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Turing patterns with pentagonal symmetry
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We explore numerically the formation of Turing patterns in a confined circular domain with small aspect
ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering
a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids.
Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation
pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids.
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I. INTRODUCTION

The occurrence of pentagonally symmetric organisms
been largely surveyed and studied in detail@1,2#. For ex-
ample, a pentagonal pattern is the basic pattern of the e
noderm skeletons. Some radiolarians and diatoms also
vide notable examples of pentagonal patterns. Howe
most mathematical models for biological pattern format
exhibit hexagonal patterns@3–6# and the issue of selectin
and stabilizing fivefold symmetric patterns has not been
dressed in these models.

Motivated by thede novoappearance of pentagonal sym
metry in therudiment diskduring the early development o
regular echinoid larval forms~echinopluteous! @7#, we care-
fully explore the formation of radially symmetric pattern
using a Turing system solved on a confined circular dom
with size comparable with the characteristic waveleng
starting from random initial conditions. Since under this a
pect ratio the boundary controls the symmetry of the patte
the radius of the disk~or the curvature of the circle! can be
considered as the relevant parameter. Taking into accoun
wavelength of the Turing equations, we may expect a p
tagonal pattern if system parameters and disk radius are
equately tuned, such that a central plus several marg
peaks are possible. We address this problem by studying
merically the Turing modes confined in a small size disk.
we shall show, the frustration induced by small disk rad
reduces the usual hexagonal symmetry of the pattern, to
duce pentagonally symmetric pattern. We also show that t
are stable and, under large spatial homogeneities in the in
conditions, they appear over a well defined range of d
sizes. We also simulated numerically the situation whe
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pentagonal seed is formed and used as a source of mor
gen in a larger disk, as one might assume that in a biolog
system there is the possibility that a certain pattern~stable or
not! can be frozen at a stage of development~calcified or
biologically differentiated! and may serve as a seed for f
ture development. These patterns compare notably well w
the pigmentation pattern ofToxopneustes pileolusand, in a
different context, still in the phylum of echinoderms, wi
the plate arrangements of the calyxes of primitive came
crinoids@2#. All these results lead us to consider morphoge
esis as a step by step process in the sense that once a p
is generated and biologically consolidated, it can serve a
seed for the next step. It also reinforces the importance
transient or unstable patterns in biological systems@8#.

II. THE MODEL

In all biological models there remain uncertainties abo
the mechanisms behind pattern formation: the study of
netics alone cannot provide us with such mechanisms.
haps the most extensively studied mechanism for s
organized biological pattern formation is the Turin
instability @9–11# and we focus our attention on this mech
nism. Albeit the molecular details are still unknown, the Tu
ing model has been shown to exhibit pigment patterns c
sistent with those observed in some mammals@12#, seashells
@13#, and marine fishes@14–18#. Curved geometries hav
also been introduced to model microscopic organisms s
as radiolarians@19# and patterns on the hard wings of lad
beetles@20#. Recently, it has been found that morphoge
~the name given by Turing to the chemicals in prepatt
models! do exist @21#, but experimental evidence that mo
©2002 The American Physical Society13-1
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phogen patterns are set up by a Turing mechanism is ye
be found.

Turing equations describe the temporal developmen
the concentrations of two chemicals,U andV, that diffuse at
different rates,DU andDV , and react according to the non
linear functionsf andg,

]U

]t
5DU¹2U1 f ~U,V!,

]V

]t
5DV¹2V1g~U,V!.

We take the model introduced by Barrioet al. @17#, ob-
tained by observing that, in general, there is a station
uniform solution (Uc ,Vc), given by the zeros off and g.
Functions are then expanded around this point in a Ta
series, neglecting terms of order higher than cubic. The s
cific system we consider is

]u

]t
5Dd¹2u1au~12r 1v2!1v~12r 2u!, ~1a!

]v
]t

5d¹2v1bvS 11
ar 1

b
uv D1u~g1r 2v !, ~1b!

where u5U2Uc , v5V2Vc , DU5D, and DV51. The
quantityd conveniently gives the size of the system, and
particular arrangement of the coefficients obeys conserva
rules in these chemicals. There are two interaction par
eters r 1 and r 2 that, in Cartesian coordinates, control t
formation of stripe or spot patterns, respectively@17#.

We investigate patterns in a two-dimensional disk w
zero-flux boundary conditions, namely,

n•“u~r ,u!5n•“v~r ,u!50,

for all uP@0,2p), with r at the boundary of the disk with
unit outward normaln. We then, in the linear regime, loo
for solutions of the form~in the usual way!

u5u0 exp~lt !(
m

CmJm~kr !exp~ imu!,

v5v0 exp~lt !(
m

DmJm~kr !exp~ imu!,

whereCm andDm are constants andJm are Bessel functions
of mth order of the first kind. By substituting these solutio
in the linearized version of Eq.~1! we obtain that the disper
sion relation is given by the solutions of

l21@~11D !dk22b2a#l1@~Ddk22Db2a!dk2

1a~b11!#50. ~2!

In order to keep the solutions as simple as possible, we
forced (0,0) to be the only spatially uniform steady state
settinga52g @17#. The following conditions must be sa
isfied for diffusion-driven instability@10,17#:
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f U1gV,0⇒a1b,0,

f UgV2 f VgU.0⇒a~b11!.0,

DUgV1DVf U.0⇒d~Db1a!.0,

~DUgV1DVf U!224DUDV~ f UgV2 f VgU!.0

⇒~Db1a!224Da~b11!.0, ~3!

where subscripts inf andg denote differentiation.
At the onset of instability, a good approximation of th

critical wave vector is given by the minimum of the left pa
of the last inequality in Eq.~3!, namely,

kc
25

DVf U1DUgV

2DUDV
5

1

d S a1Db

2D D , ~4!

wherek5kmn5kmna; kmn is thenth zero of the derivative
of the Bessel functionJm8 and a is the radius of the disk.
Observe that this equation implies that once (a,a,b,D) are
fixed, one could select a pattern of a given radial symme
by varyingd. Alternatively, solving Eq.~4! for d, one could
tune the other parameters to satisfy the conditionk5kmn /a
for a given symmetrym.

In Fig. 1 we show the dispersion relation, from Eq.~2!,
for a selection of different parameter values in the appro
ate parameter domain defined by Eq.~3!. The parameters
were chosen to enhance modek515k5156.41 562~in what
follows, we shall consider a unitary disk,a51), according to
Eq. ~4!, and modek035k0357.01 558 was enhanced usin
two different sets of parameter values.

FIG. 1. Variation of dispersion relation, from Eq.~2!, for differ-
ent parameter values. The continuous line corresponds toa
50.899, b520.91, D50.516, andd50.01 011, to enhance th
modek5156.41 562. The dotted line corresponds to the same
rameters as in the previous case but withd50.00 845 to enhance
the modek0357.01 558. Finally, the dashed line corresponds to
same modek03, but obtained with parameter valuesa50.2334,
b520.95, D50.12, andd50.01 011.
3-2
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TURING PATTERNS WITH PENTAGONAL SYMMETRY PHYSICAL REVIEW E65 051913
III. NUMERICALLY COMPUTED STEADY-STATE
PATTERNS

Equations~1! are solved in polar coordinates in a unita
disk (a51) by a simple Euler method as described in de
in Appendix A. The calculations reported here were carr
out using grid parametersM534, N568, Dr 51/34, and
Du52p/68. The parameter values~kept fixed in all our
simulations! are a50.899, b520.91, andD50.516. We
used 163106 time iterations to converge, with a time step
Dt5131024, which fulfills the necessary condition for nu
merical stability~A9!. The system was always initialized u
ing random fluctuations (60.5) around the steady sta
Ui , j

0 50 and Vi , j
0 50, for all i , j . The seed of the random

generator was set to the CPU time of the computer.
In Fig. 2, examples of patterns obtained with parame

values r 15r 250.2, to produce a spot pattern@17#, are
shown. The values ofd correspond to increasing the size
the domain and, according to Eq.~4!, different symmetries
are selected. The convergence to steady state of the pa
was estimated by means of the quantitys5( i , j (Ui , j

n

2Ui , j
n21)2, at each time step. A typical value of this quant

in all our calculations is 131026. In Fig. 3 a graph of the
pattern symmetry axis value versusd is shown. It can be
seen that hexagonal and pentagonal patterns are more
quent and the pentagonal pattern is generated in a ranged
about 16% of the explored radius. The use of the circu

FIG. 2. Series of symmetries obtained in a disk with zero-fl
boundary conditions. The values ofd are ~a! 0.01 011,~b! 0.0075,
~c! 0.0055,~d! 0.0065, and~e! 0.0037. These correspond to sele
ing modesk51, k61, k71, k32, andk52, respectively.
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geometry to solve the Turing equations allows us to gene
a fivefold pattern.

The appearance of the central spot in some of the patt
in Fig. 2 may seem strange at first sight. In particul
J5(k51r ) is zero at the origin and Fig. 2~a! shows nonzero
values there. We should, however, note that the linear an
sis predicts modes under the linear regime, while the fi
solution depends also on the nonlinear terms and it is
pected that, besides monomodes, nonlinear coupling of
ferent modes may appear. In Appendix B we perform
modal decomposition of a pentagonal pattern to confirm
possibility.

Since in Appendix A we obtain only necessary conditio
for numerical stability, we performed a number of simul
tions with different step sizes~in time and space! in order to
verify that the solution does not change under these co
tions. In Figs. 4~a! and 4~b!, we show the pentagonal patter
obtained with the same parameters as in Fig. 2~a! but with
smaller time steps, namely, 531025 and 131025, respec-
tively. In Fig. 4~c! we changed the spatial step size toM
5N568, with Dt5231025. Finally, in Fig. 4~d!, a plot of
the convergence factors for the simulations in Figs. 4~a! and
4~b! is shown.

In the range of disk sizes where we obtain pentagon
symmetric solutions, other admissible modes are poss
and we found that under several different runs, with differe
initial conditions, it was possible to obtain these modes~but
only if we reduce the amplitude of the random fluctuations
the initial conditions!. This problem of multiple stable
steady-state solutions has been one of the main criticism
the Turing model as a plausible explanation for robust p
tern formation. It has been shown that using different typ
of boundary conditions@22# or employing domain growth

FIG. 3. Value of the pattern symmetry axis versusd21/2, which
is proportional to the radius of the disk, for simulations with para
eter valuesa50.899, b520.91, D50.516, a51, and r 15r 2

50.2. The dashed lines represent noncentrosymmetric sixfold
terns. Onefold symmetry axis corresponds to mixed symmetr
Below d21/259.66, noncentrosymmetric patterns with four or le
spots are obtained and ford21/2.18.25 hexagonal patterns wit
defects are generated. Starting fromd50.001 (d21/2531.623) pat-
terns were obtained by increasingd by 0.0001 and, in each case, w
used 363106 time iterations to converge, with a time step ofDt
5131024.
3-3
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ARAGÓN, TORRES, GIL, BARRIO, AND MAINI PHYSICAL REVIEW E65 051913
@23# it is possible~at least on a one-dimensional domain! to
increase greatly the robustness of certain modes.

IV. PATTERNS OF SEA URCHINS

Selecting the symmetry of the Turing pattern by means
the disk radius may be relevant for capturing the essenc
the de novoappearance of the five primary podia during t
early development of regular echinoid larval forms. At t
first stages of larval growth, these animals develop five b
of primary podia in a disk calledimaginal rudiment, rudi-
ment disk, or just rudiment@7,24,25#. These five buds poin
to the vertices of a slightly distorted pentagon and give r
to the radially symmetric adult. In Figs. 5~a! and 5~b!, sche-
matic diagrams of the realistic arrangement of the five p
mary podia in the rudiment ofEucidaris thouarsi and
Strongylocentrotus droebachiensissea urchin larvae are

FIG. 4. Simulations of the pentagonal pattern with the sa
parameters as in Fig. 2~a! but with different spatial and tempora
step sizes.~a! Dt5531025, ~b! 131025, ~c! M5N568, andDt
5231025, and~d! plot of the convergence factors for the simu-
lations in ~a!, with continuous line, and~b! with dashed line.

FIG. 5. Schematic diagrams showing the realistic arrangem
of the five primary podia in the rudiment of~a! Eucidaris thouarsi
larvae ~taken from Fig. 2 of Ref.@7#! and ~b! Strongylocentrotus
droebachiensissea urchin larvae@taken from Fig. 2~f! of Ref. @25##.
~c! Numerical calculation of the pentagonal pattern with the sa
parameters as in Fig. 2~a! but with the factors that control the for
mation of stripes or spots changed tor 155 andr 253.
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shown@26#. Much of the rest of larval growth consists of th
formation and lengthening of podial buds maintaining t
pentagonal symmetry of the initial lobes. These five pod
buds play a major role, by migration from pole to pole, du
ing the embryological skeletal development of regular ec
noids in the framework of the axial-extraxial theory@27#.
Thus, the symmetry of the adult echinoid is set in this init
stage of development and, for this purpose, the first relev
event is the formation of a pentagonal pattern in the rudim
that dictates the radial symmetry of future development.

Regarding ratios and relative sizes, the realistic diagra
in Figs. 5~a! and 5~b! compare notably well with Fig. 2~a!
with the exception of the central spot in the latter. In F
5~c! we show a simulation with the same parameters as
Fig. 2~a! but the factors that control the formation of strip
or spots were changed tor 155 andr 253. Generally, spots
are more robust and pronounced than stripes@17#; actually,
stripes are only formed for very small values ofr 2. In the
simulation of Fig. 5~c!, the factor favoring stripes is high
they do not form becauser 2 is not small. The net result is a
sort of modulation of amplitudes such that the central spo
the pentagon, albeit present, has a very low amplitude.

Notice that taking into account how the symmetry of t
patterns are selected, from a genetic point of view, the p
tagonal symmetry of the adult echinoid can be efficien
encoded using two basic parameters as highly condense
structions: the radius of the rudiment disk~or the cell num-
ber! and the characteristic wavelength of the morphogen

Let us now consider the case when a given pattern is u
as source of morphogens in a larger disk. That is, we sim
late the influence of an initially frozen pattern in a doma
where a pattern forming reaction takes place. This has b
used to simulate the imposition of some directional pref
ence onto the pattern formed, by means of a pattern of
ferentiated cells@28–30#. We first consider the pentagona
structure shown in Fig. 2~a! implanted as a source of mor
phogens in a disk of larger size. The procedure is as follo
The spots of the pentagonal structure shown in Fig. 2~a!,
generated in a disk of radiusr ~proportional to 1/Ad r , with
d r50.01 011), is implanted in a larger disk of radiusR.r
~proportional to 1/AdR, with dR50.0006), and its amplitude
scaled such that the maximum equals 1. The system is
initialized with the previous pentagonal pattern as a see
the center andUi , j

0 5Vi , j
0 50 in the area not occupied by th

spots of the pentagonal seed. These spots are conside
source of morphogen in such a way that their size is ma
tained fixed and the value of the morphogen is set to 1 d
ing all time steps. In Fig. 6~a! we show the pattern that re
sults after 800 000 iterations~before reaching steady state!.
The pattern compares notably well with the pigmentat
pattern of the common Indo-Pacific sea urchin speciesTox-
opneustes pileolus~Alphonso urchin!, shown in Fig. 6~b!,
and it may be considered as a frozen pattern when the an
reaches adulthood. The similarities between the simula
pattern and the real biological pattern are supported by
coherence between the pigmentation pattern and the mor
logical structure of the urchin test@as seen in Fig. 6~b!#,
suggesting that both pigmentation and skeleton forma
were simultaneous during the growth process.
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V. PATTERNS OF CRINOIDS

In a second simulation we let the pattern of Fig. 6~a! reach
stability (63106 time iterations!. The final pattern is shown
in Fig. 8~a! and it consists of a nearly twinned pentagon
structure. The disk size used in the simulation (dR
50.0006) is large enough to obtain a hexagonal pattern,
in this case it has to couple with the pentagonal seed and
best way to do this is to generate a twinned structure form
by a central pentagon surrounded by distorted hexagons

This result can be related to another important and pri
tive taxonomic group of echinoderms: the crinoids@31#. In
Fig. 7 we show the typical plate diagrams of 11 calyxes
camerate crinoid fossils that we have studied@2,32#. An in-
teresting fact is that all these structures are variations o
fundamental arrangement that is a twinned pentagonal s
ture. This can be made evident as follows. By using
numerical approach described elsewhere@2#, we digitalize
each plate diagram codifying the result using a binary s
tem: black~1! and the white background~0!. Next, we ex-
pand this binary function as a truncated Fourier-Bessel se
with real coefficients@2# so that a plate arrangement can
described by the plate model function

T~r ,u!5 (
n50

4

J5n~kr !@C5n cos~5nu!1S5n sin~5nu!#,

~5!

wherer andu are polar coordinates andk is the wave num-
ber @2#. The values ofC and S were calculated for the 11
fossil species shown in Fig. 7 and it turns out that all str
tures are quite similar@2#. An average structure can be o
tained by taking the mean of the calculated constantsC
and S of the 11 species studied, givingC050.25, C5
50.05, C10520.45, C1550.02, C2050.48, S550.47, S10
520.02,S15520.46, andS2050.05. Notably, this undula-
tory average structure is an almost perfect fivefold twinn
structure, as shown in Fig. 8~c!, which compares well with
the twinned Turing structure that results from our simulatio
and is shown in Fig. 8~a!.

In order to compare both patterns in a more proper w
the simulated structure of Fig. 8~a! was transformed to a
black and white image and the Fourier-Bessel analysis g

FIG. 6. ~a! Transient pattern~after 800 000! iterations obtained
with d50.0006 using a pentagonal seed as described in the
with the remaining parameter values as in Fig. 2.~b! Toxopneustes
pileolus sea urchin~taken from echinoid website of The Natur
History Museum of London, designed by A. Smith!.
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C050.25, C550.09, C10520.42, C15520.04, C2050.45,
S550.36, S10520.1, S15520.28, andS2050.26, which
compare well with the averaged coefficients of the fossil s
cies. This good match is better appreciated if we reprod
the image using these coefficients and Eq.~5!. The resulting

xt

FIG. 7. Typical plate diagrams of camerate crinoids:~a! Ar-
chaeocrinus microbasalis, ~b! Condylocrinus verrucosus, ~c! Deo-
crinus asperatus, ~d! Diamenocrinus jouani, ~e! Hercocrinus el-
egans, ~f! Kyreocrinus constellatus, ~g! Opsiocrinus mariana, ~h!
Ortsaecrinus cocae, ~i! Rhodocrinites kirbyi, ~j! Sphaerotocrinus
ornatus, and~k! Thylacocrinus vannioti.

FIG. 8. ~a! Final steady-state pattern of the simulation shown
Fig. 6~a! after 63106 time iterations.~b! Pattern obtained using Eq
~5! and the coefficients of the Fourier-Bessel analysis of~a!. ~c!
Average twinned structure of the arrangement of plates of came
crinoids.
3-5
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ARAGÓN, TORRES, GIL, BARRIO, AND MAINI PHYSICAL REVIEW E65 051913
pattern is shown in Fig. 8~b!. Both undulatory patterns~av-
eraged and mimicked! are pentagonal twinned structure
with the property that the sides of the central pentagon
also sides of antinode hexagons surrounding this pentag

Our Turing model thus captures the essence of th
structures that evolution has explored in crinoids, which
fluctuations of a basic pentagonal twinned structure. T
average structure is a simple and predictable geometrical
tern that evolution may have occupied in the morphospac
early crinoid skeletons. Hence, this is another example
corroborates the claim of the more general work by Thom
et al. @33#, where it is established that viable design eleme
available for animals, to use as skeletons, have been
exploited in early ages. Evidently, evolution also tried t
twinned structure itself, as can be seen in Fig. 9, where
schematic plate arrangement ofPycnocrinus dyericamerate
crinoid fossil@31,32# is shown. In the figure, plates are ind
cated by thick white lines. The centers of the plates are
dicated by circles and form a lattice of ridges decorating
plates. Observe that this lattice~drawn with thin white lines!
is a twinned pentagonal structure formed by distorted he
gons with a pentagon at the center, quite similar to the o
shown in Fig. 8. Notice also that plates constitute the Diri
let domains of the lattice of ridges@34#. This plate arrange-
ment is also observed inGlyptocrinus decadactyluscamerate
crinoid fossil @31,32#.

The plate arrangement shown in Fig. 9 was directly o
tained from the calyx or cup of the published images of fos
crinoids@31,32#. A schematic diagram of the calyx is show
in the inset of Fig. 9; the stem of the fossil is represented
the three white lines at the bottom of the figure and wh
filled circles indicate the starting point of the arms.

FIG. 9. Schematic plate arrangement ofPycnocrinus dyerifossil
crinoid. Plates are indicated by thick white lines. Circles indic
the center of the plates and form a lattice of ridges decorating
plates. This lattice~drawn with thin white lines! is a twinned pen-
tagonal structure formed by distorted hexagons with a pentago
the center. The inset shows a schematic diagram of the calyx or
of Pycnocrinus dyeriadult form from where the plate diagram wa
obtained.
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VI. CONCLUSIONS

We have explored numerically the formation of Turin
patterns in a circular domain with size comparable with
characteristic wavelength. Our results show that, under la
spatial homogeneities in the initial random conditions, pe
tagonal patterns appear and are stable over a well defi
range of disk sizes~about 16% of the explored radius!. Some
real biological examples of pentagonal patterns in regu
echinoids and criuoids are presented. Our results may off
possible mechanism for inducing the fivefold symmetry o
served in early development of these animals. By assum
that in a biological system a certain pattern can be calci
or biologically differentiated at a stage of development,
also simulate pigmentation patterns in sea urchin shells
using sources of morphogens implanted in a disk. Finally,
importance of a transient or an unstable pattern in biolog
systems is reinforced.
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APPENDIX A: FINITE-DIFFERENCE SCHEME

By using subscripts to denote differentiation, in polar c
ordinates the Laplacian reads

¹25] rr 1
1

r 2
]uu1

1

r
] r .

The system~1! is then

ut5DdS urr 1
1

r 2
uuu1

1

r
ur D 1au~12r 1v2!1v~12r 2u!,

~A1a!

v t5dS v rr 1
1

r 2
vuu1

1

r
v r D 1bvS 11

ar 1

b
uv D1u~g1r 2v !,

~A1b!

with zero-flux boundary conditionsur5v r50 at the bound-
ary of the disk (r 5a).

We use the simple Euler~forward difference! approxima-
tion to approximateut , ur , v t , v r , and central differences to
approximateurr , uuu , v rr , andvuu . Using equally spaced
points alongr , u, and t we thus denoter i5(Dr )/21 iDr ,
u j5 j Du, and tn5nDt, where i 50,1, . . . ,M , j
50,1, . . . ,N, Dr 51/M , and Du52p/N. We start fromr
5(Dr )/2 in order to avoid the singularity of the Laplacian
the origin. The center of the disk is obtained by using bou
ary conditions such that central points are joined in pa
separated byu5p/2, that is,

U~r 021 ,u j ,tn!5U~r 0 ,u j 1N/2 ,tn!,

e
e

at
up
3-6
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for j 50,1, . . . ,(N/2)21, and

U~r 021 ,u j ,tn!5U~r 0 ,u j 2N/2 ,tn!,

for j 5N/2, . . . ,N.
If U ( i , j )

n and V( i , j )
n denoteU(r i ,u j ,tn) and V(r i ,u j ,tn),

respectively, we then solve

Ui , j
n115Ui , j

n 1
DdDt

~Dr !2
~U ( i 11,j )

n 22U ( i , j )
n 1U ( i 21,j )

n !

1
DdDt

r i~Du!2
~U ( i , j 11)

n 22U ( i , j )
n 1U ( i , j 21)

n !

1
DdDt

r iDr
~U ( i 11,j )

n 2U ( i , j )
n !1Dt@aU ( i , j )

n 1V( i , j )
n

2ar 1U ( i , j )
n ~V( i , j )

n !22r 2U ( i , j )
n V( i , j )

n #, ~A2a!

Vi , j
n115Vi , j

n 1
dDt

~Dr !2
~V( i 11,j )

n 22V( i , j )
n 1V( i 21,j )

n !

1
dDt

r i~Du!2
~V( i , j 11)

n 22V( i , j )
n 1V( i , j 21)

n !

1
dDt

r iDr
~V( i 11,j )

n 2V( i , j )
n !1Dt@bV( i , j )

n 2aU ( i , j )
n

1ar 1DtU ( i , j )
n ~V( i , j )

n !21r 2DtU ( i , j )
n V( i , j )

n #, ~A2b!

with zero-flux boundary conditions

UM11,j
n 5UM , j

n , Ui ,N11
n 5Ui ,N

n ,

VM11,j
n 5VM , j

n , Vi ,N11
n 5Vi ,N

n .

As initial conditions we use random small fluctuatio
around the steady stateUi , j

0 50 andVi , j
0 50, for all i , j .

Given the nonlinear terms in Eqs.~A2! a rigorous analysis
of the stability of the difference scheme is not an easy ta
In practice, however, since important sources of instabi
are the higher-order terms@35#, necessary conditions and
good estimation ofDt are obtained by investigating the co
sistency and stability of Eqs.~A2! as if they were uncoupled
Thus, we consider the equations

ut5DdS urr 1
1

r 2
uuu1

1

r
ur D 1au, ~A3a!

v t5dS v rr 1
1

r 2
vuu1

1

r
v r D 1bv. ~A3b!

As above, the finite-difference discretization of Eq.~A3a!
is
05191
k.
y

Ui , j
n115Ui , j

n 1
DdDt

~Dr !2
~U ( i 11,j )

n 22U ( i , j )
n 1U ( i 21,j )

n !

1
DdDt

r i~Du!2
~U ( i , j 11)

n 22U ( i , j )
n 1U ( i , j 21)

n !

1
DdDt

r iDr
~U ( i 11,j )

n 2U ( i , j )
n !1aDtU ( i , j )

n . ~A4!

The truncation errors arise from the Taylor series exp
sions used to approximate derivatives

Ui , j
n112Ui , j

n

Dt
5ut1

Dt

2
utt~j! ~ t<j<t1Dt !

and

Ui 11,j
n 22Ui , j

n 1Ui 21,j
n

~Dr !2

5urr 1
~Dr !2

12
urrrr ~j!~r 2Dr<j<r 1Dr !,

with similar expressions forur anduuu .
From these equations, we can calculate the truncation

ror introduced by the finite-difference discretization of E
~A3a!,

Ti , j
n 5

Dt

2
utt~r i ,u j ,z i jn !1

~Dr !2

12
urrrr ~n i jn ,u j ,tn!

1
~Du!2

12
uuuuu~r i ,j i jn ,tn!1

Dr

2
urr ~x i jn ,u j ,tn!,

which is O(Dt)1O(Dr 2)1O(Du2)1O(Dr ). By assuming
that the involved derivatives are bounded, the truncation
ror goes to zero asDt, Dr , andDu go to zero. Consequently
the numerical method is consistent with the partial differe
tial equation~A3a!.

To determine when the method is stable, we find the eq
tion satisfied by the errore5U2u. By definition of the trun-
cation error, the exact solutionu satisfies

ui , j
n115ui , j

n 1
DdDt

~Dr !2
~u( i 11,j )

n 22u( i , j )
n 1u( i 21,j )

n !

1
DdDt

r i~Du!2
~u( i , j 11)

n 22u( i , j )
n 1u( i , j 21)

n !

1
DdDt

r iDr
~u( i 11,j )

n 2u( i , j )
n !1aDtu( i , j )

n 1DtTi , j
n .

By substracting Eq.~A4! from this equation, after grouping
common terms, we obtain
3-7
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e( i , j )
n115S 122

DdDt

~Dr !2
22

DdDt

r i~Du!2
2

DdDt

r iDr
1aDt D e( i , j )

n

1S DdDt

~Dr !2
1

DdDt

r iDr D e( i 11,j )
n 1S DdDt

~Dr !2D e( i 21,j )
n

1S DdDt

r i~Du!2D e( i , j 11)
n 1S DdDt

r i~Du!2D e( i , j 21)
n 2DtTi , j

n .

~A5!

If we define Tmax5maxuT (i,j)
n u and En5maxue(i,j)

n u, for 1< i
<M and 0< j <N, from Eq. ~A5! we get

ue( i , j )
n11u<U122

DdDt

~Dr !2
22

DdDt

r i~Du!2
2

DdDt

r iDr
1aDtUEn

1UDdDt

~Dr !2
1

DdDt

r iDr UEn1UDdDt

~Dr !2UEn1U2 DdDt

r i~Du!2UEn

1DtTmax. ~A6!

The absolute value sign can be removed provided that al
terms under absolute value sign are nonnegative. SincD
.0 andd.0, we assume that

a>0, ~A7a!

1>2
DdDt

~Dr !2
12

DdDt

r i~Du!2
1

DdDt

r iDr
, ~A7b!

so that, after removing absolute value signs in Eq.~A6! and
simplifying, we obtain

ue( i , j )
n11u<En1aDtEn1DtTmax5~11aDt !En1DtTmax.

It can be proved~see, for instance, theorem 1.2.1 of Re
@35#! that the above sequence of inequalities with nonne
tive numbers is equivalent to

ue( i , j )
n u<eanDt~E01nDtTmax!5eanDtnDtTmax,

where we used the fact thatE050. Thus, as a fixed value o
tn , the error goes to zero asTmax→0, and Eq.~A4! is stable
under the assumptions~A7!.

The above stability analysis is also valid for the discre
zation of Eq.~A3b!, with the only difference that ifa>0
@assumption~A7a!#, then, according to the first condition i
Eq. ~3! b is negative (b<2a) @17#. Thus, the discretization
of Eq. ~A3b! is stable under the assumptions

b<0, ~A8a!

1>2
dDt

~Dr !2
12

dDt

r i~Du!2
1

dDt

r iDr
1ubuDt. ~A8b!
05191
e

.
a-

-

Equations~A7b! and ~A8b! can be written in a more trans
parent way if we take into account that, since we are avo
ing the originr 50, min(ri)5r05(Dr/2). By substituting this
into Eqs. ~A7b! and ~A8b! and rearranging the terms w
obtain

Dt<
1

4Dd

~Dr !2
1

4Dd

Dr ~Du!2

, ~A9a!

Dt<
1

4d

~Dr !2
1

4d

Dr ~Du!2
1ubu

, ~A9b!

respectively. Both inequalities provide necessary conditi
for the stability of Eq.~A2!.

The values used in all our calculations areD50.516,
Dr 51/34, Du52p/68, andb520.91. Thus by consider
ing, for example, the value ofd to obtain the pentagona

TABLE I. Normalized magnitudes of the coefficients for th
Fourier-Bessel decomposition of the pattern in Fig. 4~c!.

m/n 1 2 3 4 5 6 7

0 0.372 0.021 1.000 0.058 0.013 0.004 0.01
1 0.003 0.006 0.012 0.004 0.002 0.001 0.00
2 0.002 0.016 0.004 0.003 0.002 0.002 0.00
3 0.002 0.010 0.002 0.003 0.002 0.002 0.00
4 0.002 0.010 0.000 0.002 0.002 0.002 0.00
5 0.594 0.057 0.012 0.017 0.014 0.011 0.01
6 0.002 0.008 0.003 0.000 0.000 0.001 0.00
7 0.002 0.007 0.003 0.000 0.000 0.001 0.00

FIG. 10. Reconstructed image using the complex coefficie
tabulated in Table I and Eq.~B1!.
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pattern in Fig. 2~a! (d50.01 011) we getDt<0.009 326 and
Dt<0.004 791, respectively.

APPENDIX B: MODAL DECOMPOSITION

The principal modes involved in the Turing patterns sim
lated in this work can be revealed by means of a mo
decomposition. In particular, the solution of Eqs.~1!, u(r ,u),
can be expanded in a Fourier-Bessel series as

u~r ,u!5 (
m50

`

(
n51

`

CmnJm~kmnr !eimu, ~B1!

wherekmn5kmn /a, as defined in Sec. II.
Using the orthonormality and completeness

Jm(kmnr )eimu, the complex coefficientsCmn are given by
in

y,

ci.

ci

05191
-
l

f

Cmn5
kmn

2

p@~kmna!22m2#@Jm~kmna!#2

3E
0

aE
0

2p

u~r ,u!rJm~kmnr !e2 imu du dr.

By examining the magnitudeuCmnu of these coefficients, we
can determine the principal modes of the functionu(r ,u).

We performed the Fourier-Bessel decomposition of
pattern in Fig. 4~c!. In Table I, the normalized magnitude
uCmnu for m50,1, . . . ,7 andn51,2, . . . ,7, aretabulated. It
can be seen that the more relevant modes are~03!, ~51!, and
~01!. SinceJ0 is nonzero at the origin, the enhancement
modesk03 and k01 account for the central spot in the pe
tagonal pattern.

In order to verify our result, we use the obtained~com-
plex! coefficients, to reconstruct the pattern using Eq.~B1!.
The result is shown in Fig. 10.
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