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Abstract--We use a novel "inverse problem" technique to construct a basic mathematical model 
of the interacting populations at the tumor-host interface. This approach assumes that invasive cancer 
is a solution to the set of state equations that govern the interactions of transformed and normal 
cells. By considering the invading tumor edge as a traveling wave, the general form of the state 
equations can be inferred. The stability of this traveling wave solution imposes constraints on key 
biological quantities which appear as parameters in the model equations. Based on these constraints, 
we demonstrate the limitations of traditional therapeutic strategies in clinical oncology that focus 
solely on killing tumor cells or reducing their rate of proliferation. The results provide insights 
into fundamental mechanisms that may prevent these approaches from successfully eradicating most 
common cancers despite several decades of research. Alternative therapies directed at modifying the 
key parameters in the state equations to destabilize the propagating solution are proposed. (~) 2002 
Elsevier Science Ltd. All rights reserved. 
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I N T R O D U C T I O N  

The tumor-host interface is a highly complex, dynamical structure dominated by nonlinear pro- 
cesses for which there is no clear theoretical framework of understanding [1]. Experience in other 
areas of science has demonstrated that  such systems require mathematical formulation to con- 
cisely express the underlying dynamics and interactions, to elicit a clear understanding of the 
outcome of the interactions, and to investigate the potential effects of manipulation of the system. 
However, clinical medicine has not generally integrated theoretical analysis into its understand- 
ing of tumor biology. We submit that  this has impeded progress in clinical oncology because 
the vast amounts of data  generated by molecular biology and other new technologies have not 
been synthesized into a coherent, comprehensive paradigm. Furthermore, because of the absence 
of a sound theoretical framework, design and the evaluation of therapeutic approaches remain 
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empiric and generally focused on cytoreductive strategies despite limited results in most  solid 
tumors even after several decades of intense research. This is well summarized by the authors 
of [2]: "In general . . .  progress with the vexing problem of anticancer selectivity has been s low--a  
mat te r  of trial and error and guesswork as much as rational calculation. In the search for bet ter  
ways of curbing the survival, proliferation, and spread of cancer cells, it is important  to examine 
more closely the strategies by which they thrive and multiply." 

The purpose of this paper  is not to develop a comprehensive model of the tumor-host  interface, 
but ra ther  to provide the simplest possible mathematical  framework which encompasses the 
critical behavior of this interface, namely, the advance of tumor tissue into the surrounding host 
tissue, and to elucidate key biological parameters  controlling this behavior. Within the context of 
this framework we show tha t  we can understand the effectiveness of various t rea tment  approaches 
as well as suggest new therapeutic strategies. 

We believe tha t  this analysis provides insight into tumor  biology and t rea tment  not available 
by other means and illustrates the potentially critical role of mathematical  analysis in successfully 
understanding and treat ing tumor invasion. 

M E T H O D S  

In developing the model, we use an "inverse problem" approach. Tha t  is, we assume tha t  the 
known behaviors of the tumor-host  interface represent the potential  solutions of s tate  equations 
governing the system. By examining the constraints imposed by the solutions, we can determine 
the general form of the state equations and examine critical parameters  that  control the behavior 
of the system. 

First, we propose that ,  mathematically, the tumor-host  interface of an invasive cancer is mor- 
phologically a traveling wave in which the tumor edge represents the wave front propagat ing into 
and replacing the surrounding normal tissue. This is based on extensive clinical observation of 
tumor  growth demonstrat ing tumor  volume increases by Gompert izian or logistic functions with 
the tumor  edge invading into adjacent normal tissue at a regular rate [3-6]. We have discussed this 
more extensively in other publications [7]. Therefore, we infer tha t  a mathemat ical  description 
of tumor  invasion must be a system of equations tha t  can exhibit traveling wave solutions. 

Furthermore,  since observable, untreated cancers propagate into normal tissue, this mathemat -  
ical system must  also yield solutions in which the tumor state and the normal tissue s tate  are 
stable in isolation but the latter is unstable in the presence of tumor  and will therefore inevitably 
be invaded by tumor.  Tha t  is, when tumor  is present in normal tissue the governing system 
must  result in a traveling wave representing the transition from an unstable steady s tate  (normal 
tissue) to a stable steady state (tumor). 

If  we denote by N(x,  t) and T(x, t) normal and tumor cell density, respectively, at t ime t and 
spatial position x, then the existence of a constant speed traveling wave indicates tha t  the solution 
of the s ta te  equations must  be writ ten in the general form 

N(x ,  t) = N ( x  :1: ct), 

T(x, t) = T(x  + ct), 
(1) 

where c is the wave speed. Such a solution is a constant profile traveling wave moving in the 
positive (with - c )  or negative (with +c) x direction. The wave boundary is a transit ion region 
from normal tissue to malignant tissue with the tumor  front propagating into normal tissue 
at  speed c. Note tha t  for equation (1) to be valid, we are assuming tha t  the tumor  front is 
approximately  a plane-wave, i.e., the radius of curvature of the entire tumor  is much greater  than  
any length scales characterizing the tumor-host  interface. In such a case, which is generally true 
for late-t ime growth, the direction x is along any line perpendicular to the tumor  surface. 
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In a mixture of populations competing for space and substrate, the governing system tha t  will 
give rise to a traveling wave solution typically takes the form [8] 

On _-- fin] + - 02n 
v 0x2' (2) 

where n is the vector whose components represent the population densities, f is the nonlinear 
population kinetics function, and D is a diagonal matrix of diffusion coefficients presumed to be 
greater than zero. The simplest conceptualization of the tumor-host interface is tha t  derived from 
a population ecology picture in which populations of tumor cells and normal cells compete for 
the same spatial volume and nutritive substrate and interact with one another through a variety 
of potentially complex mechanisms. Each population initially grows according to a Malthusian 
growth law but is limited to some maximum carrying capacity, with the growth rates and carrying 
capacities possibly being different for each population. 

It is reasonable to assume that  a variety of interactions between the cellular populations have 
adverse effects on each population and can be included in lumped, phenomenological competit ion 
terms. The simplest and most widely used of these models is of the Lotka~Volterra type. There 
are a variety of other mathematical models of tumor growth kinetics (see, e.g., [9, Chapter  3]) 
which provide equal or perhaps greater quantitative fidelity to growth rates observed in vitro 
than does the Lotka-Volterra model. However, because all such models, including Lotka-Volterra, 
predict the same qualitative behavior, we have employed the one that  is both simple to analyze 
mathematically and which effectively illustrates our point [10,11]. For simplicity, we write the 
Lotka-Volterra equations for (2) with one dominant tumor population, T, interacting with one 
dominant native (normal) cell population, N: 

ON ( N bNTT~ 02N 
Ot = r N N  1 KN KN ] + DN Ox 2 (3) 

and 
OT ( T bTNN~ - 02T 
O--t = rTT 1 + (4) KT KT ] I)T OX 2' 

where rN and rT are maximum growth rates of normal cells and tumor cells (i.e., the net result 
of tumor  cell doubling minus tumor cell loss from apoptosis or necrosis); KN and g T denote the 
maximal normal and tumor cell densities; bgT and bTN are the lumped competition terms; ON 
and DT are cellular diffusion (i.e., migration or invasion) coefficients. The biological significance 
of the competition terms should be clarified: bTN is a lumped, phenomenological te rm which 
includes a variety of host defenses including the immune response, and bNT is the negative 
effects of tumor on normal tissue such as tumor-induced extracellular matrix breakdown and 
microenvironmental changes. It can be shown that  the results of the analysis of these equations 
remain valid even when multiple subpopulations of tumor and normal cells are considered [12]. 

R E S U L T S  A N D  D I S C U S S I O N  

This system in equations (3) and (4) fulfills the above criterion that ,  in the absence of tumor 
cells, normal tissue achieves a stable, nonzero, steady state. Furthermore, it can exhibit solutions 
of the form in equation (1) in which one population can invade the other. Specifically, the model 
yields the following final steady states [8]: 

I N = 0 ,  T = 0: this trivial solution is an unconditionally unstable state and hence is 
biologically irrelevant. 

I I  N = KN, T = 0: this corresponds to normal, healthy tissue with no tumor cells present. 
Regardless of the starting point, the system always evolves to this state if both b T N K N / K  T 
> 1 and b N T K T / K N  < 1. If the starting point is sufficiently close to N = KN,  T : 0 (as 
would occur in early tumor development), only the former condition need be satisfied. 
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I I I  N -- 0, T = KT: this corresponds to complete tumor  invasion with total  destruction of 
adjacent normal tissue. Regardless of the start ing point, the system always evolves to this 
s tate  if both b N T K T / K N  :> 1 and b T N K N / K T  "( 1. If  the start ing point is sufficiently 
close to N = O, T = KT (as would occur when tumor  t rea tment  is initiated), only the 
former condition need be satisfied. 

I V  N = (KN -- bNTKT)/ (1  -- bNTbTN), T = (KT -- bTNKN)/(1  -- bNTbTN): this corresponds 
to tissue composed of tumor and normal cells, for example, desmoplastic tumor.  The 
system evolves to this s tate if both bNTKT/KN < 1 and bTNKN/KT < 1. One limitation 
of this model is tha t  if the carrying capacities KN and KT are limited only by available 
space, this s tate  of coexistence is biologically unphysicai because it violates the spatial 
constraint sum-rule that  N / K N  + T / K T  _< 1. There are, however, models more elaborate 
than  Lotka-Volterra having a state of coexistence not violating this spatial constraint 
sum-rule [13]. 

The case of an invasive cancer with the tumor  edge advancing as a propagating wave into 
normal tissue would correspond to a transition to a stable steady state containing tumor  ( I I I  
or I V )  with or without normal tissue. From the above, it is clear that  an invasive cancer which 
initially arises from one or a small number of transformed cells (i.e., N = (1 - e ) K N  and T = ~KT, 
with e < 1) must  satisfy both inequalities in I I I .  

Using marginal stability analysis [12], it can be shown tha t  the propagation speed of s tate  I I I  
into s tate  I I  (i.e., the tumor wave front into the normal host tissue) is given by 

eT--.N ~ 2 rTDT 1 KT  " (5) 

Furthermore,  maldng the biologically plausible assumption that  carrying capacities for normal 
and tumor  cells are not substantially different, the inequalities required for state I I I  stability will 
hold only if bNT is large, and bTN is small, i.e., the presence of tumor  has a significantly adverse 
effect on the normal cell population but not vice versa. The most obvious contribution to bNT 
comes from the fact tha t  tumor  cells consume much more resources than do normal cells [14,15]. 

Equation (5) is in the form of an inequality because the marginal stability analysis provides 
only a minimum velocity. The actual velocity is dynamically selected by the system based on the 
width of the tumor  interface at  the initial time, i.e., T ( x , t  = 0). If  the tumor  drops off faster 
than  e x p [ - ~  x] as it progresses into the normal tissue, the minimal c in equation (5) will 
be selected [15]. Recent numerical work by Hosono [16] has indicated that  the front propagation 
velocity given by the approximation (5) holds except for the case when interspecific competi t ion is 
stronger than intraspecific competit ion (i.e., bNTbTN ~> 1). In tha t  case, the velocity is sensitive 
to all parameters  within the model. However, because the relaxation to the asymptotic  velocity 
is algebraically slow [17], numerical simulations may be biased by early-time transients or an 
insufficiently steep initial profile. 

Another possible significant contribution to bNT is the acidic intercellular pH in tumors  that  
results from their preferential reliance on glycolytic metabolic pathways. We have previously 
shown tha t  excess H + ions will diffuse away from the tumor producing an unfavorable microen- 
vironment for the normal cells at the tumor-host  interface [7]. Other factors contributing to bNT 
include extracellular matr ix  breakdown by tumor  produced proteinases and normal cell crowding 
by increased interstitial pressure in tumors. 

Fully successful tumor  therapy requires the system parameters  be changed to yield steady 
s tate  I I  instead of I I I  or IV.  This will essentially reverse the traveling wave so that  normal 
tissue (which in this case becomes the stable steady state) will propagate into tumor  (now the 
unstable steady state) causing the latter to completely regress. Assuming tha t  tumor  has already 
developed as a traveling wave, successful therapy will at minimum, require tha t  

bTNKN 
> 1. (5) 
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Ensuring the complete eradication of the tumor will require that  the state N = KN, T -~ 0 be 
globally stable so that ,  in addition to (6), the condition for state I I  global stability must be met 

as well 
bNTKT 
- -  < 1.  ( 7 )  g g  

If conditions (6) and (7) are met, the normal tissue would recover at a speed [7] given by 

CN--*T ~ 2 rNDN 1 --~N ]" (8) 

By "recovery of normal tissue", we do not mean to imply that  the segment of organ destroyed 
by the invading malignancy will regenerate to its initial state. In fact, the reverse traveling wave 
will almost certainly not contain the original epithelial cell populations of the tissue since these are 
typically terminally differentiated with proliferative potential maintained in only a small number 
of stem cells. Rather,  we expect the wave of normal tissue will typically contain fibroblasts and 
other mesenchymal cells similar to the ingrowth of normal tissue in the wound healing process. 
This would result in the residual fibrosis tha t  is in fact observed to a variable degree in the sites 
of tumors  tha t  have regressed completely following therapy [18]. 

Two clinically relevant insights are immediately clear from this analysis. 

1. Cytotoxic therapies will transiently reduce tumor size by reducing T but  do not alter 
the basic system dynamics. Therefore, the model predicts that  cytotoxic approaches will 
invariably fail because the tumor population will recover (i.e., OT remains > 0) unless 
therapy reduces T to zero (i.e., all tumor cells are destroyed). 

2. Therapies aimed at reducing the tumor proliferation r a t e  (rT) will never eradicate the 
tumor  because rT does not appear in the critical terms determining the steady state to 
be reached by the system. The model predicts tha t  such therapies may slow invasion (see 
equation (5)) but  will never alter the final outcome. 

In considering successful therapeutic strategies, the above mathematical model of tumor-host  
interaction focuses attention on four critical parameters: bTg and KT, the competition term and 
carrying capacity of tumor, and bNT and KN, the competition term and carrying capacity of the 
normal tissue surrounding the tumor. The model explicitly demonstrates that  any therapy must 
be viewed in a context tha t  includes measurements of effects on tumor and adjacent normal cells. 

Therapeut ic  strategies, therefore, should include the following. 

1. Reduce KT. A clear method for reducing the carrying capacity for the tumor  population is 
decreasing vascularity. This indicates tha t  recent interest in anti-angiogenic drugs is well 
founded [14]. Two caveats, however, must be added. First, if the reduction in angiogenesis 
also affects normal tissue, then the therapy may also reduce KN and the inequalities in 
equation (6) or (7) may not be satisfied. Second, if bNT ~ 1, then a several-fold reduction 
in KT may be insufficient to suitably alter the stability of the steady states. 

2. Reduce bNT and increase bTN. This demonstrates the need for experimental da ta  that  
quantifies the relative contribution of various mechanisms (e.g., tumor acid or protease 
production) to the lumped competition term bNT in vivo. Similar quantification of com- 
ponents of bTN (e.g., immunological response) is also required. If we can estimate the 
value of bNT, both the identification of potential therapeutic approaches and quantifica- 
tions of their expected effect on the propagating wave of tumor invasion can be obtained. 
For example, therapy could be directed toward decreasing the uptake and utilization of 
substrate by tumor cells, increasing the avidity of substrate uptake by normal cells or 
reduction of tumor acid and protease production. The role of each of these therapeu- 
tic strategies, however, must be understood in the context of the mathematical  models. 
Empiric therapy should be replaced by explicit measurement of the expected effect of the 
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3. 

t h e r a p y  on bN T  and  bTN SO t h a t  the  degree to  which the  t h e r a p y  mus t  change  the  t a r g e t e d  

mechan i sm to  a l t e r  the  overall  sys tem dynamics  is known pr ior  to  in i t i a t ion  of  t r e a t m e n t .  

I n c r e a s e  K w .  This  is t u m o r  t h e r a p y  d i rec ted  expl ic i t ly  towards  no rma l  cells. P resumab ly ,  

the  m a x i m u m  dens i ty  of  no rma l  cells is o rd ina r i ly  dependen t  on cell-cell in te rac t ions  r a the r  

t h a n  s u b s t r a t e  l imi ta t ion .  T h e  m a t h e m a t i c a l  model  p red ic t s  t h a t  t h e r a p y  t h a t  decreases  

con tac t  inh ib i t ion  in no rma l  cells by  increas ing K N  could reverse the  inequa l i ty  in (5), 

poss ib ly  resul t ing  in t u m o r  regression. 

C O N C L U S I O N  

We use an  "inverse p rob lem"  app roach  to  develop a s imple  phenomenologica l  m a t h e m a t i c a l  
mode l  of  t u m o r  invasion sufficiently robus t  to  encompass  t h e  observed  behav ior  of t he  t u m o r - h o s t  

interface.  B y  examin ing  the  resul t ing  s t a t e  equat ions ,  we are  ab le  to  ident i fy  cr i t ica l  p a r a m e t e r s  

t h a t  mus t  be  a l t e red  for successful  therapy.  Our  goal  in th i s  s t u d y  was to  present  a genera l  

overview of  t he  d y n a m i c s  of  t he  t umor -hos t  interface and  of  poss ible  r e l a t ed  cancer  t h e r a p e u t i c  

s t ra teg ies .  T h e  mode l  employed  was therefore  de l ibe ra te ly  chosen for s impl ic i ty  us ing l u m p e d  

in te rac t ive  t e rms  r a the r  t h a n  a more  comprehens ive  mode l  expl ic i t ly  inc luding  all  poss ib le  mech-  

an i sms  affect ing the  t u m o r - h o s t  interface.  For  th is  reason,  only  ve ry  genera l  conclusions  can  be  

o b t a i n e d  wi th  l imi ted  pred ic t ive  in format ion  regard ing  specific cancer  therap ies .  However,  i t  does  

seem clear  even f rom th is  app roach  t h a t  t r a d i t i o n a l  cancer  t r e a t m e n t  wi th  sys temic  chemothe r -  

a p y  should  be reconsidered.  Specifically, we show t h a t  cy to reduc t ive  agents  will i nva r i ab ly  fail 

to  cure  cancer  unless t h e y  reduce t u m o r  popu l a t i on  dens i ty  to  zero. Since mos t  t r a n s f o r m e d  

p o p u l a t i o n s  are  he te rogeneous  and  capab le  of  evolving into d rug  res i s tan t  pheno types ,  comple t e  

e r a d i c a t i o n  by  cy to tox ic  agents  is genera l ly  unlikely. T h e  flaw in th is  a p p r o a c h  is t he  fai lure to  

a l t e r  t he  key  p a r a m e t e r s  in the  s t a t e  equa t ions  leaving OT > 0 whenever  T > 0. We p ropose  

t h a t  t he rap i e s  d i r ec t ed  at  changing  these  p a r a m e t e r s  (as ou t l ined  above)  in con junc t ion  wi th  

cy to reduc t i ve  agents  will yield resul ts  t h a t  a re  far more  posi t ive.  

Desp i te  the i r  l imi ta t ions ,  we believe t h a t  m a t h e m a t i c a l  models  are  essent ia l  to  ga in  cl inical  

u n d e r s t a n d i n g  of  the  complex,  nonl inear  processes t h a t  govern t u m o r  invasion and  m a y  be  used 

to  u n d e r s t a n d  the  s t r eng ths  and  weaknesses of  exis t ing cancer  t he rap i e s  and  to  p red ic t  new 

t r e a t m e n t  s t ra tegies .  
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