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Abstract

The Turing reaction–diffusion model [Phil. Trans. R. Soc. 237 (1952) 37–72] for self-organised spatial pattern formation
has been the subject of a great deal of study for the case of spatially homogeneous parameters. The case of parameters which
vary spatially has received less attention. Here, we show that a simple step function heterogeneity in a kinetic parameter
can lead to spatial pattern formation outside the classical Turing space parameter regime for patterning. This reduces the
constraints on the model parameters, extending possible applications. Furthermore, it highlights the potential importance of
boundaries during pattern formation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1952, Turing[31] proposed a model for morphogenesis in which he hypothesised the existence of chem-
icals, termedmorphogens, diffusing and interacting on a field of identical cells. He demonstrated that such a
reaction–diffusion system in a closed spatially extended domain could, under appropriate parameter constraints,
evolve into a spatially heterogeneous pattern, due to small fluctuations in chemical concentrations initiated by ther-
mal noise alone. This phenomenon was termeddiffusion-driven instability. He proposed that the strength of the
chemical signal at each point in the domain would then determine the identity (differentiation fate) of the cell at
that point. Thus, he was the first to formally define a morphogen and, some 50 years later, there is strong evidence
that several such morphogens exist[29,32].

Since Turing’s seminal paper, many reaction–diffusion models have been proposed and analysed, both mathe-
matically and via numerical simulation (for reviews see, for example[8,12,22]). The vast majority of models studied
involve only two chemical species since this is the simplest such system that exhibits the fundamental property of

∗ Corresponding author. Tel.:+44-20-7679-3683; fax:+44-20-7387-1397.
E-mail addresses:k.page@cs.ucl.ac.uk (K. Page), maini@maths.ox.ac.uk (P.K. Maini), n.monk@sheffield.ac.uk (N.A.M. Monk).

0167-2789/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0167-2789(03)00068-X



K. Page et al. / Physica D 181 (2003) 80–101 81

diffusion-driven instability. The region of parameter space in which spatial patterns can form via this instability is
called theTuring space.

The Turing systems that have been analysed fall into three categories: systems with simple kinetic functions which
have been chosen because they give rise to patterns found in natural systems, systems whose kinetics (again usually
simple) are based on hypothetical reactions, and those based on real reactions (see[19] for a review). Typical exam-
ples of these types of model were introduced by Gierer and Meinhardt[10], Schnakenberg[27] and Thomas[30].

In this paper, we consider as an illustrative example the Gierer–Meinhardt activator–inhibitor model, originally
proposed to explain the regenerative properties ofHydra [10]. The equations describing the model are given in
Appendix A.

Models such as these have been proposed to explain a wide variety of biological patterning processes, from the
development of skin markings on the coats of mammals and fish[1,21] to the bifurcations of limbs[7] and the
initiation of teeth in reptiles[17]. In these biological contexts, it is postulated that a reaction–diffusion system sets
up a chemical “prepattern”. Cells then respond to this pattern by differentiating only at sites where the chemical
concentration exceeds a certain threshold. This notion was extended by Wolpert[33], who assumed that a much sim-
pler spatially varying morphogen profile was set up by a source–sink mechanism conferringpositional information
on cells, which differentiate accordingly.

As an explanation for setting up a morphogenetic concentration field, the Turing model is still highly controversial,
because strong evidence has yet to be found for actual reaction–diffusion morphogen prepatterns in vivo. However,
Turing patterns have been demonstrated in real chemical systems[5].

Most theoretical work on Turing systems has considered models in which the kinetic parameters and diffusion
rates are constant in space. However, in the context of morphogenesis, Turing himself recognised that “most of an
organism, most of the time, is developing from one pattern to another, rather than from homogeneity into a pattern”
[31]. Thus the reaction or diffusion rates of the chemical species may be modulated by preexisting spatial structure
within the developing organism. Interest in the effects of domain patches on predator–prey models[34–36] lends
further significance to the study of such reaction–diffusion systems with inhomogeneous parameters.

One specific form of spatial inhomogeneity that has recently been shown to play a particularly significant role
in embryonic development is that of a sharp boundary within or between tissues. Such boundaries were predicted
to act as organisers of pattern formation by Meinhardt[20], and recent studies have borne out this prediction in
a wide range of developmental settings (reviewed in[15]). Developmental boundaries are often characterised by
sharp discontinuities in gene expression. For example, inDrosophila, the boundaries between the dorsal and ventral
compartments in the wing and eye imaginal discs separatefringe-expressing and nonexpressing cells[14]. The level
of gene expression on either side of a boundary can, in principle, modulate both the kinetic and transport (for example,
diffusion) parameters of a pattern-forming process. In the wing and eye discs inDrosophila, Fringe is believed to
modulate the binding affinities between the receptor Notch and its ligands Delta and Serrate, resulting in localised
gene expression at the Fringe-demarcated boundary[9,14,26]. Other factors could modulate the rate of transport of
morphogens by changing the local properties of extra-cellular matrix or gap junctions, for example[4,6,28].

In general, the standard procedure for investigating model behaviour by finding spatially uniform steady states
and determining their linear stability cannot easily be extended to systems with spatially varying parameters. One
reason for this is that in most cases, a uniform steady state will not exist. An exception to this rule arises when the
inhomogeneity occurs in the diffusion coefficient. This was exploited by Benson et al.[2], who explored the effect
of a stepfunction in a diffusion coefficient, and by Hunding and Brøns[13], who provide a theoretical discussion
of the solutions of a reaction–diffusion system with a small gradient in the diffusion rates.

Here we address instead systems with spatial inhomogeneity in a kinetic parameter so that the resultant system
does not have a spatially uniform steady state. For simplicity we focus primarily on systems in one spatial dimension.
In Section 2, we demonstrate numerically that the existence of a stepfunction in a kinetic parameter can lead to
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pattern formation outside the classical Turing parameter space. InSection 3, we show that a linear reaction–diffusion
system can exhibit similar patterning. As this system is more analytically tractable, we can derive results on the
form and stability of solutions. InSection 4, we apply these results to a linearised version of the Gierer–Meinhardt
model system and show that the analytical solutions of this linearised system can be used to predict many features of
the full nonlinear system. InSection 5, we show how pattern propagates away from the parameter discontinuity and
how the system on each half of the domain is equivalent to a reaction–diffusion system with constant parameters
on a domain with anomalous boundary conditions.

2. Numerical solutions of the Gierer–Meinhardt model system with stepfunction kinetic parameter

We nondimensionalise the Gierer–Meinhardt model equations[10] in a novel manner as detailed inAppendix A.
The resultant equations are

ut = r

(
u2

v
+ 1

)
− µu+Duuxx, vt = ru2 − νv+Dvvxx on [0,1],

ux(0) = vx(0) = ux(1) = vx(1), (1)

whereu(x, t) andv(x, t) denote, respectively, the activator and inhibitor concentrations at spatial positionx and
time t. This system has a spatially uniform steady state given byu = (ν + r)/µ, v = r(ν + r)2/νµ2 and there is a
Turing bifurcation atd ≡ Du/Dv = (3ν + r − 2

√
2ν(ν + r))µ/ν(ν + r).

We simulate these model equations numerically with example parameter values which lie outside the Turing
space of(1), but within the range of stability of the uniform steady state to homogeneous perturbations. As expected
no pattern evolves for the systems with constant parameters (parts (i) and (ii) ofFig. 1a). However, when we impose
a stepfunction spatial variation in one of the parameters (µ in this example), a stable spatially nonuniform pattern
does form. This can be true even if the discontinuity in the parameter is small (Fig. 1b).

A key feature of these patterns is that they decay away from the centre of the domain. Thus if the domain were
larger, the patterns would essentially be spatially confined. We find that this behaviour is also exhibited in linear
reaction–diffusion systems.1 Fig. 2shows the steady state pattern formed in a simulation of the example system:(

u

v

)
t

= J

(
u

v

)
+D

(
u

v

)
xx

+
(
k1(x)

k2

)
,

(
u

v

)
x

=
(

0

0

)
at x = 0,1, (2)

where

J =
(
j1 j2

j3 j4

)

and

D =
(
Du 0

0 Dv

)
.

Linear reaction–diffusion systems, such as(2), are not physically plausible as robust models for biological patterning
since they can allow unbounded growth of the morphogen concentrations. However, the tractability of the linear
problem and the similarities in the patterns formed motivate us to analyse this linear system to gain insight into

1 Without spatially varying parameters, linear systems do not exhibit stable spatial patterns.
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Fig. 1. Plots of the steady state activator concentration,u(x), from simulations of the Gierer–Meinhardtequations (1)on the domain [0,1] with zero-flux boundary conditions, and
parametersDv = 0.027,d = 0.0035,ν = 100.0, r = 0.001. (a)—(i)µ = 1.0; (ii) µ = 2.0; (iii) on the left-hand side of the domain,µ has the same value as in (i), while on the
right-hand sideµ has the same value as in (ii). (b) As above, exceptµ = 1.9 in (i). The steady state bifurcation value ofµ in the system with constant parameters, with the other
parameters as given, is 2.04. Thus all parameter values in the simulation results plotted lie outside the Turing space. (Numerical solver: NAG library routine: D03PCF (this is also used
for the simulations in the other figures), number of discretisation points= 1001, tolerance= 10E−07, initial conditions±10% noise around the uniform steady states in (i) and (ii)
and about the right-hand uniform steady state in (iii).)
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Fig. 2. Plot of the steady state activator concentration,u(x), from simulations of the linear system(2), with a stepfunction in one of the
parameters, on the domain [0,1] with zero-flux boundary conditions, and parameters:j1 = 1.0, j2 = −22.0, j3 = 5.0, j4 = −100.0,
Dv = 0.027,d = 0.006,k2 = 1.0 andk1(x) = 10.0 if x < 1/2 andk1(x) = 20.0 if x > 1/2. See text for details. (Number of discretisation
points= 1001, tolerance= 10E−07 and initial conditionsu = 100.0 andv = 50.0.)

the patterning effects of spatially varying parameters in nonlinear models. We seek to understand how the presence
of a boundary between different parameter values (or more generally a “prepattern” in the value of a parameter)
can drive pattern formation and to determine what conditions must be satisfied in order for this to occur. We also
attempt to explain the spatial localisation of the pattern.

3. Analysis of the role of a stepfunction in a parameter in a linear reaction–diffusion model

We consider the following linear nonhomogeneous system of reaction–diffusion equations:(
u

v

)
t

= J

(
u

v

)
+D

(
u

v

)
xx

+
(
k1(x)

k2

)
≡ L

(
u

v

)
+
(
k1(x)

k2

)
,

(
u

v

)
x

=
(

0

0

)
at x = 0,1, (3)

where

J =
(
j1 j2

j3 j4

)

is a matrix with constant entries and

D =
(
Du 0

0 Dv

)
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is the matrix of diffusion coefficients. The matrixJ and the vector

k =
(
k1(x)

k2

)

are chosen such that the corresponding system withk replaced by the constant vector(
k∗
k2

)

has homogeneous steady state values ofu andv which are positive, for any value ofk∗ in the range ofk1(x).
The steady state equations form a nonhomogeneous linear boundary value problem and have a unique solution

except for values of the parameters for whichL has a zero eigenvalue.
We consider the case wherek1(x) takes a stepfunction form. We setk1(x) = a+ bH(x− ξ), wherea, b andξ are

constants,ξ ∈ (0,1), andH denotes the Heaviside function.

3.1. Solution of the steady state equations

Let(
u0(x)

v0(x)

)

be the solution of the equation

J

(
u

v

)
+
(
k1(x)

k2

)
=
(

0

0

)
. (4)

This solution takes the form of a step function with values corresponding to the homogeneous steady states of the
system with right-hand side and left-hand side parameters, respectively. Let(

u

v

)
=
(
u0

v0

)
+
(
U

V

)
. (5)

The steady state equations become(
U

V

)
xx

+ J/D

(
U

V

)
=
(

0

0

)
, x ∈ (0,1), x 	= ξ,

(
U

V

)
x

=
(

0

0

)
, x = 0,1,

(
U

V

)
x

(x = ξ+)−
(
U

V

)
x

(x = ξ−) =
(

0

0

)
,

(
U

V

)
(x = ξ+)−

(
U

V

)
(x = ξ−) =

(
u0

v0

)
(x = ξ−)−

(
u0

v0

)
(x = ξ+), (6)

whereJ/D denotes the matrix


j1

Du

j2

Du

j3

Dv

j4

Dv


 .
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The latter two equations come from the matching conditions atx = ξ, where we demand thatu, v,Duux andDvvx

are continuous.
We diagonalise this system (following[2]) to obtain

(U + siV)xx + λi(U + siV) = 0, x ∈ (0, ξ) ∪ (ξ,1), (U + siV )x = 0, x = 0,1,

(U + siV)x(x = ξ+)− (U + siV)x(x = ξ−) = 0,

(U + siV)(x = ξ+)− (U + siV)(x = ξ−) = (u0 + siv0)(x = ξ−)− (u0 + siv0)(x = ξ+) (7)

for i = 1,2, where we addsi times the second components of the vectorequation (6)to the first components and
pick si such that

 1

− 1

si




are eigenvectors ofJ/D. This choice leads to the decoupled form of the first equation, withλi the eigenvalue
corresponding to

 1

− 1

s3−i


 .

The system ofequations (7)has solution

U + siV =


CLi cos

√
λix, x < ξ,

CRi cos
√
λi(1 − x), x > ξ,

(8)

whereCLi andCRi are constants determined by the matching conditions atx = ξ:
 − cos

√
λiξ cos

√
λi(1 − ξ)

√
λi sin

√
λiξ

√
λi sin

√
λi(1 − ξ)




CLi

CRi


 =


−(uJ0 + siv

J
0)

0


 , (9)

whereuJ0 = u0(x = ξ+)− u0(x = ξ−) and similarly forv0.
The matrix on the left-hand side of(9) has determinant−√

λi sin
√
λi and so(9) has a unique solution, provided

λi 	= n2π2. This will automatically be the case if the homogeneous steady state of the system without spatial
variation ink1(x) is stable.

Thus, we have a unique solution forU andV providedJ/D has two distinct eigenvectors andλi 	= n2π2. The
solution is given by

U =



s1C

L
2 cos

√
λ2x− s2C

L
1 cos

√
λ1x

s1 − s2
, x < ξ,

s1C
R
2 cos

√
λ2(1 − x)− s2C

R
1 cos

√
λ1(1 − x)

s1 − s2
, x > ξ,

V =



CL1 cos

√
λ1x− CL2 cos

√
λ2x

s1 − s2
, x < ξ,

CR1 cos
√
λ1(1 − x)− CR2 cos

√
λ2(1 − x)

s1 − s2
, x > ξ,

(10)
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where
CLi

CRi


 = uJ0 + siv

J
0

sin
√
λi


 sin

√
λi(1 − ξ)

− sin
√
λiξ


 . (11)

Thus, the solutions take the formu = u0(x = ξ−) + K1 cos
√
λ1x + K2 cos

√
λ2x on the left-hand side of the

domain and a similar form (with the same wavelengths) on the right-hand side. Hence, if the eigenvaluesλ1 andλ2

are real and negative (this leads to a cosh form of solution), the solution has at most one turning point in each half of
the domain. (This is given by the solution of sinh|√λ2|x/sinh|√λ1|x = −(K1|

√
λ1|)/(K2|

√
λ2|) which can have

at most one solution since the left-hand side is monotonic and the right-hand side is constant.) As we will see, these
eigenvalues can be complex and hence a nonmonotonic pattern can form when the system with constant parameters
only converges to a homogeneous steady state. When the eigenvalues are complex, the patterns decay away from
the discontinuity and hence are spatially restricted.

3.2. Properties of the solutions

Theorem 1. If the homogeneous steady state of the ODE system with constant parameters is a stable node, then
the stepfunction system withd ≡ Du/Dv = 1 has a steady state which has at most one turning point inx < ξ and
at most one turning point inx > ξ.

Proof. d = 1 ⇒ J/D = (1/Dv)J . SoJ/D has real negative eigenvalues⇔ J has real negative eigenvalues⇔
the ODE system is a stable node. From the form of the solutions, we already have that the steady state solution
of the stepfunction problem can have at most one turning point in each half ifJ/D has real negative eigen-
values. �

Now the trace ofJ/D, tr(J/D), is monotonic decreasing ind from being unbounded and positive asd → 0 to
a negative value atd = 1. Also, the determinant,"(J/D), is always positive, since, by simple algebra, it equals
"(J)/DuDv. Hence, asd decreases from 1 to 0, the system undergoes a Hopf bifurcation. If the homogeneous ODE
system admits a stable node then there will be two changes of form at which the steady state of the stepfunction
system goes from having a cosh form with at most one turning point in each half, to decaying oscillations to pure
oscillatory as the eigenvalues go from real negative, to complex (initially negative real part then positive real part)
to real positive. If the ODE system admits instead a stable spiral then there will only be one change of form as the
steady state goes from decaying oscillations to pure oscillations.

We chose as an example, the system(3) with

J =
(

1.0 −22.0

5.0 −100.0

)

andDv = 0.027 and

k =




(
10.0

1.0

)
, x < 1

2,

(
20.0

1.0

)
, x > 1

2.
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The homogeneous steady state of the corresponding ODE system (withk constant) is a stable node. The first change
in form takes place atd ≡ d1 = 0.019 and the second atd ≡ d2 = 0.0054.Fig. 3illustrates the form of the solution
in between these points.

3.3. Stability of solutions

Consider a general linear nonhomogeneous reaction–diffusion system with spatially varying forcing (not neces-
sarily a stepfunction) and zero-flux boundary conditions:

ut = Lu+ f(x), ux = 0 at x = 0,1. (12)

Supposeu∗(x) is a steady state solution of(12)and consider its stability by adding a perturbationū, i.e.u = u∗ + ū.
Thenū satisfies

ūt = Lū, ūx = 0 at x = 0,1. (13)

Thus, irrespective of the forcing, the stability of the unique (except in the cases mentioned earlier) solution of
the nonhomogeneous problem depends on the stability of the zero steady state in the homogeneous problem.
In particular, the patterned steady state of the two-species reaction–diffusion system with a stepfunction in a
parameter, will lose stability, asd is decreased, at the same point (critical value ofd) as the homogeneous steady
state of the corresponding system with a constant parameter loses stability. (We assume that, as in a standard
two-species Turing system, tr(J) < 0,"(J) > 0 andj1 > 0). The system becomes unstable to modes of the form
cosnπx.

Lemma 1. At the bifurcation of thenπ mode, n2π2 is an eigenvalue ofJ/D.

Proof. The mode with wavenumberk starts to grow when one of the eigenvalues ofJ − k2D goes from having
negative real part to having positive real part. Now tr(J−k2D) < 0∀Du andk, so this happens when"(J−k2D) = 0.
But"(J − k2D) = DuDv"(J/D− k2I), whereI is the identity matrix. So at the bifurcation"(J/D− k2I) = 0,
which implies thatk2 is an eigenvalue ofJ/D. �

Asd is decreased, we note that, at the point at which the steady state loses stability, i.e. when the parameters enter
the Turing space,J/D has repeated eigenvaluen2π2 for some integern, and just before this happens the matrix has
complex eigenvalues close to this. Thus sin

√
λi ≈ 0 for i = 1,2 and so from(9), the amplitude of the solution

is large. Thus if the parameters are close to being in the Turing space, the amplitude of the decaying pattern in the
stepfunction system is large.

Lemma 2. The unique(see above) steady state of the stepfunction system(2) loses stability after(or exactly when)
it becomes purely oscillatory, as d is decreased.

Proof. At the point of loss of stabilityJ/D has an eigenvaluen2π2 for somen, from Lemma 1. From the dis-
cussion followingTheorem 1on the transitions in the form of the solution and the changes in the eigenvalues
of J/D, this must occur when both eigenvalues ofJ/D are positive, which is when the solution is pure oscil-
latory. �

Lemma 3. If it were not for the constraint of the boundary conditions, the steady state would lose stability exactly
when it becomes pure oscillatory.
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Fig. 3. Plot of the late-time steady state activator concentration,u(x), from simulations of the same linear system as inFig. 2, but with (a)
d = 1.0, (b)d = 0.020, (c)d = 0.010, (d)d = 0.0054, (e)d = 0.005365. Since the equations are linear, the solutions can become negative.
Note that a transition in the solution profile occurs asd changes from its value in (b) to that in (c) and a second transition occurs from (d) to (e).
In (e) there is a very small window of parameter values before loss of stability. (Number of discretisation points= 1001, tolerance= 10E−07
and initial conditionsu = 100.0 andv = 50.0.)



90 K. Page et al. / Physica D 181 (2003) 80–101

Proof. Assuming all wavenumbers are allowed by the boundary conditions, loss of stability occurs when

"(J/D− k2I ) = 0 (14)

has a double root,k = kc. The fact that the root is repeated gives us

k2
c = 1

2tr(J/D) (15)

and hence implies that(1/2)tr(J/D) is a repeated eigenvalue ofJ/D. This means that"(J/D) = ((1/2)tr(J/D))2

or equivalently tr(J/D)2 − 4"(J/D) = 0. This corresponds to the point at which the eigenvalues ofJ/D go from
being complex to real (and positive sincek2

c must be positive). �

4. Numerical simulation of the Gierer–Meinhardt model and comparison with analytic results

We found in the previous sections that we could not perform standard linear analysis on a general system of
reaction–diffusion equations with a spatially varying parameter since there may not be a simple state (equivalent
to the uniform steady state) around which perturbations can be everywhere small. However, we showed that when
the inhomogeneity was a stepfunction then the key features of the pattern formation (that patterns could form when
neither the left-hand nor the right-hand parameters were in the Turing space and that, in that case, the patterns
decayed away from the discontinuity) were also exhibited in linear reaction–diffusion equations. It was possible to
analyse these and hence gain insight into the patterning process in general. We look now to see if, in addition to
this qualitative similarity between linear and nonlinear systems, there is a quantitative similarity. We numerically
simulate the Gierer–Meinhardt model equations with a small added spatial inhomogeneity. For simplicity, we modify
these equations by neglecting the+r term in(1). We compare the solution with the analytical solution to the linear
inhomogeneous system, which comes from linearising the homogeneous Gierer–Meinhardt equations about their
uniform steady state and then adding in the spatial inhomogeneity term.

We consider the system of equations:

ut = r
u2

v
− µu+ dDvuxx +"(x), vt = ru2 − νv+Dvvxx, (16)

where"(x) is the spatial inhomogeneity, and compare its numerical solution to the analytical solution of
 u

v



t

= J


 u

v


+D


 u

v




xx

+

"(x)

0


 , (17)

where

J =




µ −µ2

r

2r
ν

µ
−ν




and

D =
(

dDv 0

0 Dv

)
.
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Fig. 4. Steady state solution of the Gierer–Meinhardt model with an added spatial inhomogeneity in the form of a stepfunction (solid line) and
the analytical solution of the corresponding linear problem. Details and parameter values given in text: (a) a small stepfunction; (b) a larger
stepfunction. (Number of discretisation points= 1001, tolerance= 10E−07 and initial conditions±10% noise around the uniform steady state
of the left-hand parameters.)

Fig. 4 shows plots of the numerical solution of the nonlinear equation and the solution of the linear system for
parameter valuesν = 100.0,µ = 2.0, d = 0.0035,Dv = 0.027 andr = 0.001. In (i),

"(x) =



0, x < 1
2,

0.1, x > 1
2.

From Eqs. (10) and (11), with the values ofλ1, λ2, s1 ands2 determined by the eigenvalues and eigenvectors of
J/D, we find that this yields the linear solution
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u(x) =




50.0 − (0.00573 cos(93.76x) cosh(7.85x)+ 0.0192 sin(93.76x) sinh(7.85x)), x < 1
2,

50.05− (0.00573 cos(93.76(1 − x)) cosh(7.85(1 − x))

+ 0.0192 sin(93.76(1 − x)) sinh(7.85(1 − x))), x > 1
2.

(18)

In (ii),

"(x) =



0, x < 1
2,

1.0, x > 1
2,

which yields solution

u(x) =




50.0 − (0.0573 cos(93.76x) cosh(7.85x)+ 0.192 sin(93.76x) sinh(7.85x)), x < 1
2,

50.5 − (0.0573 cos(93.76(1 − x)) cosh(7.85(1 − x))

+ 0.192 sin(93.76(1 − x)) sinh(7.85(1 − x))), x > 1
2.

(19)

We see from the figure that when the height of the stepfunction in"(x) is small (0.1) the analytical linear solution is in
very good agreement with the solution to the full nonlinear solution. However, for a large stepfunction discontinuity
(1.0), although the analytical linear solution correctly predicts the number and position of the peaks, it overestimates
their size.

5. Propagation of the pattern away from a parameter discontinuity

When there is a discontinuity in a parameter value of a reaction–diffusion system, the homogeneous steady state
values of the variables on either side of the discontinuity will, in general, be different. If this is the case, then
the discontinuity in the steady state values acts like a local perturbation and can trigger pattern formation if the
homogeneous steady state on either side of the boundary is unstable. We postulate that, as with a local perturbation
to the homogeneous steady state in a reaction–diffusion system with constant coefficients, the perturbation will
cause the pattern to form as a wave propagating out from the disturbance with a speed and pattern wavenumber
given by the marginal stability hypothesis[37]. The initial “perturbation” due to the discontinuity may not be small,
but it is localised.

Fig. 5 shows the results of simulations of the Gierer–Meinhardt model system on a one-dimensional domain
with a stepfunction in the activator decay rate in the middle of the domain atx = 0.5. The other parameter val-
ues are chosen such that the homogeneous steady state is unstable to modes with a wavelength which is much
smaller than the domain size, in order to minimise boundary effects. We see that, on either side, the pattern
spreads out as a wave from the discontinuity. We calculate the approximate time taken for the pattern to reach
a small threshold amplitude atx = 0.7, 0.75, 0.8 and 0.85 and thus calculate the approximate speed of prop-
agation of the wave between these points; we perform a similar operation on the left-hand side of the domain
to calculate the wavespeed there. On the right-hand side ofFig. 5a, we get values oft ≈ 71.4, 87.5, 104.0,
121.7 and hence the wave appears to move at roughly constant speed of around 0.0030. On the left-hand side
of the domain, the wavespeed appears to take a roughly constant value of around 0.0027. These speeds com-
pare with analytical values predicted by the marginal stability hypothesis of 0.0031 and 0.0027, respectively (see
[25]).

In Fig. 5b, the numerically calculated estimates of the wavespeed are 0.0075 for the right-hand side and 0.0028
for the left-hand side. These compare to analytical predictions of 0.0063 and 0.0027, respectively[25]. Hence all
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Fig. 5. Plot of the activator profiles at various times in simulations of the Gierer–Meinhardt model equations with a stepfunction in the activator decay rate. The domain is [0,1]
(zero-flux boundary conditions) and the parameters areDv = 0.000675,ν = 1.0, r = 0.01 andd = 0.02. (a)µ = 0.2 on left-hand side,µ = 0.22 on right-hand side; (b)µ = 0.2 on
left-hand side,µ = 0.4 on right-hand side (the initial conditions take the form of stepfunctions with homogeneous steady state values of the problem with constant coefficients on each
half), in (i) t = 50, (ii) t = 100, (iii) t = 1000 and in (iv) we show a greyscale plot of the activator concentration in space and time (lighter colour indicates higher concentration).
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Fig. 5. (Continued).
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the predictions are good approximations to the wavespeed except for the one for the right-hand side of (b). This
is possibly because the wave in this case is faster and so more susceptible to boundary effects; it seems to speed
up as it reaches the boundary. The pattern left behind the wave is roughly periodic and the wavelength is consis-
tent with the marginal stability hypothesis which predicts roughly 5.5 peaks on either side of the domain in both
(a) and (b). On the right-hand side of (b), the prediction is actually 5.77, but in the other cases 5.5 is the nearest
half number to the prediction. In the case of the large stepfunction in the parameter, the first peak is somewhat
higher and wider than the others, but this irregularity appears localised (the left-hand side steady state patterns
are very similar, (b) having a slightly higher first peak and the other peaks being slightly further from the dis-
continuity). Once the wave has begun to propagate, the leading edge perturbation is always infinitesimal and so
the system behaves as if the perturbation were small and local. We can clearly see the approximately constant
speed of propagation in a greyscale plot of the activator concentration in space and time, as shown in part (iv) of
Fig. 5a and b.

6. Analysis of parameter discontinuity in a general reaction–diffusion model

We now attempt to gain analytical insight into how the pattern forms in a general reaction–diffusion system with
a discontinuity in a parameter.

We consider the system

ut = f(u, v;α(x))+Duuxx, vt = g(u, v;α(x))+Dvvxx, (20)

with zero-flux boundary conditions on the domain [0, L], whereα is a parameter which takes the following form:

α(x) =



α0 − ε, 0 ≤ x <

L

2
,

α0 + ε,
L

2
< x ≤ L,

(21)

whereε is a small parameter. We assume that whenε = 0, i.e. whenα is constant,(20) admits a homogeneous
steady state(u, v) = (u0, v0). We also assume that this state is linearly stable (we choose parameters outside the
Turing space). We consider a perturbation solution of(20) for ε 	= 0:

 u

v


 =


 u0

v0


+ ε


 u1(x, t)

v1(x, t)


+ ε2


 u2(x, t)

v2(x, t)


+ · · · . (22)

To O(1), we simply havef(u0, v0;α0) = g(u0, v0;α0). Collecting terms of O(ε), we obtain
 u1

v1



t

= J


 u1

v1


+D


 u1

v1




xx

+ sgn

(
x− L

2

) fα(u0, v0, α0)

gα(u0, v0, α0)


 (23)

and (u1)x = (v1)x = 0 at x = 0, L, whereJ is the Jacobian matrix at(u0, v0) for the system withα = α0,
D the matrix of diffusion coefficients andfα andgα the functions of(u, v) obtained by differentiatingf and
g with respect toα. Now fα(u0, v0, α0) andgα(u0, v0, α0) are constant in space and time, so(23) corresponds
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to a linear equation in(u1, v1), with a spatially varying term which is simply added to the linear homogeneous
terms.

The above analysis would hold likewise for any scalar boundary conditions (conditions of the formδux+βu = γ

at x = 0,1). If we considered a system in which the caseε = 0 had a stable steady solution which was patterned
rather than homogeneous, then the analysis would hold except that bothJ and(

fα(u0, v0, α0)

gα(u0, v0, α0)

)

would vary in space.
It is clear that(23) is invariant under the transformationx → L − x, u1 → −u1, v1 → −v1, t → t. Thus if

the initial conditions are also antisymmetric inx, i.e.u1(x,0) = −u1(L − x,0), then the solution will always be
antisymmetric. In particularu1(L/2) = −u1(L/2) which impliesu1(L/2) = 0 ∀t. Hence, if the initial conditions
in (23) are antisymmetric, then the problem is the same on each half of the domain as the corresponding problem
in which the inhomogeneous term is a constant and the boundary conditions areu1, v1 = 0 atx = L/2, and zero
flux at the other end. On the left-hand side of the domain, the constant takes value

−
(
fα(u0, v0, α0)

gα(u0, v0, α0)

)

and on the right-hand side of the domain, the constant takes value

+
(
fα(u0, v0, α0)

gα(u0, v0, α0)

)
.

The solution of this equation is equivalent (up to the addition of a constant) to the solution of the homogeneous
equation (no constant added) with a zero-flux boundary condition and an anomalous fixed boundary condition (the
solution is fixed to a value which is not the homogeneous steady state value at one of the boundaries).

In Fig. 6, we show for comparison the results of a simulation of the Gierer–Meinhardt model with constant
parameters and an anomalous boundary condition. As predicted by this analysis, we see a similar pattern of decaying
oscillations as found in the corresponding stepfunction system (compareFig. 6with part (iii) of Fig. 1a).

We can solveEq. (20)by considering the solution as the sum of the steady state solutionū ≡ (ū(x), v̄(x))

(which we showed how to find inSection 3) and a correction term̃u ≡ (ũ(x, t), ṽ(x, t)). If the initial conditions on
u ≡ (u, v) areu(x,0) = f(x), thenũ satisfies

ũt = Jũ+Dũxx, (24)

with ũ = 0 at x = 0, L and ũ(x,0) = f(x) − ū(x). This is a linear homogeneous system of equations with
scalar boundary conditions and so can be solved as a sum of eigenfunctions (in this case cosine modes). The initial
conditions determine the initial amplitudes of these eigenfunction modes. The amplitudes decay in time to zero. It
is likely thatf will take the form of a constant (with value corresponding to the uniform steady state values of the
species for the system with parameters of either the left-hand side or right-hand side) or else a stepfunction (with
the steady state values of the left-hand system on the left-hand side and of the right-hand system on the right-hand
side). Either way, the initial symmetrical component is simply a constant. The decay of the constant mode is large
(corresponding to the modulus of the real part of the eigenvalue ofJ with the negative real part of small modulus)
and hence the symmetric (constant) component rapidly disappears. Some of the odd cosine modes present inf − ũ

do not decay so quickly and hence the convergence to a steady state pattern happens on a longer timescale than
convergence to an antisymmetric solution. It is not obvious from this form of the solution thatu converges rapidly
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Fig. 6. Having one zero-flux boundary condition and one fixed boundary condition (at a level which is not the homogeneous steady state) leads to
a pattern of decaying oscillations similar to those in part (iii) ofFig. 1a and b. Parameter values areν = 100.0,µ = 2.0, r = 0.001,Dv = 0.027
andd = 0.0035. We impose zero-flux boundary conditions at the right-hand boundary and fixed valuesu = 0 andv = 0.01 at the left-hand
boundary. (Number of discretisation points= 1001, tolerance= 1.0E−07 and initial conditions are±10% noise around the uniform steady
state of the system with zero-flux boundary conditions.)

to its final value near the edges of the domain, that the solution rapidly becomes relatively flat away from the
stepfunction in the centre of the domain and that the oscillations of the steady state solution propagate outwards
from the middle, as found in numerical simulations. To show this would take further analytical investigation.

In Fig. 7, we show the way in which (a)u and (b)ũ develop in time, in the linear system on the domain [0,1]
with

J =
(

1.0 −22.0

5.0 −100.0

)
,

D =
(

3.78× 10−5 0.0

0.0 6.75× 10−3

)
,

k =




(
10.0

1.0

)
, x < 1

2,

(
20.0

1.0

)
, x > 1

2,

and initial conditionsu = 100.0, v = 5.0, which are roughly the steady state values on the left-hand side (the
initial conditions are symmetric). In field (i), we show the early time behaviour; the dotted lines show the solutions
at t = 10 and the solid lines show the solutions att = 50. We can see that the value ofu near the right-hand
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Fig. 7. (a) Plot of the activator profile,u, at (i) t = 10 (dotted line) andt = 50 (solid line), and (ii)t = 50 (dotted line) andt = 500 (solid line), in a system of linear reaction–diffusion
equations as in(23) (see text for details). (b) Plot of the correction term from the steady state value at (i)t = 10 (dotted line) andt = 50 (solid line) and (ii)t = 50, 100, 200, 300, 400
and 500.
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boundary rapidly converges to near its steady state value at that boundary and the value ofũ rapidly converges to
zero near both boundaries. In field (ii), we show the later time behaviour. Part (ii) ofFig. 7a shows the solution foru
at t = 50 (dotted line) andt = 500 (solid line). It shows growth and spreading out of the pattern from the centre of
the domain. Part (ii) ofFig. 7b shows the solution for̃u at t = 50, 100, 200, 300, 400 and 500. It indicates a fairly
uniform decay.

7. Discussion

We have shown that a stepfunction in a parameter of a reaction–diffusion system can lead to a complex spatial
pattern when constant parameters at the level of either side of the discontinuity would not. Stable large amplitude
patterns can form even if the discontinuity in the parameter is small. Thus, inhomogeneities in parameters can lead
to an extension of the classical Turing parameter space. Furthermore, we have shown that the resulting patterns
are spatially localised around the parameter discontinuity. Spatial localisation in the pattern can also occur in
reaction–diffusion systems with mixed boundary conditions[18]. For the case of a small stepfunction, we have
demonstrated that such systems are formally equivalent to one-half of the domain in the corresponding system
with a stepfunction in a parameter. We have also shown that patterns tend to propagate outwards from a parameter
discontinuity with a speed and pattern wavelength given approximately by the marginal stability hypothesis.

We have gained analytical insight into the features of the stable patterns resulting from stepfunction discontinuities
by studying a linear reaction–diffusion model. Mathematical analysis of the stepfunction problem in this system
shows that the steady state has at most one turning point in each half of the domain if the steady state of the
corresponding ordinary differential equation (ODE) is a stable node. If the steady state of the ODE system is a
stable spiral, then the solution of the stepfunction problem exhibits decaying oscillations. Finally, if it were not
for the constraints of the boundary conditions, then the solution would lose stability exactly when it became pure
oscillatory. Using numerical simulation, we have shown that a suitable linearised system exhibits many of the
same features as the full nonlinear Gierer–Meinhardt system and hence that the analytical results obtained can
approximately predict key features of the nonlinear system.

Spatial patterns triggered by stepfunction discontinuities in a parameter could have important implications for the
role of boundaries in pattern formation during development. There are many biological systems in which patterning
occurs in a hierarchical fashion (see, for example[1,11,20,23,24]). A specific example of hierarchical patterning
results from the establishment of sharp boundaries within developing tissues, separating populations of cells that
differ in the level of expression of one or more genes (reviewed in[15]). As predicted by Meinhardt[20], such
boundaries play significant roles in the patterning of the surrounding tissue. In many cases, such as inDrosophilaeye
imaginal discs and developing appendages inDrosophilaand vertebrates, specific gene expression and subsequent
cell differentiation occur at or around such boundaries[3,9,14,16,26].

Our results show that boundaries separating cells with different gene expression profiles can have significant
implications for patterning mechanisms operating in the tissue containing the boundary. If one or more of the
parameters of the patterning mechanism were modulated by the differentially expressed genes, then we have shown
for the case of a reaction–diffusion mechanism that spatial patterns can be generated even when the parameters in
either region are outside the range that supports pattern formation. This novel result of patterning outside of the
Turing space provides a specific illustration of the importance of hierarchies of patterning in development[11],
i.e. it demonstrates the influence of existing inhomogeneities in the system not only on the specific form of new
patterns, but on their ability to form at all.

In this paper, we have restricted our attention to investigating the effect of a stepfunction in a parameter on pattern
formation via reaction–diffusion in one dimension. Numerical simulations on a two-dimensional domain show that
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a prepattern in a control species can lead to patterns of spatially varying wavelength, for example patterns of large
and small spots, resembling those seen on the head of the lizardCyrtodactylus fedtschenkoi, or novel target-like
patterns. Also, a system which would normally give rise to spots can instead produce striped patterns (Page, Maini
and Monk, in preparation). Hence, in addition to widening the range of possible patterns, prepatterns in a parameter
can also select patterns in the reaction–diffusion system. This provides further confirmation that, at least in some
cases, hierarchical patterning can result in more robust patterning than can de novo patterning (as suggested in[11]).
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Appendix A

The Gierer–Meinhardt model equations are given by

ut = k1 + k3
u2

v
− k2u+Duuxx, vt = k4u

2 − k5v+Dvvxx on [0, L], (A.1)

whereu is the activator concentration,v the inhibitor concentration andk1, . . . , k5 the positive parameters, see[10].
To be fully prescribed the equations also require boundary conditions onu andv atx = 0, L (typically zero flux).
We introduce nondimensional quantities

x̄ = x

L
, t̄ = t

T
, ū = uk3

k4
, v̄ = vk2

4k1

k2
3

,

r = k1k4T

k3
, µ = Tk2, ν = Tk5, D̄u = TDu

L2
, D̄v = TDv

L2
, (A.2)

whereT is a fixed timescale. On substituting intoEq. (A.1)these yield

ūt̄ = r

(
ū2

v̄
+ 1

)
− µū+ D̄uūx̄x̄, v̄t̄ = rū2 − νv̄+ D̄vv̄x̄x̄ on [0,1]. (A.3)

This is the nondimensional form of the equations used in the paper (we drop the bars for notational convenience). We
can see that there are fewer parameters involved in the nondimensional system, which makes analysis of the system
easier. However, it should be noted that the times, lengths and concentrations in the nondimensional system are
not the real values involved in the original system. In this nondimensionalisation, we could simplify the equations
further by choosing an appropriate timescaleT (in terms of the other model parameters). However, we choose not
to do this to allow us to investigate timescales involved in the emergence of patterns in reaction–diffusion systems
([25] and in progress).
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