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We consider a simple cell-chemotaxis model for spatial pattern formation on two-dimensional 
domains proposed by Oster and Murray (1989, J. exp. Zool. 251, 186 202). We determine finite- 
amplitude, steady-state, spatially heterogeneous solutions and study the effect of domain growth 
on the resulting patterns. We also investigate in-depth bifurcating solutions as the chemotactic 
parameter varies. This numerical study shows that this deceptively simple chemotaxis model 
can produce a surprisingly rich spectrum of complex spatial patterns. 

1. Introduction. During the development of an embryo there is rapid growth, 
not only in cell numbers, but also in specialization and complex organization 
among cells. Cells in the vertebrate embryo divide, migrate, differentiate and 
form the various organs in the body. Many  of these structures have a regular 
pattern, such as the vertebrae in the spine, the pattern of feather and scale 
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follicles on the integument and the branching structures of the neural and 
circulatory systems. The often striking pigment patterns on the integument of 
many vertebrates are generally formed during relatively early embryonic 
development. For example, in the case of the zebra with a gestation of about 
360 days the stripe pattern is probably laid down by the fourth week. 

Pigment patterns are generated by chromatophore cells which lie in the 
dermal or epidermal layers of the skin. There are several types of chromato- 
phores each containing different pigments; the most common are melanin- 
bearing cells, melanophores, which contain black, brown or yellow pigments. 
Other types of pigment cells, for example xanthophores (orange and red 
pigments) and iridophores (which cause iridescent effects), are found in non- 
mammalian vertebrates. During development pigment cell precursors-- 
chromatoblasts--originate in the neural crest. This tissue lies along the midline 
of the developing embryo and is formed by theedges of the neural plate as they 
fuse to form the neural tube. These cells spread over the skin at a roughly 
uniform density. Whether or not the Skin develops a pigmented patch depends 
on whether pigment cells produce pigment or remain quiescent. Chromato- 
phore interactions may result in pigmented cells and unpigmented cells 
gathering in different regions to produce stripes or spots (for example, Bagnara 
and Hadley, 1973). In the case of alligator stripes it appears that melanophores 
are present in the unpigmented regions but do not produce melanin (Murray et 
al., 1990). Cells which are committed to pigmentation production are also able 
to divide for some time at least, although they may lose this ability later 
(Mayer, 1980). Pigment granules may be secreted into other cells in skin, hair 
or feathers producing pigmentation in these organs. Thus cell migration and 
cell differentiation are the two basic processes involved in the generation of 
pigmentation patterns of the vertebrate integument. 

The principle mathematical models for pigmentation to date have been 
mainly reaction-diffusion models (Murray, 1979, 1981a,b; Bard, 1981). These 
models hypothesize the existence of chemicals (morphogens) which react and 
diffuse and, under appropriate conditions, generate spatially heterogeneous 
patterns. This chemical landscape is viewed as a pre-pattern to which cells then 
respond in some genetically pre-determined way and differentiate accordingly. 
This is the basis of positional information (Wolpert, 1969, 1981), whereby a 
spatially heterogeneous chemical concentration landscape can be transformed 
into a spatial pattern of differentiated cells. Such models have been very 
successful in producing patterns observed in animal coat markings and 
butterfly wings (Murray, 1981a,b), but the evidence for the existence of such 
morphogens is still the source of considerable controversy. A cellular automata 
model was proposed by Cocho et al. (1987a,b). This type of model can produce 
a variety of spatial patterns but these depend intimately on the assumed rules 
which govern the automata as well as the initial conditions. A major problem 
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with all automata models is the difficulty of relating the biology to the assumed 
rules. A different type of model, based on cell stimulation by the nervous 
system, has been proposed by Ermentrout et al. (1986) for shell patterns. This 
model is not appropriate for the situation we discuss here. The relatively new 
continuum mechanochemical theory (for a review see Murray et al., 1988; 
Murray, 1989) of biological pattern formation can also generate similar 
patterns to those created by reaction diffusion models and their solutions 
exhibit similar developmental geometric constraints as described by Murray 
(1981b) and Oster and Murray (1989). Here, however, the patterns are in cell 
density, tissue deformation and tissue matrix density. In the development of 
pigmentation tissue deformation is clearly not a relevant consideration and so 
we need to look at alternative models if we wish to consider the movement of 
real biological cells which we believe to be the precursors of melanophores. 

Recently, Oster and Murray (1989) proposed a simple cell-chemotaxis 
model for pattern formation which takes account of cell motility and 
chemotaxis, the chemical process by which cells migrate up a chemical 
gradient. In this paper we consider this chemotactic mechanism for pattern 
formation and propose it as a candidate mechanism for chromatoblast 
patterning in the integument. With this model chromatoblasts both produce 
and respond to the chemoattractant. Such a mechanism would promote 
localization of differentiated cells in certain regions of the skin such as spots or 
stripes. Le Douarin (1982) speculated that chemotaxis may be a factor in the 
localization of pigmented cells in the skin. Cocho et al. (1987b) suggested that 
such a mechanism might operate in the rounding up of pigment spots. The 
model we study here has also been proposed by Murray (1988) and Murray et 
al. (1990) for the stripe and shadow patterns on the alligator (Alligator 
mississipiensis). Among other things their experimental results unequivoca- 
bly show that scale is crucial in determining the number of stripes on 
alligators. They also found higher densities of melanocytes in the dark 
melanin stripe regions. The same model has also been shown to generate 
many of the dramatic patterns found on snakes (Murray and Myerscough, 
1990). 

In Section 2 we briefly describe the chemotaxis model. A linear analysis, 
sequestered in the Appendix, indicates its pattern generation capability. In 
many developmental situations the spatial organization of pattern takes 
place on a time scale commensurate with significant growth of the embryo 
(Murray et al,, 1990). Accordingly it is of considerable interest to investigate 
the effect of such growth on the detailed patterns which might be created. One 
of the main purposes of this study is to investigate this by considering the 
domain dimensions to be extra parameters in the model mechanism. We 
specifically consider here the bifurcation from one steady-state, spatially 
heterogeneous solution to another as we vary the linear dimension of the 
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domain. Also, it is possible that the ultimate observed pattern on an animal is 
not the steady-state pattern generated by a model as t ~  but rather an 
intermediate pattern locked in when cells cease, for example, to produce the 
chemoattractant.  

In Section 3 we study these solution behaviours of the model on a 
rectangular domain using the package ENTWIFE and show that the model 
can exhibit an astonishingly wide range of spatially heterogeneous solutions 
which bifurcate off other patterned solutions as one or other of the parameters 
is varied: we mainly consider variation in the domain geometry and scale and 
the chemoattractant parameter. Many of the patterns do not seem to have been 
produced so far by other model mechanisms. Finally, in Section 4 we briefly 
discuss the results and their biological implications. 

2. Cell-Chemotaxis Model. The model can be interpreted in terms of local 
activation and lateral inhibition (Oster and Murray, 1989) where the local 
activation, or aggregation, force on the pigment cells is chemotaxis---the 
directional movement of cells up a gradient in chemical concentration. 
Chemotaxis is a major factor in many developmental situations. There is clear 
evidence that at least three kinds of embryonic cells respond chemotactically in 
vivo, namely neuroblasts, leukocytes and endothelial cells (Trinkaus, 1984). 
The chemotactic response of the slime mold Dictyostelium discoideum to cyclic 
adenosine monophosphate  (cAMP) is well known and has been extensively 
studied both theoretically (for example, Keller and Segel, 1970) and 
experimentally (for example, Newell, 1983). The seminal model mechanism of 
Keller and SegeI (1970) was in fact the motivation for the Oster and Murray 
(1989) model, which is that studied in depth here. 

The model mechanism involves the cell density, n(x, t), and chemoattractant 
concentration, c(x, t), where x and t are the spatial coordinate and time 
respectively, and consists of equations which describe their motion and net 
production. The general form of the cell equation is 

bt = - v .  Jn + R(n) (1) 

where J ,  is the flux of cells and R(n) the net cell production. We assume that 
there are two contributions to the flux term, namely random Fickian diffusion 
with Jaif~usion = --D,Vn where D, is the diffusion coefficient, and chemotaxis 
where Jchemotaxis = enVc where e is the chemotaxis coefficient. We take the cell 
production term to be adequately described by logistic growth of the form 
R(n) = rn(N-  n) where rN is the linear mitotic growth rate with r and N both 
non-negative constants. Nis  a measure of the total number of cells present. The 
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logistic growth term is the simplest way to describe the characteristic sigmoidal 
growth exhibited by several cell types. With these the equation for cell density is 

8t - D " V Z n -  aV" (nVc) + r n ( N -  n). (2) 

diffusion chemotaxis mitosis 

We assume the cell secretes its own chemoattractant in a Michaelis-Menten 
fashion, that it diffuses with diffusion coefficient D c and degrades according to 
first order kinetics. The equation for the chemotactic concentration c is then 

~c Sn 
ff[ = DcV2c + (fl + n~) 7c 

diffusion production degradation 

(3) 

where S, fl and 7 are positive constants. 
We are interested in pattern formation on the integument of developing 

vertebrates so we consider these equations on a finite domain D with zero flux 
boundary conditions, namely 

n ' V c = n ' V n = 0  for x~SD (4) 

where n is the unit outward normal to the boundary ~D. Periodic boundary 
conditions are also biologically relevant. The mathematical formulation of the 
model consists of equations (2) and (3) with boundary conditions (4). In 
equations (2) and (3) we have taken the simplest, yet biologically reasonable, 
forms for the non-linear source/sink terms. We would expect more complex 
forms of these functions to lead to yet more diverse pattern forming ability of 
this mechanism. 

We first write the model in non-dimensional terms which reduces the number 
of parameters, by introducing 

X* ~--- I I X,  t ~ ~ - - ,  H ~ ~ -  C ~ ~ -  
Lb  sJ s S 

N *  = --N D* - D" ~ ,  _ aS  r* =--rfl (5) 
f l '  D~' 7D c' 7 

where the dimensionless s is a scale factor: we can think of s = 1 as the unit 
domain and carry out the computat ion on a fixed domain size and increase s to 
simulate a larger domain. This procedure was used extensively in reaction 
diffusion simulations by Murray (1979, 1981a,b). With equations (5) the non- 
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dimensional equations become, on omitting the asterisks for notational 
simplicity, 

- -  = D V 2 n -  7V" (nVc) + s r n ( N -  n) (6) 
0t 

m 2 Y/ (7) 

n - V c = n .  Vn=0, xEOD (8) 

where ~D is now the boundary of the scaled domain. 
In the subsequent analysis we consider the domain D to be rectangular and 

use Cartesian coordinates, so x = (x, y). 
The system (6), (7) and (8) has two uniform steady-states: (n, c) = (0, 0) and 

(N, N/(1 + N)). A linear analysis about these uniform states shows that (0, 0) is 
always unstable while in certain parameter regimes the non-trivial solution can 
be driven unstable by spatially heterogeneous perturbations and evolve to 
inhomogeneous spatial patterns in n and c. This is the usual way spatial 
patterns are generated in most models for biological pattern formation (see, for 
example, Murray, 1989). The nature of the pattern is governed by the non- 
dimensional parameter set (D, ~, r, N, s) and the size and shape of the domain. 
By suitable choice of the parameter set a particular pattern may be selected to 
give a mode (m, l) for integers m and I where the spatial eigenfunction of the 
linearized system which satisfies the boundary conditions (8) is proportional to 
cos mnx /L  x cos lny/Ly where L x and Ly are the length and breadth of the 
rectangular domain respectively. For example, a pattern of lateral stripes is 
given by the (0, l) mode where the higher the value of l the more stripes we have 
on the domain. In order to select a mode (m, l) on a rectangular domain we 
require (see the Appendix for details) 

rNs 2 Sm 2 l 2 ~ 2 
- n  4 ~-y+ (9) 

D ~.L~ ~ 

I No< ]2 
r N + D  (1 +N) 2 =4rDN. (10) 

3. Two-dimensional Steady-state Patterns. The analysis of the last section, 
detailed in the Appendix, suggests that system (6)-(8) can evolve from an initial 
non-trivial uniform steady-state to a spatially patterned steady-state in cell 
density n and chemoattractant concentration c. In this section we investigate 
possible steady-states using the software package ENTWIFE,  which solves 
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non-linear steady-state problems by discretization in the finite-element 
approximation using a standard Galerkin formulation (Winters, 1985). The 
package locates the critical value of a chosen parameter for which the uniform 
steady-state bifurcates to a non-uniform steady-state and follows this solution 
as the bifurcation parameter changes (Winters, 1987). We present results of a 
detailed numerical simulation obtained by using ENTWlFE.  The numerical 
and analytical details will be reported elsewhere (Winters et al., 1991). In this 
paper we simply concentrate on the different types of patterns exhibited. The 
non-dimensionalized steady-state problem is, from equations (6)-(8), 

DV2n-  o~V . (nVc) + s rn (N-  n) = 0 (11) 

(12) 

n - V c = n .  Vn=0, x~OD. (13) 

There are three main ways in which pattern can be generated and we discuss 
each in turn. 

(a) Mode isolation. In the Appendix we show that the dispersion relation 
for the full linearized system of evolution equations indicates bifurcation to 
spatial instability at the wavenumber s[rN/D] 1/2 for a critical ~ given by 
equation (A5b) in the Appendix. With zero flux boundary conditions on a 1 x 4 
domain, this will be an admissible mode if 

rNs2 ( 12/~2"~ 2 
(14) 

where m and 1 are non-negative integers which are not zero simultaneously. At 
this wavenumber the dispersion is zero and we have a solution to the steady- 
state problem (11)-(13) which will be non-uniform if equation (14) holds for 
some m and 1. By choosing r, N, s and D appropriately [and the corresponding 

from equation (A5b)] we can isolate a particular mode (m, l); see Fig. 1. In 
such (r, N, s, D) parameter space, EN TWlFE  can find the critical bifurcation 
value for ct and solve equations (11)-(13) as ~ increases (supercritical) or 
decreases (subcritical) from this value. Figure 2 illustrates typical solutions. 

(b) Continuous variation of a single parameter. From equation (A5) it is 
clear that by appropriately varying any one of the five parameters r, N, s, D or 
~, the uniform steady-state can evolve to a non-uniform steady-state (see 
Fig. 1). The chemotaxis parameter ~ is a key parameter so we fix the others and 
use ENTWIFE to locate bifurcations in ~ and to follow the corresponding 
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~ o  

unstable modes 

(~) 

k z 

Figure 1. Variation of dispersion relation ,~(k 2) from equation (A3) as ~ increases for 
fixed N, r, D and s. In the appropriate parameter domain, if e < % [given by 
equation (A5b)] the dispersion relation is as illustrated in (i) and the uniform 
solution (N, N/(I+N)) persists. (ii) At e = ~ ,  wavenumber kZ=s(rN/D) 1/2 is 
neutrally stable. For e = % + e, 0 < e ~ 1 a non-uniform solution to the steady-state 
problem (11 ) - (13) exists if kc is a permissible wave number [that is, the mode with 
wavenumber k c satisfies the boundary conditions (13)]. (iii) c~ > e~. As e increases 
past c~ c, the zeros of the dispersion relation separate (k~ and k2). If one of them passes 
through a permissible wavenumber, that mode is a solution to the steady-state 

problem and is located by ENTWIFE. 

solutions. This results in a state diagram which illustrates how the patterns 
vary with changing e. Figure 3 shows part of this diagram. Several important  
points arise here. 

(i) The branch for mode (0, 2) heads back to the uniform steady state via a 
secondary bifurcation on the (0, 4) branch. 

(ii) On several branches, for example (0, 3), (1, 1) and (1, 2), the peaks of cell 
density sharpen as e increases. This is typical of chemotactic-type systems 
because of the self-enhancing feature of the aggregation process. In our system, 
however,  chemotactic collapse, the phenomenon whereby the system evolves 
to a Delta function in the chemotactically responding cell population,  is not  
possible with the logistic growth term. 

(iii) In some cases peaks moved and split as shown in Fig. 4. 
It is possible to move off a branch by varying a second parameter.  

Preliminary investigations using the scale factor s as the secondary parameter  
show that in many cases the behaviour of the solution does not change 
qualitatively unless, of course, s varies significantly [see (c), (ii) below]. 

(c) Domain scale and 9eometry. These are very important  factors in 
controlling pattern formation as they are in most  pattern generation 
mechanisms (see the review in Murray,  1989). With the domain we consider 
here there are two important  roles they can play. 

(i) Separation of degenerate modes. For  example, on a 1 x 4 domain, modes 
(1, 0) and (0, 4) branch offat  the same parameter  values. However,  if we change 
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Figure 2. Solutions to equations (6)-(8) using mode selection. In each case we show 
only the cell density n. The chemoattractant concentration, c, is qualitatively similar 
in behaviour. (a) Mode (0, 4), parameter values r = 24.4, c~ = 118.68. (b) Mode (2, 0), 
parameter values r = 389.6, c~ = 1782.0. (c), (i) Mode (1, l), r = 28.22, ~ = 135.16. (ii) 
Mode (1, 2), r=38.05, ~=175.76. (iii) Mode (1, 4), parameter values r=1.52, 
~=27.06. Note that on a 1 x 4 domain the modes in (a) and (b) are degenerate in 
that for (a) mode (1, 0) is also a solution while for (b) (0, 8) is also a solution. 
However, we can separate such degenerate modes by changing the domain slightly 
so that for each case only one mode will satisfy the boundary conditions. In (a) we 
took the domain as 1.1 x4 while in (b) the domain was 1 x4.1. In all the above 

simulations, N =  1, D = 0.25, s = 1. 

the  d o m a i n  to  1.1 x 4 a n d  k e e p  the  p a r a m e t e r s  f ixed,  t h e n  o n l y  (0, 4) will 
b r a n c h  off, as  it is the  a p p r o p r i a t e  m o d e  for  the  b o u n d a r y  c o n d i t i o n s  (see 
Fig .  2a) .  W h e n  we p e r t u r b  the  d o m a i n  in the  o t h e r  d i r ec t i on ,  t h a t  is, m a k e  it 

1 x 4.1,  we  o b t a i n  the  (1, 0) m o d e  (Fig.  2b) .  
(ii) By  i n c r e a s i n g  the  scale ,  t h a t  is i n c r e a s i n g  s, it is pos s ib l e  to  e n h a n c e  the  

r i chnes s  o f  the  p a t t e r n s .  H e u r i s t i c a l l y  this  is to  be  e x p e c t e d ;  we  c a n  t h i n k  o f  this  
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as simply enabling more pattern to 'fit into' the domain (Fig. 5). The effect of 
varying scale via the width--the Lx--of course also affects the pattern as in 
Fig. 6. 

As we noted in the case of alligator stripes, melanocytes were found in the 
unpigmented areas (Murray et al., 1990) which suggests a threshold cell density 
before a melaninistic pattern appears. If a pattern appears at a different cell 
density threshold, that is other than simply at a density above the uniform 
steady-state N, we obtain different patterns: see Fig. 6. The variability in 
pattern as a result of varying the threshold was pointed out and used by 
Murray (1981b) to account for the similar but quantitatively different patterns 
observed on the integument of different giraffe species. 

4. Discussion of Results. The development of structure and form is a key issue 
in embryology and is the source of much experimental and theoretical research. 
Mathematical models have had a significant influence in guiding and 
stimulating experimental programmes and play a major role in proposing 
candidate systems for the underlying mechanisms involved in pattern 
formation. Two major modelling approaches have been proposed, namely the 
well known reaction-diffusion models based on Turing's (1952) theory of 
morphogenesis [see the books by Meinhardt (1982) and Murray (1989)] and 
the Oster-Murray mechanochemical models [see the extensive discussion in 
Murray (1989)]. The mechanochemical approach proposes that the physico- 
chemical environment of the cell leads to a direct pattern of cell aggregations. 
Several other types of models have been proposed for pattern formation, for 
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Figure 3(a) continued. (See caption with Figure 3(b).) 

example cellular automata models, gradient models (Wolpert, 1969, 1981 ), and 
polar coordinate model (French et al., 1976). Of these approaches, reaction- 
diffusion and cellular automata are the theories that have been proposed for 
animal coat markings (see Introduction). 

The cell-chemotaxis model we consider here for animal coat markings falls 
into the mechanochemical group of models and has been applied to various 
biological situations, most recently to stripe initiation in alligators (Murralr, 
1988; Murray et al., 1990) and pigmentation patterning on snakes (Murray and 
Myerscough, 1990). Analytically finite-amplitude, spatially structured, steady- 
state solutions in one-dimension of a simplified version of equations (2)-(4), 
wherein the mitosis term was set to zero, were recently considered by Grindrod 
et al. (1989). 

In this paper we have presented a preliminary study of the pattern forming 
potential of a mechanochemical model, based on the chemotactic response of 
cells, as it might apply to animal skin patterns. Linear analysis presages the 
existence of spatially heterogeneous steady-state solutions to the model and the 
package ENTWIFE not only confirms this but also calculates steady-state 
solutions and shows how they behave as the bifurcation parameter changes. 
Although we restricted our,study to patterns on a 1 x 4 domain, or small per- 
turbations from it, and selected only a few of the possible types of pattern to 
consider, it is easy (but computationally expensive) to extend the study to other 
domains with a corresponding greater range of patterns. The preliminary results 
presented here, however, clearly show the remarkable wealth of possible spatially 
structured solutions that such a simple set of chemotactic equations can exhibit. 

The model exhibits stripes, both longitudinal and lateral, and spots. Such 
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Figure 3. (a) State diagram for fixed parameter values r = 1.52, N =  1, s = 1, D = 0.25 
and varying ~ on 1 x 4 domain. Note that modes (0, 4) and (1, 0) are degenerate. 
JJnjj =~DJN--nJdxdy/S D dxdy, D = d o m a i n .  The letters A-L  on the state diagram 
denote the patterns indicated. (b) Magnified view of the bifurcation of mode (0, 1). 
A different choice of measure makes it clear that this is in fact a pitchfork bifurcation 
where the two branches of the pitchfork join on to each other. Z o is the bifurcation 
point, Z 1 is where the branch crosses the ~ axis without bifurcation. Letters P - U  
refer to the solutions illustrated and (n}(o,o)= (n-N)  evaluated at the point  (0, 0). 
Note that the intersection of branches are overlaps and not  secondary bifurcations, 

which were not  considered in this study. 
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Figure 4. As ~ increases along branch (1, 2) of Fig. 3, the peaks of cell density move 
and one peak splits. (i) a=23.75, (ii) a=27.59, (iii) ~=32.71, (iv) ~=42.95, (v) 

= 63.43. 

patterns are important from the viewpoint of animal coat markings. It is clear 
that increasing the domain size can increase the richness of pattern. Murray 
(1979, 1981a,b), in a series of papers, proposed a reaction-diffusion model as a 
candidate pre-pattern mechanism for melanoblast cells, which could then 
respond to the chemical pre-pattern in a genetically pre-d~termined fashion. 
However, the migration of the pigment cells from the neural crest and their 
strongly invasive properties suggest that perhaps a model based on cell motility 
may be more appropriate. The experimental results of Murray et al. (1990) lend 
support to this hypothesis. 

Here, we have established that a cell-chemotaxis model can produce a wide 
variety of observed patterns. This is a necessary condition to be fulfilled by any 
model that purports to account for any developmental phenomenon. Of course 
it is not sufficient; each model should be able to make testable predictions. The 
section on mode isolation shows that the spacing of the patterns predicted by 
the model may vary by changing, for example, the mitotic rate of cells or total 
number of cells. Decreasing either causes the pattern spacing to increase or 
disappear altogether. This is a prediction of the model that should be tested 
experimentally. Similar predictions emerge from a mechanochemical 
approach, for example, to chondrogenesis and to feather germ formation. 
Treatment with a mitotic inhibitor reduced the number of digits in the 
salamander limb (Alberch and Gale, 1983; Oster et al., 1988); while irradiation 
of the feather forming region of the chick, which reduced the total number of 
cells, increased the spacing of the feather primordia (D. Davidson, personal 
communication, 1984). The predictions of these mechanochemical models are 
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Figure 5. The effect on the solution of changing domain scale. In each case we show 
only the cell density n. The chemoattractant  concentration, c, is qualitatively 
similar. (a) Parameter  values r =  1.52, N =  1, s = 1, D =0.25,  ct= 17.57. On  a 1 x 4.1 
domain the solution is a (0, 4) mode. If we continue along a solution branch with 
increasing scale in the y-direction, the solution changes to a (0, 8) mode on a 1 • 8.2 
domain.  (b) Parameter  values r = 1.52, N =  1, s = 1, D = 0.25, ~ = 20.5498. On  a 1 x 4 
domain,  the solution is a (1, 2) mode. As we continue along the solution branch with 
increasing scale in the x-direction, the solution changes to a (2, 2) type mode for 

domain 2.65 x 4. 
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Figure 6. The effect of changing domain size in the x-direction for the (1, 4) mode. 
Note that by taking different threshold cell densities, we can generate different 
patterns. For  example, in (b) if the threshold is at low cell density, this pattern is a 
series of semi-circular spots. However, if the threshold is at high cell density, the 

pattern is a wavy stripe. 

easier to test than reaction-diffusion type models, where the predictions are in 
terms of properties of highly elusive morphogens. In the simulations presented, 
the stability of the patterns was not fully investigated. Thus some of these 
patterns may be unstable. However, in view of the fact that observed 
developmental patterns may be in response to transient underlying patterns, 
unstable patterns are still relevant. We note that a detailed eigenvalue analysis 
along every solution branch would be necessary to prove stability of each 
pattern and to discount possible Hopf bifurcation to time-periodic pattern. 
Such a detailed study is outside the scope of the present work. 

Perhaps the most important result of this paper is to highlight the crucial 
importance of the effect of domain growth on the patterns formed. If the time it 
takes the pattern mechanism to generate pattern is commensurate with 
significant growth of the embryo then the final pattern can be very different if 
the mechanism operates on a fixed domain. Many of the observed animal 
integument patterns could be the result of mechanisms which have been 
operative on a growing domain. 
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A P P E N D I X  

Here we carry out the linear analysis of system (6)-(8). There are two uniform steady-states for 
(n, c) given by (0, 0) and (N, N/(1 + N)). The steady-state (0, 0) is always unstable by inspection 
so we consider only the non-zero steady-state (N, N/(1 + N)) here. 

In the usual way we set n=N+u, c=N/(1 +N)+v where ]u], ]v I are small, substitute into 
(6)-(8) and retain only linear terms. This gives the linear equations, which govern behaviour near 
the steady-state, as 

~U 
- -  = D V 2 u  - -  o ~ 2 v  - -  r N s u  (A 1 a) 
0t 

 2v+ E u j 
~t = -(1 +-N) 2 v (Alb) 

n .  V u = n ' V v = 0 ,  xEc~D. (Alc) 

We look for solutions to equations (A1) in the form 

t/ U 0 
(A2) 

where 2=2(k)  determines the temporal growth rate of the disturbance with wave vector k. 
Non-trivial  solutions for u o and v o exist only if 2, the dispersion relation, satisfies the 
characteristic polynomial 

2z +[(D+ l)k2 +rN+s]2 +[Dk* + { rNs+ Ds-  (l(SN~ N)~J J (A3) 

and the wave with wavenumber Ik[ satisfies the boundary conditions (Alc). If ).(k 2) < 0 then a 
disturbance of wave vector k will decay with time. If ).(k 2) > 0 for some k 2 then the disturbance 
with these wavenumbers will grow and the system will evolve to a non-uniform spatially 
structured solution. Typical dispersion curves are illustrated in Fig. 1. 

On a two-dimensional domain we consider the wave vector k = (kx, kr) where k x = m~z/Lx, 
kr = ln/Lr, where m and I are integers. These come from the zero flux boundary  conditions and 
the linear eigenfunctions cos mnx/L~ cos lny/Ly. Therefore on a rectangular domain the values 
of k 2 which produce a pattern are those where ~.(k2)> 0 where 

(m 2 12"~ 
k ' k = k 2 = x  2 7 5 + 7 5  . (A4) 

\L x LyJ 

We can choose parameters D, ~, s, r and N t o  isolate only one unstable wave vector. This mode 
selection (see Fig. 1) is simply a way of forcing a particular pattern to grow. The wave vector for 
the isolated mode occurs when 2(k2)=0, that is when k satisfies 

sN~ 1 Dk*+ rNs+Ds ( l + N ) 2  k2+rNs2=O. (A5a) 
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We require equation (A5a) to have only one solution for k 2, so we further impose the condition 
for equal roots, namely 

sNct 2 2--4DrNs2 [rNs+Ds (I+N) ] =0. (A5b) 

Hence the modulus of the critical wave vector is given by 

/ F N \  1/2 

) 
By choosing D, s, r and N appropriately, we can find a k 2 from equation (A4) which satisfies 
equation (A5c), and then solve equation (A5b) for ~ (we take the larger root for ~, so that k) is 
positive). This determines the point in (N, D, r, s, ~) parameter space where mode (A5c) is 
isolated. 

Note that if we decrease r or N, the critical wavenumber decreases, thus the spacing of the 
pattern increases, or if decreased enough, the pattern disappears altogether. This is a prediction 
of the model which could be tested experimentally as discussed in Section 4. 
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