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Abstract

Most of the existing mathematical models for tumour growth and tumour-induced angiogenesis neglect blood flow. This is an
important factor on which both nutrient and metabolite supply depend. In this paper we aim to address this shortcoming by
developing a mathematical model which shows how blood flow and red blood cell heterogeneity influence the growth of systems of
normal and cancerous cells. The model is developed in two stages. First we determine the distribution of oxygen in a native vascular
network, incorporating into our model features of blood flow and vascular dynamics such as structural adaptation, complex
rheology and red blood cell circulation. Once we have calculated the oxygen distribution, we then study the dynamics of a colony of
normal and cancerous cells, placed in such a heterogeneous environment. During this second stage, we assume that the vascular
network does not evolve and is independent of the dynamics of the surrounding tissue. The cells are considered as elements of a
cellular automaton, whose evolution rules are inspired by the different behaviour of normal and cancer cells. Our aim is to show that
blood flow and red blood cell heterogeneity play major roles in the development of such colonies, even when the red blood cells are

flowing through the vasculature of normal, healthy tissue.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid tumour growth has attracted the attention of
theoreticians from many different fields, becoming one of
the most important areas of active research in the
theoretical biology community. The number of models
analysing the different stages in tumour development,
from its initial avascular phase to invasion and metastasis
through vascularization via tumour-induced angiogen-
esis, is huge. Nevertheless, almost all of these models
neglect a factor which can, eventually, influence many
features of the growth process. The factor in question is
that tumour growth actually occurs in a heterogeneous
environment (Baum et al., 1999). Our aim in this paper is
to study, by means of a cellular automaton model, two
different processes: the growth of a heterogeneous colony
composed of two, competitive cell populations and the
initial stages of tumour invasion. We will investigate the
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effect on each of these processes of the heterogeneity of
the supporting vasculature and the rate of oxygen
delivery to the cell populations.

Although many factors contribute to the heterogene-
ity of the environment in which our cells proliferate, we
focus our attention on blood flow. Despite the highly
organized structure of vasculature in normal tissue, as
compared to the chaotic appearance of vascular beds in
cancer tissue (Baish et al., 1996), the blood flow
distribution in normal tissue is, for a number of reason,
strongly inhomogeneous. Firstly, blood is a complex
suspension of different elements, with a complex
rheology (Pries et al., 1994). Secondly, the vascular
system is not a network of rigid tubes but a structure
which interacts with the flow and remodels itself
accordingly (Pries et al., 1998). Additionally, haemato-
crit, i.e. the fraction of the total volume of blood
occupied by red blood cells, is not distributed at
bifurcations in the same way as blood flow (Fung,
1993). Consequently, the distribution of oxygen in the
vascular network is highly irregular.
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Our aim in this paper is to study how the phenomena
mentioned above affect the growth of cellular colonies
and malignant invasion of healthy tissue. To this end
our procedure will be as follows. The first step is to
simulate blood and haematocrit (i.e. oxygen) flow
through a regular network of primitive vasculature.
We take into account real features of blood rheology as
well as adaptation of the vascular network via a
remodelling algorithm. This enables us to determine
the haematocrit distribution. The next step is to couple
this with a hybrid cellular automaton model for the
tissue dynamics of colony growth and tumour invasion.

Although our simulated environment is still a highly
idealized version of the situation in vivo, it iS a more
realistic description than the usual assumption of tissue
homogeneity. Accordingly, we hope that our model will
produce more realistic results than existing models and
provide a framework that can be further developed.

Cellular automata have been used extensively to model
a wide range of problems (Wolfram, 1986; Ermentrout
and Edelstein-Keshet, 1993). Biological systems are
particularly suitable for analysing by cellular automata
(Ermentrout and Edelstein-Keshet, 1993). In particular,
cellular automata models have been used to model many
aspects of tumour growth and therapy (Duchting and
Vogelsaenger, 1985) and the presence of immune
surveillance (Qi et al., 1993). More recently, Kansal
et al. (2000) have developed a cellular automaton for
avascular tumour growth on a Voronoi lattice. The use of
this type of lattice preserves the discrete nature of cells
but removes the anisotropy introduced by the use of a
regular lattice. Patel et al. (2001) have developed a
cellular automaton model to study the role of acidity in
tumour growth. Tumour-induced angiogenesis has also
been modelled using a cellular automaton approach
(Anderson and Chaplain, 1998).

The paper is organized as follows. In Section 2, we
explain how we construct a heterogeneous environment
from blood flow simulations in a network of native
vessels. Section 3 deals with cell dynamics in this
inhomogeneous environment. In this section, we de-
scribe in detail our cellular automaton model and
explain how these dynamics are affected by the
heterogeneity of the environment. In Sections 4 and 5
we consider two different situations: in Section 4 we
consider the growth of a colony of both normal and
cancerous cells; in Section 5 we consider the invasion of
healthy tissue by a malignant colony of cells. Finally, in
Section 6, we discuss our results and present our
conclusions.

2. Adaptation of the vascular network

As mentioned in the Introduction, our aim is to
study the growth of cell colonies in heterogencous

environments, similar to those found in vivo. Of
particular interest here is the impact on colony growth
of the inhomogeneous distribution of oxygen that is
produced by blood flow heterogeneity.

To produce realistic results, we have two options: we
can either seek experimental data on vascular bed
morphology and hydrodynamic parameters or we can
simulate such an environment, incorporating generic,
but realistic, features of the vascular system. In the
present work we have chosen the latter approach. Our
procedure is to implement an adaptation mechanism
which incorporates a number of characteristics that have
been observed experimentally and generates a generic
structure whose morphology depends on hydro-
dynamics parameters. This does not reproduce any
concrete example of a vascular networks, as would be
the case if we were using real experimental data.
However it produces a network exhibiting features that
are typical of the vascular system.

The adaptation mechanism we use relates to experi-
mental observations by Pries et al. (1995) of real
haemodynamic features. The vascular system is believed
to be organized to comply with a number of physical
design principles so as to optimise some related function
(LaBarbera, 1990). The first design principle was
developed by Murray (1926). He hypothesized that the
vascular tree is organized to minimize its energetic costs,
these costs including the power needed to sustain the
blood flow and the metabolic energy necessary to make
and maintain blood. By minimizing the associated
function, Murray concluded that, in an optimal vessel,
the flow rate is proportional to the cube of the lumen
radius (Murray’s law). A consequence of Murray’s law
is that the wall shear stress is uniform throughout the
network (Zamir, 1977). It is widely known that wall
shear stress influences smooth muscle tone and vessel
wall structure. In consequence we deduce that the
vascular tree must autoregulate itself to maintain the
wall shear stress at its fixed value.

Although fairly constant values of the wall shear
stress have been reported for arteries and large
arterioles, lower values are reported for the microcircu-
lation, venules and veins. This raises questions about the
general applicability of Murray’s hypothesis. Another
factor to which blood vessels are exposed is transmural
pressure, which, like shear stress, affects vessel diameter
both acutely and chronically. Consequently, transmural
pressure is likely to alter shear-dependent responses of
the vascular network. Pries and co-workers studied the
hydrodynamic design of a terminal vascular bed in an
attempt to explain how the coupling between transmural
pressure and wall shear stress is accomplished (Pries
et al., 1995). They found that the wall shear stress
exhibits a sigmoidal shape which seems to be universal
for arterioles, capillaries and venules, contradicting
Murray’s law (see Pries et al., 1995; Alarcon et al.,
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2002). We have recently proposed an extension of
Murray’s design principle, which accounts for this
dependence of the wall shear stress on the transmural
pressure (Alarcon et al., 2002). We minimize Murray’s
energy dissipation function, but we consider the actual
dependence of blood relative viscosity upon the radius
of the vessel. We show that a branching network of
vessels constructed according to the corresponding
design principle reproduces the sigmoidal shape of the
wall shear stress. We also show that our results can be
extended to compliant vessels.

2.1. Structural adaptation

Based on the above information about the hydro-
dynamics of vascular beds and on the fact that the
vascular system continually adapts to the demands of
the surrounding tissue,! Pries et al., formulated an
adaptation mechanism which describes how the lumen
radius, R(f), is modified by these effects (Pries et al.,
1998):

R(t+ Af) = R(t) + RAt(log (TEP )

+ ko log(QQ.r;’; + 1) —ks>. (1)

In Eq. (1) At is the time-scale, Q is the flow rate, Q,ef,
k,, and k; are constants described below, H is the
haematocrit, 7, = RAP/L is the wall shear stress
acting on a vessel of length L. For Poiseuille flow,
7, = 4uQ/nR>. P is the transmural pressure, AP is the
change in P along L, and 7(P) the magnitude of the
associated wall shear stress. In Pries et al. (1998) a third
stimulus, the so-called conducted stimulus, is introduced
which, for simplicity, we neglect in our simulations, as
Eq. (1) provides the simplest stable adaptation mechan-
ism. The expression for 7(P) that we use was obtained by
fitting to data from the rat mesentery, and is given by
Pries et al. (1998):

7(P) = 100 — 86[exp(—>5000 log(log P))]>*. 2)

The second term on the right-hand side of Eq. (1), i.e.
the difference between the logarithms of the wall shear
stress and its corresponding set point value, represents
the response to mechanical or hemodynamic stimuli. It
is proposed (Pries et al., 1995) that vascular networks
adapt themselves in order to maintain a fixed relation-
ship (given in Eq. (2)) between transmural pressure and
wall shear stress. This feature is implemented via this
term in Eq. (1). Equally, structural adaptation of
vascular beds also occurs in response to the metabolic
demands of the surrounding tissue. Consequently, if the

'This implies that network morphology is not only determined by
genetic information but also by physical mechanisms that act locally in
response to mechanical, metabolic and biochemical stimuli.

flow in some vessels drops and the tissue becomes poorly
supplied with oxygen or other metabolites, then the
vasculature will be stimulated to grow. This phenomen-
on is accounted for by the third term in the right-hand
side of Eq. (1). We remark that the metabolic stimulus is
always positive and increases with decreasing red cell
flux, QH. The constant k,, indicates how rapidly the
vasculature adapts to the metabolic needs of the tissue.
The constant k,; represents the so-called shrinking
tendency and accounts for the need for growth factors
to maintain or increase the size of a given vessel.

2.2. Introduction of blood rheology and haematocrit

In Pries et al. (1998), blood viscosity was assumed to
be constant. In our simulations we include the effects
of complex blood rheology and haematocrit in the
adaptation mechanism.

2.2.1. Blood rheology

Blood is far from being a simple fluid with constant
viscosity: it is a complex suspension of cells and
molecules of a wide range of sizes. Thus, modelling
blood as a Newtonian fluid is a very crude approxima-
tion. Here we are not going to examine the problem of
blood rheology in all its complexity. Instead, we focus
on the effects of red blood cells, as they seem to play a
major role in blood flow (Fung, 1993). As a result, we
assume, henceforth, that blood is a suspension of red
blood cells in a Newtonian fluid. As we shall see, even
for this simplified situation, the behaviour of the blood
viscosity is non-trivial.

Let us assume that blood is flowing through a tube
of radius R and that the volume fraction occupied by
the red blood cells (i.e. the haematocrit) is H. For a
given H, the viscosity of the blood depends non-
monotonically on R and three different flow regimes
may be identified. If R is much greater than the typical
size of a red blood cell,” the viscosity is independent
of R. As R decreases the viscosity also decreases (the
Fahraeus—Lindqvist effect). This behaviour persists until
the vessel radius is of the order of 1520 um. The
viscosity then reaches a minimum and, thereafter,
increases if R is similar in magnitude to the radius of a
red blood cell (Pries et al., 1994).

The reasons for this dependence of the viscosity on
the vessel radius for large and small values of R are quite
clear. However, the physical mechanism leading to the
Fahraeus—Lindqvist effect is less obvious. An explana-
tion may be found by considering the behaviour of
the haematocrit itself when blood flows from a large
reservoir (or a tube of large radius) into a small tube. In
such situations, the haematocrit diminishes: the smaller
the tube the smaller is the haematocrit. Moreover, when

2 Average red blood cell diameter in humans is 7-8 pm.
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Fig. 1. Graph showing how the relative viscosity pu,,; varies with the
vessel radius R for fixed values of the haematocrit H (see Egs. (3)).

a suspension of red blood cells flows through a tube, the
cells tend to accumulate in the centre of the tube, far
from the walls, thereby reducing the friction force that
they experience. The dependence of blood viscosity on
the haematocrit for a given radius is monotonically
increasing with A (Fung, 1993).

To the best of our knowledge, a theoretical model that
captures all the above features of blood viscosity over a
wide range of radii and haematocrit does not currently
exist. However, Pries et al. managed to fit the following
explicit expression for the viscosity as a function of R
and H to detailed experimental data (Pries et al., 1994):
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In Egs.(3) u,; is the real viscosity divided by the
viscosity of the plasma. The behaviour of p,,; as
a function of R for different values of H is shown in
Fig. 1.

The features displayed by the viscosity give rise to
a highly complex, non-linear problem, in which the
viscosity depends on the dynamical state of the entire
vascular network, as the viscosity depends on the radius.
The vessel radii, in turn, depend on the hydrodynamic
quantities through the adaptation mechanism, and the
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Fig. 2. Schematic representation of a vessel bifurcation and the
mechanism that gives rise to uneven haematocrit distribution at
bifurcations. RBC stands for red blood cell. See text for details.

hydrodynamic state of each vessel depends on the state
of the entire network.

2.2.2. Computation of the haematocrit

Since y,,; depends on H, the haematocrit distribution
is an important factor when determining the hydro-
dynamic state of the network. The simplest way to
proceed is to assume that at each bifurcation the
distribution of H depends on the flow velocity in each
of the daughter vessels (Fung, 1993). Roughly speaking,
a larger proportion of the haematocrit from the parent
vessel is transported along the faster branch. Addition-
ally, it has been observed that at bifurcations where the
ratio between the velocities of the branches exceeds a
certain threshold, all the haematocrit enters the faster
branch. Combining these results, we assume that, at a
bifurcation, the haematocrit is computed as follows®
(see Fig. 2 for definitions):

Hp = H| + H>,

H

A0 Mo THR,

Hz %) (%)

H, = H,, if > THR. (4)
v

In Eq. (4) v; = O, /nR? is the average flow velocity on a
section orthogonal to the axis of the vessel, « is a
phenomenological parameter which accounts for
strength of the non-symmetry of the haematocrit
distribution at bifurcations, and THR is the value of
the ratio between the velocities of the branches above
which all the haematocrit goes to the faster branch.

Taking all these factors into account, our algorithm
for the structural adaptation of a vascular bed is as
follows:

1. The total flow rate through the network is determined
by the pressure drop between two points of the

3 Although supported by experimental evidence, Eq.(4) is not
entirely satisfactory from the theoretical point of view, as it is not
symmetric, meaning that we need to know a priori which branch is
faster. However, this is always possible to know in our simulations, so
this fact does not affect our results. A more elaborated law for
haematocrit splitting at bifurcations will be developed in future
extensions of the present work.
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Fig. 3. Initial condition for the adaptation algorithm. All the vessels have the same initial radius (10 pum) and length (80 pm).

network as shown in Fig. 3 (corresponding to the
arterial and venous sides). An initial haematocrit, Hr
is also prescribed. The flow in each vessel is assumed
to be laminar steady Poiseuille’s flow, i.e.

AP = QZ,

_ Su(RL
T mRY

©)

where O is the flow rate in each vessel, and Z its
resistance. In practice, our simulations yield the
current in each vessel, J, which is related to the flow
rate by Q = |J|.

2. Given the initial network configuration (i.e. radii,
lengths and viscosity of all the vessels), we compute
the flow rates through, and pressure drops across,
each vessel using Kirchoff’s laws. This allows us to
calculate the pressure in each vessel, relative to a
constant reference pressure (i.e. the pressure on the
arterial or venous side). The wall shear stress, t,, =
RAP/L, is computed in terms of the flow rate and
resistance in each vessel.

3. The distribution of haematocrit is computed using
Eq. (4).

4. The radius of each vessel is updated using Eq. (1).

5. Once we have updated the haematocrit and radii,
the viscosity of each vessel is computed. The new
state of the network is fed back into step 2 and the
corresponding flow pattern computed.

6. Steps 2-5 are repeated until a stationary state is
reached.

This adaptation algorithm has been applied to a
hexagonal vascular network (see Fig. 3), similar to that
observed in the avian yolk sac (Honda and Yoshizato,

1997). Initially, all the vessels have the same lumen
diameter and the same length. As the distribution of
flow rates is inhomogeneous (for example, the flow rates
near to the inlet and outlet points are bigger than in the
rest of the network), the corresponding values of the
wall shear stress will differ throughout the network.
Accordingly, from Eq. (1), we deduce that the values of
the different adaptation stimuli will vary across the
vascular bed. This implies that our structural adaptation
algorithm generates an inhomogeneous distribution of
radii from an initially uniform network. In addition,
since the viscosity depends on the haematocrit and the
haematocrit depends on the flow rates (see Eq. (4)),
there is a feed-back between the flow rate, haematocrit
distribution, and radius distribution.

Typical results for the stationary current and haema-
tocrit patterns are shown in Fig. 4. Comparison between
the upper and lower plots in Fig. 4 reveals that the
haematocrit is distributed more unevenly than the flow
rate. This is a consequence of Eq. (4), which implies
that, at bifurcation points, more red blood cells enter
branches with high flow rates. Blood flow also exhibits a
high degree of heterogeinity, in agreement with recent
results reported by McDougall et al. (2002).

3. Cell dynamics

Having determined the haematocrit (i.e. oxygen
distribution) in a vascular network, we now proceed to
investigate how a colony of cells evolves in response to
the associated distribution of oxygen in the tissue.

We begin by locating a small heterogeneous colony
in the space between the vasculature. The colony is
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Fig. 4. Current (upper figure), haematocrit, and radius (bottom figure) patterns after 500 iterations of the remodelling algorithm described in the

text. Parameters given in Table 1.

composed of normal and cancerous cells and its
evolution is modelled using a hybrid cellular automaton
(we call the automaton ‘hybrid’ since, as we explain
below, it combines discrete and continuous fields). This
approach was used to determine the effects of acidity on
tumour growth (Patel et al., 2001).

Our two-dimensional model consists of an array of
N x N automaton elements, which will eventually be
identified with real cells. The state of each element is
defined by a state vector, whose components correspond
to features of interest. Here, the state vector has three
components: (i) occupation, i.e. whether an element is
occupied by a normal cell, a cancer cell, an empty space
or a vessel, (ii) cell status, i.e. whether the cell is in a
proliferative or a quiescent state, and (iii) the local
oxygen concentration. The state vector evolves accord-
ing to prescribed local rules which determine the state of
a given element from its own state and that of its
neighbours’ on the previous time step. In the present
case, we consider a simple square lattice, i.e. each cell
has four (nearest) neighbours.

For simplicity we assume that the vasculature does
not evolve, i.e. we neglect the effects of angiogenesis and

vessel regression. All spaces between the vessels are
empty except for those occupied by the initial colony.
The colony initially occupies a 10 x 10 (in automaton
element units) region in the centre of the array.* An
(empty) element in this initial colony is occupied with
probability 1/2 by a normal or cancer cell (see Fig 5). In
our model there is a one-to-one correspondence between
automaton elements and real cells, the size of an element
(4 x A) corresponding approximately to the size of a
typical cell, i.e. 4~20 pm.

While in our model the cells are viewed as discrete
entities, the oxygen concentration is treated as a
continuous field, as the typical length of a molecule is
very small compared to the characteristic size of a cell.
The time evolution of the oxygen concentration is
governed by a partial differential equation (PDE), with
sinks, sources and boundary conditions determined by
the corresponding distribution of cells and vessels (see
Eq. (7) in Section 3.2).

“The upper left corner of the colony is placed at the element in the
position (20,20).
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Fig. 5. Initial distribution of the automaton elements. Black spaces are empty, light grey are occupied by cancer cells, dark grey by normal cells, and

white by vessels.

The rules of the automaton are inspired by generic
features of tumour growth, such as the ability of cancer
cells to elude the control (or feedback) mechanisms
which maintain stasis in normal tissues. They can also
alter their local environment, providing themselves with
better conditions for growth and, eventually, for
invading the host organism (King, 1996). This phenom-
enon is implemented in our simulations by allowing the
cancer cells to survive under lower local levels of oxygen.

In practice, cancer cells exhibit a remarkable ability to
endure very low levels of oxygen. A well-known, but not
exclusive, characteristic of cancer cells is their ability
under hypoxic conditions to enter a quiescent state, in
which they suspend all activity, including any cell
division that is not essential for survival (Royds et al.,
1998). This ability seems to be related to mutations of
the tumour supressor gene p53. Cells which possess the
normal, wild type gene undergo p53-mediated apoptosis
under hypoxia (Kinzler and Vogelstein, 1996). By
contrast, cells with mutations of the p53 gene can
survive hypoxia in a quiescent state (Royds et al., 1998).
They can remain in this latent state for a certain period
of time, before starving to death. In addition, these cells
may express growth factors that stimulate angiogenesis.
In our model, we assume that all cancer cells are
expressing a mutant form of the p53 gene, and that this
enables them to survive much longer than normal cells
under hypoxia. Despite the crudeness of our assump-
tion, we still believe our results will be significant, since

at least 50% of all human tumours possess cells with
mutations in p53 (Royds et al., 1998).

Finally, we incorporate into our model competition
between cancer and normal cells for the existing
resources (nutrients, metabolites, etc.) (Gatenby, 1996).
Normal tissue is a non-competitive cell community,
since, under conditions such as overcrowding or
starvation, feedback mechanisms act to maintain tissue
stasis. However, when members of this community
become cancerous, a new population, with its own
dynamics, is formed. For further progression of this
transformed population to occur, the tumour cells must
compete for space and resources with the normal cells.
Such competition is also introduced in our model.

3.1. Automaton rules

The rules governing the evolution of the automaton
elements are as follows.

1. An element that is empty or occupied by a vessel does
not evolve directly. An empty element can evolve
indirectly when cell division takes place in a
neighbouring element that is occupied by a cell.

2. The distribution of oxygen is calculated by solving an
appropriate boundary value problem, described
below.

3. We determine the type of cell in an occupied element
from its state vector. Cells attempt to divide at each
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time step.” The rules of the division process depend
on the type of cell.

4. For a normal cell, we first determine the local oxygen
concentration. If it is below a threshold value, the cell
dies and otherwise it attempts to divide. We
determine the threshold value by sampling the
occupation state of its nearest neighbours. If the cell
is surrounded by more normal than cancer cells, then
the threshold is fixed at N7 ,. If there are more cancer
cells than normal ones then the threshold is fixed at
Nr2> N7

5. The rules for cancer cells are similar to those for
normal cells, except that the comparison between the
oxygen level and the threshold value determines only
whether the cell is going to divide: the rules for death
of a cancer cell are determined independently (see
below). If there are more cancer cells than normal
ones surrounding the cell, then its threshold is fixed
at Cr, and otherwise it is fixed at Cr, > Cr;. We
assume that C71 <Crp and Nr; < N7, which means
that cells are more likely to divide if they are mainly
surrounded by cells of the same type. Mathemati-
cally, this introduces competition into our model.

6. Elements occupied by cancer cells whose local oxygen
concentration falls below threshold enter a quiescent
or latent state, during which most of the cell’s
functions are suspended, including proliferation. On
entering this state, a clock is started. The clock is
incremented by one unit for each iteration the cell
remains in the quiescent state, i.e. while the oxygen
level remains below threshold. If the clock reaches a
given value the cell dies. However, if at some time the
oxygen level goes above threshold the cell returns to
the proliferating state and its clock reset to zero.

7. Elements occupied by normal and cancer cells are
sinks of oxygen.

8. If the oxygen level at an element occupied by a cell is
above threshold, then we determine whether cell
division occurs by sampling in a region of radius R
around the element.® If there is only one empty space,
then the cell divides, and the new cell occupies this
empty space. If there is more than one empty space,
the new cell goes to the free element with the largest
oxygen concentration (Patel et al., 2001). If there is
no empty space, the cell fails to divide, and dies
(Kansal et al., 2000).

3.2. Boundary-value problem for the oxygen distribution

The next step is to formulate and solve the boundary-
value problem for the extracellular oxygen concentration.

3> Consequently we are assuming that the duration of the cell-cycle is
the same for cancer and normal cells. This is the time-scale we assign to
each iteration of our algorithm.

%In the simulations below, R = 1 in element units.

To this end, we follow the procedure explained in Patel
et al. (2001). The corresponding field is, in principle, time-
dependent and, therefore, so should be the corresponding
partial differential equation (PDE) which determines its
spatiotemporal evolution. However, as oxygen molecules
are negligible in mass compared to the mass of a typical
cell, they reach their equilibrium state on a much shorter
time-scale than the cell distribution. This allows us to
apply the so-called adiabatic approximation, for which
the time evolution of the oxygen concentration is so fast
compared to the evolution of the cells that it can be
considered instantaneously in steady state. This means
that the evolution of the oxygen distribution is solved by
successive solution of an elliptic boundary-value equation
rather than a parabolic (evolutionary) PDE.

The full PDE we should solve to obtain the
distribution of extracellular oxygen, P(X, 1), is given by

oP

i DpV?P — k(X)P, (6)
where Dp is the oxygen diffusion coefficient, and k(X) is
the oxygen uptake rate at position X. In the adiabatic

approximation Eq. (6) becomes
DpV*P — k(Z)P = 0. (7)

The function k(X), which is updated on each iteration
of our automaton, depends on the cell distribution and
is defined by

ky if there is a normal cell at X,
k(X) = < k¢ if there is a cancer cell at X, ®)
0  otherwise.

It remains to prescribe appropriate boundary condi-
tions for Eq. (7). This is a crucial point, as the boundary
conditions we impose at the vessels will couple the
dynamics of the tissue with the distribution of haema-
tocrit in the vascular network. Oxygen enters the system
by crossing the walls of the vessels, the flux being given
by J = —DpVP. Thus we impose the following mixed
boundary conditions at the walls of the vessels:

—Dpn, - VP = P(P, — P), 9)

where n,, is the unit outward vector, orthogonal to the
vessel wall, 2 is the permeability of the vessel, and Pj is
the oxygen level inside the vessel, which is essentially the
haematocrit. Physically, this means that we are assum-
ing that the rate of leakage of oxygen through the wall
of the vessels is equal to its rate of diffusion, meaning
that the transport process is in steady state. We also
impose no-flux boundary conditions along the edges of
our domain, Q:

Nl - VP =0, (10)

where n|,q is the unit outward vector, orthogonal to the
boundary of the domain.
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Table 1

Parameter values used in our simulations

Parameter Value Units Source

ko 0.83 s7! Pries et al. (1998)

Oref 40 nl min~! Pries et al. (1998)

ks 1.79 57! Pries et al. (1998)

o 0.5 None Fung (1993)

THR 2.5 None Fung (1993)

Dp 241 x107° cm?s! Goldman and Popel (2000)
Ky 1.57 x 1004 ml O, mlI™'s™'  Goldman and Popel (2000)
Kr 1.57 x 104 ml O,ml~'s~!  Estimated

P 30x107* cms™! Estimated

N 45x107% ¢ Patel et al. (2001)

N2 45%x1073 g

CTI 1.5 x 1075 g

Cr 45%x107° g

Details on the numerical procedure we use to solve
this boundary-value problem are given in Appendix A.

3.3. Parameter values

We have managed to find in the literature values for
most of the parameters we use in our simulations. Where
this has not been possible, we have checked that the
results are not sensitive to variations in the correspond-
ing parameter. The only parameters for which we have
not found any estimates are N7;, Cry, and Cr;. The
values for the other parameters we use are stated in
Table 1.

To estimate 2 we assume that it scales with the
molecular weight, m, of oxygen as Z~m~'. Patel et al.
(2001) provide a value of the permeability for glucose,
Z¢, so we estimate the corresponding value for oxygen
as 9(;/,@ = Wloz/l’}’lG.

3.4. Growth dynamics

We now apply the procedures described in Sections
3.1 and 3.2, taking as initial condition for the cellular
colony the pattern shown in Fig. 5. In order to
determine the effect that heterogeneity in the oxygen
distribution has on the evolution of the automaton we
consider two different oxygen distributions. In the first
case the distribution of haematocrit, and hence oxygen,
is that obtained from the adaptation mechanism
described in Section 2. In the second case we distribute
the same amount of oxygen uniformly in our hexagonal
network of vessels.

Fig. 6 shows how the total number of cancer cells and
the number of quiescent cancer cells evolve (in units of
the characteristic time step assigned to cellular division)
when the colony is located in a heterogeneous environ-
ment. We note that after about 60 time steps both
variables saturate to constant values. The population of
normal cells falls to zero after a few iterations (results

600

400

# cells

200

0 N ) )
0 20 40 60 80 100

# iterations

Fig. 6. Graph showing how the total number of cancer cells (squares)
and the number of quiescent cancer cells (diamonds) evolve over time
when the colony grows in an inhomogeneous environment.

not shown). Similar, qualitative behaviour is observed
when we vary the parameters for which we do not have
experimental estimates.

More can be learnt about this behaviour by looking
at the growth dynamics (see Fig. 7) and the oxygen
distribution, (see Fig. 8). As Fig. 7 shows, colony growth
is not isotropic, i.e. not at the same rate in all directions,
as one would expect in homogeneous conditions.
Instead, the colony grows into regions where the oxygen
concentration is higher, as a consequence of rule 8 of
our automaton. To explain why the colony reaches a
finite, maximal size and the population is confined in a
given region of the simulation domain we refer back to
the automaton rules. If a cell divides and the new cell is
situated in a poorly oxygenated region, this cell dies in a
few iterations of our automaton. Consequently all viable
cells are located in well-oxygenated regions of the
domain. While the regions in which the cells are
accumulating are rich in oxygen, the amount of oxygen
being supplied is finite and can only sustain a certain
number of cells. The combination of these two effects
leads to the stationary pattern observed in Fig. 7.
We have performed simulations in domains with
different sizes and consistently observed that the colony
size saturates to a value smaller than the size of the
domain.

We repeated the simulation described above, evolving
the same initial colony under the same automaton rules,
but using a uniform oxygen distribution. In order to
simulate a homogeneous oxygen environment we
distributed the same amount of oxygen into each vessel
of our hexagonal network, under the constraint that the
total amount of oxygen is the same as in the previous
simulation. Referring to Fig. 10 we observe that the
growth process is, now, approximately isotropic and
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y

Fig. 7. Series of images showing the growth pattern of our automaton under inhomogeneous conditions after 10, 20, 30, 40, and 60 iterations. White
spaces correspond to cancer cells and black spaces to either empty spaces or vessels.

10 20 30 40 50 60

much quicker than in the inhomogeneous case. How- behaviour for colony growth in an inhomogeneous
ever, the saturation behaviour shown in Fig. 9 is a environment, our automaton invades all of the space
finite size effect. (Fig. 10). In other words, unlike the available. Again, we can understand this behaviour in



T. Alarcon et al. | Journal of Theoretical Biology 225 (2003) 257-274 267

0 ‘g0

y

Fig. 8. Graph showing the oxygen distribution after a colony, grown under inhomogeneous conditions, has reached its steady state.
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Fig. 9. Graph showing how the total number of cancer cells (squares)
and the number of quiescent cancer cells (diamonds) evolve over time
when the colony grows in a homogeneous environment.

terms of the distribution of oxygen. Fig. 11 shows that
there are now no poorly oxygenated regions, so the
colony is free to grow isotropically, until it occupies all
the space available.

Comparing Figs. 7 and 9, we conclude that, while a
colony of cells may reach a stationary maximum size in
an inhomogeneous environment, due to the existence of
poorly oxygenated areas, the same colony will invade
the entire domain when grown under homogeneous
conditions. We remark that the colony size at which

growth under homogeneous conditions saturates is
much bigger than the corresponding value under
inhomogeneous conditions.

To check the robustness of our results to changes in the
(unknown) parameters, we have run several simulations
taking different values for the parameters Cy; and Cps.
The results show that we obtain the same, qualitative
behaviour when these parameters vary over three orders
of magnitude. From the quantitative point of view, we
find that the smaller these parameters are the bigger is the
size of the colony at equilibrium as would be expected.

4. Invasion dynamics

The second process we study is the malignant invasion
of a healthy tissue. We use the same automaton rules as in
Section 3 and change only the initial conditions. In this
case we distribute normal cells and empty elements
randomly in the free space between the vasculature, and
place a colony of cancer cells in the centre of the
simulation space (see Fig. 12). As in Section 3, we compare
the patterns of invasion under two different conditions:
homogeneous and inhomogeneous oxygen distribution.

Figs. 13 and 14 show how the number and spatial
distribution of the different cell types evolve over time.
From Fig. 14 we observe that invasion is greatly hindered
by the inhomogeneous distribution of oxygen: this
impedes the spread of cells through the space available,
as cells that enter poorly oxygenated regions die in a small
number of generations (see Fig. 15). This is the same effect
that limited colony growth in the previous section.
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Fig. 10. Series of images showing the growth pattern of our automaton under homogeneous conditions after 10, 20 and 30 iterations.

By contrast, our model predicts almost complete
invasion of a homogeneous environment (see Figs. 16
and 17). Again, the growth pattern of the malignant core
of cells is roughly isotropic, eventually spreading over
the whole tissue, and killing almost all of the normal
cells. Such widespread invasion is possibly due to the
homogeneity of the oxygen distribution which provides
sufficient nutrients for the cancer cells to take over the
whole tissue. As in Section 3, the growth saturation of
the population is probably a finite size effect. However
we believe that the saturation observed in the inhomo-
geneous case is a genuine feature, arising from the
evolution rules in our automaton model.

5. Discussion

We have used a simple cellular automaton, whose
rules capture some generic features of tumour develop-
ment, to study the influence of environmental conditions

on the evolution of a tissue containing normal and
cancerous cells.

Our most important result is that environmental
inhomogeneity restricts dramatically the ability of
malignant colonies to grow and invade healthy tissue.
This is because non-uniform oxygen perfusion leads to
the existence of very poorly oxygenated regions which
the cancer cells fail to populate: any cells that reach
these regions starve after a few number of iterations. By
contrast, the same automaton rules yields full invasion
of the tissue if it is uniformly perfused. In this case, the
malignant core does not find any regions with low levels
of oxygen and it grows until, eventually, it occupies all
the space available.

Therefore, we predict that one way to combat cancer
invasion would be to increase blood flow heterogeneity.
While it is not clear that such a strategy would totally
eradicate the tumour, it would certainly diminish the
supply of drugs to the remainder of the cancer. Indeed,
non-uniform blood flow is known to be one of the
barriers to drug delivery (Jain, 2001). On the other hand,
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Fig. 12. Initial conditions for simulating invasion. Black spaces are empty, dark grey are occupied by cancer cells, light grey by normal cells, and

white by vessels.

the remaining tumour cells would be concentrated in
well-oxygenated areas, where they would be more
responsive to radiotherapy. In fact, hypoxia is viewed
by many investigators as a major contributing factor
radiotherapy failure. Consequently some protocols in-
volve hyperoxygenation in attempt to eliminate or lessen

the effects of hypoxia prior to or during fractionated
radiotherapy. However, this approach is presently rather
ad hoc. A more quantitative approach would allow us to
refine the model and make it more realistic.

In our cellular automaton model, we have implemen-
ted some of the features of tumour growth by means of
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Fig. 13. Number of normal cells (circles), cancer cells (squares), and
cancer cells in quiescent state (diamonds) as a function of time for the
invasion process in an inhomogeneous environment.

suitable rules. Yet, the same biological characteristics
could be implemented by means of different rules.
Consider, for example, competition. As has already been
mentioned, cancer and normal cells compete for the
available resources. This has been incorporated in our
model by making the “death rule” for a cell depend on
the cells that occupy its neighbouring elements. How-
ever qualitatively similar effects could have been realized
by employing different oxygen consumption rates.
Another weakness of the present model is the fact that
the vasculature is independent of the dynamics of the
surrounding tissue. This situation is not entirely
realistic, for it is known that vasculature adapts to the
needs of the tissue (Pries et al., 1998). In order to couple
the dynamics of the tissue with the structural adaptation
of the vessels we could introduce growth factors into the
model. The growth factors would be secreted by
environmentally stressed cells and then diffuse through
the tissue, modifying the parameters in Eq. (1) when

10 20 30 40 50 60

10 20 30 40 50 60

Fig. 14. Series of images showing the pattern of invasion of our automaton under inhomogeneous conditions after 10, 20, 30 and 40 iterations. Grey
cells correspond to cancer cells, white to normal cells and black to either empty spaces or vessels.
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Fig. 15. Distribution of oxygen for a colony grown to steady state under inhomogeneous conditions.
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Fig. 16. Number of normal cells (circles), cancer cells (squares), and
cancer cells in quiescent state (diamonds) as a function of time for the
invasion process in an homogeneous environment.

they reach a vessel. Further model extensions could
include incorporating a more detailed description of
how the tumour perturbs vascularity and blood flow, in
particular, tumour-induced vascular degradation, tem-
poral variations in flow due to transient spasm and
thrombosis, and tumour-induced angiogenesis. Once we
have coupled tissue dynamics and evolution of the
vasculature we can use our model to test the action of
different anti-angiogenic drugs. This coupling could be

achieved by incorporating into our model the now well-
defined hypoxia-mediated HIF1a-VEGF pathway.

Another weakness of our model is the assumption
that all cells have the same period of division, and
therefore that the cell cycles for normal and cancer cells
are identical. We are currently introducing a more
accurate description of the process of cell division into
our model.

The aim of the present paper is to introduce a
modelling framwork which can then be further devel-
oped to include the aforementioned issues. Despite the
above weaknesses, we can conclude from our model
simulations that non-uniformity in nutrient supply
caused by blood flow heterogeneity seems to have a
strong influence on the patterns of growth and invasion.
Consequently it should not be neglected in any serious
effort to produce realistic models of tumour growth
in vivo.
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Appendix A. Numerical solution of the boundary-value
problem

Once the boundary-value problem for the distribution
of oxygen has been formulated, we proceed to its
numerical solution by means of a suitable finite-
difference scheme, which basically reduces the boundary
value problem to the solution of a large number of
(linear) algebraic equations. To begin with, we write
Eq. (8) in discrete finite-difference form (Smith, 1985):

D
A—g(P.m,l + P+ Py + Py —4P;))
— ijPjJ =0, (A.1)

where the subscripts j,/ are the row and column indices,
respectively, of the corresponding automaton element.
The PDE (Eq.(8)) and the boundary conditions
(Egs. (9) and (10)) must be satisfied simultaneously, so
we have to discretise them and introduce the latter into
the finite-difference scheme (A.1) when appropriate.
Eqgs. (9) and (10) in finite-difference form read,

D
—— Py = Pyy1) = 2Py — P). (A2)

where we have assumed that there is a vessel element at
(j,/ — 1), and

Pip—Pjr1 =0,

Pjy— Pj—1 =0,
Pj;—Pr;=0,
Pyy—P_1;=0, (A3)

where J and L are, respectively, the number of rows and
columns in our simulation spaces. Hence, if an element
(j, ) is one of the neighbours of an element occupied by
a vessel at, for instance, (j,/ — 1), then, by substitution
of Eq.(A.2) into Eq. (A.1), the corresponding finite-
difference equation becomes

Akjy — 24
Pivii+ Py + Prup — (3 +1’7> P,

Dp
=—2"P,. (A4)

Similarly, if the element under consideration is on one of
the boundaries of the domain, for example (j, L), then
from Egs. (A.1) and (A.3), we have

2

Ak;
Pirir+ P+ Pir1 — (3 + D:L> Pip=0. (A5)

Egs. (A.1), (A.4), and (A.5) form a set of linear
equations for the level of oxygen at the (j —/)th
automaton element, which can be expressed in matrix
notation by defining the index i = J(j — 1) + /, where
j=1L..,J, I=1,..,L, and i=1,...,J x L, which
implies that the size of the set of equations we must
solve is J x L. In our present simulations, J = L = 61.

Due to the mixed boundary conditions at the walls of
the vessels, the corresponding matrix is a non-symmetric
band diagonal sparse matrix (Press et al., 1992).

There is a variety of methods for solving linear
systems with a very large number of algebraic equations.
Most of them exploit the fact that the corresponding
matrix is sparse. We choose one of the simplest ones,
which is applicable in the case of band diagonal matrices
(Press et al., 1992). Generally speaking, band diagonal
matrices have m; non-zero elements immediately below
the diagonal and m; non-zero elements immediately
above it. If m,m, < N, i.e. the matrix is sparse, then the
linear system can be solved using LU decomposition,
even when N> 1. The key step in this method is storing
the matrix in the so-called compact form. This form
results from tilting the matrix 45° clockwise, so that its
non-zero elements lie in a long, narrow matrix with
my +my + 1 columns and N rows. This introduces a
dramatic decrease in the dimension of the matrix, and,
consequently, in the number of operations needed to
solve the system of equations. Unfortunately, it is not
possible to store the LU decomposition of a band
diagonal matrix as compactly as the matrix itself, as the
decomposition, basically carried out by Crout’s method,
produces additional non-zero elements which need to be
allocated. A straightforward storage scheme (Press et al.,
1992) is to return the upper triangular factor, U, in the
same space that the compact form of the matrix used to
occupy, and to return the lower triangular factor to an
additional N x m; matrix. We have checked our
numerical routine for smaller systems with standard
(i.e. non-compact) LU decomposition, and found the
agreement between them to be excellent.
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