to the solutions 
computed numerically in [8] for a more complex version 
of the model 

In the expansion (5.5), the t e r m s  n2(z , T) and u2(z, T) contain second 
harmonics, that is, terms of the form exp(2ikcz) and e x p ( -  2ikj).  These may be 
easily calculated from (5.10). (See Appendix A.3.) 

6. Singular dispersion relation 

In [7] it was shown that in various parameter spaces the general model of Oster 
et al. exhibited a singular dispersion relation when linearised about the uniform 
non-zero steady state. That is, the initial growth rate of a disturbance of wave 
number k tended to positive or negative infinity as k tended to some critical wave 
number. Britton [13] analysed a singular dispersion relation arising in a one 
equation caricature of the original model. In this section we analyse one of the 
actual models discussed in [5] that has a singular dispersion relation. If we set 
# = 0 in (2.6b), that is, if we assume that the ECM behaves as a purely elastic 
medium and that the elastic restoring forces generated by the ECM are in 
mechanical balance with cell traction, then the model system reduces to 

0n a ( O U )  t~2n 0 / O2U~ 

Ot +-~x n-~ = D ~Sx2 + =-~x ~n-~x2) , (6.1a) 

( 02u c~ ~u - 7x 
c?x2+Z~x n - n - ~ x  =su 1 , (6.1b) 

with boundary conditions 

0n 02u 
- u -  - 0  a t x = 0 , 1 .  (6.1c) 

8x 8x 2 

From (3.2) with # = 0, the dispersion relation is 

a(k2 ) = {D - -  (D q -  ~)z}k 4 q- sDk 2 (6.2) 
( 1 - 2z)k 2 + s 

If z satisfies the condition 

~ ) (63, r > m a x  ' D + ~  ' 

then 

sD s 
a = 0  a t k  2 - ( D + ~ ) z _ D ,  a ~ o o  a t k ~ = 2 z _ l  ( i f D : ~ ) .  
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I f  D = , ,  then a(k 2) = - D k  2 and the uniform steady state is linearly stable. The 
behaviour  o f  o(k 2) as a varies is sketched in Fig. 5. 

We shall assume that there is one and only one wave number  k that  satisfies 
(6.1c) and has positive temporal  growth  rate. Fur thermore,  we assume that 
k = kc. 

In Sect. 5, the linear growth rate was small, so we looked for solutions that  
evolved on the slow time scale ~2t. In  this case, the linear growth rate is very large 
and suggests a fast-focussing effect. Thus  we should look for solutions that  
evolve on the fast time scale tiE. Therefore we set 

~ c = D ,  ~ = ~ - &  w h e r e 0 < e ~ l ,  & = _ l ,  and T = t / e .  (6.4) 

We ignore variat ion on the normal  time scale t, therefore n, u are functions o f  
x, T, E and on substituting (6.4) into (6.1a, b) we obtain 

On a n = e  LD + E 2& (6.5a) a ~ + ~ x  n - n , 

( ) au -gx  aau # - n ~ x x  &x - - 5  + ~ ~x n = su I (6.5b) 

We expand n and u in the form 

n(x, T, e) = 1 +end(x,  T )  + e2nz(x, T )  + " ' ,  (6.6a) 

u(x, T, e) = Eul (x, T )  + e2u2(x, T) + ' .  ", (6.6b) 

and substitute into (6.5a, b) and equate coefficients o f  e. 
The order E terms give 

anl ~_~T (aUl~ 
a T  + \ ax } = 0, (6.7a) 

(~2u I 0n 1 
( 1 -- z) ~ x  z - su, + �9 ~-x = 0. (6.7b) 

.. k ~ 

I 

D. k2 

21 k~ ~ 

,r 

d I 

k 2 

a b c 

Fig. 5a-e. The behaviour of o(k 2) (Eq. (6.2)) as ~ varies, with z satisfying the conditions (6.3). Note 
that if a ~ D the system (6.1) loses linear stability and exhibits singular behaviour. (k 2 and ko 2 are 
given in the text), a ~t =D; b ~t =D +E; e a = D - e  
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We can integrate (6.7a) with respect to T to get 

+ Oul = F(x), nl ~x (6.7c) 

where F(x) is an arbitrary function of x. The solution to (6.7b, c) with boundary 
conditions (6.1c) is 

nl = al (T) cos kcx + np(x), (6.8a) 

ul = bl ( T) sin kcx + up(x), where al = - kcb l ,  (6.8b) 

and (n~, u l ) =  (np, up) is a particular solution to (6.7c) satisfying (6.1c). Our 
asymptotic procedure assumes that on the T time scale the system has isolated 
the spatial disturbance of wave number kc and that this is the only spatial 
dependence of the solution (see, for example [14]). Thus, in order to be 
consistent, we must take np(x) -Up(X) -O.  This forces F ( x ) =  O. 

At O(e 2) a secular term appears in the first equation of the form 

(~ 2/'/1 03/,/1 

D-~x2 + CCc 8x 3 �9 

However, because of the special choice of kc this term is identically zero. Secular 
terms appear at O(e 3) and may be suppressed as described in Sect. 4. This gives 
rise to the amplitude equation 

dal 1 
- - = - - [ - f i X +  YaWl, 
dT al 

where 

1 
X = 4k~, Y - [17z - 3 - 2z2]. (6.9) 

z(2z + 1) 

The solution to (6.9) is summarized in Table 2. Clearly, in the appro- 
priate parameter space, n and u evolve to the small amplitude solution to first 

Table 2. Summary of the solution to (6.9) 

6 > 0  6 < 0  

Y > O  if al(O) < 4 ~ ,  al ---~ 0 al ---~ oo 

i f a l ( 0  ) >  , a l ~ m  

Y < O  a t ~ O  
--, X 
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order in e, 

n = 1 +E coskcx, 

u = - - s  ~ s i n  kcx, 

if 6 < 0, Y < 0. The conditionY < 0 implies 2~ 2 - 173 + 3 > 0. That is, 

17+ 1 7 -  
T > o r  T <  

4 4 

(6.10a) 

(6.10b) 

The second inequality contradicts condition (6.3); therefore we have the conditions 

1 7 + x / ~  
~ >  and e = D + E ,  (6.11) 

4 

where the second condition comes from substituting 6 = - 1  into (6.4). 

7. Discussion 

We have analysed a cell-haptotaxis model and have shown that it may exhibit 
spatial and spatio-temporal patterns. The solutions obtained from the nonlinear 
analyses are similar to those computed numerically in [8]. The spatial patterns are 
similar to those obtained by Grindrod et al. [15], for a cell-chemotaxis model. 
However, the model analysed here can give rise to spatio-temporal oscillations, too. 
This type of behaviour has been exploited by Goldwasser et al. [16], to show how 
temporal oscillations may account for certain cell splitting and branching 
phenomena. The full analysis of the spatio-temporal case is a formidable task and 
we have made several simplifying assumptions in Sect. 5. We have assumed that the 
wave moves only in one direction, that is, we have ignored the negative solution 
for a t in (5.2). Including this root would lead to waves travelling in opposite 
directions and thus there would be two pairs of amplitude equations and the 
possibility of standing waves. Thus the validity of our analysis is restricted to 
situations in which a direction is specified. Biologically, this may correspond to a 
case where cells are introduced at one end of a domain and propagate through it. 

The second major assumption is that we look at monochromatic waves, that 
is, waves of one wave length in space. More generally, this type of propagating wave 
problem should consider the motion of a wave packet. The interaction of several 
spatially varying perturbations suggests a slowly varying spatial coordinate (see, 
for example, [17]) and calculation of a group velocity. However, the complex form 
of the equations and the dispersion relation in this problem makes such an analysis 
formidable algebraically and here we have examined the time evolution of a 
particular periodic pattern. We intend to analyse a simpler version of the general 
model [5] to extend the analysis presented in Sect. 5 and to address the above points 
more fully. 
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We also presented a formal analysis for the case of a singular dispersion 
relation and showed that, in the appropriate parameter space, the system could 
evolve to a small amplitude spatially heterogeneous steady state. 

In all the above analyses, we delimited parameter regimes wherein certain 
phenomena will occur. Although all the parameters are in principle measureable 
experimentally, it is difficult to obtain accurate measurements. An advantage of 
non-dimensionalising the system is that we deal with parameter groupings and it 
is easier to compare, quantitatively, relative sizes of parameters. For example the 
analysis in Sect. 3 shows that pattern formation occurs if the non-dimensional 
cell traction parameter increases beyond a critical value, and (6.11) shows that 
fast-focussing is possible for very large cell traction. Cell traction has been 
measured for mesenchymal cells in vitro [18] and such cells can exert very large 
traction [19]. It is also known that cell traction in vitro increases abruptly over 
the first few days in culture (Harris, personal communication). Such behaviour 
reinforces the possibility of cell traction playing the role of the bifurcation 
parameter. Of course, this can be said only of the in vitro case and more 
experimental work is necessary before one can extend this to the in vivo situation. 

A p p e n d i x  

A.1. Equations (2.1), (2.2) and (2.3) may be non-dimensionalised as follows: let 
L and To be typical length and time scales respectively, N be average cell density 
and Po be average extracellular matrix density. 

We define non-dimensional (tilde) variables as 

~ x n p _x =--- ~ = ~  
L '  ' P = - - '  Po 

t 
7 = - -  

~o' 
j o D T o  

L 2 ' 

Spo( 1 + v)L  2 (Xpo Z 0 
s -  E , 8 -  L2 , 

(1 + v)#2 ~Np0(1 + v) 
/ 7 2 -  , ? -  

ETo E 

_u 

- Z '  

(1 + v)#l 

ET0 

where 
P, = kc {(3D + ~)kcV + i ( 2 V  2 - Dka(D + e))}, 

P2 = - 2 p O k ~  V + ikc(#DZk~ + (c~ - D)% - #V2), 

Q, = Q 1 , Q ~ 3 { - 2 V % k ~  + i(D + e)k 3 } + 2kZzQ,2{ZV - i(2~ + D)kc} 

+ ikcsQ13(v - iDkc) , 
Pt 

Q 2 -  V -  i~k, ' 

This non-dimensionalisation transforms the one-dimensional version of (2.1), 
(2.2) and (2.3) into equations (2.4), where we have dropped the tildes for 
notational convenience. 
A.2, In Eq. (5.9), P and Q are given by the following expressions: 

p PI QI 
= P--2 ' O Q2 
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r I 

V kc' 

Qlll Q,~2 - QII3 QI14 
Qll - Q1,sQ,11 - QlI3Q,16 ' 

QI,4Q115 - Q116Q112 
Q I 2  - -  

Q , 1 5 Q l i ,  - Q , , 3 Q , 1 6  " 

Dk~ + iV 
Q I 3  - -  Vkc -- iTk 2 ' 

QI,I = 4 k 2 ( z c  - 1) -- s -- i8#Vk 3, 

Q1,2 = 2k~(Dkc + iV) 

Ql~3 = 4k~( - V + i2kca), 

Q~4  = -kcQ,3(2kczc + isQ13), 
Ql15 = 2kc(2kcD + iV), 

Qll6 = ik~%, 

k~ - 2% - 1 
2/~D 

A.3. In (5.5) n2(z, T) and u2(z, T) have the form 

n2(z, T) = a2(T) exp(ikcz) + b2(T) exp( - ikcz) + a21 (T) exp(2ikcz ) 

+ b2~ (T) exp(-2ik~z), 

Ue(Z, T) = c2(T) exp(ikr + d2(T) e x p ( -  ikcz ) + c21 (T) exp(2ik~z) 

+ d21 (T) exp(-2ik~z). 

Making the assumption that b~(T) = 61(T) automatically ensures that the co- 
efficients of the second harmonics are also complex conjugate pairs, that is, 
b21 = d21 and d21 = c21, where a21 = Qlla~, C21 = Q12a~ and the second harmonic 
takes the form (at O(e2)) 2Rl(Q11a~(T)) cos(2(kcX + ait)) and 
2Rl(Q12a~(T)) cos(2(kcx + ad)  ) for n and u, respectively. 
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