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Size-dependent symmetry breaking in models for morphogenesis
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Abstract

A general property of dynamical systems is the appearance of spatial and temporal patterns due to a change of stability of
a homogeneous steady state. Such spontaneous symmetry breaking is observed very frequently in all kinds of real systems,
including the development of shape in living organisms. Many nonlinear dynamical systems present a wide variety of patterns
with different shapes and symmetries. This fact restricts the applicability of these models to morphogenesis, since one often
finds a surprisingly small variation in the shapes of living organisms. For instance, all individuals in the PhylumEchinodermata
share a persistent radial fivefold symmetry. In this paper, we investigate in detail the symmetry-breaking properties of a Turing
reaction–diffusion system confined in a small disk in two dimensions. It is shown that the symmetry of the resulting pattern
depends only on the size of the disk, regardless of the boundary conditions and of the differences in the parameters that
differentiate the interior of the domain from the outer space. This study suggests that additional regulatory mechanisms to
control the size of the system are of crucial importance in morphogenesis.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

On 12 March 1832, Michael Faraday wrote an ob-
servation deposited at the Royal Society of London:
“I am inclined to compare the diffusion of magnetic
forces from a magnetic pole to the vibrations upon
the surface of disturbed water, or those of air in the
phenomenon of sound, i.e., I am inclined to think that
the vibratory theory will apply to these phenomena
as it does to sound, and most probably light”.

∗ Corresponding author. Tel.:+44-1865-280617;
fax: +44-1865-270515.
E-mail address:maini@maths.ox.ac.uk (P.K. Maini).

This remarkable sentence was undoubtedly dictated
to this great mind by the amazing similarity of wave
patterns formed in wildly different systems (either
acoustical, optical, hydrodynamic, or chemical), and
envisaged the universality of the classical theory of
oscillations, to be fully developed many years later.
A completely analogous situation occurs in the birth,
development, and stabilization of patterns described
by nonlinear dynamical systems[1], where the ap-
pearance of regular symmetric patterns very often
present similar shapes, independently not only of the
physical system, but also of the mechanisms that drive
the spontaneous symmetry breaking.
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A beautiful, although complicated, example of this
is the Faraday experiment[2], where a spatio-temporal
regular pattern is parametrically produced through a
combined Turing–Hopf bifurcation[3]. This experi-
ment is deceptively simple and consists of oscillating
vertically a vessel containing a fluid with a certain am-
plitude and frequency. We have performed the Faraday
experiment using a cylindrical vase containing a very
special fluid with high molecular weight[4,5], and
were able to obtain extremely robust regular patterns,
of practically any azimuthal symmetry, by varying the
bifurcation parameter. In that paper we derived a the-
oretical model which clearly shows a parametric term
and a Turing-like structure. Furthermore, by follow-
ing the bifurcations of the fivefold patterns we pointed
out that their structures resemble the shell shape of
sea urchins in different geological times[4].

This observation immediately poses two important
questions: (1) What is the link between waves on the
surface of a liquid and the shape of living organisms?
(2) How is it possible to robustly select a given sym-
metry from a wide choice of patterns? The answer
to the first question is undoubtedly due to the fact
that the universality of the symmetry-breaking proper-
ties encompasses a large range of different dynamical
systems. This paper shall be mostly concerned with
showing this. The second question is more difficult to
answer since, as we shall discuss later, it should in-
volve the interaction between the pattern-forming sys-
tem and another mechanism, capable of controlling
the path of bifurcations.

Since we are mentioning the formation of symmetri-
cal patterns in living organisms, let us concentrate our
effort on a simple Turing system. Turing[6] proposed
his famous equations to “discuss a possible mecha-
nism by which the genes of a zygote may determine
the anatomical structure of the resulting organism”,
coining the term “morphogenesis”. This idea has been
extensively used in many developmental and ecolog-
ical problems[7] (for a review, see Ref.[8]). More
about Turing systems can be found in Ref.[9].

Bifurcation analysis and numerical calculations of
Turing models in one and two dimensions show that,
in the main, they produce very similar patterns, re-
gardless of the specific form of the reaction terms and

of the significance of the nonlinear parameters. There-
fore, we propose that, in a circular domain, the quantity
that defines the symmetry of the pattern is the radius
of the circle. The specific model we choose to study
in detail has been published elsewhere[10]. There, it
was shown that it produces the typical stripes or spots
of general Turing models, depending on the values of
the nonlinear parameters. It was verified that a cubic
term favors stripes, while the presence of a quadratic
term produces spots, and that spots are much more
robust than stripes.

In the following section we present the model and
a linear analysis when the shape of the domain is cir-
cular. We also analyze the case of matching boundary
conditions, when the circle is embedded in a square
domain. Then, we show several numerical results that
corroborate our hypothesis, and we draw some con-
clusions in the last section.

2. The model

Turing equations describe the temporal develop-
ment of the concentrations of two chemicals,U andV ,
that diffuse at different rates (DU = D andDV = 1),
and react according to the nonlinear functionsf

andg:

∂U

∂t
= D∇2U + f (U, V ),

∂V

∂t
= ∇2V + g(U, V ).

The model equations are obtained by expanding the
nonlinear functions in a Taylor series around the sta-
tionary uniform solution(Uc, Vc), up to cubic terms
[10]:

∂u

∂t
= Dδ∇2u + αu(1 − r1v

2) + v(1 − r2u),

∂v

∂t
= δ∇2v + βv

(
1 + αr1

β
uv

)
+ u(γ + r2v), (1)

whereu = U − Uc andv = V − Vc. The quantityδ
conveniently gives the size of the system and the par-
ticular arrangement of the coefficients obeys conser-
vation rules between chemicals. In order to keep the
solutions as simple as possible, we enforce(0, 0) to
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be the only spatially uniform steady state by setting
α = −γ .

We shall investigate the conditions to set up a
diffusion-driven instability in a two-dimensional disk
with zero-flux boundary conditions. Near the steady
state,u = du andv = dv and the linearized system
reads

∂ du

∂t
= Dδ∇2 du + α du + dv,

∂ dv

∂t
= δ∇2δv + β dv − α du. (2)

In a circular domain, we look for solutions of the form

du = u0 exp(λt)Jm(κr) exp(imθ),

dv = v0 exp(λt)Jm(κr) exp(imθ).

By substituting these solutions in(2), we obtain

λu0Jm(κr) exp(imθ)

= [Dδu0∇2 + (αu0 + v0)]Jm(κr) exp(imθ),

λv0Jm(κr) exp(imθ)

= [δv0∇2 + (βv0 − αu0)]Jm(kr) exp(imθ). (3)

For simplicity, let us consider symmetrical modes
only, then by taking into account that in polar coordi-
nates,∇2(Jm(κr) exp(imθ)) = −κ2 exp(imθ)Jm(κr),
we obtain

(λ + Dδκ2 − α)u0 − v0 = 0,

αu0 + (λ + δκ2 − β)v0 = 0.

Nontrivial solutions are obtained if

(λ + Dδκ2 − α)(λ + δκ2 − β) + α = 0. (4)

Therefore

λ2 + [(1 + D)δκ2 − β − α]λ

+ [(Dδκ2 − Dβ − α)δκ2 + α(β + 1)] = 0.

Observe that this dispersion relation is exactly the
same as the one for a square domain[10], except that
the plane wavenumber|k| = k plays the role ofκ [7].
Therefore, for zero-flux boundary conditions

k = κmn

a
, (5)

whereκmn is thenth zero of the derivative of the Bessel
functionJ ′

m anda the radius of the disk.

The bounds ink space of a region with positiveλ
occur whenλ(k2

c) = 0. Then, the independent term of
(4) must be zero andkc satisfies

(Dδk2 − Dβ − α)δk2 + α(β + 1) = 0,

or

Dδ2k4 − (Dβ + α)δk2 + α(β + 1) = 0.

If we wish to select a single excited wavevector, we
require the previous equation to have only one solution
for k2

c, which occurs when

(Dβδ + αδ)2 − 4Dδ2α(β + 1) = 0.

Then, the modulus of the critical wavevector is

k2
c = 1

2Dδ2
(Dβδ + αδ)

= 1

2Dδ2

√
4Dδ2α(β + 1) = 1

δ

√
α(β + 1)

D
. (6)

Observe that this equation implies that once(a, α,

β, D) are fixed, one could select a pattern of a given
radial symmetry by varyingδ. Alternatively, solving
(6) for δ, one could tune the other parameters to satisfy
condition(5) for a given symmetrym. Other boundary
conditions might be considered on the same footing.
For instance, for fixed boundary conditions,Eq. (5)
still holds, if κmn is the nth zero ofJm. One might
consider more complicated problems, such as having
an inhomogeneous domain, for instance, a disk where
D = Di embedded in a square whereD = Do. Such
a system has been studied in one dimension by one
of us [11], and it has been shown that the dispersion
relation does not admit an analytic solution, even in
the simple case of a step-like variation of the diffusion
constant and zero-flux external conditions. In general,
the Laplacian should be replaced by∇ · (D(x, y)∇u).
It was also shown that for certain values of the bifurca-
tion parameter different solutions are confined in each
part of the inhomogeneous system. In two dimensions
that would imply that we can use our simple solution
(6) for the disk, and apply it equally to the wavevec-
tor of the solution for the outer square domain, taking
care of matching both lengths at the border between
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regions. That would mean that the condition to pro-
duce a mode of symmetrym inside the disk is(

k0

κmn

)2

= 1

a

√
Di

Do
. (7)

As we shall see in the next section,Eqs. (6) and (7)
predict the symmetry of the patterns obtained in nu-
merical calculations.

3. Numerical calculations

The first method used to solveEqs. (1)is similar
to the one explained in Ref.[12]. Basically one dis-
cretizes the Laplacian in polar coordinates, the central
points are joined in pairs separated byθ = π/2, and
at the outer points in the circumference, fixed bound-
ary conditions are imposed. InFig. 1, a calculation in
a lattice of 68 points inθ and 34 points inr is shown.
The parameters used were chosen as in Ref.[10] in
order to obtain a robust pattern of spots, namelyα =
0.899,β = 0.91, andD = 0.516, withr1 = r2 = 0.2.
The value ofδ = 0.005 was obtained fromEq. (6)
by choosing the first zero ofJ5 and by considering
a unitary disk. We used 6 000 000 time iterations to

Fig. 1. Fivefold and sixfold regular patterns obtained in a disk using polar coordinates with fixed boundary conditions.

converge, with a time step of dt = 0.0001. A small
variation ofδ = 0.004 produces the hexagonal pattern
also shown in the figure.

When one imposes zero-flux boundary conditions
on the rim, one obtains similar patterns, although the
values ofδ needed to produce a regular symmetry
vary slightly, since one has to seek for the zeros of
J ′

m. Examples of patterns obtained with zero-flux
boundary conditions are shown inFig. 2. The impor-
tant point to remark here is that one is able to obtain
perfectly regular patterns only by varying the size of
the domain. It seems that the crucial feature is the ge-
ometry of the boundary. This effect of the boundary
is expected to be lost when the size of the domain
is large as compared to the typical wavelength of the
pattern. The centered symmetry is due to the selection
of only a few admissible eigenmodes.

Notice the appearance of the central spot in some of
the patterns inFig. 2. In particular, consider the pen-
tagonal pattern. SinceJ5(k51r) is zero at the origin,
we should expect zero values there, which is not the
case. We should, however, note that the linear analysis
predicts excited modes under the linear regime, while
the final solution depends also on the nonlinear terms
and it is expected that, besides mono-modes, nonlinear
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Fig. 2. Series of symmetries obtained in a disk with zero-flux boundary conditions. The values ofδ are: 0.009, 0.0083, 0.0064, 0.0062,
0.0034. These correspond to increasing the size of the domain.
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Fig. 3. Variation of dispersion relation(4) for two different parameter values. Continuous line corresponds toα = 0.899, β = −0.91,
D = 0.516, andδ = 0.00962, to enhance the modek51 = 6.41562. Dotted line corresponds to the same parameters as in the previous case
but δ = 0.00804 to enhance modek03 = 7.01558.

coupling of different modes may appear. InFig. 3, the
dispersion relation(4) is plotted for two different pa-
rameter values, in the appropriate parameter domain.
The parameters were chosen to enhance modesk51 =
κ51 = 6.41562 andk03 = κ03 = 7.01558, according
to (6). From the figure, we observe that at the range
of k where the mode 51 is enhanced, also the mode
03 is excited and so it may also be present. This is in
fact what occurs; a modal decomposition of the pen-
tagonal pattern shown inFig. 2 reveals that modes 03
and 01 are blending into 51[13].

In order to verify that the regularity of the patterns
(they almost always present radial symmetry) is not
produced by a numerical artifact when using polar co-
ordinates, we solved the equations in a square domain
using Cartesian coordinates, exactly as done in Ref.
[10]. There is a great deal of literature on bifurca-
tion analysis and numerical simulations of this prob-
lem on square domains showing how different types
of hexagons arise[14].

We choose a grid of 32×32 and defined a centered
disk with diameter 28 andδ = 2. We usedr1 = 0.5
andr2 = 0.4. Inside the disk we setDi = 0.51, for the
remaining part of the square domainDo = 0.516, and
we suitably modify the diffusion terms of the model

equations to enforce conservation of flux. InFig. 4, we
show a nearly perfect pentagonal pattern, after 400 000
time steps of 0.05, starting with random initial condi-
tions. If one removes the circular boundary by making
Di = Do = 0.516, one obtains an hexagonal pattern
that is not centered. Again this result supports the idea
that regular patterns appear when a circular inhomo-
geneity is present. Only a small change in the homo-
geneity of the square domain seems to be enough to
produce a centered symmetrical pattern. Of course, we
expect that when the size of the disk is large enough
one recovers the usual hexagonal pattern.

Former studies in one dimension of a Schakenberg
system with a step-like variation of the diffusion con-
stants[11] show that there are three types of patterns,
depending on the value of the ratioDo/Di . Roughly
speaking, when this ratio is large, isolated patterns
(type A) are obtained in each region, and there is a dis-
continuity at the border. When this ratio diminishes,
there are isolated patterns, but the transition at the bor-
der of the domains is smooth (type B patterns), and fi-
nally, when the ratio approaches 1, the type B patterns
become non-isolated. We expect that a similar situa-
tion still holds in this model and in two dimensions.
The patterns shown inFig. 4 are surely non-isolated
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Fig. 4. Fivefold symmetry pattern in a square domain withDo = 0.516, obtained by defining a disk inscribed in the square, in which
Di = 0.510. If the square domain is homogeneous(Di = Do), the usual hexagonal array is obtained.

and we have to test the results in an isolated type
regime. In order to do this, we solve the equations in
an inhomogeneous domain consisting of a disk em-
bedded at the center of a square domain, using a grid
that allows for a variation of the size of the disk, and
setDo = 0.3 andDi = 0.516. InFig. 5, we show the
results of a calculation on a grid of 42×42 withδ = 2.
Obviously, if the size of the disk is small enough to
prevent the appearance ofJ0, no pattern is observed
inside the disk, but the number of spots surrounding
the disks is regular, and the spots have to deform them-
selves in order to match this regularity.

We continue growing the disk by using a larger grid
of 68× 68. InFig. 6, we show a sequence of patterns,
starting with a disk large enough for a central spot
to fit in. Observe that when a further layer of spots
forms, the symmetry of the pattern is 5. The hexagonal
pattern is more robust. In some calculations the initial

Fig. 5. Patterns obtained for a very small disk with differentD in the center of the square; see the text for information about the parameters.
The disk grows from left to right.

symmetry breaking could be 5 or 7, but as the pattern
converges and becomes stable, a sixfold pattern finally
settles in.

We want to investigate the sequence of patterns for
larger disks, but numerical calculations on larger grids
become exceedingly lengthy. We take advantage of the
fact thatδ is a parameter that only sets the scale of the
wavevector as compared to the grid division. InFig. 7,
we show a series of symmetrical patterns on a square
grid of 68× 68 andδ = 0.48. This value means that
the linear dimension of the domain is approximately
doubled. We show the appearance of a third and a
fourth layer of spots inside the disk. Observe that the
sequence is 3–4–5–6–7, and that when the central spot
disappears, a new series starts, and when it reappears,
the pattern is fivefold.

It is possible to imagine other types of inhomogene-
ity within this model. For instance, one could define a
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Fig. 6. As the previous figure, except that the central disk has reached the minimum size to allow for the first zero ofJ0. Notice that
when a new layer of spots appears the symmetry is fivefold. Also notice the re-entrant symmetry 6 in the bottom row.

Fig. 7. As the size of the disk increases, the series of symmetries(3 → 7) repeats itself. For larger sizes, the effect of the boundary is
lost and one recovers the usual hexagonal array of spots.
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Fig. 8. (a) Sevenfold pattern obtained in a 64× 64 grid with
δout = 1. Inside the diskδin = 0.5. Patterns in (b)–(d) show a
series of symmetries obtained by increasing the size of the disk,
and maintainingδin = 0.5 andδout = 2.

differentδ inside the circular domain, and expect that
the size of the spots is modified.Fig. 8 illustrates the
results of a numerical calculation varying the value of
δ. The remarkable thing is that regular patterns are also
obtained and that they follow the same size-dependent
symmetry.

These patterns resemble the situation found in the
embryogenesis of the skin, where the precursors of
scales, feathers, or hair, form a complicated pattern of
large and small spots. Complex patterns like these have
been obtained before by coupling a reaction–diffusion
model to a mechano-chemical model[15]. It is difficult
to find a biological basis to assume that a pre-pattern
of different diffusion properties is formed in a real
tissue, but no more unlikely than the precise temporal
changes dictated by genetics, often proposed to model
the superposition of two wave-like patterns.

We have also investigated inhomogeneities in
other parameters; for instance, a variation ofβ also
produces regular patterns. We observed that the ro-
bustness of spots is overwhelming, even when the non-
linear parameters were set to produce stripes(r2 = 0),

inside the disk the symmetrical array of spots was
always present. This might explain why in our model
for the Faraday experiment[4] we obtain asymmetric
spots patterns, even though the lowest nonlinearity in
the model is cubic, favoring the formation of stripes.
Preliminary calculations using a model that couples
a chemotactic mechanism to a Turing model[16]
show a similar series of symmetric patterns, although
not as regular as the ones presented here. Given the
mathematical similarities of a wide class of models
proposed for morphogenesis, we expect our results to
hold more generally.

4. Discussion

The pattern with spots exhibiting hexagonal sym-
metry is ubiquitous in Turing models for biological
morphogenesis[14,17–19]. A weakly nonlinear the-
ory based on corresponding amplitude equations has
been recently developed to study the stability of this
unavoidable hexagonal pattern[20]. Unfortunately, for
Turing pattern selection, a nonlinear theory foreseeing
different symmetries similar to that found for Faraday
wave patterns[21] does not exist up to date. In the
strategy of the present paper, we apply simple linear
theory and the geometric frustration concept to reduce
the usual hexagonal symmetry of the Turing patterns
and to produce the biologically important fivefold pat-
terns in small-size disks. When the disk size increases
or the pattern grows in wider domains out of the disk,
the above-mentioned nonlinear mechanism of Turing
pattern selection[20] recovers its major role and the
hexagonal symmetry ubiquitously returns. Starting
from the idea of linear patterns confined in small disks,
one can imagine non-hexagonal seeds of biological
forms that could be frozen at an early stage of develop-
ment in embryos. This idea has been recently applied
by us to study the de novo appearance of the five pri-
mary podia during the development of regular echinoid
larval forms[13]. During the metamorphosis of larvae,
these animals develop five buds of primary podia in
a disk called the imaginal rudiment or rudiment disk
[22]. These five podial buds play the main role during
the embryological skeletal development of echinoids
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[23]. Notice that, from a genetic point of view, the
pentagonal symmetry of the adult echinoid can be effi-
ciently and robustly coded by using only two basic pa-
rameters as highly condensed instructions: the radius
of the rudiment disk (i.e., the cell division number)
and the characteristic wavelength corresponding to the
morphogens. This could explain why the symmetry
is robustly kept when it is generated starting from a
disk-like embryological structure, as in the case of the
sea urchins. On the contrary, when the primordia grow
starting from a symmetry breaking along a string-like
one-dimensional structure, as in the case of leaf and
flower initiation during plant growth[17], the final
symmetry could not be controlled in an unique way.
For instance, a single strawberry plant can produce
flowers with a variable number of petals (see below).

5. Conclusions

In this work, we have studied numerically a simple
Turing model in small circular domains with various
boundary conditions. The results show that centered
symmetric patterns of spots are always robust, and
that the symmetry of the pattern depends on the size
of the circular domain. Linear analysis of the simplest
cases shows that this result is due to a precise selec-
tion of eigenmodes during the onset of the instability
when the size of the disk is comparable to the dis-
tance at which the lower-order Bessel functions (or
their derivatives) have their first zeros. As the size of
the circular domain becomes large, the higher-order
zeros of the modes become closer together and many
more modes become excited under diffusion, the
patterns lose radial symmetry and the effect or the
border is negligible. This phenomenon was verified
in various inhomogeneous domains, and the series of
size-dependent symmetric patterns appears to be very
similar in all cases, as far as a small circular border
exists.

This main result is extremely important for models
of morphogenesis, since it shows that simple Tur-
ing mechanisms are capable of producing complex
patterns of a given symmetry, usually found in real
organisms. Nature strikes us not only by its beautiful

diversity of patterns, but by the seemingly universal
way in which few simple patterns appear. In some
cases the symmetry is robustly kept, as in the case
of the morphogenesis of echinoderms. In other cases
the symmetry is not tightly controlled; for instance,
a single strawberry plant can produce flowers with
five, six, or seven petals (seeFig. 9). Other interesting
examples of this can be found in Ref.[7].

This implies that the problem originally posed by
Turing, of forming an anatomical structure from a zy-
gote, is not solved only by forming a pattern with
spatial information, but additionally, there should be a
mechanism capable of controlling the bifurcation path
of the model. As the study of genetics is not yet pro-
viding us with such a mechanism, this paper shows
that domain size and shape could provide it.

Two possible factors that might affect pattern selec-
tion are the growth and the curvature of the domain,
because real organisms really generate from growing
three-dimensional curved objects. A study of the ef-
fect of these factors in the selection of Turing patterns
is currently being carried out[24].
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