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Abstract

The evolution of the cell-cycle is known to be influenced by environmental conditions, including lack of extracellular oxygen

(hypoxia). Notably, hypoxia appears to have different effects on normal and cancer cells. Whereas both experience hypoxia-induced

arrest of the G1 phase of the cell-cycle (i.e. delay in the transition through the restriction point), experimental evidence suggests that

only cancer cells undergo hypoxia-induced quiescence (i.e. the transition of the cell to a latent state in which most of the cell

functions, including proliferation, are suspended).

Here, we extend a model for the cell-cycle due to Tyson and Novak (J. Theor. Biol. 210 (2001) 249) to account for the action of the

protein p27. This protein, whose expression is upregulated under hypoxia, inhibits the activation of the cyclin dependent kinases

(CDKs), thus preventing DNA synthesis and delaying the normal progression through the cell-cycle. We use a combination of

numerical and analytic techniques to study our model. We show that it reproduces many features of the response to hypoxia of

normal and cancer cells, as well as generating experimentally testable predictions. For example our model predicts that cancer cells

can undergo quiescence by increasing their levels of p27, whereas for normal cells p27 expression decreases when the cellular growth

rate increases.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The cell-cycle is the set of events whereby a cell
duplicates most of its components, including its
chromosomes, in order to undergo division (Alberts
et al., 1994). The cell-cycle is usually divided into four
phases: G1; S, G2; and M. In G1 (G=gap), the cell is not
committed to division and the chromosomes do not
replicate. Replication of nuclear DNA occurs during the
S phase, whereas completion of mitosis occurs in the
final M phase. The interval between DNA replication
was generated using the Academic Press ‘generic’
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and division is called the G2 phase. The gap phases G1

and G2 give the cell additional time for growth. The cell
also passes through two irreversible transitions. The first
of these transitions occurs at the end of G1 and is called
‘‘Start’’ (see Fig. 1 for a schematic representation).
During G1 the cell monitors its environment and size.
When the external conditions and the size of the cell are
suitable, the cell commits itself to DNA synthesis and
division. This transition is irreversible: once the cell
enters the S phase and DNA replication commences,
division has to be completed. The second transition,
‘‘Finish’’,2 occurs when DNA replication is completed.
Once the cell has checked that DNA and chromatide
alignment have occurred, the Finish transition is
triggered and the cell finally divides into two daughter
cells. A fifth state, the so-called G0 state, is defined to
2We have adopted the nomenclature used by Tyson and Novak

(2001).



ARTICLE IN PRESS

Cdh1–APC
Cyc–CDK

G 1
G 2R -MS-

time

Fig. 1. Schematic diagram showing how intracelluar levels of Cdh1

and Cyc-CDK vary during the cell-cycle. The dotted (vertical) line

represents the restriction point (R) at which the ‘‘Start’’ transition

occurs. Before the cell goes through this transition, it is in the G1 stage.

After the ‘‘Start’’ transition the cell enters the S phase in which DNA

synthesis takes place. See text for details.
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refer to cells that have abandoned normal progression
through the cell-cycle and become quiescent. In this
state most (although not all) of the cell functions are
suspended, most notably, proliferation
The events occurring during the cell-cycle are

controlled by a series of molecular signals. The central
components of this network are two families of proteins:
the cyclin-dependent kinases (CDKs) and the cyclins
(Funk, 1999). The CDKs induce downstream processes
by phosphorylating selected proteins. However, to do
this, they must be activated by binding to the cyclins.
Cyclins are so-called because they undergo a cycle of
synthesis and degradation parallel to the cell division
cycle. The CDK network is very complex, so that for
our modelling purposes we will take into account only
its essential features (Tyson and Novak, 2001).
During G1; CDK activity is low because the relevant

cyclin partners are missing: their production is inhibited
and they are rapidly degraded. At ‘‘Start’’ cyclin
synthesis is promoted, and hence the CDKs are
activated. CDK activity remains high during S, G2;
and M, since it is necessary for DNA replication and
other processes occurring during the final stages of the
cycle. At ‘‘Finish’’, the anaphase protein complex (APC)
is activated. APC marks specific target proteins (such as
cyclins) for degradation by the proteolytic machinery of
the cell and is composed of a dozen polypeptides and
two auxiliary proteins (Cdc20 and Cdh1). When active,
these two proteins present the target proteins to the core
of the complex for labelling. Together, they label cyclins
for destruction at the end of the cycle, allowing the
control system to return to G1: The cyclin-CDK
complexes control Cdc20 and Cdh1 activity differently:
whilst cyclin-CDK activates Cdc20, it inhibits Cdh1.
The dynamics of the cell-cycle can be affected by

environmental conditions, in particular, by the level of
extracellular oxygen: it is well documented that low
oxygen concentrations (hypoxia) alter progression
through the cell division cycle (Gardner et al., 2001),
and the G1=S transition, in particular. The response of
this transition to hypoxia is mediated by the protein p27,
an element of the CDK network whose production is
upregulated under hypoxia (Funk, 1999; Gardner et al.,
2001). p27 mediates hypoxia-induced arrest of the G1=S
transition by inhibiting Cyc-CDK complex formation
and, thereby, inhibiting DNA synthesis.
Hypoxia is a major factor in the evolution of solid

tumours. During the avascular phase of tumour growth,
cells located in hypoxic regions secrete and release
angiogenic factors, thus triggering vascularization of the
tumour. In vascularized tumours, hypoxia also plays an
important role. Vascular tumours have a heterogeneous
composition which may vary over time. For example,
cancer cells close to blood vessels proliferate rapidly in
the presence of abundant nutrients. Cancer vessels are in
general immature (they lack muscular tone) and tend to
collapse under the increasing pressure produced by the
(unbalanced) tumour cell proliferation. These cells then
become hypoxic thereby stimulating a vascular re-
sponse. In this way, hypoxia contributes to dynamical
changes in tumour structure. As we have mentioned
above, hypoxia also modulates the rate of progression
through the cell-cycle.
The cell-cycles of normal and cancer cells exhibit

remarkable differences (Funk, 1999), one of the most
important being how they respond to hypoxia: whereas
most normal cells undergo apoptosis when the hypoxic
stress is too intense or persists for too long, cancer cells
appear to have a much higher resistance to hypoxia.
This resistance is (in part) due to their ability to enter
into a quiescent state under severe or prolonged hypoxic
stress (Royds et al., 1998). Of course, if the levels of
oxygen become extremely low or hypoxia persists for a
long time, the cancer cells eventually die.
Although the role played by p27 in both normal and

cancer cells is the same, there are some differences
between the respective patterns of p27 expression. For
example the concentration of p27 is, generally, smaller
in cancer cells than in normal cells (Bai et al., 2001;
Funk, 1999; Philipp-Staheli et al., 2001). It has also been
observed that normal cells in the presence of growth
factors exhibit reduced levels of p27 expression (Leshem
and Halevy, 2002; Saito et al., 2001). In spite of these
differences, mutations in the chromosome encoding for
p27 are rarely found in human cancer (Funk, 1999).
Hence, it is likely that the different behaviour of p27 in
normal and cancer cells is produced by different
regulatory mechanisms.
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The aim of this paper is to develop a model that
reproduces the different responses of normal and cancer
cells to hypoxic stress, and, in particular, the ability of
cancer cells to enter a quiescent state when oxygen levels
fall very low. We also aim to explain why the patterns of
p27 expression observed in normal and cancer cells vary.
Related theoretical work on the effects of hypoxia on

the behaviour of tumour cells has focused on the role of
the tumour suppressor gene p53. Experimental observa-
tions indicate that in a hypoxic environment cancer cells
carrying a mutant version of the gene p53 have a
survival advantage over their wild-type counterparts,
This is because mutant cells are less susceptible to
hypoxia-induced apoptosis than wild-type cells (Thom-
son and Royds, 1999). Mathematical models quantify-
ing this survival advantage under repeated rounds of
hypoxia have been proposed by Thomson and Royds
(1999) and Gammack et al. (2001) for in vitro and in vivo
systems, respectively.
As a basic mathematical model for the cell-cycle we

use the one developed by Tyson and Novak (2001). A
full analysis of this model can be found in Tyson and
Novak (2001), so here we only summarize its main
features.
Tyson and Novak (2001) claim that regulation of the

cell-cycle, i.e. the irreversible transitions ‘‘Start’’ and
‘‘Finish’’, is a consequence of the creation and destruc-
tion of stable steady states of the molecular regulatory
system of the cell division process. In other words, the
core of the cell-cycle is a biological switch (Cherry and
Adler, 2000). The set of ordinary differential equations
that Tyson and Novak (2001) introduce to model the
Start transition is the following:

dx

dt
¼

ðk0
3 þ k00

3AÞð1� xÞ
J3 þ 1� x

�
k4myx

J4 þ x
; ð1Þ

dy

dt
¼ k1 � ðk0

2 þ k00
2xÞy; ð2Þ

dm

dt
¼ mm 1�

m

m�

� �
; ð3Þ

where x � ½Cdh1	 represents the concentration of active
Cdh1/APC complexes, y � ½Cyc	; the concentration of
cyclin-CDK complexes,3 and m is the mass of the cell.
The ki’s ði ¼ 1; 2; 3; 4Þ are rate constants and the Ji’s
ði ¼ 3; 4Þ are Michaelis–Menten constants. In Eq. (1), A

represents a generic activator. Tyson and Novak (2001)
scale their equations so that the total concentration of
Cdh1 (active plus inactive) is normalized to 1 and the
Michaelis–Menten constants J3 and J4 are much smaller
than 1. This condition ensures that the model exhibits
3 In Tyson and Novak (2001), [Cyc] corresponds to the concentra-

tion of the specific complex cyclinB-CDK. Here we simply consider a

generic cyclin-CDK complex in order to keep our model as simple as

possible.
switching behaviour as in Fig. 1 (Cherry and Adler,
2000). In Eq. (3), m is the cell growth rate and m� is the
mass of an adult cell.
Eqs. (1)–(3) have been used to model the control that

a cell carries out on its size before entering the Start
transition (Alberts et al., 1994). This control is
incorporated in Eq. (1) through the dependence on the
mass of the inactivation term for Cdh1 (see Tyson and
Novak (2001) for details).
The model we develop in this paper involves modify-

ing Eqs. (1)–(3) to include the effects of oxygen tension
and p27 levels on the cell-cycle. In particular we assume
that p27, whose production is stimulated by hypoxia,
will inhibit the formation of Cyc-CDK complexes.
Notice that Eqs. (1)–(3) do not constitute a model for
the whole cell-cycle; they only account for the G1=S
transition. In Tyson and Novak (2001), three additional
equations are added to this model in order to account
for the latter events that lead to mitosis. However, from
Tyson and Novak (2001), we can see that the machinery
that finishes the cell-cycle is basically triggered when
[Cdh1] is below a threshold value and [Cyc] is above
another threshold value. Hence, in order to keep our
model as simple as possible, and since the phenomena
we are interested in are closely related to the behaviour
of G1=S; we make the simplifying assumption that the
cell-cycle is finished when x ¼ ½Cdh1	oxTHR and y ¼
½Cyc	 > yTHR:When this condition is fulfilled the control
system is reset (see next section).
The remainder of this paper is structured as follows.

In Section 2, we present the experimental results on
which our model for normal cells is based (Section 2.1)
and formulate the corresponding mathematical model
(Section 2.2). We then show how to modify the model to
describe cancer cells (Section 2.3). In Section 3, the two
models are solved numerically and we verify that our
model captures the features observed experimentally. In
Section 4, we analyse the phase plane and the fixed
points of both models in order to give some insight into
the mechanisms responsible for the different qualitative
behaviour of normal and cancer cells. Finally, Section 5
contains a summary of our results together with our
conclusions.
2. Model development

Cell division in both cancer and normal cells is
influenced by a range of stimuli. For example, following
prolonged periods of overcrowding and/or nutrient
deprivation, the cell-cycle is arrested and cells undergo
apoptosis (Alberts et al., 1994). One environmental
stress that is known to affect cell division is hypoxia (see
Carmeliet et al. (1998) and Gardner et al. (2001)). Our
aim in this section is to develop simple models for the
control of the cell-cycle in normal and cancer cells which



ARTICLE IN PRESS
T. Alarc !on et al. / Journal of Theoretical Biology 229 (2004) 395–411398
qualitatively account for experimental observations that
indicate their response to hypoxia.

2.1. Experimental background: normal cells

In experiments carried out on mouse embryo fibro-
blasts (MEFs) Gardner et al. (2001) found that hypoxia
induces G1 arrest and that this is associated with
changes in G1 regulators. Reduction of retinoblastoma
(RB) phosphorylation was observed but no decrease in
CDK2 concentration was observed, suggesting that
some of the CDKs activity modifiers were affected by
hypoxia. They also found that, of all the regulators of
CDK2 activity, only cyclinE and p27 were appreciably
affected by hypoxia. To establish further the role of p27,
p27 null MEFs were rendered hypoxic. No changes in
the cell-cycle profile or in DNA duplication indexes were
observed, indicating that p27 may be necessary for
hypoxia-induced G1 arrest. As Gardner et al. (2001)
remarked, an increase in p27 may be a secondary effect
of growth arrest, rather than a mediator of hypoxia-
induced G1 arrest. However, p27 expression is also
increased in null RB MEFs that are cycling under
hypoxia, implying that an increase in p27 expression is a
consequence of hypoxia, rather than a side effect of RB
hypophosphorylation during cell-cycle arrest.
In addition to these observations, there is independent

experimental evidence that cyclinA and cyclinE are
targets of the E2F transcription factor (DeGregori et al.,
1995) and are directly inhibited by hypophosporylated
RB (Knudsen et al., 1999). Gardner et al. (2001)
summarized these findings by constructing a schematic
diagram of hypoxia-induced G1 arrest (see Fig. 3(a)).
Here hypoxia leads to overexpression of the CDK
inhibitor p27, which downregulates the activity of the
cyclin-CDK complexes. This, in turn, prevents the
normal progression of the cell through the Start
transition.
Cdh1–APC
Cyc–CDK

Cdh1–APC
Cyc–CDK

HYPOXIA INDUCEHIGH OXYGEN CONCENTRATION

time time(A) (B)

Fig. 2. Schematic diagram showing how intracelluar levels of Cdh1 and Cyc-C

and in a hypoxic environment (B and C). Panels B and C show the difference

in B the G1=S transition is simply delayed (dotted line), in C such a transiti
Throughout this article we will make frequent use of
the terms ‘‘quiescence’’ and ‘‘arrest’’. Both terms are
used widely in the literature often with slightly different
meanings. Therefore to prevent any potential misunder-
standing, we now explain how we interpret cell
quiescence and arrest. A cell will be said to be in the
quiescent state when its progress through the cell-cycle
has been halted, i.e. when the cell is in G0: Arrest will
refer to a situation in which progress through the cell-
cycle has been delayed but the cell does not enter G0 (see
Fig. 2). Both arrest and quiescence can be induced by
hypoxia (low oxygen tension). Our model will allow us
to make more precise these definitions. As we show in
Section 4 this transition is related to the existence of a
bifurcation in the CDK network control system. More
specifically, from the dynamical point of view, hypoxia-
induced arrest occurs when this bifurcation is delayed
whereas hypoxia-induced quiescence occurs when no
such bifurcation exists.
It is important to note that in Gardner et al.’s

experiments with normal cells no fraction of the
population was found in G0; implying that fibroblasts
do not appear to exhibit hypoxia-induced quiescence.
Hence, we will assume that all normal cells
behave similarly, i.e. they exhibit hypoxia-induced
arrest (i.e. delay) of the G1=S transition, but not
quiescence. If the hypoxic stress is prolonged or becomes
too intense, normal cells may undergo apoptosis,
usually through the p53 pathway (Kinzler and Vogel-
stein, 1996). Otherwise, they progress through the
different stages of the cell-cycle, however slow
this process might be due to arrest of the G1=S
transition.
The experimental evidence above suggests that over-

expression of p27 (via hypoxia) arrests cell growth. In
addition, in the presence of growth factors, expression
of p27 in certain cell types is reduced (Leshem and
Halevy, 2002; Saito et al., 2001). On the other hand, if
growth is arrested for a reason other than hypoxia, p27
Cdh1–APC
Cyc–CDK

D ARREST HYPOXIA INDUCED QUIESCENCE

time(C)

DK vary during the cell-cycle in an oxygen-saturated environment (A)

between hypoxia-induced arrest and quiescence, respectively. Whereas

on is no longer possible.
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Fig. 3. Schematic representation of the mechanism for hypoxia-

induced cell-cycle arrest in normal cells (fibroblasts). (a) The original

mechanism proposed by Gardner et al. (2001). (b) Our simplified

version. RBP stands for the phosphorylated form of the RB protein.

4 In the numerical simulations of the normal cell-cycle model

Eqs. (4)–(8), we have taken yTHR ¼ 0:2 and xTHR ¼ 0:004: For the

cancer cell-cycle model, we have taken yTHR ¼ 0:05 and xTHR ¼ 0:004:
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is upregulated (Katayama et al., 2000). Thus, expression
of p27 is tightly coupled to cell growth.
Our aim now is to incorporate these experimental

observations into a mathematical model for hypoxia-
induced G1 arrest. We do this by using a simplified
version of the mechanism shown in Fig. 3(a): unlike
Gardner et al. (2001), we consider only one (generic)
cyclin-CDK complex and do not account for E2F
explicitly. Instead, we assume that phosphorylated RB
(RBP) activates the cyclin-CDK complex directly
(Knudsen et al., 1999).

2.2. Cell-cycle model for normal cells

Here, we propose a model which reproduces qualita-
tively the behaviour observed in normal (non-cancerous)
cells. In Section 2.3, we modify the model to account for
some of the features of cancer cells. The central element
of our model of the cell-cycle is the biological switch
developed by Tyson and Novak (2001). We modify it to
account for the effects of hypoxia and p27 on cell
division. The switching behaviour arises from the
antagonism between the cyclin-CDK, y; and the Cdh1-
APC complexes, x; with the mass of the cell, m;
triggering the switch. The inhibitory effect of p27, z;
on the cyclin-CDK complexes is incorporated in Eq. (2)
through an extra decay term proportional to the
concentration of p27 (see Eq. (5)). The equation for
the evolution of z (Eq. (7)) derives from the following
considerations. Growth affects p27 expression: growth
activation downregulates p27 expression whereas
growth inhibition increases it. In addition, p27 expres-
sion is upregulated by hypoxia.
Another feature we include in our model is the effect

of phosphorylated RB. Non-phosphorylated RB
(RBNP) is known to inhibit CDK activity (Knudsen
et al., 1999) while phosphorylated RB has no direct
effect (Gardner et al., 2001). We incorporate this effect
into our model by replacing the generic activator A in
Eq. (1) by the concentration of RBNP, u: Thus, we have
indirect activation of CDK through RB phosphoryla-
tion. Combining these effects we obtain the following
dimensionless model:

dx

dt
¼

ð1þ b3uÞð1� xÞ
J3 þ 1� x

�
b4mxy

J4 þ x
; ð4Þ

dy

dt
¼ a4 � ða1 þ a2x þ a3zÞy; ð5Þ

dm

dt
¼ Zm 1�

m

m�

� �
; ð6Þ

dz

dt
¼ c1 1�

m

m�

� �
� c2

P

B þ P
z; ð7Þ

du

dt
¼ d1 � ðd2 þ d1yÞu; ð8Þ

where P is the (non-dimensional) oxygen tension. Cell
division is supposed to occur when xoxTHR and y >
yTHR (xTHRoyTHR).

4 The use of this condition is
justified by the fact that the biomolecular machinery
responsible for completing the cell-cycle is triggered
when it is satisfied (Nasmyth, 1995). When this occurs
the cell-cycle control is reset by m-m=2 and z-0:
When m and z are so reset the whole control system goes
back to the dynamical state corresponding to G1; i.e. the
corresponding values of x; y and u go back automati-
cally to their ‘‘G1 values’’; since, as we show in Section
4, when m ¼ m�=2 and z ¼ 0 the fixed point corre-
sponding to S-G2-M is destroyed and the only stable
steady state is G1: The instant at which this occurs is
defined as the division time, TD; assuming that we are
starting from t ¼ 0:
In Eqs. (4)–(8), we have introduced a dimensionless

time t ¼ k00
2t with k00

2 ¼ 1 min�1 (Tyson and Novak,
2001). Recall that in the model proposed by Tyson and
Novak (2001) the concentrations are dimensionless and
all the rate constants have the dimensions of frequency.
Note that our model is slightly different from the

model by Tyson and Novak (2001). However, our model
is simpler and in the basic facts both models are
equivalent. The main difference between the two models
is that we are assuming that Eq. (5) is an equation for
the active CDK (i.e. the dimers cyc/CDK), whereas
Eq. (6) in Tyson and Novak, 2001 corresponds to the
total concentration of CDK (active + inactive). There-
fore, the last term on the right-hand side of Eq. (5)
accounts for the inactivation of CDK. In this way we are
able to retain the main characteristics of the control
system described in Tyson and Novak (2001) without
having to introduce an additional variable to describe,
for example, inactive CDK. Both our model and that of
Tyson and Novak (2001) exhibit a G1-like steady state
(stable when the cell is small) and a S-G2-M-like steady
state (stable when the cell is full-sized).
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2.3. Experimental background and cell-cycle model for

cancer cells

In many respects cancer cells appear to respond
differently to hypoxia than their normal counterparts.
Although cell-cycle arrest is observed in cancer cells
(Funk, 1999), they also have the ability to enter a
quiescent state in which most of their functions,
including proliferation, are suspended. In a seminal
experiment performed by Folkman and Hochberg
(1973), an in vitro 3D culture of cancer cells exposed
periodically to fresh nutrient solution saturated to a
limit size. Furthermore, the resulting multi-cellular
spheroid had a layered structure: in the centre of the
spheroid, where the nutrient concentration was smallest,
there was a core of necrotic material formed by cells that
had starved to death. In the outer rim, the nutrient
concentration was richest and there was a layer of
proliferating cells. A layer of quiescent cells separated
these two regions. This experiment suggests that cancer
cells, when starved of nutrient, enter a quiescent state
before dying. One could argue that this behaviour might
not be exclusive to cancer cells. However, we have not
found so far direct experimental observation of such a
behaviour (i.e. the formation of a quiescent layer) in, for
example, multi-cellular spheroids of hepatocytes. Mod-
elling this difference in the behaviour of normal and
cancer cells is one of the main aims of this paper.
So, whereas normal cells simply delay their cell

division process under hypoxia, cancer cells actually
stop it, until the environmental conditions are favour-
able, by entering into a quiescent state. This is one of the
reasons why cancer cells are more resistant to hypoxia
than their normal counterparts (Royds et al., 1998).
Another difference between cancer and normal cells
concerns their rates of expression of p27 (Funk, 1999;
Bai et al., 2001; Philipp-Staheli et al., 2001).
We have presented experimental observations sup-

porting the fact that growth regulates (decreases) p27
expression (Leshem and Halevy, 2002; Saito et al.,
2001). Our modelling hypothesis is that this control
mechanism is absent in cancer cells. In particular
whereas the rate at which normal cells produce p27 is
assumed to be modulated by their mass, in cancer cells
p27 is produced at a constant rate. This is supported by
Dhillon and Mudryj (1995) and Park et al. (2001), who
report experiments in which the response of p27 in
cancer cells to the presence of different growth and
proliferation promoting factors is not as expected in
normal cells, i.e. the downregulation observed in normal
cells is not found in cancer cells. Thus, our mathematical
model for the cell-cycle comprises Eqs. (4)–(8), with
Eq. (7) replaced by

dz

dt
¼ c1 � c2

P

B þ P
z: ð9Þ
Here, we are assuming that there is a (constant)
background production of p27 and simple linear decay
modulated by the oxygen tension, P:
In the case of the normal cell model we could reset

only m and let the value of z readjust by itself. Since, in
the cancer model, the p27 dynamics is independent of m;
we still need to prescribe a resetting mechanism at the
end of the cell-cycle. Since we want to analyse the
different effects of hypoxia on normal and cancer cells,
we introduce as few differences as possible between the
two models. This will ensure that we are observing the
hypoxia-induced phenomena, rather than ‘‘spurious’’
effects introduced by other factors, and, therefore, we
introduce a resetting mechanisms for both models.
3. Numerical results and comparison to experiments

We solve our model equations numerically and show
that our results are in good qualitative agreement with
the experimental observations.
Our model equations were integrated using a stan-

dard, four-stage Runge–Kutta method (Press et al.,
1992) with initial conditions xðt ¼ 0Þ ¼ 0:9; yðt ¼ 0Þ ¼
0:01; mðt ¼ 0Þ ¼ m�=2; zðt ¼ 0Þ ¼ 0 and uðt ¼ 0Þ ¼ 1:
Typical numerical solutions of Eqs. (4)–(8), presented

in Fig. 4, show how reducing the oxygen tension extends
the cell-cycle by prolonging the duration of G1: On
closer scrutiny, our simulations indicate that a reduction
in the oxygen tension by a factor 1/40–1/50 increases the
duration of G1 by 20–25%. This means that in a large
population of (identical) cells, we will observe on
average approximately 20–25% more cells in the G1

phase. A similar increase was observed in experiments
by Gardner et al. (2001). This can be seen in Fig. 6
where we show how for normal cells the division time,
TD; varies with the oxygen tension.
The numerical results presented in Figs. 5(a) and (b)

show how, for our cancer model (Eqs. (4)–(6) and (8)–
(9)), the length of the cell-cycle increases as the oxygen
tension decreases. However, Fig. 5(c) shows that this
increase does not continue indefinitely: for very low
oxygen tensions the model predicts that hypoxia causes
the cell-cycle to stop. This is consistent with the
observed transition of cancer cells to quiescence under
hypoxia.
From the mathematical point of view, the system

passes through a bifurcation point as P varies: when P

exceeds a critical value normal cycling is observed. If,
however, P falls below the critical value then the
system has only one stable steady state; G1 (high
concentration of Cdh and low concentration of active
CDK) and cycling is arrested. We can also appreciate
this by reference to Fig. 6 which shows how the division
time, TD; of normal and cancer cells depends on the
oxygen tension, P: The curve corresponding to the
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Fig. 4. Series of plots showing how the normal cell-cycle model changes behaviour as the oxygen tension P varies: (a) P ¼ 1; (b) P ¼ 0:1; (c)
P ¼ 0:001: Following Tyson and Novak (2001), time is plotted in dimensional units (mins) and the chemical concentrations are plotted in

dimensionless units. The parameter values used in these simulations are stated in Table 1. Key: Solid lines correspond to x; dashed lines to y:
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Fig. 5. Numerical solutions of the cancer cell-cycle model for different values of the oxygen tension P: (a) P ¼ 1; (b) P ¼ 0:1; (c) P ¼ 0:001: Solid
lines correspond to x and dashed lines to y: The parameter values used in these simulations are shown in Table 1.
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Fig. 6. Division time as a function of the oxygen tension, P; for
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asymptote exhibited by the cancer cells at PC0:008; which is the

critical value of the oxygen tension for the transition to quiescence in

cancer cells. The parameter values used for these simulations are

shown in Table 1.
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cancer cell-cycle model possesses a vertical asymptote,
indicating that TD-N as P decreases towards a
threshold value.
From Fig. 6 we note also that, for the parameter

values chosen, the division period of the cancer
cells is smaller than that of the normal cells. This is to
be expected since the proliferation rate of cancer
cells is usually higher than that of their normal
counterparts. Our model also reproduces the fact that
p27 expression is downregulated for the cancer cells
(see Fig. 7). This characteristic feature of cancer
cells has been observed by a number of experimental
researchers (see for example Funk, 1999; Bai et al.,
2001; Philipp-Staheli et al., 2001). Actually, our
model predicts that these two features (higher pro-
liferation rate and reduced p27 expression) are closely
related.
We now analyse the effects of varying the levels of p27

expression. To this end, we vary c1; since this parameter
controls the production rate of p27. In Fig. 8 we show
how the behaviour of the cancer cell model changes as c1
varies. Fig. 8(a) illustrates that the average p27
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concentration,

/zS ¼
1

TD

Z TD

0

zðtÞ dt ð10Þ

increases as c1 increases. We remark that this is
consistent with the increase in the stationary value of z

that accompanies an increase in c1 (see Eq. (9)). Fig. 8(b)
also reveals that as c1 decreases (and hence oz >
decreases) the cells divide more rapidly. In addition the
division time TD increases with c1; becoming infinite as
c1 approaches a critical value (which depends on the
oxygen tension, P). Taken together, the results of Figs. 6
and 8 yield a testable model prediction regarding
quiescence in cancer cells: quiescence may be induced
by either low levels of oxygen or high levels of p27.
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Fig. 7. Diagram showing how levels of p27 expression vary for the

normal and cancer cells. The solid line corresponds to normal cells

whereas the dashed line corresponds to cancer cells. The parameter

values used in these simulations are shown in Table 1. We have taken

P ¼ 1: See text for details.
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Fig. 8. (a) Averaged concentration of p27, /zS (Eq. (10)), in cancer cells as a

of cancer cells as a function of c1=c2 for P=1 (circles) and P=0.01 (squares),

in Table 1 except for c1: We have fixed the value of c2 (see Table 1), so the
Similar simulations carried out for the normal cell
model reveal that varying c1 has the same qualitative
effect as that described above for the cancer cell model:
the concentration of p27 and the division time increase
with c1: However in this case TD remains finite, which
confirms that quiescence cannot be induced in the
normal cell-cycle model, at least for the parameter
values we are using (results not shown).
This prediction is consistent with a recent clinical

study in which low expression of p27 was found to be a
poor prognostic indicator in patients with high-grade
astrocytomas (Kirla et al., 2003). Within our model
framework, we can explain this by observing that low
concentrations of p27 are associated with high prolif-
eration rates. In fact, Kirla et al. (2003) argue that
expression of p27 in malignant astrocytomas, and its
poor prognostic nature, appears to reflect the prolifera-
tion activity of tumour cells.
For normal cells p27 levels are affected by the

presence of growth factors (Leshem and Halevy, 2002;
Saito et al., 2001). Hence, we now investigate the effect
of varying the mass growth rate Z on the behaviour of
normal cells. In particular, we solve Eqs. (4)–(8) for
different values of the parameter Z (the mass growth
rate) and plot the averaged concentration of p27 as a
function of Z: Fig. 9 shows that /zS is a decreasing
function of the growth rate. Thus, in the presence of a
growth factor (i.e. for a bigger growth rate) our model
predicts smaller concentrations of p27. This is consistent
with the experimental results of Leshem and Halevy
(2002) and Saito et al. (2001), according to which, in the
presence of growth factors p27 expression is lower than
that in unstimulated control cells.
The results described above support our hypothesis

that the two models reproduce the different responses of
normal and cancer cells to hypoxia. However, we find
one potential problem: Figs. 4 and 5 imply that there is a
significant reduction in the concentration of active CDK
in the cancer cells. This reduction might be important
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0

1000

2000

3000

4000

5000

c1/c2

function of c1=c2 for P ¼ 1: Panel (b) shows the period of division TD

respectively. The parameter values used for these simulations are shown

value of c1 is given by the corresponding value of c1=c2:
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since RB-phosphorylation is activated by Cyc-CDK
complexes. It could be that the levels of Cyc-CDK
predicted by our cancer cell-cycle model are too low to
trigger RB-phosphorylation.
5Tyson and Novak (2001) estimate this critical value to be about

0.58 for the parameter values stated in Table 1.
4. Phase plane analysis

In this section, we use phase plane analysis to explain
why, when we use the parameter values given by Tyson
and Novak (2001), both models are able to produce
arrest but only the cancer model can yield quiescence. In
particular, we show that the switching behaviour in
these models is controlled by both growth and the
kinetics of p27 expression in particular the kinetics used
to model p27 expression in normal and cancer cells
is responsible for the dramatic differences in their
behaviour.
At the beginning of the cell-cycle (at G1), the cell-cycle

control system is in a state in which xC1 and y5x:
Then, according to Tyson and Novak (2001), the system
goes through a bifurcation (with the mass of the cell as
the control parameter) and changes to a state in which
xC0 and ybx: This bifurcation corresponds to the
G1=S transition. Hence, for m ¼ 0 (i.e. at the beginning
of the cell-cycle), we expect to find a stationary state
with xC1 and y5x whereas for m ¼ m� (i.e. towards
the end of the cell-cycle), we expect the stationary state
should be such that xC0 and ybx: We will show that,
provided we use the parameter values given by Tyson
and Novak (2001), the normal cell-cycle model exhibits
this behaviour for every value of P: On the other hand,
the cancer cell-cycle model exhibits this behaviour only
if P exceeds a critical value. When P is below this value,
the cancer cell-cycle model does not have a steady state
with xC0 and ybx for m ¼ m�: Instead, it gets ‘‘stuck’’
at xC1 and y5x (i.e. at G1). It is in this sense that we
distinguish between arrest and quiescence: whereas for
the former the cell will always complete the cell-cycle
(probably in such a long time that it would be die via
apoptosis first), in the latter case the cell will never
complete the cell-cycle since the control system has lost
the ability to produce the bifurcation that drives the
system through the G1=S transition.

4.1. Phase portraits

As in Tyson and Novak (2001), the central control
mechanism for our models resides in Eqs. (4) and(5). To
start with, let us fix z ¼ z0; m ¼ m0; u ¼ u0 in Eqs. (4)
and (5), where z0; m0; u0 are arbitrary. When z0 ¼ 0 and
u0 ¼ 0; Tyson and Novak (2001) observed that Eqs. (4)
and (5) exhibit a saddle-node bifurcation when m0 takes
a critical value5 (see Fig. 10). For smaller values of m0

Eqs. (4) and (5) have two stable fixed points (SFP) and
an unstable fixed point (UFP). As mentioned in the
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previous section, one SFP represents G1 and the other is
S-G2-M. When m0 increases towards its critical value G1

collides with the UFP and a saddle-node bifurcation
occurs. Only the S-G2-M fixed point persists for larger
values of m0:
Let us see how this picture is modified as z varies. The

corresponding phase-plane, presented in Fig. 11, shows
that when m0 ¼ 5 (Fig. 11(a)) Eqs. (4) and (5) have only
one steady state, regardless of the value of z0:
The picture is qualitatively different when m0 has a

higher value, say m0 ¼ m�: In this case the variation of
z0 produces a switching behaviour: for values of z0
smaller than some critical value the only SFP is the
S-G2-M fixed point, whereas for z0 larger than its critical
value the only SFP is the G1 fixed point.
Thus, for the normal cells, the situation is as follows.

Referring to Fig. 7 we recall that over time the
concentration of p27 grows, reaches a maximum value
and then decreases. This pattern is repeated cyclically
each time the cell divides. At the end of the cycle p27 is
decreasing and therefore, according to Fig. 11(b), the
system is driven towards the S-G2-M fixed point.
The behaviour of cancer cells can also be explained in

terms of the phase-plane shown in Fig. 11. According to
Fig. 7, the concentration of p27 grows monotonically to
a saturating (steady state) value, until the control system
is reset to its initial condition. This steady state value,
zN ¼ c1ðB þ PÞ=c2P; depends on the oxygen concentra-
tion, P:When P is sufficiently small zN exceeds a critical
value and, as shown in Fig. 11(b), the control system
gets trapped at the G1 fixed point. This brings the cell-
cycle to a halt. If, on the contrary, the oxygen
concentration is such that z� is smaller than the critical
value, the system oscillates by the same mechanism as
for the normal cells.
A more rigorous analysis of all these features is
presented in Appendix A.

4.2. Summary of results of the phase plane analysis

The results of Appendix A are summarized here and
illustrated by Fig. 12. This figure shows the bifurcation
diagrams of the normal (Figs. 12(a) and (b)) and the
cancer (Figs. 12(c) and (d)) models, excluding the
equation for the mass, which is viewed as a control
parameter. To obtain these diagrams we have computed
numerically the steady state values xN; yN; zN; and uN

for different values of the cell mass and the oxygen level.
Stability of the steady state solutions is determined by
linearizing the model equations. Figs. 12(a) and (c) show
the bifurcation diagrams for normal and cancer cells,
respectively, when m is the control parameter and the
oxygen level is P ¼ 1: The figures show that the
switching behaviour of each system is driven by growth:
as m increases the systems go through successive
bifurcations which produce the transition from G1; the
stable fixed point for small values of m; to S-G2-M, the
stable fixed point when m approaches its saturation
value. This agrees with the results obtained from our
linear stability analysis: for large values of the oxygen
level (as P ¼ 1), these are the stable fixed points for the
corresponding values of m:
Differences between the two models appear when we

consider low oxygen levels. Our linear stability analysis
has revealed that G1 is the only fixed point at the
beginning of the cell-cycle (i.e. small values of m) for
both models. So, we focus on the end of the cell-cycle
when m ¼ m� and take P as the control parameter.
Figs. 12(b) and (d) show the dramatic difference
between the models as P varies. While the behaviour
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Fig. 12. Bifurcation diagrams for our two models. Panels (a) and (b) correspond to the normal cell-cycle model. In (a) we have fixed P ¼ 1 and taken
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Comparing panels (a) and (c) we can observe that the critical value of the cell mass in the cancer model is bigger than in the normal model.
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of the normal cell model (Fig. 12(b)) is independent of P

(S-G2-M is the stable fixed point for all values of P), the
stable fixed point of the cancer model depends on P:
when P is smaller than some critical value the stable
fixed point is G1 (thus yielding quiescence) whereas for
P larger than the critical value the stable fixed point is
S-G2-M. This is consistent with our linear stability
analysis and the phase-portrait-based discussion of
Section 3.1, where we saw that quiescence in the cancer
cell model is related to high values of z towards the end
of the cell-cycle for this model, high values of z occur
when the oxygen tension is low.
Throughout this paper, we have emphasized that

normal cells do not have the ability to enter a quiescent
state under hypoxia. However, in Section A.1 we have
shown that our normal cell model can produce
quiescence if b4m�COð1Þ: This allows for the possibility
of having quiescence in normal cells due to mechanisms
(different from hypoxia) that drive the system into this
parameter regime.
5. Discussion

In this paper, we have adapted an existing mathema-
tical model of the cell-cycle to describe the behaviour of
normal and cancer cells, focussing on the differences in
their responses to hypoxia. Our models are successful in
producing hypoxia-induced arrest of the G1=S transi-
tion, in agreement with experimental observations
(Funk, 1999; Gardner et al., 2001). In the case of
normal cells, the relative increase in the duration of the
cell-cycle is similar to that observed by Gardner et al.
(2001). However, whilst both models can produce arrest,
only the cancer cell-cycle model is able to yield
quiescence, as long as we use the parameter values
given in Table 1, which are due to Tyson and Novak
(2001). However, in other parameter regimes, the
normal cell-cycle model might produce quiescence.
The difference between the two models stems from

differences in their rates of p27 expression: for normal
cells p27 expression is growth-regulated (i.e. it depends
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Table 1

Summary of those (non-dimensional) parameter values that are held

fixed throughout the paper, unless otherwise stated

Parameter Value

(normal)

Value

(cancer)

Source

a4 0.04 0.04 Tyson and Novak (2001)

a1 0.5 0.4 Tyson and Novak (2001)

a2 1 1 Tyson and Novak (2001)

a3 0.25 0.25

b3 10 10 Tyson and Novak (2001)

b4 35 35 Tyson and Novak (2001)

Z 0.01 0.01 Tyson and Novak (2001)

m� 10 10 Tyson and Novak (2001)

J3; J4 0.04 0.04 Tyson and Novak (2001)

c1 0.1 0.007

c2 0.01 0.01

B 0.01 0.01

d1 0.01 0.01

d2 0.1 0.1

The values of the parameters for which we have not found estimates in

the literature have been calculated to fit the values of the duplication

times of V-79 cancer cells reported by Deutsch and Dormann (2002).

According to these authors the division time for V-79 cells is between

13 and 19 h (780 and 1140 min; respectively), which is in good

agreement with our predicted division time for cancer cells exposed to

high concentrations of oxygen (see Fig. 6).

6 In these experiments, nutrient is available to all the cells in the

monolayer culture. However, in 3D spheroids nutrient availability is

limited, since it enters the spheroid by diffusion through the surface of

the spheroid. This fact explains why on average spheroids experience

lower oxygen tensions than monolayer cultures.
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on the cell mass) whereas for the cancer cells it is
growth-independent. We justify these modelling as-
sumptions by appealing to experiments by Leshem and
Halevy (2002) and Saito et al. (2001). They found that in
the presence of growth factors normal cells reduced their
rates of p27 expression whereas cancer cells did not
(Dhillon and Mudryj, 1995; Park et al., 2001). Another
fact supporting our hypothesis is that mutations of the
p27 gene are rarely found in human tumours (Funk,
1999), supporting the fact that changes in the mechan-
ism regulating its expression might play a key role in
alterating the behaviour of cancer cells.
Our model also reproduces other experimental

observations: higher proliferation rates in cancer than
in normal cells (see Fig. 6 and Funk, 1999), lower levels
of the protein p27 in cancer than in normal cells (see
Fig. 7 and Funk, 1999; Bai et al., 2001; Philipp-Staheli
et al., 2001) and, in the case of the normal cell model,
lower levels of p27 in the presence of growth factors (i.e.
higher values of Z) (see Fig. 9 and Leshem and Halevy,
2002; Saito et al., 2001). Our results are also consistent
with a clinical study which showed that low levels of p27
were a poor prognostic factor, since low levels of p27 are
related to an increase in the proliferation rate (see Fig. 8
and Kirla et al., 2003). In addition our model predicts
that quiescence in cancer cells could be induced by
increasing p27 levels. This is experimentally testable.
While our model is consistent with a number of

experimental observations and generates experimentally
testable predictions, it possesses some shortcomings that
require further refinement. For example, it does not deal
properly with the end of the cell-cycle: in our simula-
tions the division cycle finishes when xoxTHR and y >
yTHR (yTHRoxTHR), where x ¼ ½Cdh	 and y ¼ ½Cyc	:
Biologically, the justification for this is that under this
condition the biomolecular machinery responsible for
completing the cell-cycle is triggered. A more accurate
description of the ‘‘Finish’’ transition, as in Tyson and
Novak (2001), is postponed for future work.
Our model should also incorporate hypoxia-induced

apoptosis, since both normal and cancer cells undergo
programmed cell death when the level of oxygen is very
low, with even the cancer cells dying when exposed to a
prolonged hypoxic stress.
It is important to stress that whilst we have focused on

the role of the protein p27 as a mediator of cell response
to oxygen starvation, in particular hypoxia-induced
arrest and quiescence, other mechanisms involving
different pathways may be relevant. We have shown in
our linear stability analysis that the normal cell-cycle
model cannot produce quiescence, since our parameter
values are such that b4m�COðe�1Þ: However, the
normal cell-cycle model would exhibit quiescence if
b4m�COð1Þ; where m� is the maximum size of a fully
grown cell and b4 accounts for the intensity of the
coupling between growth and ½Cdh	 dynamics. Thus,
possible mechanisms to induce quiescence in this model
would be to reduce the value of either b4 or m�:Whether
this is biologically feasible should be the subject of
further experimental investigation.
We have assumed that normal cells do not enter

quiescence under oxygen starvation, although quies-
cence induced by other mechanisms is not excluded. On
the contrary, in experiments carried out in tumour
multicellular spheroids starvation induced quiescence
has been observed. On the other hand, Hamamoto et al.
(1998) reported that hepatocytes cultured as spheroids
grew more slowly than hepatocytes cultured in 2D
monolayer cultures.6 Also a higher concentration of p27
was observed in the spheroids. Both of these facts might
be signatures of quiescence. However, to the best of our
knowledge, no direct observation of a quiescent region
in normal cell spheroids has been reported so far. On the
other hand, our normal cell-cycle model can explain
most of the behaviour observed in the hepatocyte
experiments: the increased p27 levels would be caused
by the reduction in oxygen and this, in turn, would
diminish the proliferation rate (see Section 3). The
smaller growth rate could be caused by a balance
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between proliferation and death, rather than being
produced by a quiescent population of cells.
There is one factor that has not been taken into

account in this article, but that might be important,
that is the relationship between growth and
progression through the cell-cycle. The average size
(diameter) of a normal cell is estimated to be
approximately 10 mm; although the variance associated
with this figure is very large. Experiments performed by
Sauer et al. (1998) report measurements of the size of
quiescent cancer cells in multicellular spheroids aver-
aging 13 mm in diameter. They also find that cycling
cancer cells within the spheroids grow to 18 mm in
diameter. This reveals an intricate relationship
between growth and cell-cycle, which is neglected in
our model where growth is considered as an autono-
mous process.
To summarize, we have proposed models for the

hypoxia-induced response of the G1=S transition in
both normal and cancer cells. Our models reproduce a
range of experimental observations on each type
of cell. In particular, our simulations provide a
mechanism to understand how cancer cells may
become quiescent under low levels of oxygen. We have
been able to define this property in mathematical terms:
whereas the G1=S transition in normal and non-
quiescent cancer cells is driven by a bifurcation
in the dynamics of the CDK network, quiescent
cells are characterized by the absence of such a
bifurcation.
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Appendix A. Fixed points and linear stability analysis of

the normal and cancer models

Here we give the details of the analysis corresponding
to the discussion presented in Section 4.

A.1. Fixed points and linear stability analysis of the

normal cell model

Before proceeding further, we simplify Eqs. (4)–(8).
From the numerical solutions, we note that throughout
most of the cell-cycle either xC0 (in S-G2-M) or xC1
(in G1). To start with, we assume x ¼ 1� e *xbJ4 where
0oe517 and we obtain

e
d *x

dt
¼ b4my � eð1þ b3uÞ *x; ðA:1Þ

dy

dt
¼ a4 � ða1 þ a2 þ a3zÞy; ðA:2Þ

dm

dt
¼ Zm 1�

m

m�

� �
; ðA:3Þ

dz

dt
¼ c1 1�

m

m�

� �
� c2

P

B þ P
z; ðA:4Þ

du

dt
¼ d2ð1� uÞ � d1yu: ðA:5Þ

Eq. (A.3) is decoupled and has two fixed points:
mN ¼ 0 and mN ¼ m�: The case mN ¼ m� is incompa-
tible with Eq. (A.1), unless b4m�yN ¼ OðeÞ: However,
this is not the case if we use the parameter values
recorded in Table 1, for, although yN ¼ OðeÞ; b4m� ¼
350 ¼ Oðe�1Þ: If b4m� ¼ Oð1Þ we would have a G1 type
fixed point with mN ¼ m� and, therefore, that would
yield quiescence in the normal cell-cycle model. This
may raise the question of how robust our results are to
changes in the parameters given by Tyson and Novak
(2001). We have made additional analysis and run
numerical simulations to check robustness with respect
to b4m� (results not shown). We have found that our
results are robust to changes in this parameter, although
when b4m� ¼ Oð1Þ the normal cell-cycle model is seen to
exhibit quiescent behaviour.
However, if we use the parameter values from Table 1,

only mN ¼ 0 is feasible and we obtain, at leading
order:

zN ¼
c1ðB þ PÞ

c2P
; ðA:6Þ

yN ¼
a4

a1 þ a2 þ a3zN
; ðA:7Þ

uN ¼
d2

d2 þ d1yN

; ðA:8Þ

with xN ¼ 1:
The stability of this fixed point can be analysed by

linearizing Eqs. (A.2), (A.4), and (A.5). Writing dy ¼
y � yN; dz ¼ z � zN; and du ¼ u � uN in Eqs. (A.2),
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(A.4), and (A.5) and linearizing we obtain

d

dt
dy ¼ �ða1 þ a2Þdy þ a3yNdz; ðA:9Þ

d

dt
dz ¼ �c2

P

B þ P
dz; ðA:10Þ

d

dt
du ¼ �ðd2 þ d1yNÞdu � d1uNdy: ðA:11Þ

The corresponding eigenvalues satisfy the following
characteristic equation:

ða1 þ a2 þ a3zN þ lÞðd2 þ d1yN þ lÞ


 c2
P

B þ P
þ l

� �
¼ 0: ðA:12Þ

While all roots of Eq. (A.12) are real and negative,
mN ¼ 0 is an unstable fixed point of Eq. (A.3). Thus the
critical point is unstable, so that the cell will grow and
start its progression through the cell-cycle. However,
since Eq. (A.3) decouples and can be integrated, the
mass can be considered as a forcing term for the rest of
the system. If we follow Tyson and Novak (2001) and
consider m in Eq. (A.2) as a control parameter which
varies in time, then the dynamical system Eqs. (A.13)–
(A.17) has a stable branch for values of m > 0 and
smaller than some critical value (see Fig. 12(a)).
In any case, what is important here is that a fixed

point corresponding to the G1 phase of the cell-cycle
(xC1 and y5x) exists for m ¼ 0 but not for m ¼ m�:
The analysis for x ¼ e #x is very similar. In this case we

have that 1� xbJ3 (see Table 1), so that, to leading
order:

e
d #x

dt
¼ ð1þ b3uÞ �

b4my #x

#J4 þ #x
; ðA:13Þ

dy

dt
¼ a4 � ða1 þ a3zÞy; ðA:14Þ

dm

dt
¼ Zm 1�

m

m�

� �
; ðA:15Þ

dz

dt
¼ c1 1�

m

m�

� �
� c2

P

B þ P
z; ðA:16Þ

du

dt
¼ d2ð1� uÞ � d1yu; ðA:17Þ

where #J4 ¼ e�1J4 ¼ Oð1Þ: As above Eq. (A.15), which
decouples, has two fixed points mN ¼ 0 and mN ¼ m�:
If mN ¼ 0; then Eq. (A.13) yields a contradiction:
uNo0: So we conclude that a fixed point to
Eqs. (A.13)–(A.17) with mN ¼ 0 is not physically
realistic. When mN ¼ m�; Eq. (A.16) yields zN ¼ 0
while Eqs. (A.14) and (A.17) imply

yN ¼
a4

a1
; ðA:18Þ
uN ¼
d2

d2 þ d1yN

: ðA:19Þ

Hence to leading order Oðe0Þ the physically realistic fixed
point of Eqs. (A.13)–(A.17) has xN ¼ 0; mN ¼ m�;
zN ¼ 0; with yN and uN given by Eqs. (A.18) and
(A.19).
The linear stability of this fixed point is determined as

in the previous case. Linearizing Eqs. (A.14), (A.15),
and (A.17) we obtain the following characteristic
equation:

ða1 þ lÞðd2 þ d1yN þ lÞ c2
P

B þ P
þ l

� �
¼ 0: ðA:20Þ

Since all the roots of this equation are real and negative,
and Eq. (A.16) decouples with mN ¼ m� a stable fixed
point, this fixed point is a linearly stable steady state of
Eqs. (A.13)–(A.17).
The analysis of the first order correction, #x; to the

trivial steady state clarifies the main difference between
the normal and cancer cell-cycle models, i.e. the ability
to produce quiescence. Using Eq. (A.13) it is possible to
show that the first-order correction to xN is given by

#xN ¼
#J4

ððb4m�yNÞ=ð1þ b3uNÞÞ � 1
; ðA:21Þ

which for physically realistic solutions yields the
condition:

b4m�yN

1þ b3uN

> 1: ðA:22Þ

It is easy to check that this condition is satisfied if yN >
%yN where %yN is given by (see Eq. (A.19)):

%yN ¼
A1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ 4A0a2

q
2A2

; ðA:23Þ

with A0 ¼ d2 þ b3d1; A1 ¼ d1 � b4d2m�; and A2 ¼
b4d1m�: Eqs. (A.18) and (A.23) yield a condition on
the model parameters in order to obtain a consistent
(positive) value of #x: Provided this condition is satisfied,
we obtain a feasible value of xN regardless of the
extracellular oxygen tension, P: Physically this means
that towards the end of the cell-cycle the cell is
automatically in the S-G2-M phase and thus the normal
model cannot produce quiescence. As we show in
Section 4.3 the situation for our cancer cell-cycle model
is different.

A.2. Fixed points and linear stability analysis of the

cancer cell model

Following the same basic procedure outlined in
Section 4.2, the linear stability of the cancer model is
now analysed by focusing on the physically relevant
situations for which xC0 or xC1:
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When x ¼ 1� e *x; the model equations simplify to
give

e
d *x

dt
¼ b4my � eð1þ b3uÞ *x; ðA:24Þ

dy

dt
¼ a4 � ða1 þ a2 þ a3zÞy; ðA:25Þ

dm

dt
¼ Zm 1�

m

m�

� �
; ðA:26Þ

dz

dt
¼ c1 � c2

P

B þ P
z; ðA:27Þ

du

dt
¼ d2ð1� uÞ � d1yu: ðA:28Þ

If mN ¼ 0; we obtain

zN ¼
c1ðB þ PÞ

c2P
; ðA:29Þ

yN ¼
a4

a1 þ a2 þ a3zN
; ðA:30Þ

uN ¼
d2

d2 þ d1yN

ðA:31Þ

and xN ¼ 1 to leading order. The corresponding linear
analysis (in which only Eqs. (A.25), (A.27) and (A.28)
are considered) leads to the following characteristic
equation:

ða1 þ a2 þ a3zN þ lÞðd2 þ d1yN þ lÞ


 c2
P

B þ P
þ l

� �
¼ 0; ðA:32Þ

all of whose roots are real and negative. As for the
normal cell model, mN ¼ 0 is an unstable fixed point of
Eq. (A.3) which decouples. Viewing m as a time-
dependent control parameter, we say that the dynamical
system possesses a stable branch for values of m smaller
than some critical value (see Fig. 12(c)).
As before, mN ¼ m� is in general incompatible with

Eq. (A.24), since the steady-state condition would read:
b4m�yN ¼ eð1þ b3uNÞ #xN: However, Eqs. (A.29) and
(A.30) imply that if P-0 then yN-0: Thus, there exists
P0 > 0 such that if PoP0 then the term b4m�yNCOðeÞ:
This condition is satisfied when zNCOðe�1Þ; which
yields yNCOðe2Þ: Therefore, for PoP0; we make the
following rescaling: #m ¼ m=m�; #z ¼ z=e;8 and b4m� ¼
e�1 #b4; so that we can rewrite Eqs. (A.24)–(A.28) as

e
d #x

dt
¼ e�1 #b4 #my � eð1þ b3uÞ #x; ðA:33Þ

dy

dt
¼ a4 � e�1a3 #zy; ðA:34Þ
8z becomes Oðe�1Þ only after some time, so that this scaling is only

valid for tb1:
d #m

dt
¼ Z #m 1� #mð Þ; ðA:35Þ

d#z

dt
¼ ec1 � c2

P

B þ P
#z; ðA:36Þ

du

dt
¼ d2ð1� uÞ � d1yu: ðA:37Þ

Now, we can identify in Eq. (A.34) a small time scale,
tr ¼ e=a3 #z: Hence, we can apply the quasi-steady state
approximation to Eq. (A.34) to obtain

yCe2
#a4

a3 #z
; ðA:38Þ

where #a4 ¼ a4=e: Upon substitution of Eq. (A.38) into
Eq. (A.33) we obtain

d #x

dt
¼

#b4 #a4 #m

a3 #z
� ð1þ b3uÞ #x; ðA:39Þ

d #m

dt
¼ Z #m 1� #mð Þ; ðA:40Þ

d#z

dt
¼ ec1 � c2

P

B þ P
#z; ðA:41Þ

du

dt
¼ d2ð1� uÞ: ðA:42Þ

Notice that, since PCOðeÞ; the right-hand side of
Eq. (A.41) yields a consistent expansion (recall that this
scaling is only valid for long times tb1).
The corresponding fixed points are:

#zN ¼
ec1ðB þ PÞ

c2P
; ðA:43Þ

yN ¼ e2
#a4

a3 #zN
; ðA:44Þ

#xN ¼
#b4 #a4

a3 #zNð1þ b3Þ
; ðA:45Þ

uN ¼ 1 ðA:46Þ

and #mN ¼ 1: Of course, #m ¼ 0 is also a fixed point of
Eq. (A.40), but we are now investigating the behaviour
of a fully grown cell. We remark that #zNCOð1Þ since
PoP0 and, more importantly, that a similar analysis
cannot be carried out with the normal cell-cycle model,
since in that case zN ¼ 0 and therefore yNCOðeÞ:
The local stability of the fixed point identified in

Eqs. (A.43)–(A.46) is determined by linearizing
Eqs. (A.39)–(A.42):

d

dt
d #x ¼ � b3uNd #x þ

#b4 #a4

a3 #zN
d #m

�
#b4 #a4 #mN

a3 #z2N
d#z � b3 #xNdu; ðA:47Þ

d

dt
d #m ¼ �2Zd #m; ðA:48Þ
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d

dt
d#z ¼ �c2

P

B þ P
d#z; ðA:49Þ

d

dt
du ¼ �d2du; ðA:50Þ

where d #x ¼ #x � #xN; d #m ¼ #m � #mN; d#z ¼ #z � #zN; and
du ¼ u � uN: The corresponding characteristic equation
for the eigenvalues l is

ðb3uN þ lÞð2Zþ lÞðd2 þ lÞ c2
P

B þ P
þ l

� �
¼ 0; ðA:51Þ

which yields negative eigenvalues. We have performed
simulations to check the asymptotics (results not
shown). We have found that our analytical calculation
is in excellent agreement with the numerics, but only for
values of the oxygen concentration deep inside the
hypoxic regime ðPC10�4Þ: However, the asymptotics
fails to predict the critical value of the oxygen
concentration for hypoxia-induced quiescence
(PC0:008; see Fig. 6). This is due to the fact that, for
the cancer cell-cycle model, the validity of the approx-
imation x ¼ 1� e *x depends on the oxygen level: it is a
good approximation for very low levels of oxygen.
A similar analysis, carried out when x ¼ e #x; which

corresponds to the end of the cell-cycle, yields

e
d #x

dt
¼ ð1þ b3uÞ �

b4my #x

#J4 þ #x
; ðA:52Þ

dy

dt
¼ a4 � ða1 þ a3zÞy; ðA:53Þ

dm

dt
¼ Zm 1�

m

m�

� �
; ðA:54Þ

dz

dt
¼ c1 � c2

P

B þ P
z; ðA:55Þ

du

dt
¼ d2ð1� uÞ � d1yu: ðA:56Þ

As in Section 4.2, the only physically realistic fixed point
of Eq. (A.54) is mN ¼ m� (since mN ¼ 0 ) uNo0) in
which case:

zN ¼
c1ðB þ PÞ

c2P
; ðA:57Þ

yN ¼
a4

a1 þ a3zN
; ðA:58Þ

uN ¼
d2

d2 þ d1yN

ðA:59Þ

and xN ¼ 0 to leading order. Again, given that
Eq. (A.54) decouples and that mN ¼ m� is a stable
fixed point of Eq. (A.54), we can study the linear
stability of the system to leading order by linearizing
Eqs. (A.53), (A.55) and (A.56). This process eventually
leads to the following characteristic equation for the
eigenvalues l:

ða1 þ a3zN þ lÞðd2 þ d1yN þ lÞ


 c2
P

B þ P
þ l

� �
¼ 0: ðA:60Þ

All the roots of Eq. (A.60) are real and negative. As in
the case of the normal cell-cycle model, the first-order
correction terms yield important information about the
behaviour of the system. From Eq. (A.52) with x ¼ e #x
we have that

#xN ¼
#J4

ðb4m�yN=1þ b3uNÞ � 1
; ðA:61Þ

which leads to the condition:

b4m�yN

1þ b3uN

> 1: ðA:62Þ

After some algebra, we deduce that this condition is
satisfied if yN > %yN where %yN is given by Eq. (A.23).
From Eqs. (A.57) and (A.58), we can see that the

condition yN > %yN implies the existence of a threshold
oxygen concentration, %P; such that #xNo0 if Po %P:
Thus, if Po %P there is no physically realistic fixed point
of Eqs. (A.52)–(A.56). Biologically, this means that the
control system of the cell-cycle gets stuck in the G1

phase, thus yielding quiescent behaviour. On the
contrary, for P > %P a linearly stable (of type S-G2-M)
fixed point exists.
We have shown that our cancer cell model has a fixed

point with mN ¼ 0 which corresponds to G1 (high
values of x ¼ ½Cdh	 and low values of y ¼ ½Cyc	),
whereas when mN ¼ m� a stable fixed point corre-
sponding to S-G2-M (low values of x ¼ ½Cdh	 and high
values of y ¼ ½Cyc	) exists only if the oxygen level
exceeds a critical value. When the oxygen tension is
below this critical value, the cancer model has a G1-like
fixed point which is stable when mN ¼ m�; meaning
that the cancer cell-cycle model does not go through the
G1=S transition; this explains why the cancer cell-cycle
model is able to produce quiescence.
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